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Abstract: Total genotype score (TGS) reflects additive effect of genotypes on predicting a complex
trait such as athletic performance. Scores assigned to genotypes in the TGS should represent an
extent of the genotype’s predisposition to the trait. Then, combination of genotypes highly ranks
those individuals, who have a trait expressed. Usually, the genotypes are scored by the evidence
of a genotype–phenotype relationship published in scientific studies. The scores can be revised
computationally using genotype data of athletes, if available. From the available genotype data of
180 Lithuanian elite athletes we created an endurance-mixed-power performance TGS profile based
on known ACE rs1799752, ACTN3 rs1815739, and AMPD1 rs17602729, and an emerging MB rs7293
gene markers. We analysed an ability of this TGS profile to stratify athletes according to the sport
category that they practice. Logistic regression classifiers were trained to compute the genotype
scores that represented the endurance versus power traits in the group of analysed athletes more
accurately. We observed differences in TGS distributions in female and male group of athletes. The
genotypes with possibly different effects on the athletic performance traits in females and males were
described. Our data-driven analysis and TGS modelling tools are freely available to practitioners.

Keywords: human athletic performance; Lithuanian athletes; polygenic profile; total genotype score;
TGS; logistic regression

1. Introduction

Elite athletic status is a polygenic trait with multiple candidate gene variants playing
a certain role, either alone or through complex, gene–gene and gene–environment interac-
tions. With the rapid development of molecular research in sport, multiple genetic markers
associated with endurance and power physical performance have been discovered [1–3].
The meta-analyses of genetic associations with the power or endurance athletic status make
these associations more accurate and account for the differential effects between subgroups
of sex and race. The most studied polymorphisms ACE (rs1799752) and ACTN3 (rs1815739)
have been associated with both: power and endurance athletic performance in multiple
studies [4–6].

A simple additive model, expressing an integrative effect of multiple markers on a
trait, is a total genotype score (TGS). It has been introduced by Williams and Folland [7] and
is also known as a genetic predisposition score. Using synthetic data of 23 genetic markers
of endurance excellence aggregated into the TGS score they calculated “that there is just
a 0.0005% (1 in 200,000) probability that even a single individual exists in the world pos-
sessing the optimal DNA variant for endurance performance of all 23 polymorphisms” [7].
Since then, the TGS has been a subject of numerous studies used to model and predict the
integrative effect of the DNA markers on the athletic traits [8–12].
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1.1. Polygenic Profile Expressed through TGS and Trait Predisposition

For the TGS model of the polygenic profile to be useful in practice in predicting a
trait, it should correlate with the trait and it has to be accurate in its predictions [13]. In
most cases, polygenic profiles are derived from the associations of genetic variants and
traits published in scientific literature such as in Jones, 2016 [5] by companies, individuals,
or sports geneticists. A certain degree of arbitrariness exists in assigning a score to a
genotype in a polygenic model that expresses how favourable for the trait that genotype is.
A hypothetical example of one possible assignment is illustrated in Table 1 for a tendon
injury profile using data from a published scientific study [14].

Table 1. An example of possible polygenic profile of tendon injury with scored genotypes and
population frequency in Ensembl database.

Gene Marker Genotype Genotype Score Trait Outcome Population Frequency

COL5A1 TT 1 High risk 0.157
rs12722 CT 0.5 Moderate risk 0.384

Confidence 1 CC −1 Low risk 0.458

COL1A1 CC 0.5 Moderate risk 0.833
rs1800012 AC 0.5 Moderate risk 0.151

Confidence 1 AA −1 Low risk 0.016

MMP3 AA 1 Increased risk 0.126
rs679620 AG 0 Moderate risk 0.444

Confidence 0.75 GG −1 Low risk 0.430

In Table 1 for each gene marker there could be also a confidence score assigned by an
expert who created that model reflecting how much evidence and support this association
received in the scientific literature. The TGS can be weighted by population genotype
frequencies [15,16].

To compute TGS, the homozygous and heterozygous genotypes AA, Aa, and aa are
assigned numerical scores that express a level of genetic predisposition to the trait of a
person who has that genotype. In the original work on TGS of Williams and Folland [7]
the TGS score included 23 markers and varied from 0 to 100. However, the range of TGS
variation can be set differently in such a way that minimum and maximum values of the
TGS score faithfully represent trait extremes. For example, if we were to describe by the
TGS a risk of injury, then for those with high injury risk according to their genotypes, the
TGS would attain a maximum of 1. For those with non-injury genotypes it would attain
a minimum of −1. The athletes with high predisposition to injury based on their genetic
profile would have the TGS close to 1 and in no predisposition to risk it would be close
to −1. Such models can also be applied in describing the multimarker traits in general
population.

Similarly, in the power–endurance axis of athletic performance the TGS may vary from
−1 (power only) to 1 (pure endurance) with 0 in between meaning mixed. For the TGS
modelled in this way the TGS of pure endurance polygenic profile in endurance athletes
would have high positive TGS and in power athletes would have high negative TGS. In
athletes practising mixed (power–endurance) sports the expected TGS value would be
close to zero.

1.2. Practical Application of TGS and Polygenic Profiles

Effects of genetic variants on different athletic traits in different populations and
different sports vary greatly. Usually, literature derived models are validated and adjusted
by local laboratories and centers using available DNA samples of the athletes. Once the
athlete group is genotyped, then the relationships between the TGS and athletic traits can
be tested quantitatively in several ways.
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For continuous traits a correlation analysis can be performed to measure degree of
associations. If the trait is categorical variable, such as endurance, mixed or power athletic
status, then analysis of variance (ANOVA) can be performed comparing mean values
of TGS to test whether the differences in means of TGS across different athletic status
under the study are statistically significant [15]. The TGS can be grouped into levels and
converted into the factor. In this case a χ2 or an exact Fisher test can be applied to test
whether there is a statistically significant dependency between the TGS levels and the trait.
When ANOVA assumptions are violated, the TGS values of athletes from different sport
groups can be compared by a Wilcoxon signed rank test. A Kolmogorov-Smirnov test can
be applied to compare distributions of the TGS scores either among groups or with the
expected distribution.

1.3. Lack of Associations

Generally, associations between genetic variants and traits are established by indi-
vidual laboratories from collected case-control samples by genotyping or in genome wide
association studies (GWAS) [17]. Very large samples are required in GWAS. It is very well
known that in sports genetics the sample sizes are small and rarely reach over 200 (as
an example see Table 1 in Weyerstras, 2018 [18]). For this reason laboratories may not
be able to reproduce results reported by others. A varying degree of allele associations
with endurance trait is well demonstrated across different populations in meta analysis
of genetic polymorphisms in ACE and ACTN3 genes [4]. Varying association levels with
physical performance traits can also be seen in other recent meta analysis studies of various
markers [19–21]. In a study of TGS application to predict power athletic performance in
Japanese athletes [22,23] no association was found. Another study showed that TGS cannot
be used to identify talent in soccer, but it can be used to choose training method to develop
power-based qualities of soccer players [24].

1.4. Multimarker Representation

In the presented study, we focused on genetic variants associated with physical
performance traits important for elite athlete qualification. The studied polygenic profile
consisted of gene markers genotypes: ACTN3 rs1815739 (RR, RX, XX), MB rs7293 (AA,
AG, GG), AMPD1 rs17602729 (CC, CT, TT), and ACE rs1799752 (DD, ID, DD).

In the present study, we focused on variants putatively associated with sports per-
formance traits important for elite athlete performance. Inconsistent results have been
published regarding the association of ACE, ACTN3, AMPD1 genotype with athletic phe-
notypes. To date, only the ACTN3 and ACE polymorphisms have been associated with
either endurance, strength, or power athletic level performance, while the AMPD1 and MB
are other candidates providing less consistent results. It has already been shown that many
variants which have a significant association with physical performance in several studies
of one population may not necessarily have the same association in another.

The choice of these markers for this study was motivated by: (i) the fact that ACE
and ACTN3 gene markers are associated with both endurance and power; (ii) the ACE,
ACTN3 and AMPD1 were already used in TGS modelling of the endurance athletic pro-
file [15]; (iii) all four markers were continuously investigated in a cohort of Lithuanian elite
athletes [25–27].

A brief description of these gene markers in the context of human physical perfor-
mance are provided in the following.

Genes encoding the angiotensin-converting enzyme (ACE) and the α-actinin-3 (ACTN3)
are two of the most studied “performance genes” and both have been associated with
endurance, sprinting, as well as other power phenotypes and elite performance. Circulat-
ing ACE exerts a tonic regulatory function in circulatory homeostasis. A polymorphism
(rs1799752) of the human ACE gene (17q22-q24) has been identified in which the presence
(insertion, I allele) rather than the absence (deletion, D allele) of a 287-bp Alu-sequence
insertion fragment is associated with lower serum and tissue ACE activity. An excess of
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the I allele has been associated with some aspects of endurance performance. Similarly,
several studies have shown the ACE D allele to be associated with greater strength and
muscle volumes at baseline and an increased percentage of fast-twitch muscle fibres. In
addition, the ACE D allele was associated with elite power athlete status [25,26].

The human ACTN3 gene (11q13-q14) encodes the protein α-actinin-3, a component
of the contractile apparatus in fast twitch skeletal muscle fibres. A common genetic
variation (rs1815739) in the ACTN3 gene results in the replacement of an arginine (R) with
a stop codon (X) at amino acid 577 (p.R577X; C→T transition at position 1747 in exon
16). Homozygosity for the nonsense mutation (XX) within ACTN3 results in deficiency of
α-actinin-3, however it does not result in an abnormal muscular phenotype. It has also been
suggested that the X allele may confer an advantage during endurance events. Several
case-control studies reported that ACTN3 RR genotype is over represented or ACTN3
XX genotype is under represented in power oriented (including sprinting) athletes in
comparison with controls. The hypothesis that ACTN3 R allele may confer some advantage
in power performance events was supported by several cross-sectional studies in non-
athletes including mouse models of the ACTN3 deficiency [25,26].

Associations between the ACTN3 (R577X) polymorphism and power status are incon-
sistent. The meta-analysis study presented clear associations between the R allele (RR and
RX genotype) in the ACTN3 polymorphism and elite power athlete status. They found
significant effects of the R allele overall and in Western and female subgroups, and RX
genotype in Asians, and males due to outlier treatment. Interaction analysis improved the
outcome in a female subgroup [19].

Adenosine monophosphate deaminase (AMPD1) is a very important regulator of
muscle energy metabolism during exercise. The AMPD1, also known as myoadenylate
deaminase, predominates in all skeletal muscle fibres. The gene encoding this skeletal
muscle-specific isoform (AMPD1) is located on chromosome 1 (1p13). AMPD1 is mainly
expressed in fast-twitch (type II) muscle fibres. Differential AMPD1 gene expression
may contribute to quantitative variations in enzyme activity across muscle groups with
different types of fibres. The nonsense mutation c.34C>T (C to T transition in nucleotide
34, p.Gln12X, rs17602729) in exon 2 of the AMPD1 gene converts glutamine codon (CAA)
into the premature stop codon (TAA), which results in the early interruption of protein
synthesis and appears to be the main cause of AMPD deficiency. This polymorphism
(rs17602729) in the AMPD1 gene is a common polymorphism among Caucasians that can
impair exercise capacity. The AMPD1 C allele may help athletes to attain elite status in
power-oriented sports [15,27].

We also included the myoglobin gene given its crucial role on muscle function. Myo-
globin (encoding MB gene) is a cytoplasmic hemoprotein that is expressed primarily in
oxidative skeletal muscle fibres and cardiomyocytes. Myoglobin plays two roles: intracellu-
lar oxygen transportation and formation of intracellular oxygen reserve. A polymorphism
(rs7293, c.174G>A) in exon 2 of the MB gene might be associated with physical performance
in elite athletes [28].

1.5. Differences between Genders

The female and male athletes are different phenotypically. They also may differ in
distributions of genotypes of gene markers of physical performance. For example, gender
effects with respect to ACTN3 were noted in a study of athletes of six Balkan popula-
tions [29]. The XX genotype was twice prevalent in males than females (15.7% vs. 7.4%).
The RR genotype was the most abundant in females, while the heterozygous genotype
was prevalent in males in jointly analysing all tested individuals. In that study, gender
seemed to have the strongest influence on the overall results in Albanian population and
FYR Macedonia. Only one XX genotype was present in one female from Albania. It was
not detected in Albanian females from FYR Macedonia (see Table 1 in Konakli. 2017) [29].
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1.6. Contribution of Our Study

In this study, we report observed differences between polygenic profiles of genders
expressed by TGS in Lithuanian athletes practising endurance, power, and mixed sports. In
the analysed group of athletes the females and males differ in allele composition favouring
achievement of high endurance or power performance. The four gene markers ACTN3
rs1815739, MB rs7293, AMPD1 rs17602729, and ACE rs1799752 in the group of 180 Lithua-
nian elite athletes were already extensively analysed in other case-control association
studies [25–27]. In this study we focus on the total genotype score of these markers that we
believed to be important for explaining individual variations in sports performance.

2. Materials and Methods
2.1. Subjects and Ethics Approval

All procedures in this study conformed with the ethical standards in Sport and Exer-
cise Science Research and were approved by the Lithuanian Bioethics Committee. Written
informed consent was obtained from all participants and the study was conducted in
compliance with the Declaration of Helsinki. The study involved 180 Lithuanian elite
athletes (130 males and 50 females, participants and winners in major international compe-
titions, including European Championships, World Championships and Olympic Games;
aged 26.4 ± 6.7 years). The athletes were stratified into three groups according to the
duration and distance of the event, in sports disciplines that ranged from endurance-
oriented to power-oriented sports. The endurance group (n = 81) included very long (race
duration ≥ 30 min), long (race duration 5–30 min), and medium (race duration 45 s to
5 min) distance athletes: skiers, road cyclists, bi-athletes, long-distance runners, modern
pentathletes, swimmers, and rowers. The sprint/power group (n = 44) included sprinters
and other power athletes with predominantly anaerobic energy production: sprinters,
jumpers, and throwers. The mixed group (n = 55) comprised athletes whose sports utilised
mixed anaerobic and aerobic energy production (team sports): tennis players, handball
players, and footballers.

2.2. Genotyping

Genomic DNA was extracted from peripheral blood leukocytes by the standard phenol-
chloroform extraction method. Genotyping of the gene polymorphisms was performed
using polymerase chain reaction (PCR). PCR was used to detect the I and D alleles of the
ACE (rs1799752) gene according to the method described by Gineviciene et al. [25,26], using
upstream primer 5′-CTGGAGACCACTCCCATCCTTTCT-3′ and the downstream primer 5′-
GATGTGGCCATCACATTCGTCAGAT-3′. This method yields PCR fragments of 190 bp and
477 bp in the presence of the D and the I alleles, respectively. Reaction products were visualised
by electrophoresis on a 2% agarose gel and identified by ethidium bromide staining. The re-
sulting PCR products of AMPD1 (rs17602729), ACTN3 (rs1815739), and MB (rs7293) were geno-
typed by restriction fragment length polymorphism analysis [25–27,30]. The primer sequences
were as follows: AMPD1 (rs17602729) forward primer 5′-CTTCATACAGCTGAAGAGACA-3′

and reverse primer 5′-GAATCCAGAAAAGCCATGAGC-3′; ACTN3 (rs1815739) forward
5′-CTGTTGCCTGTGGTAAGTGGG -3′ and reverse 5′-TGGTCACAGTATGCAGGAGGG
-3′ primers; MB (rs7293) forward primer 5′-TGAAGTCAGAGGACGAGATGAATGC-3′ and
reverse primer 5′-GCCCAGGCTCTGCCTCCTACCTCCAG-3′. The amplified fragment sub-
sequently underwent digestion by NspI endonuclease for AMPD1 (rs17602729), DdeI for
ACTN3 (rs1815739), and BsaHI for MB (rs7293) (Thermo Fisher Scientific, Lithuania). Digested
PCR fragments were separated by 2% agarose gel electrophoresis, stained with ethidium
bromide, and viewed in UV light.

2.3. Computation of TGS Scores of Multimarker Profiles of Athletes

The genotypes of n gene markers comprise individual genetic profiles. For the ith
marker having genotypes AA, Aa, and aa, lets denote its genotype scores by Gi. In the
original work of Williams and Folland [7] Gi ∈ (2, 1, 0) corresponding to favourable,
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medium, and neutral genetic predisposition towards a trait: Gi(aa) = 2, Gi(Aa) = 1 and
Gi(AA) = 0. The TGS of the individual profile of n gene markers is defined as a normalised
sum of genotype scores TGS = (100/2n)× (G1 + . . . + Gn).

Gene markers may have different strength of association with the traits of interest
which can be modelled numerically by weighting. Let us denote by gi a magnitude of
association between a genotype i of gene marker m and a trait t. Then, the weighted TGS
for the trait t is defined as:

TGSt =
M

∑
m

Gi
mgi, Gi

m ∈ (−1, 0, 1), gi ∈ [0, 1], m = (1, .., M). (1)

where i denotes a gene marker genotype, M is a number of gene markers m in a profile
and Gi

m is a score which attains following values: Gi
m = 1 for a genotype that strongly

predisposes to the trait t; Gi
m = 0 for neutral or midway genotype and Gi

m = −1 for
genotype predisposing to the opposite direction of the trait. The genotype weights gi can
be assigned from the evidence in literature or derived computationally. Since Gi

m in this
formulation expresses a direction of association, the weights gi in the TGS formulation in
Equation (1) determine the genotype scores.

Numbers of gene markers that are associated with traits may vary. This variability
may impair a comparison of the TGS between the different traits and different sets of
markers of the same trait. The TGS should be uniform across the traits and profiles in
reporting to which end of a trait an individual genetic profile places its owner. Therefore,
values from the interval [TGSmin, TGSmax] are normalised by mapping this interval linearly
to the [−1, 1] interval.

In this study we will highlight two TGS models. A model based on the original work
of Williams and Folland [7] called WF TGS and a model in which the genotype scores were
derived from data using logistic regression classifier called LR TGS.

2.4. Computational Tools

We wrote Python scripts to model a polygenic profile and to compute its TGS scores.
Application of these tools on Lithuanian athlete data and all analysis and computations
performed in this study are reproducible and documented in a publicly available Python
notebook in GithHub (see data availability). We used pandas [31] and numpy [32] libraries
for data processing. The scipy [33] library functions were used to compute χ2 and Wilcoxon
rank sum tests where appropriate. The logistic regression (LR) classifier from scikit-learn [34]
linear model library was used to derive weights and genotypic scores computationally
from the athletes data. The seaborn [35] and matplotlib [36] libraries were used to visualise
the results.

2.5. Logistic Regression Classifier to Derive Genotype Scores

Logistic regression (LR) classifier is a binary classifier that classifies n-dimensional
feature vectors (x1, x2, . . ., xn) into two classes c = 0 or c = 1 by computing a probability of
a class c of a feature vector as [34]:

p(x1, x2, . . ., xn) =
1

1 + exp(−(b0 + b1 × x1 + . . . + bn × xn))
p(x1, x2, . . ., xn) ∈ [0, 1]. (2)

The LR coefficients b0, b1, . . ., bn are estimated in classifier training. Training data
for the classifier are feature vectors representing genotypes of the four gene markers of
athletes from the three sports classes—endurance, mixed, and power. For example, a
feature vector and its values can be as follows x = (x1, x2, x3, x4) = (DD, RX, AG, CT).
To train a logistic regression classifier the categorical features should be transformed into
numerical values by creating dummy variables. The encoding is also known as one-hot
encoding in machine learning. In on-hot encoding a 4-dimensional feature vector would be
transformed into a 12-dimensional vector in which each level of the categorical variable is
represented by a new dimension: (xDD

1 , xDI
1 , xI I

1 , xRR
2 , xRX

2 , xXX
2 , xAA

3 , xAG
3 , xGG

3 , xCC
4 , xCT

4 , xTT
4 ) =

(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) . After the transformation each feature vector of a polygenic profile
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of an athlete becomes a binary feature vector indicating a presence or absence of a specific
genotype in the profile.

For binary features xi = (1, 0) computation of class probability in the logistic regres-
sion depends only on the feature weights bi. Due to the nature of the feature vectors, the
coefficients bi represent both: a magnitude and a direction of the effect of the genotype on
the class probability.

For example, let us suppose that endurance class has label 1 and power class has label
0. Let us assume that a trained LR classifier has following weights: b0 = 0, bDD = 0.4,
bRX = −0.07, bAG = 0.24, and bCT = 0.1. For a feature vector x = (DD, RX, AG, CT)
only weights of the respective genotypes matter in linear combination y = b0 + bDD ×
xDD

1 + . . . + bCT × xCT
4 yielding y = 0.4 + (−0.07) + 0.24 + 0.1 = 0.65. By inserting y

into p(y) = 1/(1 + exp(−y)) gives 0.657 which is a class probability of the feature vector
x = (DD, RX, AG, CT). By its magnitude the class probability assigns feature vector g to
the endurance class (p(y) > 0.5).

In two class classification where the classes represent two opposite expressions of a
trait, coefficients bi can be used as genotype scores in polygenic model to compute TGS.
Positive coefficients will sum up in favour of the class 1—and negative coefficients—in
favour of class 0.

2.6. Determining Genotype Scores from the Coefficients of a Fitted LR Classifier

In this study, we derived genotype scores from the coefficients of a logistic regression
(LR) classifier fitted in two class classifications: endurance (class 1) versus power (class 0);
endurance (class 1) versus mixed (class 0) and power (class 1) versus mixed (class 0).
Classification accuracy was estimated in a 10-fold cross-validation. Final LR classifiers
were trained on all available data. The coefficients at each genotype feature and class
probabilities are shown in Table 2. Since the Table 2 is instrumental in computing the
genotype scores it is placed in Methods section.

Table 2. Coefficients of the logistic regression model fitted to the athletes genotype data in the three
two class classification tasks: endurance versus power (E vs. P), endurance versus mixed (E vs. M),
power versus mixed (P vs. M). The column b represents a coefficient of a corresponding genotype in
a fitted logistic regression model. The class probability represents p(class) = 1

1+exp(−b) which is a
measure of how strongly a coefficient b alone predicts either of the binary classes.

Classification E(1) vs. P(0) Class E(1) vs. M(0) Class P(1) vs. M(0) Class
Genotype bEvsP Prob. bEvsM Prob. bPvsM Prob.

ACTN3 RR −0.080 0.479 −0.199 0.450 0.039 0.509
ACTN3 RX 0.289 0.571 0.241 0.560 −0.071 0.482
ACTN3 XX −0.209 0.447 −0.041 0.489 0.032 0.508

AMPD1 CC 0.288 0.571 0.222 0.555 −0.047 0.488
AMPD1 CT 0.062 0.515 −0.453 0.388 −0.403 0.400
AMPD1 TT −0.350 0.413 0.230 0.557 0.451 0.610

MB AA 0.088 0.522 0.117 0.529 −0.068 0.482
MB AG 0.223 0.555 0.095 0.523 −0.125 0.468
MB GG −0.311 0.422 −0.212 0.447 0.194 0.548

ACE DD 0.415 0.602 0.418 0.603 −0.071 0.482
ACE ID 0.194 0.548 −0.044 0.488 −0.250 0.437
ACE II −0.610 0.351 −0.374 0.407 0.321 0.579

A process of inference of the genotype scores for the TGS model can be thought of as a
classifier combination scheme in which a pattern is assigned to a class, that is supported by
a majority in the classifier committee. The signs of the genotype scores computed from the
coefficients b determine the direction towards the trait extremes: endurance 1 and power
−1; a mixed class is assumed to be a midway 0.
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For example, let us analyse inference of genotype scores of ACE genotype DD in
Table 2. In endurance versus power (class 1 vs. 0) and in endurance versus mixed (class
1 vs. 0) classification the respective class probabilities are 0.602 and 0.603 in favour of
the endurance class. The magnitudes of coefficients bEvsP = 0.415 and bEvsM = 0.418 are
averaged to determine a magnitude of the ACE DD genotype score of 0.4165.

For ACE genotype II in E(1) vs P(0) classification the class probability is 0.351 in favour
of the power class; in the E(1) vs M(0) it is 0.407 in favour of the mixed class and in P(1)
vs M(0) it is 0.579 in favour of the power class. Two classifiers supported the power class.
Therefore, the direction of the ACE II genotype score should be negative towards the power
class. The magnitude of the ACE II genotype score can be computed as an average of the
two absolute values |−0.610| and |0.321| resulting in the ACE II genotype score of −0.4655.
For the mixed class the genotype scores are set close to 0 because of how the TGS model is
constructed. For example, the AMPD1 CT genotype strongly supports mixed class and its
genotype score in the TGS model will be set to 0. The inferred genotype scores and their
supported traits are presented in the results sections.

2.7. Probabilities of Genotype Combinations in Population

Frequency of ith genotype gti
m, i ∈ (aa, aA, AA) of some gene marker m in population

usually can be found in public population databases, such as Ensembl [37] or GnomAD [38],
or estimated from a control dataset. These frequencies can be assumed as empirically
estimated genotype probabilities p(gti

m) in a population. Assuming that gene markers
m = (1, . . ., M) are independent of each other, one can compute a probability of a specific
genotype combination as p(gti

m1
, . . ., gti

mM
) = p(gti

m1
) × . . . × p(gti

mM
), where i can be

only one of the three possible genotypes (aa, aA, AA). Let us denote this probability of a
genotype combination of the M gene markers as p(M) = p(gti

m1
, . . ., gti

mM
).

We can perform a single experiment by selecting one individual from a population
carrying a specific combination of genotypes. This experiment has only two outcomes—a
success: the individual has the specific genotype combination; and a failure: he has not.
The probability of success in this experiment is p(M).

We can independently select n individuals from a population. Each time there will be
only two outcomes: success or failure. Out of n independently selected individuals (experi-
ments) there might be a number of individuals k who will carry that specific combination
of genotypes. The probability that k out of n independently selected individuals will carry
the specific genotype combination—k successes in n trials with a probability of success
p = p(M)—is given by a binomial distribution which is a discrete probability distribution:

Pp(k|n) =
n!

(n− k)!k!
× pk × (1− p)n−k. (3)

In Equation (3), the Pp(k|n) is a probability to observe k individuals out of n randomly
selected individuals from a population carrying a specific genotype combination, the
probability of which is p = p(M). Using this scheme we can explore which and how
many genotype combinations are over-represented in the group of athletes compared to a
general population. We know how many athletes k out of n = 180 have a specific genotype
combination. Therefore, we can compute how likely it is to encounter the same number k
of individuals in a randomly selected 180 group from a general population carrying the
same genotype combination as in athletes.

3. Results
3.1. Genotype and Allele Frequencies

The genotype and allele counts in Lithuanian elite athletes and controls are presented
in Table 3.
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Table 3. Genotype and allele counts of gene markers ACE rs1799752, ACTN3 rs181573, AMPD1
rs17602729, and MB rs7293 in Lithuanian elite athletes and controls. The p-value of χ2 test result of
genotype and allele frequencies between elite athletes and controls ** significant at a level p ≤ 0.05
and * significant at a level p ≤ 0.1.

Gene/Group Genotype Frequency p-Value (χ2) Allele Frequency p-Value (χ2)

ACE DD ID II

0.049 **

D I

0.093 *Athletes 46 84 50 176 184
Controls 63 94 98 220 290

ACTN3 RR RX XX

0.118

R X

0.0786 *Athletes 56 102 22 214 146
Controls 104 125 26 333 177

AMPD1 CC CT TT

0.625

C T

0.539Athletes 133 45 2 311 49
Controls 184 65 6 433 77

MB AA AG GG

0.0004 **

A G

0.588Athletes 35 116 29 186 174
Controls 69 116 70 254 256

Differences in genotype frequencies between athletes and controls are observed for ACE
and MB gene markers. Differences in allele distribution for ACE and ACTN3 gene markers. In
the current study, a distribution of genotypes of AMPD1 gene marker did not show significant
differences between the athletes and controls as in previous study [27]. Here we studied a
smaller group of athletes who were matched by genotyping all four markers.

3.2. Multimarker Genotype Combinations in the Group of Lithuanian Athletes

In the group of the analysed Lithuanian athletes out of the 81 possible unique genotype
combinations (3 genotypes of 4 genes 34) there were 45 combinations of the genotypes of
four gene markers ACE rs1799752 (DD, ID, II), ACTN3 rs1815739 (RR, RX, XX), MB rs7293
(AA, AG, GG), and AMPD1 rs17602729 (CC, CT, TT). Counts of genotype combinations in
athletes of different sports are shown in Figure 1.

Figure 1. Representation of a number of athletes in endurance, mixed, and power sports carrying a specific geno-
type combination.

Some genotype combinations are more frequent among athletes of all three sport
groups: 20 athletes have the ID-RX-AG-CC and 12 have ID-RX-AG-CT genotype combi-
nations. Other, more frequent genotype combinations occur in endurance and mix sport
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groups: 15 athletes have II-RX-AG-CC and 10 have DD-RX-AG-CC genotype combinations.
In the power and mixed sports group 11 athletes have II-RR-AG-CC genotype combination.
Ensembl database shows that world-wide population frequencies of the genotypes for all
markers are quite common, as well as in Lithuanian controls.

Table 4 shows genotype combinations ordered by the ascending binomial probabil-
ity of how likely it is to see a specific genotype combination as many times as in ath-
letes in a group of 180 randomly selected individuals from a general Lithuanian popula-
tion. The probability of success p(M) for each combination of genotypes was computed
using genotype frequencies in Lithuanian controls (Table 5). Data are shown only for
Pp(M)(k|180) < 0.13.

Table 4. Binomial probability Pp(M)(k|180) to observe k individuals in a random group of n = 180
carrying a genotype combination of probability p(M).

Genotype Combination k p(M) Pp(M)(k|180)

ID-RX-AG-CT 12 0.021 0.000345
ID-RX-AG-CC 20 0.0594 0.002910
II-RX-GG-CC 1 0.0374 0.007327

DD-RX-AG-TT 2 0.0013 0.021598
ID-RR-GG-CC 1 0.0299 0.023502
ID-RR-AG-CC 13 0.0495 0.047800
ID-XX-AG-CC 5 0.0124 0.049164
ID-RX-GG-CC 10 0.0359 0.054216
II-RX-AG-CC 15 0.0618 0.055684

DD-RX-GG-CC 1 0.0240 0.055847
II-RR-GG-CC 2 0.0311 0.056269

DD-RX-AG-CC 10 0.0398 0.076339
DD-RR-GG-CC 1 0.0200 0.096777
DD-RR-AG-CT 4 0.0117 0.099880
II-RR-AG-CC 11 0.0515 0.104875

DD-XX-AG-CC 3 0.0083 0.125010

Table 5. Gene markers, their genotypes, genotype scores, and associated traits in LR TGS and WF TGS models, along with
the population genotype frequencies in the Ensembl database (ACE rs1799752 frequencies obtained from the rs4341 in 100%
LD with I/D polymorphism II = CC, ID = GC, DD = GG) and in Lithuanian controls (LR—logistic regression; TGS—total
genotype score; WF—Williams and Folland genotype score; Freq.—genotype frequencies; End—endurance-oriented athletes;
Mix—mixed athletes group; Pow—power-oriented athletes).

Gene Marker m Genotype i LR TGS Gi
m ∗ gi Score Trait WF TGS Gi Score Trait Freq. Ensembl All Freq. Control n = 255

ACE DD 0.4165 End 2 End 0.237 0.247
rs1799752 ID −0.1470 Mix 1 Mix 0.466 0.369

II −0.4655 Pow 0 Pow 0.297 0.384

ACTN3 RR −0.0595 Pow 2 End 0.382 0.408
rs1815739 RX 0.265 End 1 Mix 0.435 0.49

XX −0.1205 Pow 0 Pow 0.183 0.102

AMPD1 CC 0.255 End 2 End 0.927 0.722
rs17602729 CT 0 Mix 1 Mix 0.07 0.255

TT −0.4005 Pow 0 Pow 0.003 0.024

MB AA 0.1325 End 2 End 0.313 0.271
rs7293 AG 0.159 End 1 Mix 0.437 0.455

GG −0.2525 Pow 0 Pow 0.251 0.275

The results of this calculation suggest that most frequent genotype combinations
observed in athletes group might be less frequent in general Lithuanian population and
more specific to the athletes.
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3.3. Genotype Scores in the Tgs for Endurance and Power Performance Traits in Athletes

In a traditional approach to TGS computation, first introduced by Williams and Folland
(WF), genotypes reflecting a favourable, a medium, and a neutral effect of a genotype on a
trait have respective values 2, 1, 0 that are based on the evidence in scientific literature. In
this study, the genotype scores in WF TGS model are based on the previously published
data [25–27,30]. Table 5 shows genotype scores and associated traits for the WF TGS model
and also for the LR TGS model in which genotype scores were derived from the coefficients
of a fitted logistic regression (LR) classifier.

To derive genotype scores (Table 5) in the LR TGS model we trained three logistic
regression classifiers using all athletes genotype data: endurance versus power, endurance
versus mix and power versus mix. Obtained coefficients of the LR classifiers, shown in
Methods (Table 2), were used to compute genotype scores in Table 5, as explained in
Methods.

10-fold cross validation classification accuracy and confusion tables of final classifiers
are shown in Table 6. In all cases, the classification accuracy in 10-fold cross validation is
very poor. However, from confusion tables it is seen that athletes in endurance class are
classified correctly as endurance much better compared to the power and mix classes: 92%
in endurance versus power classification and 85% in endurance versus mix classification.
Additionally, athletes in mix class are classified correctly as mix 78% in power versus mix
classification.

Features used in classification were only genotypes of four gene markers and sample
size was rather small in these classification tasks. Still, the results show that endurance
athletes have a signature of genotype combinations that allows to discriminate them from
other classes, regardless of poor overall classification accuracy.

We further investigated whether the genotype scores computed from the coefficients
of the trained logistic regression classifier and used in the TGS model lead to a better
characterisation of athlete’s endurance or power traits by the TGS. In our study we called
this model the LR TGS model. As a reference point for comparison we used the TGS
computed with genotype scores of (2, 1, 0) linearly mapped to the interval [−1, 1]. We
called this model WF TGS model.

Table 6. Classification accuracy of logistic regression classifiers in three two-class classification tasks.
Accuracy is presented as mean ± standard deviation. Confusion tables show how many athletes
were classified correctly and incorrectly by final LR classifiers trained on all data.

Classifier Accuracy m± sd Confusion Table

Endurance vs. Power 0.663± 0.086

Predicted
Pow End

Actual Pow 14 30
End 6 75

Endurance vs. Mixed 0.522± 0.092

Predicted
Mix End

Actual Mix 10 45
End 12 69

Power vs. Mixed 0.476± 0.142

Predicted
Mix Pow

Actual Mix 43 12
Pow 24 20

3.4. TGS Based on Genotype Scores Derived from the Coefficients of LR Classifiers

TGS is an integrative metric, representing the additive effect of all genotypes in
predicting a trait. We analysed how LR TGS and WF TGS values are distributed in
endurance, mix, and power groups. Figures 2 and 3 represent distribution of LR TGS and
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WF TGS for genders in different sport groups and show how these TGS distributions differ
between endurance, mix, and power sports, and also between males and females.

A significance of these differences was tested by a Wilcoxon signed rank test which
was chosen because of small sample sizes and TGS normality assumption may not hold.
The results of the test are summarised in Table 7.

Table 7. Statistically significant Wilcoxon rank sum test outcomes (p-values at 95% and 90% levels of
significance) of LR TGS and WF TGS value comparisons between males and females and different
sport groups.

Groups Compared (n) LR TGS (p-Value) WF TGS (p-Value)

Endurance (81) vs. power (44) 0.0396 0.0528
Endurance (81) vs. mixed (55) 0.0861 0.105

Power females (6) vs. males (38) 0.042 0.0229
Females endurance (27) vs. power (6) 0.0152 0.0033

Females power (6) vs. mixed (17) 0.08 0.0022

A number of females in the power class is very small, therefore, the obtained results
are only suggestive. However, in the comparison of the endurance versus power groups a
more significant difference is detected using the LR TGS values, meaning that the LR TGS
is more representative of differences between these groups.

Figure 2. WF TGS value distributions shown by violin and box-whisker plots in females and males in different sport categories.

Figure 3. LR TGS value distributions shown by violin and box-whisker plots in females and males in different sport
categories. Violin plots show areas of high data point density along the axis of value distribution.

The TGS orders genotype combinations across the endurance, mixed, and power
athletic performance axis. Figure 4 shows ordering of the athletes in the respective sport
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groups by the LR TGS values. In Figure 5 this ordering is shown for the WF TGS values.
The graphs show a number of athletes from the different sports characterised by the same
LR TGS value. The athletes are ordered according the TGS value from the negative TGS
values representing the power class towards positive, representing the endurance class.

Figure 4. Athletes data order by the LR TGS values. The graph shows a number of athletes from the different sports
characterised by the same LR TGS value. The order is from the negative TGS values representing the power class to positive,
representing the endurance class.

Figure 5. Athletes data order by the WG TGS values. The graph shows a number of athletes from the different sports
characterised by the same WF TGS value. Values are ordered from negative representing the power class towards positive,
representing the endurance class.

Figures 4 and 5 clearly show the difference between the LR TGS and WF TGS. The
former is more granular and represents a variability in genotype combinations better.
Although the latter gets concentrated in a small number of levels. In both cases, the athletes
from the power group are represented by the range of the negative TGS values (normalised
in both cases). However, we observe that there is a significant overlap between the three
sport classes in genotype combinations and their corresponding TGS values. A majority of
the TGS values are not pure power or endurance or mix.

In Figure 4 there are instances of the athletes from the power class to be placed at
the positive endurance end and vice versa. Similarly, the positive WF TGS values also
represent both: endurance at a higher extent and power at a lesser extent. This means that
the some genotypes have influence in both directions—power and endurance.
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3.5. Differences between Females and Males

In this study, we observe differing distributions of the TGS values in female and male
groups (Figures 2 and 3). This may happen if the individual genotypes have different
influence of the trait in females compared to males. Table 8 shows distribution of athletes
by genotype, by gender and by the sport category.

Table 8. Distribution of athletes by genotype, by gender, and by sport category.

Gene Marker Genotype
Females n = 50 Males n = 130

Endurance Power Mixed Endurance Power Mixed
n = 27 n = 6 n = 17 n = 54 n = 38 n = 38

ACE DD 10 2 4 15 7 8
rs1799752 ID 15 1 7 24 16 21

II 2 3 6 15 15 9

ACTN3 RR 9 4 3 13 12 15
rs1815793 RX 15 2 12 35 20 18

XX 3 0 2 6 6 5

AMPD1 CC 20 3 11 43 30 26
rs17602729 CT 7 2 6 10 18 12

TT 0 1 0 1 0 0

MB AA 8 0 5 8 9 5
rs7293 AG 16 1 10 38 25 26

GG 3 5 2 8 4 7

The good classification of the sport groups by the genotypes depends on the prevalence
of a discriminating genotype in one group and a lack of it in the other group. Analyzing
prevalences of the the particular genotypes in the three sports groups in female and male
athletes (comparing percentages of individual genotypes in any sport group between
females and males) showed several genotypes that may have opposite effects on the
endurance or power performance trait in males and females.

In our data, several genotypes can be identified as acting on opposite sides in females
and males. The AMPD1 rs17602729 TT genotype is present in power females, but in endurance
males. However, there are only two athletes with this genotype. The MB rs7293 genotype
GG prevails in power females (50%) but in endurance males (42%); the genotype AA prevails
in endurance females (62%) but in power males (41%). The ACTN3 rs1815739 XX is not
present in power females, but it is present in both endurance and power males. The
observed imbalances are more characteristic to the genotypes that have lesser frequency
among analysed athletes and also in the general population (AMPD1 TT and ACTN3 XX
genotypes).

3.6. Sample Size Considerations

In sports genetics the sample sizes are naturally limited, especially in small popula-
tions since they do not have many elite athletes. For groups in Table 7 an actual effect size
and an empirical power (Table 9) of Wilcoxon test was computed by using G*power [39].
The power is a complement of the type II error which is a probability to falsely reject the
null hypothesis of no difference.

The large effect sizes (above 1) show that the actual sample sizes available for analysis
(n2 = 6, n1 = 38, 27, 17) are sufficient to demonstrate differences between the elite female
athletes in power sports versus males and females in endurance and mixed sport groups by
the total genotype score. Same holds for the athletes in the power and endurance groups.
We detect large effect size which does not require a large sample size, however replication
of calculations with somewhat bigger groups might be advisable. The smallest observed
effect size is in endurance versus mixed athletes groups, in which the TGS differences are
not significant. This is somehow expected since the mixed sports athletes share features
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of both sports groups: endurance and power. Overall actual sample sizes of elite athletes
in this study do not diminish a value of the the total genotype score algorithm to reflect
opposite traits of athletic performance and reveal differences between the athletes that
otherwise would be difficult to notice.

Table 9. Actual effect size and empirical power of the statistical Wilcoxon test with the available
sample sizes (n1 and n2) for the LR TGS model of the groups shown in Table 7.

Groups Sample Size Actual Actual Empirical
n1, n2 Effect Size α Power

All athletes endurance vs. power 81, 44 0.55 0.05 0.81
All athletes endurance vs. mixed 81, 55 0.379 0.1 0.68

Power males vs. females 38, 6 1.057 0.1 0.75
Females endurance vs. power 27, 6 1.54 0.05 0.88

Females mixed vs. power 17, 6 1.057 0.1 0.75

4. Discussion

Multimarker representations of human performance traits are usually derived from
published experimental evidence and quite often the reported association vary considerably
across populations and sports. We analysed a group of elite Lithuanian athletes aiming
to find out whether and how genotype combinations of four genetic markers stratify
athletes according to different sport category. This is a novel report using actual data on
the polygenic profile of elite athletes with the same ethnic origin.

We created an endurance-mixed-power performance profile from experimental data
based on known ACE rs1799752, ACTN3 rs1815739 and AMPD1 rs17602729, and emerging
MB rs7293 gene markers. We analysed the total genotype score TGS computed from this
profile in the group of Lithuanian athletes and gained several important insights. First,
the additive effect of genotypes on the trait can be different in female and male athletes,
implying that TGS may have to be constructed differently for each gender. Second, if
scores of the genotypes in the TGS model are computed from the original athletes genotype
dataset, then the total genotype score TGS stratifies athletes into their respective sport
categories more accurately compared to the TGS constructed by the original method of
Williams and Folland.

The use of a total genotype score in practice, so far, is limited to the exploratory
data analysis [11,12,22,24,40]. Its usage in talent prediction is premature and was deemed
ineffective [41]. However, the TGS was found as a good tool to complement analysis of
predictive power of individual markers in diabetes study [42].

In our study, we used TGS to characterise Lithuanian elite athletes practising power,
mixed, and endurance sports. We constructed and analysed a novel data-driven method to
compute the genotype scores in the TGS from the experimental athlete’s data. We trained
logistic regression classifiers on the sole genotype data of the athletes and computationally
derived genotype scores from the coefficients of the LR classifiers. Although we used the
LR classifiers, any classification method can be used for this purpose, as long as it allows to
infer a magnitude and a direction of the genotype effect on the trait.

It is known that in different populations and different sports the associations between
the gene markers and traits of athletic performance may be different [18]. In these situations,
a data-driven modelling of the TGS may produce more accurate results because it captures
features of a particular dataset that makes it different from others. In our study, through
the data-driven TGS modelling we identified and described differences in genotype effects
on the power and endurance traits between male and female athletes, that also were noted
by other researchers [29].

The main limitation of our study is the small sample size. Another limitation is an
assumption that effects of the genotypes on the athletic power or endurance performance
traits are additive and independent of each other which is difficult to test due to the small
sample size. However, in many cases the datasets for the athletic performance are small [18]
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due to the objective fact that elite athletic performance is a rare trait and not much elite
athlete’s data are available in various populations. However, this does not diminish the
descriptive value of our study.

Together with the known markers (ACE rs1799752, ACTN3 rs1815739, and AMPD1
rs17602729) we analysed an emerging marker of physical human performance MB rs7293.
There is not much data in literature about this marker [28]. It was hypothesised that the
MB AA genotype of this marker is related to improved endurance performance. Our
computational analysis suggests that MB AA genotype might be related to endurance, and
GG genotype to power performance in females, but in opposite relationship with the trait
in males—AA genotype related to power, and GG genotype to endurance.

5. Conclusions

A most important aspect of a TGS is how the genotypes in the multimarker repre-
sentation are assigned their scores. The scores should faithfully represent the impact of
the genotype on the trait so that genotype combination ranks highly those individuals
with particular genotype, who have a trait expressed. Most of the time, the genotypes
are scored by genotype–phenotype relationship evidence in published scientific stud-
ies. A complementary approach is computation of the genotype scores from available
experimental data.

In the presented study, we created an endurance-mixed-power performance profile
based on known and emerging gene markers and analysed its ability to stratify Lithuanian
elite athletes according to the sport category that they practice. Analysis of the total
genotype score computed from this profile in the group of Lithuanian athletes showed
differences in TGS distribution in females and males. This indicates that the effect of the
same genotype on a trait might be different in female and male athletes and this difference
should be taken into account if one uses TGS in some practical applications. We explained
in detail a procedure of the data-driven derivation of the genotype scores in the TGS model
and contributed Python code of our analysis making it reproducible.
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