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Abstract
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where the government imposes a regulatory constraint that limits the losses banks make

in the event of their default. I show that the addition of banking regulation results in

three deviations from the standard theory. First, collateral is demanded of both high

and low risk �rms, even in the absence of asymmetric information. Second, if banking

regulation is su�ciently strict, there may not exist an adverse selection problem. Third,

a pooling Nash equilibrium can exist.
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1 Introduction

Following the Financial Crisis of 2007-2008, regulators and policy makers have increased their

focus on ensuring stability in the banking sector. One key tool at the regulator's disposal

is stress testing, which has become more widely used by regulators since the �nancial crisis.

The empirical evidence suggests that the use of stress tests by the Federal Reserve and other

banking regulators can have a negative impact on the lending conditions facing �rms. For

example, Acharya et al. (2018), focusing on lending to large �rms in the US, �nd that stress

tested banks tend to reduce the quantity of loans supplied to �rms and tend to increase

borrowing rates. Similarly, Cortés et al. (2018) complement this by documenting similar

negative e�ects of stress testing on small business loans. Speci�cally, they provide evidence

that stress tests conducted under the Comprehensive Capital Analysis and Review (CCAR)

led to a decrease in a�ected banks' credit supply to small business. An overview of the recent

history of stress testing in the �nancial sector can be found in Dent et al. (2016).

This paper seeks to contribute to the analysis of implementing more stringent banking regula-

tion such as regulatory stress tests by o�ering a theoretical model that assesses the interaction

between banking regulation and loan terms in a traditional model of loan contracts. I propose

an adverse selection credit market model with aggregate uncertainty where �rms have private

information regarding the riskiness of their project. Firms operate a decreasing returns to

scale production technology and fund their project by obtaining a bank loan. Banks have

limited liability and are able to default on insured depositors. As banks do not internalize

the social cost of default, they lend more than is socially optimal. This ine�ciency can be

corrected through banking regulation. I abstract from the implementation of banking regu-

lation and assume that the government can impose a constraint on the level of systemic risk

directly through a limit on the losses banks make conditional on their default. The regulatory

constraint in my model can be interpreted as a condition that banks must be able to meet

some minimum threshold following a regulatory stress-test.

The model allows banks �exibility in satisfying the regulatory requirements. Banks may

reduce the size of the loans they o�er, increase interest rates or reduce their loss given

default through demanding more collateral from borrowers. Thus collateral now has two

roles; as in traditional adverse selection models collateral can be used as a screening device

but in addition it may also help the bank satisfy regulatory requirements by reducing the

loss given default of a loan.

This paper highlights a novel channel through which banking regulation may distort equilib-

rium lending; the interaction of incomplete information and banking regulation. The paper

has three main theoretical results which are contrary to standard adverse selection models.
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First, I set out conditions under which collateral is demanded of both high and low risk �rms,

even in the absence of asymmetric information. Second, if banking regulation is su�ciently

strict, there may not exist an adverse selection problem, as the di�erence in loan size at the

full information contract is su�cient to separate the two �rm types. Finally, I show that if

there is insu�cient pledgable collateral, the two �rm types can receive the same contract in

equilibrium, that is to say a pooling Nash equilibrium can exist.

The paper also sets out some empirical predictions of the model. First, the model predicts

that increased regulation reduces loan size and that the fall in the size of loans is larger for

higher-risk �rms than lower-risk �rms. This is consistent with the evidence in Acharya et al.

(2018). Second, the model predicts that the collateral ratio of loans will increase following an

increase in regulation. Finally, the model suggests that banking regulation may impact �rms

across di�erent industries to varying decrees. Speci�cally, the model predicts that at high

levels of regulation, collateral ratios will be larger for industries that feature higher returns

to scale and less intangible capital.

This paper is directly related to the literature on adverse selection in credit markets. Papers

that focus on the use of collateral as a screening device in credit markets featuring adverse

selection include papers such as Stiglitz and Weiss (1981), Bester (1985a) and Lacker (2001).

The addition of variable loan size to signalling models has also been studied previously by

Bester (1985b) and Milde and Riley (1988). The existence of credit rationing equilibria,

though not pooling equilibria, when there is insu�cient collateral was raised by Besanko and

Thakor (1987) and Clemenz (1993). The use of collateral in lending markets with information

asymmetries has been extensively studied in the empirical literature. Both Lehmann and

Neuberger (2001) and Jiménez et al. (2006) provide empirical evidence supporting the use

of collateral as a screening device while Godlewski and Weill (2010) provides evidence that

reconciles these papers with papers such as Berger and Udell (1990) that suggest high-risk

borrowers pledge more collateral.

This paper also complements the empirical literature on the impact of regulatory stress

testing on bank lending such as Acharya et al. (2018) and Cortés et al. (2018) by providing a

theoretical mechanism through which more stringent regulation can impact lending outcomes.

A related paper is Estrella (2004) who considers the impact of regulatory restrictions on a

bank's value at risk on the probability of bank failure in a dynamic setting. His emphasis

is on the portfolio choice of a bank choosing between safe and risky assets. In this paper, I

emphasize the impact of banking regulation on the terms of loan contracts.

The paper is organized as follows. Section 2 presents the model. Section 3 derives the main

results on the loan contracts in a competitive equilibrium. Section 4 discusses the optimal
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policy decision of the regulator, Section 5 discusses some possible extensions of the model

and presents some empirical implications of the model and Section 6 concludes.

2 Model

2.1 Firms and Technology

Consider a credit market with a continuum of risk-neutral �rms. Each �rm has access to a

project such that an investment of k will yield a cash-�ow of ϕkα if successful and zero if it

fails. The curvature parameter α ∈ (0, 1) is such that the cash-�ow of a successful project

features decreasing returns to scale and the productivity parameter ϕ > 0 is common to

all �rms. There exist two types of �rms indexed by i ∈ {L,H} that di�er in the success

probability of their projects. The probability a �rm's project is successful is denoted by

pi with 0 < pH < pL < 1 implying that H-type �rms are high risk and feature a lower

probability of success than low risk (L-type) �rms. The fraction of �rms of type i is denoted

by µi ∈ (0, 1) with
∑

i µi = 1. The distribution of �rms in the economy is public information.

Firms receive a known end-of-period endowment W > 0. The timing of the endowment

means �rms cannot use the endowment to invest in a project but instead must obtain a loan.

Banks make loan o�ers to �rms that consist of a loan size ki ≥ 0, an interest rate Ri ≥ 0

and an amount of pledged collateral Ci ∈ [0,W ]. The collateral is the amount of the �rm's

endowment sacri�ced by the �rm if it defaults on the loan payment Riki.

In addition to the �rm type, the probability of a project being successful also depends on the

realization of an aggregate state z ∈ {zB, zG}. The aggregate state zG occurs with probability

q ∈ (0, 1) and zB with probability 1 − q. I denote the probability of �rm i's project being

successful conditional on z as pi (z). The probability of a project being successful is higher

in the 'good' state (zG) than in the 'bad' state (zb) for both �rm types such that

0 < pi (zB) < pi (zG) < 1 ∀i ∈ {L,H} . (1)

It follows from above that the expected probability of �rm i's project being successful can

be written as follows

pi = qpi (zG) + (1− q) pi (zB) . (2)

To simplify the analysis, I assume that the ratio of success probabilities conditional on zG
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and zB is the same across �rm types such that

pi (zB)

pi (zG)
= ξ ∀i ∈ {L,H} , (3)

where it follows from equation (1) that ξ ∈ (0, 1). It is assumed that the aggregate state is

not known at the beginning of the period and thus loan contracts made between the bank

and the �rm cannot be made contingent on the realization of z.

The expected utility �rm i receives from a loan contract (ki, Ri, Ci) is

Ui (ki, Ri, Ci) = pi [ϕk
α
i −Riki]− (1− pi)Ci +W. (4)

To simplify the later analysis, I de�ne the payo� the �rm receives from a successful project

as π (k,R) = ϕkαi − Riki. The �rm's marginal rate of substitution between the payo� from

a successful project π and the collateral pledged is

dπ

dC

∣∣∣∣
Ui

=
1− pi
pi

. (5)

As the marginal cost of collateral is lower for low-risk �rms than high-risk �rms, banks will

be able to use collateral to screen between unobservable �rm types.

2.2 Banking Sector and Regulation

There exist a large number of risk-neutral banks that fund loan contracts through deposits.

Deposits are fully insured by the government and depositors earn a risk-free return which

for simplicity is normalized to 1. Banks have limited liability and default on depositors if

the proceeds from lending are less than what banks owe their depositors. If banks default,

depositors are compensated by the government. The government does not charge banks an

insurance premium but instead funds the deposit insurance by a lump-sum tax on households.

The expected pro�t that a bank earns from a contract (ki, Ri, Ci) that is accepted by type-i

�rms is given by the following equation

Vi (ki, Ri, Ci) = q (pi (zG)Riki + δ (1− pi (zG))Ci − ki)
+ (1− q) max {pi (zB)Riki + δ (1− pi (zB))Ci − ki, 0} , (6)

where δ ∈ (0, 1) is a discount parameter on collateral implying that the use of collateral in a

loan contract is costly. The parameter δ can be thought of as a reduced form way of capturing
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the agency and liquidation costs of transferring collateral to the banks. Competition in the

banking sector will drive pro�ts towards zero but I assume that banks do not default following

the realization of the good aggregate state zG. However, due to limited liability banks may

default following the realization of zB. I further assume that if a loan contract is accepted

by at least one �rm, it is accepted by a representative mass of �rms, such that the law of

large numbers holds. This assumption ensures that bank default would only occur due to

aggregate risk and not due to the idiosyncratic �rm risk.

If banks default following the realization of zB, the government levies a lump-sum tax τ on

households in order to make depositors whole again. Due to the presence of this deposit

insurance banks do not fully endogenize the cost of default. In order to address the resulting

externality I assume that the government can impose the following restriction on the riskiness

of bank borrowing

pi (zB)Riki + δ (1− pi (zB))Ci ≥ γki, (7)

where γ ∈ (0, 1) is a parameter chosen by the government that determines how strict the

regulatory regime is. The regulatory constraint set out by equation (7) is equivalent to stating

that the bank only defaults on a fraction (1− γ) of deposits if the bad aggregate state zB

is realized. One interpretation of this constraint is that it represents the requirement that

banks pass a regulatory stress-test, with the parameter γ capturing how strict this stress-test

is. Recent empirical studies such as Acharya et al. (2018) and Cortés et al. (2018) �nd that

banks that fail stress tests adjust their lending in response. Furthermore, if the bank is

publicly traded on a stock market, fully disclosing stress-test results as in the US is likely to

create a strong incentive for the management of the bank to ensure the regulatory stress test

is passed.

I focus on subgame perfect Nash equilibria of the following three-stage variant of the Roth-

schild and Stiglitz (1976) screening game. In the �rst stage, the government chooses the

regulatory parameter γ. In the second stage, banks o�er a single loan contract to �rms. In

the third stage, �rms choose a single loan contract among those on o�er. In this paper I dis-

cuss the existence of both separating and pooling Nash equilibria. A Nash equilibrium is a set

of contracts {(ki, Ri, Ci)}i∈{L,H} such that i) each contract earns non-negative pro�ts for the

bank, ii) the regulatory constraint de�ned by equation (7) is satis�ed and iii) there exists no

other set of contracts which, when o�ered in addition to the existing set of contracts, all earn

non-negative pro�ts with at least one o�ering strictly positive pro�ts. I consider both sep-

arating and pooling equilibria. An equilibrium is separating if (kL, RL, CL) 6= (kH , RH , CH)

and is pooling otherwise.
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3 Competitive Equilibrium

3.1 Equilibrium with identical customers

I �rst examine the case where there is a single type of �rm and as a result banks have

perfect information regarding the quality of the �rms they are lending to. For an economy

that consists of a single �rm of type i, a competitive equilibrium must feature a contract

that satis�es the regulatory constraint and ensures that banks make non-negative pro�ts.

A preliminary step in describing the equilibrium is to characterize the set of contracts that

satisfy these two constraints in (π,C)-space. I will refer to this set as the feasible set.

First, I consider the case where the regulatory constraint is slack. In this case, the only

constraint on the set of feasible contracts o�ered is that banks must make non-zero pro�ts.

Then the maximum payo� π that can be promised to �rm i for a given pledge in collateral

C that satis�es the following constraint binds

pi (zG)Riki + δ (1− pi (zG))Ci − ki ≥ 0, (8)

which is simply the constraint that banks make non-negative pro�ts if zG is realized given

that they default if zB is realized. If banks did not default following zB then that would

imply that they would make non-negative pro�ts following the realization of zB, but then a

competing bank could o�er a lower interest rate Ri and thus a higher π such that equation

(8) is satis�ed while defaulting on any losses they make in zB. By maximizing equation (4)

subject to equation (8) the payo� maximizing loan size can be found as

k̄i = (αϕpi (zG))
1

1−α . (9)

Assuming equation (8) binds this can be substituted into equation (7) to yield the following

inequality

Ci ≥
1

δ

(
γ − ξ
1− ξ

)
ki. (10)

An immediate corollary of equation (10) is that the regulatory constraint will be satis�ed

for all Ci ≥ 0 whenever γ ≤ ξ. This establishes a lower-bound for γ below which the

regulatory constraint will have no e�ect on the equilibrium. Furthermore, even if regulation

is su�ciently high such that γ > ξ, if the collateral speci�ed in the contract is su�ciently

high, then the regulatory constraint will not bind. Speci�cally, there exists a cuto� level

of collateral C̄i such that for any Ci > C̄i there is su�cient collateral to ensure that the
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regulatory constraint will be slack when banks o�er a loan size of k̄i. This cuto� is de�ned

by the following equation

C̄i =
1

δ

(
γ − ξ
1− ξ

)
k̄i. (11)

Next, I consider the possibility that the regulatory constraint binds but where banks make

positive pro�t and equation (8) is slack. By maximizing equation (4) subject to equation(7)

the payo� maximizing loan size can be found as

ki = (αϕpi (zB))
1

1−α . (12)

It follows from the above discussion that if γ > ξ and collateral is su�ciently low, banks

o�er a loan size equal to ki and make strictly positive pro�ts to ensure that the regulatory

constraint binds. Speci�cally, there exists a cuto� level of collateral Ci such that for any

Ci < Ci there is insu�cient collateral available for competition to drive bank pro�ts to zero

while ensuring that the regulatory constraint will be satis�ed. This cuto� is de�ned by the

following equation

Ci =
1

δ

(
γ − ξ
1− ξ

)
ki. (13)

To understand this somewhat puzzling case, note that there are three dimensions along

which contracts can be adjusted in order to meet the regulatory requirement; the loan size,

the quantity of collateral and the interest rate. When the quantity of collateral is su�ciently

low, �rms would accept a higher interest rate in exchange for a larger loan size and thus

banks are able to make positive pro�ts.

By assumption pi (zB) < pi (zG), thus it follows that ki < k̄i and Ci < C̄i. Thus when γ > ξ

there exists a range of collateral C ∈
(
Ci, C̄i

)
, where in order to maximize the payo� to �rms,

both equations (7) and (8) bind. The loan size can be found by rearranging the two binding

constraints to get ki = δ
(

1−ξ
γ−ξ

)
Ci such that this loan size is increasing in collateral and lies

between the upper- and lower-bounds for the loan size ki and k̄i.

The boundary of the feasible set of contracts on the interior of R2
+ can be summarized by the

function Πi (C) that denotes the maximum payo� that can be o�ered to �rms as a function

of collateral . This function is characterized as follows

Πi (C) =


ϕkαi − γ

(
1

pi(zB)

)
ki + δ

(
1−pi(zB)
pi(zB)

)
C when C < Ci and γ > ξ

ϕ
[
δ
(

1−ξ
γ−ξ

)
C
]α
− δ

[
1

pi(zG)

(
1−γ
γ−ξ

)
+ 1
]
C when Ci ≤ C ≤ C̄i and γ > ξ

ϕk̄i
α − 1

pi(zG)
k̄i + δ

(
1−pi(zG)
pi(zG)

)
C otherwise.

(14)
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Figure 1: Set of feasible contracts for �rm i

The set of feasible contracts is illustrated graphically for the case where γ > ξ in �gure 1.

Equation (14) denotes the largest possible payo� π that can be o�ered to �rm i conditional

on a collateral level C. As �rm utility is strictly increasing in π, the competitive equilibrium

is simply the point on equation (14) that maximizes �rm utility.

In the case where γ ≤ ξ, the regulatory constraint is always slack and the competitive

equilibrium with identical customers is analogous to that in the Rothschild and Stiglitz

(1976) case. The function Πi (C) is linear in C and with a gradient of δ
(

1−pi(zG)
pi(zG)

)
, which

is strictly lower than the gradient of �rm i's indi�erence curves set out in equation (5) and

thus the equilibrium contract will feature Ci = 0.

When γ > ξ, equation (14) is weakly concave in C and the gradient at Ci = 0 is δ
(

1−pi(zB)
pi(zB)

)
.

A su�cient condition for the competitive equilibrium to feature Ci > 0 is that δ
(

1−pi(zB)
pi(zB)

)
is strictly larger than the marginal rate of substitution of �rm i, which holds whenever

δ >

(
pi (zB)

1− pi (zB)

)(
1− pi
pi

)
. (15)

Thus if banks value collateral su�ciently highly, the equilibrium will feature positive col-

lateral; the inequality set out in equation (15) will be satis�ed as δ → 1. If equation 15 is
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Figure 2: Competitive equilibrium with single �rm type

satis�ed, the competitive equilibrium will be the point of tangency between equation (14)

and �rm i's indi�erence curves. This is illustrated graphically in �gure 2 where C∗i denotes

the collateral level at the competitive equilibrium.

This result is set out more formally in the following proposition.

Proposition 1. If γ > ξ, δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
and W is su�ciently high, the competitive

equilibrium contract for an economy featuring a single type of �rm will feature strictly positive

collateral C∗i > 0 and a loan size k∗i < k̄i where C
∗
i and k∗i are given by the following equations

k∗i =

 αpiϕ

(q + (1− q) γ) +
(

1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
 1

1−α

, (16)

C∗i =
1

δ

(
γ − ξ
1− ξ

)
k∗i , (17)

and the utility that the �rm receives from the competitive equilibrium contract is

U∗i =

(
1− α
α

)[
(q + (1− q) γ) +

(
1− δ
δ

)
(1− pi)

(
γ − ξ
1− ξ

)]
k∗i . (18)

Proof. See Appendix.
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Proposition 1 states that if the regulatory constraint is su�ciently strict and the cost of

pledging collateral is su�ciently low, the competitive equilibrium will feature positive col-

lateral even in the case of a single �rm type. The reason for this is that pledging collateral,

while costly, increases the loan size that �rms are able to receive.

In order to focus on the novel aspects of this model, from now on I assume �rst that γ > ξ

such that the regulatory constraint is a relevant consideration for agents and second that

equation (15) is satis�ed so that �rms are willing to use collateral to ensure that their credit

contract satis�es any regulatory constraint.

An increase in γ tightens the regulatory constraint and as can be seen through di�erentiation

of equation (16) decreases the loan size k∗i . Thus the government is able to a�ect the size of

�rm loans through the regulatory constraint. An increase in γ increases the collateral ratio

c∗i ≡ C∗i /k
∗
i as evidenced by equation (17) while �rm utility U∗i falls following an increase in

γ. However, the change in the level of C∗i is less clear cut as the increase in the collateral

ratio may be o�set by a fall in the loan size. Which of these e�ects dominates depends on

the level of γ; at low levels of γ, the increase in the collateral ratio dominates and the level

of collateral increases while this may not be the case at higher levels of γ. A more detailed

analysis is provided in the Appendix.

3.2 Separating equilibrium with asymmetric information

I now return to the case of asymmetric information where there are two �rm types i ∈
{H,L} and a �rm's type is known only to itself. Banks are unable to condition contracts

on the �rm type. Instead, in a separating equilibrium, there are two distinct contracts

{(ki, Ri, Ci)}i∈{L,H} chosen by �rms in equilibrium, with each contract being chosen by a

single �rm type. In order for this to occur, �rms must self-select into the contract intended for

them and thus the following two incentive compatibility constraints must hold in equilibrium

pH [ϕkαH −RHkH ]− (1− pH)CH ≥ pH [ϕkαL −RLkL]− (1− pH)CL, (19)

and

pL [ϕkαL −RLkL]− (1− pL)CL ≥ pL [ϕkαH −RHkH ]− (1− pL)CH . (20)

To see which of these constraints is likely to bind, �rst note that if there is su�cient collateral

the separating contract will lie on the boundary of the feasible set. Furthermore, for any loan

that is not fully collateralized, ΠL (C) > ΠH (C) and thus at a given C the separating payo�

available to low-risk �rms will be higher than that of high-risk �rms. This can be shown by
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noting that if the amount of collateral is held �xed, low-risk �rms can receive the same loan

size as high-risk �rms at a lower interest rate without violating either the zero pro�t condition

or the regulatory constraint. Thus ΠH must lie on the interior of the feasible contract set

for L-type �rms. It follows immediately from this that the relevant incentive compatibility

constraint to consider is equation (19). Low-risk �rms will never prefer a contract intended

for high-risk �rms and equation (20) will always be satis�ed in equilibrium.

In contrast to a more standard adverse selection model, equation (19) may not always bind.

To see this, consider the following equation which can be found by substituting in the full

information contracts {(k∗i , R∗i , C∗i )}i=∈{L,H} into equation (19) and rearranging:

ΛIC (γ) =

(
pH
pL

) α
1−α

 (q + (1− q) γ) +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


α
1−α

+

(
α

1− α

) 1
δ

(
pL
pH
− 1
)(

γ−ξ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
− 1. (21)

When ΛIC (γ) ≥ 0, the incentive compatibility constraint is slack and the set of contracts

{(k∗i , R∗i , C∗i )}i=∈{L,H} constitute the Nash equilibrium with imperfect information. On the

other hand, if ΛIC (γ) < 0, the incentive compatibility constraint will bind and low-risk �rms

must pledge a higher quantity of collateral in order to separate from high-risk �rms.

Through inspection of equation (21) it is clear that the limit of ΛIC (γ) as γ → ξ is negative.

Thus absent any regulation the incentive compatibility constraint would always bind. In

this case, the full information contracts do not require any collateral to be pledged and as

ΠL (0) > ΠH (0) it follows that in the asymmetric information case equation (19) will bind.

Similarly, the limit of ΛIC (γ) as γ → 1 is strictly positive, thus if the regulatory constraint

is su�ciently strict, the incentive compatibility constraint no longer binds.

To understand why note that at the limit γ → 1, loans are fully collateralized and hence

both �rm types are charged the risk free rate by the banks. As a result �rms are able to

fully distinguish their type solely through their choice of loan size and there is no incentive

for high-risk �rms to deviate as they will be charged the same interest rate as low-risk �rms.

While this means that su�ciently strict banking regulation may resolve the adverse selection

problem, it may not be socially optimal to do this as the use of collateral is costly.

The Appendix proves that the function ΛIC (γ) is strictly increasing in γ and thus there

exists a cuto� γ∗ ∈ (ξ, 1) such that the incentive compatibility constraint does not bind
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for regulation stricter than this value. The proposition below summarizes this result more

formally.

Proposition 2. If γ ≥ ξ, δ ≥
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
and W ≥ C∗L, there exists a unique cuto�

γ∗ ∈ (ξ, 1) such that for any γ > γ∗ the incentive compatibility constraints will not bind and

the contracts {(k∗i , R∗i , C∗i )}i=∈{L,H} constitute the Nash equilibrium.

Proof. See Appendix.

Should equation (19) bind the separating contracts can then be illustrated graphically. In the

separating equilibrium high-risk �rms receive the same contract as they would in a single-

type equilibrium. The separating contract for low-risk �rms can then be found as the point

on the frontier ΠL (C) at which high-risk �rms are indi�erent between this contract and their

separating contract (k∗H , R
∗
H , C

∗
H). I denote the separating contract o�ered to low-risk �rms

by
(
k̂L, R̂L, ĈL

)
. As this contract must lie on the boundary of the feasible set, it follows

from rearranging equation (19) that C∗H and ĈL have the following relationship

ΠL

(
ĈL

)
= ΠH (C∗H) +

(
1− pH
pH

)(
ĈL − C∗H

)
. (22)

An example of a separating contract is illustrated in �gure 3.

The precise contract terms for low-risk �rms in the case where equation (19) binds as their

formulation depends on whether ĈL is larger than C̄L or not. However, from the properties

of the boundary of the feasible sets Πi described earlier it follows that the separating contract

features a strictly larger loan size and larger quantity of collateral relative to the full infor-

mation contract, that is k̂L > k∗L and ĈL > C∗L. By rearranging equation (19) the quantity

of collateral can be expressed as

ĈL =
1

δ

 pH
pL

(
pLϕk̂

α
L − (q + (1− q) ξ) k̂L

)
− U∗H

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

 . (23)

Through inspecting equation (23) it becomes clear that ĈL is strictly increasing in γ so long

as ĈL ≥ C̄L. This occurs because at this point k̂L = k̄L and the loan size o�ered to low

risk �rms is insensitive to changes in regulation. As discussed above the utility of the high-

risk �rms decreases as regulation becomes more strict and thus the collateral required for

separation increases.
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Figure 3: Asymmetric Information Contracts

In cases where regulation is su�ciently high γ > γ̄ and ĈL < C̄L, the separating collateral

increases at a lower rate and for su�ciently large values of γ may even start decreasing in

γ. The reason for this is that when γ > γ̄ the loan size k̂L falls in response to an increase in

regulation. Thus while the collateral-to-loan ratio remains increasing in γ, the absolute value

of collateral may fall. More detailed discussion of the response of ĈL to increases in regulation

is provided in the section analyzing the optimal regulatory policy and in the Appendix.

To understand better the relationship between ĈL and the point at which k̂L starts to respond

to tighter regulation, �rst consider the point where γ = ξ. At this point the regulatory

constraint does not bind while positive collateral is still required in order to separate between

high-risk and low risk-�rms and thus ĈL > C̄L = 0. Next, note that when γ = γ∗, the

regulatory constraint does bind while the incentive compatibility is slack and thus C̄L >

ĈL = C∗L. The following proposition establishes more formally that there exists a cuto� level

of regulation γ̄ above which k̂L begins to respond to stricter regulation.

Proposition 3. There exists a unique cuto� γ̄ ∈ (ξ, γ∗) such that for any γ > γ̄, the collateral

required for separation ĈL will be strictly lower than the cuto� C̄L and thus k̂L < k̄L implying

that the loan size of the separating contract will be lower than in the case without regulation.

Proof. See Appendix.
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An important implication of the above is that while the amount of collateral pledged by

low-risk �rms, ĈL, may not respond monotonically to changes in regulation there exists a

unique separating contract for a given value of γ.

As pointed out by Rothschild and Stiglitz (1976) and Wilson (1977), a Nash equilibrium is

not guaranteed to exist in an economy that features asymmetric information. This occurs

when a pooling contract Pareto dominates separating contracts and thus would be preferred

to the separating contract by both types of �rms. Due to the curvature of the production

function, the precise conditions required for the existence of a separating equilibrium cannot

be found in closed form. However, even in the case where a Nash equilibrium does not exist,

the separating equilibrium discussed in this section will exist as a Riley reactive equilibrium as

set out in Riley (1979). Similarly, a pooling equilibrium would exist as a Wilson anticipatory

equilibrium as in Wilson (1977).

3.3 Equilibrium when the wealth constraint binds

The analysis of the previous section assumed that available collateral W was su�cient so

that the required collateral for separation could be supplied. I now discuss the equilibrium

contracts under asymmetric information in the case where W is su�ciently low that the

separating contract discussed earlier cannot be implemented.

First, consider the case where W is su�ciently large that C∗H < W but not so large that the

low-risk �rms can provide the level of collateral required for screening and thus ĈL > W .

Then incentive compatibility requires that the kL and RL o�ered to the low-risk �rm are

such that the payo� low-risk �rms receive is

π̃L = ΠH (C∗H) +

(
1− pH
pH

)
(C∗H −W ) . (24)

In a separating equilibrium when the wealth constraint binds, the low-risk �rm's contract lies

o� the boundary of the feasible set of contracts and thus π̃L < ΠL (W ). The �rm is indi�erent

between any pair of contract terms (kL, RL) which yields the payo� π̃L speci�ed above and

banks will choose the combination of kL and RL that maximizes their pro�t subject to the

regulatory constraint and supplying the �rm a payo� of π̃L. This possibility is illustrated in

�gure 4.

When the upper-bound on collateral binds there is the possibility that a pooling Nash Equilib-

rium exists. In a pooling equilibrium both high- and low-risk �rms accept the same contract

(kP , RP , CP ). The pooling contract can be found in an analogous way to the equilibrium
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Figure 4: Separating Contract with binding wealth constraint

contract with a single �rm type where the single �rm type is composed of both high-risk and

low-risk �rms. The expected probability of success for this composition conditional on aggre-

gate state z is simply a weighted average of the success probabilities for high- and low-risk

�rms, weighted by the proportion of that �rm type in the economy

pP (zj) = µHpH (zj) + µLpL (zj) ∀j ∈ {G,B} .

Similarly, the unconditional expected probability of success is also a weighted average of the

success probabilities of the high- and low-risk �rms

pP = µHpH + µLpL.

It follows that the boundary of the set of feasible pooling contracts, ΠP (C), is simply Πi (C)

for the composite type P .

For a pooling contract (kP , RP , CP ) to exist as a Nash Equilibrium, there must exist no

deviating contract that would satisfy equations (7) and (8) which would result in the pooling

contract becoming either unpro�table or violate the regulatory constraint. That is, there

cannot exist a cream-skimming contract that will attract only low-risk �rms.
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Figure 5: Pooling Contract with binding wealth constraint

A necessary condition for the existence of a pooling contract is for both high- and low-risk

�rms to prefer the pooling contract to the best separating contract available, otherwise �rms

would choose a separating contract over the pooling contract. Similarly, any pooling contract

must lie on the boundary ΠP of pooling contracts, otherwise a better pooling contract could

be found that would be preferred by at least one �rm type.

A further necessary condition is that the upper-bound on collateral binds at the pooling

contract such that CP = W . In this case, no contract with higher collateral can be o�ered to

low-risk �rms and thus there exists no cream-skimming contract. A su�cient condition for

the existence of a pooling equilibrium is that C∗H ≤ W such that the separating contract for

high-risk �rms features a (weakly) binding wealth constraint. Then the pooling contract will

lie strictly above the high-risk separating contract and no cream-skimming deviation exists.

An example of a pooling contract existing as a Nash equilibrium is illustrated in �gure 5.

The precise terms of the pooling contract, as in the separating case, depend on where the

boundary of feasible contracts intersects CP = W . A su�cient condition for the existence of

a pooling contract is W ≤ C∗H . This is summarized in the proposition below.

Proposition 4. If γ > ξ, δ >
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
and W ≤ C∗H then a Nash equilibrium will

consist of a single pooling contract (kP , RP , CP ) o�ered to both �rms and where CP = W and

π = ΠP (W ).
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Proof. It follows from Proposition 1, that if γ > ξ and δ >
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
that the high-

risk �rm's collateral in equilibrium will ideally beC∗H > 0 and is de�ned by equation (17).

Furthermore, it follows immediately from equation (14) that ΠP (C) > ΠH (C) ∀C ≤ C∗H .

Thus if W ≤ C∗H then ΠP (W ) > ΠH (W ) and high-risk �rms prefer a pooling contract that

lies on the frontier ΠP (W ) over the best possible separating contract. It follows from the

relative slope of the �rm indi�erence curves that the only possible separating contract must

o�er low-risk �rms both a higher payo� and higher collateral, but this would violate the

restriction that CL ≤ W .

The possibility of pooling equilibria existing as a Nash equilibrium arises in my model due to

the interaction between the regulatory constraint and the adverse selection problem. In the

classic Rothschild and Stiglitz (1976) screening game, a cream-skimming contract will always

exist so long as W > 0. This is because no collateral is pledged by the pooling contract and

thus there will always exist a deviating contract that features higher collateral and a higher

payo� that would allow low-risk �rms to separate from high-risk �rms.1 The introduction

of the regulatory constraint means that if η > ξ a pooling contract would pledge a positive

amount of collateral and thus W > 0 is no longer a su�cient condition to ensure that a

cream-skimming deviation exists.

4 Optimal Policy

4.1 Overview

Until this point, the regulatory parameter, γ, was taken as given. In this section, I consider

the optimal policy decision of the government that can a�ect the economy only through the

regulatory constraint described in equation (7).

For the sake of both brevity and simplicity, I assume that i) δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
∀i so that

both �rms will pledge collateral; and ii) parameters are such that a Nash equilibrium always

exists. I begin by focusing on the case where there is su�cient wealth that any contract can

be implemented and thus a separating equilibrium exists. After this I analyze the case where

the wealth constraint may bind and a pooling equilibrium may exist.

As discussed earlier if γ ≤ ξ the regulatory constraint will no longer bind and the model will

1A pooling contract with positive collateral would also not exist in a standard adverse selection model as
collateral is costly and there would exist a pro�table deviation from this contract to a pooling contract with
zero collateral.
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collapse to a standard adverse selection model. Thus, without loss of generality, I restrict

the government's decision to choosing a parameter γ ∈ [ξ, 1).

I now turn to the objective function of the government, which is assumed to be benevolent

and maximizes the welfare of a risk-neutral household that owns both �rms and banks. In

order to provide deposit insurance, the bank levies a lump-sum tax τ on households. The

objective function for the planner is thus

U =
∑
i

µi (Ui (ki, Ri, Ci) + Vi (ki, Ri, Ci))− (1− q) τ, (25)

where Ui (ki, Ri, Ci) is the �rm expected pro�t set out in equation (4) and Vi (ki, Ri, Ci) is

the expected pro�t of a bank contract set out in equation (6). The lump-sum τ is set to

exactly cover the losses of the depositors in expectation and is set such that

τ = max

{∑
i

µi (ki − pi (zB)Riki − δ (1− pi (zB))Ci) , 0

}
. (26)

Substituting the equation for τ into the government's objective function yields the following

equation

U =
∑
i

µi (piϕk
α
i − (1− δ) (1− pi)Ci − ki +W ) . (27)

A useful benchmark to consider is the �rst best contract under full information, if the planner

could choose directly the contracts provided to �rms. Maximizing the above results in the

following

kFBi = (αpiϕ)
1

1−α and CFB
i = 0.

Comparing this to the competitive equilibrium under full information as set out in Proposition

1, the collateral level will be higher than optimal whenever γ > ξ while the loan size will be

higher than optimal whenever γ < ξ + (1−q)(1−ξ)
(1−q)+( 1−δ

δ )(1−pi)( 1
1−ξ)

. Thus when collateral is costly,

even absent asymmetric information, the government is unable to implement the �rst best

through adjusting the regulatory constraint.

The over-lending problem occurs because, due to the presence of deposit insurance, banks do

not fully endogenize the cost of default. Instead, risk-shifting takes place and banks maximize

pro�ts only in states where they do not default. The government can reduce this over-lending

problem by raising γ but does so at the cost of imposing higher collateral requirements on

�rms. As δ < 1, collateral is assumed to be costly and thus the government faces a trade-o�

between reducing excessive lending and increasing the dead-weight loss from collateral usage.
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4.2 Optimal Policy with a single �rm type

To begin, I start by discussing the properties of the optimal policy decision in an economy

with a single �rm type. In this case, rewriting equation (27) yields the following optimization

problem for the government

Ui = max
γ
{(piϕ (k∗i )

α − (1− δ) (1− pi)C∗i − k∗i +W )} , (28)

where k∗i and C
∗
i are de�ned in Proposition 2.

The partial derivative of equation (28) with respect to the policy parameter γ is

∂Ui
∂γ

=
(
piϕαk

α−1
i − 1

) dk∗i
dγ
− (1− δ) (1− pi)

dC∗i
dγ

. (29)

At the �rst best loan size, the marginal product of the project with respect to the loan size

equals the interest rate and thus piϕαk
α−1
i = 1. As discussed earlier the derivative of k∗i with

respect to γ is negative and thus equation (29) states that at the optimal policy, the loan

size will only be at the �rst best if at this point
dC∗

i

dγ
= 0. In the Appendix, I show that this

will only occur if (q + (1− q) ξ) = α. While it may seem surprising that it could be optimal

for the government to set the loan size lower than �rst best when there is an over-borrowing

problem, it follows from the fact that while the collateral to loan ratio is increasing in γ, the

absolute quantity of collateral C∗i may not be increasing in γ. Thus if, around the �rst best

loan size an increase in γ will reduce the quantity of costly collateral used, then it will be

optimal to further increase regulation at the expense of a lower loan size than in the �rst

best.

By substituting out
dk∗i
dγ

and
dC∗

i

dγ
, the �rst order condition of the government's optimization

problem can be rewritten as follows

∂Ui
∂γ

=

(
1− q
1− α

)(1− q) (1− γ) +
(

1−δ
δ

)
(1− pi)

(
1−γ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
 k∗i

−
(

1− δ
δ

)
(1− pi)

(
1

1− ξ

)
k∗i . (30)

With a single �rm type, the government maximizes welfare by choosing a value of γ that sets

equation (30) equal to zero. Thus the optimal γ in the case with a single �rm, denoted by

γOPTi , varies by the �rm type.

To gain a greater understanding of the single �rm optimum γOPTi , �rst note that equation
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(30) is strictly decreasing in γ. In addition, so long as δ < 1 the point where γ = 1 is strictly

negative. This implies that it is always welfare improving to set regulation lower than γ = 1

and thus loans will not be fully risk-free. If the optimal regulation γOPTi is su�ciently low,

the lower bound of γ ≥ ξ will bind and it is optimal for the government not to impose a

binding regulatory constraint.

Next, through application of the implicit function theorem the Appendix shows that
dγOPTi

dpi
>

0 and thus γOPTH < γOPTL . The intuition for this is that the deadweight loss of collateral will

be lower for low-risk �rms as they are less likely to forfeit their collateral while the distortion

from the optimal loan size will be relatively larger. Both of these factors contribute to it

being optimal to impose higher regulation on low-risk �rms.

It follows from the above that in the full information case with both �rm types the optimal

policy will lie somewhere between these two values of γOPTi with the mass of high-risk �rms,

µH , determining how close the optimal will lie to γOPTH .

Finally there is the possibility that in the two-�rm case, if the optimal regulatory level denoted

by γOPT is higher than γ∗ as de�ned in Proposition 1, then the regulatory requirement

will be su�ciently strict that the incentive compatibility constraint would not bind at this

point. In this case the full information equilibrium coincides with the incomplete information

equilibrium.

4.3 Optimal Policy with two �rm types

I now return to the case of two �rm types and where banks are unable to observe the

�rm type. The government then seeks to maximize equation (27) subject to the incentive

compatibility constraint set out in equation (19) and the contract terms that �rms receive

in equilibrium. In a separating equilibrium the high-risk �rm will receive (k∗H , R
∗
H , C

∗
H) as

described in Proposition 2. The low-risk �rm receives a separating contract denoted by(
k̂L, R̂L, ĈL

)
where R̂L and ĈL can be found from equations (8) and (19) and k̂L is given by

the following equation

k̂L =

δ
(

1−ξ
γ−ξ

)
ĈL if ĈL < C̄L

(αϕpL (zG))
1

1−α otherwise.
(31)

The derivative of the government's optimization problem is
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∂U
∂γ

= µH
(
pHϕα (k∗H)α−1 − 1

) dk∗H
dγ
− µH (1− δ) (1− pH)

dC∗H
dγ

− µL
[(

1− pLϕαkα−1
L

) dk̂L
dγ

+ (1− δ) (1− pL)
dĈL
dγ

]
. (32)

Substituting equation (30) into equation (32) yields the following equation

∂U
∂γ

= µH
∂UH
∂γ
− µL

[(
1− pLϕαkα−1

L

) dk̂L
dγ

+ (1− δ) (1− pL)
dĈL
dγ

]
. (33)

There are now two separate cases to consider, depending on whether ĈL is less than C̄L or

not. This will yield two candidates for the optimal value of γ.

First consider the case where regulation is su�ciently low that γ ≤ γ̄ and thus ĈL ≥ C̄L. In

this case the size of the loan given to low-risk �rms is not be a�ected by small changes in

regulation and so ∂k̂L
∂γ

= 0. Furthermore, as shown in the Appendix any increase in γ results

in a larger collateral requirement for low-risk �rms as dĈL
dγ

> 0. From inspecting equation

(33) it is clear that any solution to ∂U
∂γ

= 0 would feature a value of γ that is strictly lower

than γOPTH , the optimal regulatory level if the economy consisted of only high-risk �rms.

Intuitively, this is because at low levels of regulation increasing γ results in a fall in the loan

size only for high-risk �rms while increasing the collateral that must be pledged by both �rm

types.

Next consider the case where regulation is su�ciently high that γ > γ̄ and ĈL < C̄L. Now

the size of the loan low-risk �rms receive, k̂L falls in response to an increase in regulation. In

the Appendix it is shown that dĈL
dγ

is strictly smaller than in the previous case where γ ≤ γ̄.

As a result, the regulator has greater incentive to increase regulation. It is both less costly,

with a smaller increase in collateral ĈL, and has greater bene�ts, with k̂L falling and moving

closer to the optimal level.

Which of the two candidates for the optimal value of γ described above is best cannot be

determined analytically. However one key parameter determining if the optimum will lie

above γ̄ is µL. To understand why, note that as µL increases the weight that the regulator

places on low-risk �rms increases. As a result, it becomes more valuable for the regulator to

increase regulation so that k̂L falls closer to the optimum. Next, note that in cases where

µL is relatively small, it will be optimal for the regulator to choose γ close to γOPTH . Thus

which of the two candidate solutions is optimal is likely to depend on the magnitude of
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γOPTH . If γOPTH < γ̄, then increasing the value of γ around this value will not a�ect k̂L and

the optimum will lie below γ̄. On the other hand, if γOPTH > γ̄ then the regulator has an

incentive to increase regulation in order to further reduce the loan size of the low-risk �rms.

4.4 Optimal policy when wealth constraint binds

In the analysis of optimal policy I have up until this point assumed that there is su�cient

collateral available to ensure that the optimal policy can be implemented. Now I consider

the case where this may no longer be the case and the wealth constraint becomes a relevant

consideration for the regulator. When the wealth constraint binds, it is possible for the gov-

ernment to implement a separating equilibrium by relaxing γ so that the wealth constraint no

longer binds. In this case the binding wealth constraint forces the government to implement

a strictly worse policy than would be the case if the wealth constraint did not bind. Another

alternative for the government is to use the binding wealth constraint to implement a pooling

equilibrium. In this subsection I discuss the properties of the welfare maximizing pooling

equilibrium.

A pooling contract consists of one contract (kP , RP , CP ) that both �rm types receive. As

discussed earlier, for a pooling equilibrium to exist it must be the case that the wealth

constraint binds and that the collateral o�ered by �rms in the pooling contract is equal to

the wealth available and that CP = W . As a result, when focusing on the pooling contract

the regulator's objective function set out in equation (27) can be rewritten as

U =
∑
i

µi (piϕk
α
P − (1− δ) (1− pi)CP − kP +W ) , (34)

subject to CP = W.

Equation (34) highlights that when the wealth constraint binds the regulator's choice of γ

will serve to alter the loan size kP as the collateral level is constrained to be equal to total

wealth. Taking the �rst order condition of equation (34) with respect to kP , the optimal

pooling contract consists of setting γ such that

kFBP = (αϕpP )
1

1−α . (35)

As kFBP < k̄P it follows that γ must be set su�ciently high thatCP < C̄P . Thus there are

two candidates for an optimal pooling equilibrium; one where CP ∈
(
CP , C̄P

)
and another
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where CP ≤ CP in which the collateral cuto�s in the pooling case are de�ned as

C̄P =
1

δ

(
γ − ξ
1− ξ

)(
αpPϕ

q + (1− q) ξ

) 1
1−α

, and (36)

CP =
1

δ

(
γ − ξ
1− ξ

)(
ξ

γ

) 1
1−α
(

αpPϕ

q + (1− q) ξ

) 1
1−α

. (37)

I now consider the conditions necessary for these candidates to be an equilibrium.First con-

sider the case where CP ≤ CP . In this case, the loan size is determined by the lower-bound

kP such that

kP =

(
ξ

γ (q + (1− q) ξ)

) 1
1−α

(αpPϕ)
1

1−α . (38)

By combining equation (38) with equation (35) theγ such that these two equations both hold

can be found

γ =
ξ

q + (1− q) ξ . (39)

For this to be an equilibrium it is require that CP ≤ CP

W ≤ 1

δ

(
(1− q) ξ

q + (1− q) ξ

)
(αpPϕ)

1
1−α , (40)

which imposes an upper-bound on wealth.

Next, consider the case, where CP ∈
(
CP , C̄P

)
. For this to hold, it must be the case that

CP = W where,

CP =
1

δ

(
γ − ξ
1− ξ

)
(αϕpP )

1
1−α . (41)

In order to implement kFBP a necessary condition is that the above equation is satis�ed for

some γ < 1 thus the following condition must hold

W <
1

δ
(αϕpP )

1
1−α , (42)

which yields an upper-bound on wealth. Furthermore, for this to be a valid equilibrium it is

also necessary that CP > CP and thus the following condition must hold

W >
1

δ

(
(1− q) ξ

q + (1− q) ξ

)
(αpPϕ)

1
1−α , (43)

which is the converse of equation (40). Thus when W lies between the upper- and lower-
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bounds for wealth de�ned above, there exists some γ ∈
(

ξ
q+(1−q)ξ , 1

)
such that CP = W and

the optimal loan size is satis�ed.

Unlike the previous case, γ cannot be solved for analytically, however as wealth and thus

collateral is larger when CP ∈
(
CP , C̄P

)
, it follows that a larger γ is required than speci�ed

in equation (39) in order to ensure that the wealth constraint binds. Intuitively, when there is

less available collateral, banks must o�er smaller loans for a given level of γ in order to meet

the regulatory requirement. Thus a lower γ is required in order to implement the optimal

loan size.

When available collateral is su�ciently low, the government is able to implement a pooling

equilibrium. Whether or not this would lead to higher welfare than a separating equilibrium

depends on several factors. First, the amount of available collateral W also determines the

amount of collateral pledged by �rms in the pooling equilibrium. Thus when W is large, it

is unlikely for a pooling equilibrium to be optimal. Second, as both �rm types receive the

same size of loan in a pooling equilibrium, there is ine�cient cross-subsidization between �rm

types as it is optimal for low-risk �rms to receive larger loans than high-risk �rms. The cost

of this misallocation depends on the relative productivity of the two �rm types; if the gap

between pH and pL is large, a pooling equilibrium is likely to result in a loss of welfare.

5 Analysis

In this section I discuss some of the key assumptions made in the paper as well as possible

extensions to the model. In addition I document some empirical implications of the model.

5.1 Returns to Scale

One of the key assumptions made in this paper that warrants further discussion is that the

�rm project features decreasing returns to scale. This is a departure from the classic adverse

selection papers such as Stiglitz and Weiss (1981) and Bester (1985a) who assume a �xed

project size and allow for separation to occur through di�erences in loan size. However in

reality not all �rms exhibit decreasing returns to scale. A recent paper by Gao and Kehrig

(2017) �nds that returns to scale are on average 0.96 and close to constant returns to scale.

In addition they also document a large range of returns to scale across industries.

In the partial equilibrium framework presented in this paper, absent any frictions, the size

of the �rm under an assumption of constant returns to scale would be indeterminate. An
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alternative assumption that could be made would be to assume a convex adjustment cost

of capital along with constant returns to scale of production as in the paper by Liu et al.

(2009). This assumption would yield qualitatively similar results with �rms able to separate

by loan size.2

The above discussion raises an interesting question regarding how the results presented in this

paper are a�ected by changes in the returns to scale parameter α. While the model cannot

adopt constant returns to scale without additional modi�cations, I am able to consider the

limiting case where α → 1 from below. In the discussion that follows I make the additional

assumption that αpHϕ ≥ 1. This ensures that the project remains pro�table as α → 1 and

is equivalent to ensuring that k is strictly increasing in α. If this assumption did not hold,

then the optimal scale of the project at the limit where α→ 1 would be zero.

Given the above assumption, taking the derivatives of α show that kH and CH are increasing

in α; high-risk �rms receive larger loans as the returns to scale increase and require more

collateral in order to meet an increase in regulation.

The impact on the contract terms for the low-risk �rm are less obvious. The reason for this

is that an increase in α has two e�ects that work in opposite directions. As α increases,

the high-risk �rms receive a larger expected payo� from their contract which in turn relaxes

the incentive compatibility constraint. In cases where the regulatory parameter γ is low,

this e�ect dominates and ĈL falls while k̂L becomes larger as α increases. When regulation

is su�ciently high and γ ≥ γ̄, the amount of collateral required to meet the regulatory

constraint is a �xed proportion of the loan size. In this case, the larger kL brought about by

increasing α leads to higher levels of collateral being needed in order to meet the regulatory

requirement.

In the Appendix it is also shown that dγ̄
dα
< 0. This implies that an increase in α makes it

more likely that ĈL will rise in response to increasing regulation. Thus as higher values of α

tends to result in higher collateral requirements, especially at higher levels of regulation, it

is more likely that the wealth constraint will bind. Thus pooling equilibria are more likely

to occur in industries with higher returns to scale.

Now consider γ∗, the level of regulation at which point the incentive compatibility constraint

no longer binds. The Appendix proves that dγ∗

dα
< 0 and thus as the α increases, the incentive

compatibility constraint is less likely to bind at higher levels of regulation. The reason for

this is that the model allows separation to occur through both the size of the loan and the

2There are some theoretical bene�ts to the approach taken by Liu et al. (2009); in particular the assump-
tion of constant returns to scale allows them to generate a theoretical result linking the weighted average of
the stock return and the after-tax corporate bond return which can be empirically tested. I am grateful to
an anonymous referee for drawing this to my attention.
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amount of collateral pledged. As α increases the optimal loan size for the two types of �rms

diverge and thus di�erences in loan size will have a greater separation e�ect.

Finally, consider the limiting case as α → 1. As discussed above, at the limit the loan size

becomes unbounded and thus if γ > ξ, so do collateral requirements. With �nite collateral

available, a separating equilibrium will not be implementable and a pooling equilibrium

becomes more likely.

5.2 Collateral

This paper focuses on the use of collateral in loan contracts. Speci�cally, I emphasize two

theoretical roles for collateral; the �rst is the use of collateral ex ante in reducing adverse

selection, while the second is the ex post role of collateral in reducing the loss given default

of a particular loan and thus reducing the risk pro�le of a given loan. Both of these roles are

explored empirically in Berger et al. (2011).

The ex post role of collateral in reducing risk allows the model to predict the impact of

increasing bank regulation on collateral requirements. Speci�cally, the model predicts that

the collateral to loan ratio is strictly increasing for all �rm types following an increase in γ.

In a separating equilibrium, when γ is su�ciently high that ĈL < C̄L, the collateral ratio for

low-risk �rms is

ĉL = δ

(
γ − ξ
1− ξ

)
, (44)

where ĉL ≡ ĈL/k̂L is the collateral ratio and is strictly increasing in γ. Similarly, when γ

is low such that ĈL ≥ C̄L, the loan size kL does not change in response to regulation while

the collateral level is strictly increasing in γ and thus cL is also strictly increasing in γ. This

result also holds in a pooling equilibrium where collateral must be �xed at W while the loan

size is strictly decreasing in γ.

A key assumption made in this paper is that lenders value collateral but at a rate discounted

by δ. In cases where δ < 1 this implies that the lender values collateral less than the borrower.

In a typical screening model, δ < 1 is needed to ensure that collateral is costly and can play

a screening role. This is because if the borrower and lender valued collateral equally, then

the competitive lenders would compensate borrowers for the pledging of collateral through

lower interest rates and risk-neutral �rms would fully collateralize their loans. It should be

emphasized that in this model, with δ = 1, the pledging of collateral will still be costly. This

is because lenders have limited liability and so value pro�ts conditional on the aggregate

state where they do not default whereas �rms value collateral in both aggregate states. This
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creates a wedge in the valuation of collateral that does not exist in models with no aggregate

uncertainty.

In reality, δ, the factor at which lenders discount collateral is likely to vary across industries.

One likely determinant of δ is the proportion of intangible capital used by a �rm, with the

valuation gap between borrower and lender likely to be larger for intangible than tangible

capital. There is ample evidence of variations in the use of intangible capital For example,

Demmou et al. (2019) provide evidence that the investment share of intangible assets varies

across both countries and industries while Corrado and Hulten (2010) document a major

shift in the composition of investment and capital formation from tangible to intangible

assets over the 60 years prior to their study. Thus by analyzing the impact of the parameter

δ the model may also be used in making predictions across industries with di�ering utilization

of intangible capital.

By di�erentiating the collateral ratio de�ned by equation (44) it follows that the collateral

ratio of high-risk �rms is strictly decreasing. The reason for this is that as δ increases, loans

require a lower collateral ratio in order to meet the regulatory requirement. The impact

on the contract terms for the low-risk �rms are less obvious. The reason for this is that

in addition to the regulatory e�ect, there is an additional factor that works in the opposite

direction. An increase in δ makes it relatively less costly for high-risk �rms to pledge collateral

and thus more collateral is required by low-risk �rms in order to separate. The e�ect that

dominates again depends on the level of regulation. As shown in the Appendix, at the point

where γ ≤ ξ and the regulatory constraint does not bind, the second e�ect dominates and

the collateral ratio is increasing in δ. At higher levels of regulation, where ĈL < C̄L the �rst

e�ect dominates and the collateral ratio is decreasing in δ.

The above analysis suggests that at high levels of regulation, the collateral requirements for

all �rm types increase and thus the wealth constraint is more likely to bind. Thus the model

predicts that a pooling equilibrium is more likely to exist in industries that feature higher

utilization of intangible collateral.

The model also provides a link between the cost of regulation and the amount of collateral

pledged. This suggests that regulation may be more costly in more competitive banking

markets. More competitive banking markets feature smaller and newer banks and the em-

pirical evidence �nds that the use of collateral in lending contracts is especially predominant

in these smaller banks (Uchida, 2011) and newer banks (Gobbi and Lotti, 2004).

Another important assumption made in the paper is that the value of collateral does not vary

over the business cycle and thus collateral features no systemic risk. Consider now the case

where the collateral value is procyclical and that the value of collateral is expected to fall in
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a recession relative to a boom. If the value of collateral remains independent of unobservable

�rm type then the main results of the paper will be una�ected, the key impact would be

that collateral would become less e�cient in meeting the bank's regulatory requirements and

would have a similar impact as a fall in δ. One di�erence from a fall in δ would be the

interest rate banks charge to �rms as, absent regulation, banks only value collateral in the

good aggregate state and perfect competition would result in lower interest rates on bank

loans.3

The results of this paper may be more sensitive to the case where collateral values di�er across

unobservable �rm types. While a full analysis of this case is beyond the scope of this paper,

a similar model has been considered by Niinimäki (2011). He �nds that when the value of

collateral increases with the �rm's unobserved probability of success, �rms with the highest

expected probability of success may not be the most willing to pledge collateral. Instead

he �nds it is �rms whose collateral value deviates the most and whose projects' probability

of success features the highest variance that wish to pledge collateral. Thus, in this case

collateral may become less e�ective at screening �rm types and this would likely dampen the

main channel of my model.

5.3 Banking Regulation

Banking regulation is modeled in this paper in a relatively simple way and takes the form

of a binding constraint on banks' cash �ow from lending which is not allowed to be below

a certain proportion γ of their initial lending. This gives a role for collateral in meeting

the regulatory requirement and thus generates an interaction between regulation and the

screening problem.

As discussed earlier, the model predicts that loan size will be weakly lower following an

increase in regulation. Additionally, the model predicts that, while an increase in regulation

strictly reduces loan supply for high-risk �rms, loan supply is only weakly falling for low-risk

�rms. The reason for this is that as low-risk �rms are safer, the regulatory requirement needs

to be higher for the constraint to become binding for these �rms. This is a result that is

consistent with the empirical evidence proposed in Acharya et al. (2018) who �nd evidence

that lenders subject to a stress-test reduce credit and that riskier �rms are a�ected to a

greater extent.

3I do not wish to emphasize the implications of the model on interest rates as these are predominantly
driven by the assumption of perfect competition in the banking sector. For the model to say something
meaningful on interest rates it would be necessary to relax this assumption of perfect competition along
the lines of Villas-Boas and Schmidt-Mohr (1999) and Hainz et al. (2012) who combine an adverse selection
model with a spatial model of oligopolistic competition.
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One possible criticism of the model is that the banks are assumed to always default in the bad

aggregate state. This assumption greatly simpli�es not only the bank default decision but

also limits the model's ability to address regulatory issues such as bank closure policy. For

example, the model could be extended along the lines of Mehran and Thakor (2011) where

regulators receive a signal in an intermediate period and bank closure is a way for regulators to

incentivize banks to put in costly monitoring e�ort. In Mehran and Thakor (2011) regulators

choose to close down a bank only if they have insu�cient liquidity. Seeing my model through

this lens, one interpretation of the regulatory constraint is that of a regulator choosing to close

down any bank that does not meet the constraint. As closed banks do not receive revenue,

banks would then always choose to meet the regulatory requirement. One key di�erence is

that there is no regulatory uncertainty in my model. Extending the model by introducing

some uncertainty on the part of the regulator along the lines of Mehran and Thakor (2011)

may be an interesting avenue to explore.

As the regulatory constraint presented in this model is very stylized it is worth discussing

how the model may relate to other real world banking regulations such as the Basel II/III

capital bu�ers. There is some relationship between the two; the Basel II/III capital bu�ers

are determined as a percentage of the risk-weighted assets held by the bank. Banks that met

certain certain criteria could calculate the credit risk of assets themselves using the so-called

internal ratings-based (IRB) approach.4 Thus insofar as higher collateral requirements result

in lower risk-weights, increasing the collateral requirements of loans, and thus the quantity

of risk-weighted assets held by the bank, would be one way to meet the regulatory capital

requirements in the Basel II/III framework. In addition, Basel III introduced a countercyclical

capital bu�er (CCyB) which requires additional capital requirements in boom periods in order

to avoid periods of excess credit growth. If correctly implemented, this policy would likely

address the problem of overlending that is featured in this paper. However, it should be

noted that the stated aim of the CCyB is to avoid the build-up of systemic risk and would

better �t a model with a more complicated bank default decision.

In this paper I focus on banking regulation taking deposit insurance as given. Perhaps more

importantly deposit insurance provides a reason for regulation to exist in the �rst place. The

obvious implication of this is that it would be optimal for the regulator to simply remove

deposit insurance and thus tackle the overlending problem at source. However, the main

objective of the paper is to consider banking regulation in a world where deposit insurance

is always provided. This can be motivated by the fact that deposit insurance is a reality in

all advanced economies, as documented by Demirgüç-Kunt et al. (2008). Moreover, while

4For an overview of how collateral requirements contribute to the calculation of risk-weighted assets in
the Basel II framework see De Lisa et al. (2012).
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the need for deposit insurance in this paper is not micro-founded it would not be di�cult to

extend the model in order to do so. For example, as in Malherbe and McMahon (2020), I

could add an intra-day period and household liquidity preferences to the model. This would

create a rationale for Deposit Insurance in the vein of Diamond and Dybvig (1983).

6 Conclusion

This paper analyzed credit market equilibrium under private information when banks face a

regulatory constraint that restricts the losses they can make in a recession. As in standard

signalling models, borrowers are able to signal their type through both loan size and collateral

in order to receive a lower loan interest rate. The addition of a regulatory constraint provides

another role for collateral as higher collateral requirements also reduce banks' loss given

default.

I highlight the interaction between the signalling problem and banking regulation. In partic-

ular several results di�er signi�cantly from more standard signalling models. First, collateral

may be demanded of both high- and low-risk �rms, even in the absence of asymmetric infor-

mation. Secondly, if banking regulation is su�ciently strict, there may not exist an adverse

selection problem. Additionally, if borrowers have su�ciently low pledgeable collateral, a

pooling equilibrium may exist as a Nash equilibrium. This last result highlights how reg-

ulation may distort bank lending in ways that can have negative distributional e�ects by

disrupting the ability of bank to screen borrowers.

Finally, the paper sets out some empirical predictions of the model. First, increased regulation

reduces loan size and this fall a�ects higher-risk �rms to a greater extent, which is consistent

with the evidence in Acharya et al. (2018). Second, the model predicts that the collateral

ratio of loans will increase following an increase in regulation. Finally, the model suggests

that banking regulation may impact �rms across di�erent industries di�erently. The model

predicts that at high levels of regulation, collateral ratios will be larger for industries that

feature higher returns to scale and less intangible capital.
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Appendix

Proof of Proposition 1

In this proof it is assumed that W is su�ciently high that any quantity of collateral can

be implemented in equilibrium. The Lagrangian that solves for the competitive equilibrium

contract for an single �rm type is

Li = pi (ϕk
α
i −Riki)− (1− pi)Ci +W

+ qλB [pi (zG)Riki + δ (1− pi (zG))Ci − ki]
+ λS [pi (zB)Riki + δ (1− pi (zB))Ci − γki]
+ λ−CCi, (A.45)

where λS, λB and λ−C are the multipliers on equations (7), (8) and the non-negativity con-

straint on collateral. The �rst order conditions are

pi = λBqpi (zG) + λSpi (zB) , (A.46)

(1− pi) = λBqδ (1− pi (zG)) + λSδ (1− pi (zB)) + λ−C , (A.47)

pi
(
αϕkα−1

i −Ri

)
+ λBq [pi (zG)Ri − 1] + λS [pi (zB)Ri − γ] = 0. (A.48)

First note that if the stress-test condition does not bind, λS = 0 and the contract terms that

solve the �rst order conditions are given by Ci = 0, Ri = 1 and ki = (αpi (zG))
1

1−α . Plugging

these equations into equation (7), the regulatory constraint will be satis�ed only if γ ≤ ξ.

Next, consider when λB will be strictly positive. To do this, suppose instead that λB = 0,

then equation (A.46) implies that λS = pi
pi(zB)

. Substituting this into equation (A.47) and

rearranging yields

(1− pi) = δpi

(
1− pi (zB)

pi (zB)

)
+ λ−C . (A.49)

This yields a contradiction whenever δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
. Thus it follows that if γ > ξ

and δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
then λS > 0, λB > 0 and λ−C = 0. Thus equations (7) and

(8) will bind in equilibrium and the equilibrium will feature a strictly positive amount of

collateral. Solving the system of �rst order conditions then yields the equilibrium loan size

and collateral size set out in equations (16) and (17). The interest rate charged to the �rm

follows from substituting equations (16) and (17) into equation (8) and the payo� U∗i follows
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from substituting the contract terms into

Ui (k,R,C) = pi (ϕk
α
i −Riki)− (1− pi)Ci.

Properties of the Equilibrium with identical customers

The derivative of k∗iwith respect to γ is

dk∗i
dγ

= −
(

1

1− α

) (1− q) +
(

1−δ
δ

)
(1− pi)

(
1

1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
 k∗i , (A.50)

which is strictly decreasing.

The derivative of U∗i with respect to γ is

∂U∗i
∂γ

= −
[
(1− q) +

(
1− δ
δ

)
(1− pi)

(
1

1− ξ

)]
k∗i , (A.51)

which is strictly decreasing.

The derivative of C∗i with respect to γ is

dC∗i
dγ

=
1

δ

(
1

1− ξ

)1−
(

1

1− α

)(1− q) (γ − ξ) +
(

1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
 k∗i . (A.52)

The derivative of this is strictly positive if

(
1

1− α

)(1− q) (γ − ξ) +
(

1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
 < 1.

This holds at su�ciently low values of γ and the left hand side of the above is zero when

γ = ξ. However, at high values of γ, this inequality may not hold, especially if α is high. In

this case, the derivative will be negative and the level of collateral will fall in response to an

increase in regulation. As discussed in the text, the reason for this is that k∗i falls in response

to γ and at su�ciently high levels of α and γ, this e�ect dominates the increased collateral

ratio and the level of collateral required falls.
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Proof of Proposition 2

First, if γ ≥ ξ, δ ≥
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
and W ≥ C∗L then the equilibrium contracts if the

incentive compatibility constraint does not bind are given by {(k∗i , R∗i , C∗i )}i=∈{L,H}. Then

equation (21) can be derived by substituting these contract terms into equation (19) and

rearranging. If for some value of γ equation (21) is weakly positive, then the incentive

compatibility will not bind at γ, otherwise, it will. As discussed in the text, the limit of

ΛIC (γ) as γ → ξ is negative and the incentive compatibility constraint will always bind for

γ ≤ ξ. On the other hand, as discussed in the text it is clear that the incentive compatibility

constraint is slack at the upper-limit as γ → 1.

The rest o� the proposition follows so long as ∂ΛIC(γ)
∂γ

> 0 and there exists a threshold

γ∗ ∈ [ξ, 1) such that for any γ > γ∗ ΛIC (γ) > 0.

To show that ∂ΛIC(γ)
∂γ

> 0 note that the derivative of equation (21) with respect to γ can be

written as

∂ΛIC (γ)

∂γ
= α

(
pH
pL

) α
1−α

(pL − pH)

(
q + (1− q) ξ

1− ξ

)

×

 [q + (1− q) γ] +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


1
1−α

+ α

 (q + (1− q) ξ) 1
δ

(
pL
pH
− 1
)(

1
1−ξ

)
[
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]2


×

1− pH
(
pH
pL

) α
1−α

 [q + (1− q) γ] +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


1
1−α
 (A.53)

A su�cient condition for ∂ΛIC(γ)
∂γ

> 0 is

pH

(
pH
pL

) α
1−α

 [q + (1− q) γ] +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


1
1−α

≤ 1. (A.54)

To show this, note that from the de�nition of k∗i the following is true αϕpi (k
∗
i )
α−1 =
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[q + (1− q) γ] +
(

1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
. Thus equation (A.54) can be rewritten as

pH

(
pH
pL

) α
1−α
(
αϕpL (k∗L)α−1

αϕpH (k∗H)α−1

) 1
1−α

≤ 1, (A.55)

which simpli�es to (
pL
pH

) 1
1−α k∗H

k∗L
≤ 1, (A.56)

which will always be satis�ed as k∗H < k∗L and pL > pH .

Proof of Proposition 3

First, note that the cuto� γ̄ as de�ned in Proposition 3 is simply the point where ĈL = C̄L

which is the point where the following equation must hold

ΛC̄ (γ) ≡ 1

δ

(
γ − ξ
1− ξ

)
k̄L −

1

δ

(
pH
pL

(
pLϕk̄

α−1
L − (q + (1− q) ξ)

)
k̄L − U∗H

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

)
= 0. (A.57)

First note that when γ = ξ, C̄L = 0 and ĈL > 0 implies that ΛC̄ (ξ) < 0. Next, note that

when γ = γ∗, CL = C∗L < C̄L and thus ΛC̄ (γ∗) > 0. It follows from this that for there to

exists a unique γ̄ ∈ (ξ, γ∗) such that CL = C̄L it is su�cient to show that ∂ΛC̄
∂γ

> 0. To prove

this note that di�erentiating equation (A.57) yields

∂ΛC̄

∂γ
=

(
1

1− ξ

)
k̄L −

(
1

1− ξ

)(
(1− q) (1− ξ) +

(
1−δ
δ

)
(1− pH)

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

)
k∗H . (A.58)

Now note that as

(
(1−q)(1−ξ)+( 1−δ

δ )(1−pH)

1− pH
pL

(q+(1−q)ξ)+( 1−δ
δ )(1−pH)

)
< 1and k̄L > k∗H it follows that ∂ΛC̄

∂γ
> 0.

Analysis of optimal policy with single �rm type

Planner's First order condition Equation (28) yields a �rst order condition for the

government's optimal policy problem when there is a single �rm of type i. From equations(16)

and (17) the derivatives of the equilibrium contracts with respect to the parameter γ are as

follows

dk∗i
dγ

= −
(

1

1− α

)(1− q) +
(

1−δ
δ

)
(1− pi)

(
1

1−ξ

)
piϕα [k∗i ]

α−1

 k∗i , (A.59)
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dC∗i
dγ

=
1

δ

(
1

1− ξ

)(
α

1− α

)( 1
α

(q + (1− q) ξ)− piϕα [k∗i ]
α−1

piϕα [k∗i ]
α−1

)
k∗i . (A.60)

Substituting these derivatives into equation (28) yields the following

∂Ui
∂γ

= −
((

1− q
1− α

)
+

(
1− δ
δ

)
(1− pi)

(
1

1− ξ

))
k∗i

+

(
1− q
1− α

)(
1 +

(
1− δ
δ

)
(1− pi)

)
k∗i

piϕα [k∗i ]
α−1 . (A.61)

Thus the value of γ that sets the government's �rst order condition to zero is such that the

marginal product of the project is given by the following equation

piϕα [k∗i ]
α−1 =

 1 +
(

1−δ
δ

)
(1− pi)

1 +
(

1−δ
δ

)
(1− pi)

(
1−α
1−q

)(
1

1−ξ

)
 . (A.62)

As the marginal product at the �rst best loan size is 1, it follows that the �rst best loan size

is achieved only if this will only occur if (q + (1− q) ξ) = α. Substituting equation (17) into

equation (A.62) and rearranging the optimal γ can be written as

γ = ξ +

 (1− q) (1− ξ) +
[
1− (1− α)

(
q+(1−q)ξ

(1−q)(1−ξ)

)] (
1−δ
δ

)
(1− pi)[

(1− q) +
(

1−η
η

)
(1− pi)

(
1

1−ξ

)] [
1 +

(
1−δ
δ

)
(1− pi)

(
1−α
1−q

)(
1

1−ξ

)]
 . (A.63)

It follows from the above that a su�cient condition for the government to impose a binding

regulatory constraint such that γ > ξ is the following(
1− δ
δ

)[
1− (1− α)

(
q + (1− q) ξ

(1− q) (1− ξ)

)]
> 0. (A.64)

Proof of
dγOPTi

dpi
> 0 The implicit function theorem can be used to show that

dγOPTi

dpi
> 0.

First, consider ΛF,i, a simple transformation of equation (A.61) de�ned as

ΛF,i ≡
(

1− α
1− q

)
∂Ui
∂γ

1

k∗i
. (A.65)
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Now note the partial derivatives of this function with respect to γ and pi are

∂ΛF,i

∂γ
= −


(
1 +

(
1−δ
δ

)
(1− pi)

) (
(1− q) +

(
1−δ
δ

)
(1− pi)

(
1

1−ξ

))
[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)]2

 < 0, (A.66)

and

∂ΛF,i

∂pi
=

(1− α
1− q

)
−

 (q + (1− q) ξ) ((1− γ))[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)]2


(1− δ

δ

)(
1

1− ξ

)
.

(A.67)

The latter derivative is positive around the optimum, that is around the point where ΛF,i = 0.

To see this note that at ΛF,i = 0 the following must hold

(
1− α
1− q

)(
1

1− ξ

)(
1− δ
δ

)
=

(
1

1− pi

)(1− q) (1− γ) +
(

1−δ
δ

)
(1− pi)

(
1−γ
1−ξ

)
(q + (1− q) γ) + (1− pi)

(
1−δ
δ

) (
γ−ξ
1−ξ

)
 .

(A.68)

Substituting this into the above equation and rearranging shows that
∂ΛF,i
∂pi

> 0. It follows

immediately from the implicit function theorem that
dγOPTi

dpi
> 0 and thus γOPTH < γOPTL .

Analysis of optimal policy with two �rm types

Equation (32)is the �rst order condition for the government's optimal policy problem when

there are two �rm types. As the high-risk �rm will receive (k∗H , R
∗
H , C

∗
H), the derivatives

dk∗H
dγ

and
dC∗

H

dγ
are given by equations (A.59) and (A.60) respectively.

The value of ĈL can be found from combining equations (8) and (19) with the value of k̂L

de�ned in equation (31) such that ĈL must satisfy the following equation

ĈL =
1

δ


pH
pL

(
pLϕ

(
k̂L

)α−1

− (q + (1− q) ξ)
)
k̂L − π∗H

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

 . (A.69)

The derivative
dC∗

H

dγ
can then be found by totally di�erentiating the above equation with

respect to γ.
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In the �rst case where ĈL ≥ C̄L, the derivative is simply

dĈL
dγ

=
1

δ

 (1− q) +
(

1−δ
δ

)
(1− pH)

(
1

1−ξ

)
1−

(
pH
pL

)
(q + (1− q) ξ) +

(
1−δ
δ

)
(1− pH)

 k∗H > 0. (A.70)

It follows that when ĈL ≥ C̄L,
dĈL
dγ

> 0 and an increase in regulation results in a larger

collateral requirement.

Next consider the case where ĈL < C̄L. The derivative becomes

dĈL
dγ

=
1

δ

(
1

1− ξ

) (1− q) (1− ξ) +
(

1−δ
δ

)
(1− pH)

(
1

1−ξ

)
− ι

1−
(
pH
pL

)
(q + (1− q) ξ) +

(
1−δ
δ

)
(1− pH)− k̂L

k∗H
ι

 k∗H , (A.71)

where

ι ≡
(

1− ξ
γ − ξ

)
pH
pL

(
αpLϕ (kL)α−1 − (q + (1− q) ξ)

)
≥ 0. (A.72)

From equation (31) it follows that for any γ ∈ [ξ, 1) that αpLϕ
(
k̂L

)α−1

≥ (q + (1− q) ξ)
and thus ι > 0 and is increasing in γ above γ̄. As dĈL

dγ
is decreasing in ι, it follows that the

derivative will be decreasing in γ.

Analysis of Returns to scale

Impact of α on ĈL and k̂L First, note that the incentive compatibility constraint binds

so long as F = 0 where the function F is de�ned below as

F ≡ pH
pL

(
pLϕk̂

α
L − (q + (1− q) ξ) k̂L

)
− δ

[
1− pH

pL
(q + (1− q) ξ) +

(
1− δ
δ

)
(1− pH)

]
ĈL − U∗H = 0 (A.73)

When CL ≥ C̄L the derivative for k̂L with respect to α is

∂k̂L
∂α

=
1

(1− α)2 α

(
α ln

(
αpLϕ

q + (1− q) ξ

)
+ (1− α)

)
k̂L, (A.74)

thus given the assumption that αpHϕ ≥ 1 the derivative is strictly positive.

The derivative with respect to ĈL can be found through application of the implicit function

41



theorem to the function F . The partial derivative of F with respect to ĈL is

∂F

∂ĈL
= −δ

[
1− pH

pL
(q + (1− q) ξ) +

(
1− δ
δ

)
(1− pH)

]
< 0. (A.75)

The partial derivative of F with respect to α is

∂F

∂α
=
pH
pL

(
αpLϕk̂

α−1
L − (q + (1− q) ξ)

) ∂k̂L
∂α
− ∂U∗H

∂α
. (A.76)

Note that when CL ≥ C̄L then αpLϕk̂
α−1
L = (q + (1− q) ξ) and thus,

∂F

∂α
= −∂U

∗
H

∂α
, (A.77)

where
∂U∗H
∂α

= pHϕ ln (k∗H) (k∗H)α , (A.78)

is strictly positive due to the assumption that αpHϕ ≥ 1. Thus from the implicit function

theorem it follows that dĈL
dα

< 0.

When CL < C̄L the derivative for k̂L with respect to α becomes

∂F

∂ĈL
=
pH
pL

(
αpLϕk̂

α−1
L − (q + (1− q) ξ)

)
δ

(
1− ξ
γ − ξ

)
− δ

[
1− pH

pL
(q + (1− q) ξ) +

(
1− δ
δ

)
(1− pH)

]
. (A.79)

The sign of the above equation can be found by noting that k̂L ≥ k∗L and thus

αpLϕk̂
α−1
L ≤ [q + (1− q) γ] +

(
1− δ
δ

)
(1− pL)

(
γ − ξ
1− ξ

)
. (A.80)

Substituting this into inequality into the above derivative is enough to show that ∂F

∂ĈL
< 0 as

before.

Next, note that the derivative of F with respect to α is

∂F

∂α
=
pH
pL

(pLϕk
α
L ln (kL))− ∂U∗H

∂α
, (A.81)

where

∂U∗H
∂α

= pHϕ ln (k∗H) (k∗H)α . (A.82)

42



Thus the derivative can be written as

∂F

∂α
= pHϕ [kαL ln (kL)− kαH ln (kH)] , (A.83)

which is strictly positive. Hence through application of the implicit function theorem dĈL
dα

> 0.

Proof that dγ̄
dα

< 0 The derivative dγ̄
dα

can be found by applying the implicit function

theorem to the function ΛC̄ as de�ned in equation (A.57). The partial derivative of ΛC̄ with

respect to α is

∂ΛC̄

∂α
=

1

δ
pHϕ

(
ln
(
k̄L
) (
k̄L
)α − ln (k∗H) (k∗H)α

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

)
> 0.

As this partial derivative is strictly positive, and it has already been found that ∂ΛC̄
∂γ

> 0, it

follows from the implicit function theorem that dγ̄
dα
< 0.

Proof that dγ∗

dα
< 0 The derivative dγ∗

dα
can be found by applying the implicit function

theorem to the function ΛIC as de�ned in equation (21). The partial derivative of ΛIC with

respect to α is

∂ΛIC

∂α
=

(
1

1− α

)2
pH

[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]
pL

[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)]


α
1−α

× ln

pH
[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]
pL

[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)]
 (A.84)

+

(
1

1− α

)2
 1

δ

(
pL
pH
− 1
)(

γ−ξ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
 . (A.85)

Now note that around ΛIC = 0, that is around the point where γ =γ∗, the following must

43



hold pH
[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]
pL

[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)]


α
1−α

=

1−
(

α

1− α

) 1
δ

(
pL
pH
− 1
)(

γ−ξ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
 . (A.86)

Thus by substituting this equation into the partial derivative above, at the point γ = γ∗, the

partial derivative can be written as

∂ΛIC

∂α
=

(
1− α
α

)(
1

1− α

)2

[(1− x) ln (1− x) + x] , (A.87)

where

x =

(
α

1− α

) 1
δ

(
pL
pH
− 1
)(

γ−ξ
1−ξ

)
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
 > 0. (A.88)

Thus it follows that ∂ΛIC
∂α

> 0 and as it has already been established that ∂ΛIC
∂γ

> 0 from

application of the implicit function theorem it follows that dγ∗

dα
< 0.

Analysis of Collateral

Impact of δ on ĈL and k̂L When CL ≥ C̄L the derivative for k̂L with respect to δ is equal

to zero and thus the partial derivative of F , as de�ned by equation (A.73) can be written as

∂F

∂δ
= −∂U

∗
H

∂δ
, (A.89)

where
∂U∗H
∂δ

=

(
1

δ

)2

(1− pH)

(
γ − ξ
1− ξ

)
k∗H ≥ 0. (A.90)

Thus it follows that ∂F
∂δ

< 0 and through equation (A.75) which states that ∂F

∂ĈL
< 0 and

application of the implicit function theorem it follows thatdĈL
dδ

> 0. As ∂k̂L
∂δ

= 0 this implies

that the collateral ratio is increasing in δ when CL ≥ C̄L .

When CL < C̄L the collateral ratio is determined by the following relationship

ĈL

k̂L
=

1

δ

(
γ − ξ
1− ξ

)
, (A.91)
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and thus the collateral ratio is decreasing in δ when CL < C̄L.

Proof that dγ̄
dδ

> 0 The derivative dγ̄
dδ

can be found by applying the implicit function

theorem to the function ΛC̄ as de�ned in equation (A.57). The partial derivative of ΛC̄ with

respect to δ can be written as

∂ΛC̄

∂δ
= −1

δ
ΛC̄ −

1

δ3
(1− pH)

 pH
pL

(
pLϕk̄

α−1
L − (q + (1− q) ξ)

)
k̄L − U∗H(

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

)2


+

1

δ

(
∂U∗

H

∂δ

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

)
, (A.92)

where
∂U∗

H

∂δ
=
(

1
δ

)2
(1− pH)

(
γ−ξ
1−ξ

)
k∗H > 0.

Note that at the point where γ = γ̄ it must be the case that ΛC̄ = 0 and thus the above

equation can be written as

∂ΛC̄

∂δ
= − 1

δ3
(1− pH)

(
γ − ξ
1− ξ

)(
k̄L − k∗H

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

)
< 0. (A.93)

As this partial derivative is strictly negative, and it has already been found that ∂ΛC̄
∂γ

> 0, it

follows from the implicit function theorem that dγ̄
dδ
> 0.

Proof that dγ∗

dδ
> 0 The derivative dγ∗

dδ
can be found by applying the implicit function

theorem to the function ΛIC as de�ned in equation (21). The partial derivative of ΛIC with

respect to δ is

∂ΛIC

∂δ
= B (q + (1− q) γ)

pH
[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]
pL

[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)]


1
1−α

−B 1

pL

[
(q + (1− q) γ)− (1− pL)

(
γ − ξ
1− ξ

)]
, (A.94)

where

B =

1
δ2

(
α

1−α

) (
pL
pH
− 1
)(

γ−ξ
1−ξ

)
pL[

(q + (1− q) γ) +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]2 > 0. (A.95)
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Now note that around ΛIC = 0, that is around the point where γ =γ∗, equation (A.86) must

hold and the partial derivative can be written as

∂ΛIC

∂δ
= −B

(
1

pL
− 1

)
(q + (1− q) ξ)

(
1− γ
1− ξ

)

−B (q + (1− q) γ)

1−

pH
[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]
pL

[
(q + (1− q) γ) +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)]


1
1−α
 ,

which is strictly negative. Thus it follows that ∂ΛIC
∂δ

< 0 and as it has already been established

that ∂ΛIC
∂γ

> 0 from application of the implicit function theorem it follows that dγ∗

dδ
> 0.
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