
mathematics

Article

Second-Order Weak Approximations of CKLS and CEV
Processes by Discrete Random Variables

Gytenis Lileika *,† and Vigirdas Mackevičius †
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Abstract: In this paper, we construct second-order weak split-step approximations of the CKLS
and CEV processes that use generation of a three-valued random variable at each discretization
step without switching to another scheme near zero, unlike other known schemes (Alfonsi, 2010;
Mackevičius, 2011). To the best of our knowledge, no second-order weak approximations for the
CKLS processes were constructed before. The accuracy of constructed approximations is illustrated
by several simulation examples with comparison with schemes of Alfonsi in the particular case of the
CIR process and our first-order approximations of the CKLS processes (Lileika– Mackevičius, 2020).
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1. Introduction

We are interested in weak second-order approximations for the Chan–Karolyi–
Longstaff–Sanders (CKLS) model [1]

dXt = (θ − β Xt)dt + σXγ
t dBt, X0 = x ≥ 0, (1)

with parameters (θ, β, σ, γ) ∈ R+ × R× R+ × [1/2, 1), where R+ := (0, ∞) and R+ :=
[0, ∞). In particular, when θ = 0 and β < 0, we have the constant elasticity of variance
(CEV) model [2], and when γ = 1/2 and β ≥ 0, we have the well-known Cox–Ingersoll–
Ross (CIR) model [3]. The main problem in developing numerical methods for such
a diffusion equation/model is that the diffusion coefficient has unbounded derivatives
near zero, and therefore standard methods (see, e.g., Milstein and Tretyakov [4]) are not
applicable: discretization schemes that (explicitly or implicitly) involve the derivatives of
the coefficients usually lose their accuracy near zero, especially for large σ. This problem
for the CIR processes was solved by modifying the scheme considered by switching near
zero to another scheme, which is (1) sufficiently regular and (2) sufficiently accurate near
zero; we refer, for example, to [5–7] and references therein. Typically, a second-order
approximation near zero is constructed by discrete random variables matching three or
four moments with those of the true solution.

The main result of this paper is the construction of second-order weak split-step
approximations of the CKLS and CEV processes by discrete random variables. To the
best of our knowledge, no second-order weak approximations of the CKLS process have
been constructed before, except for the particular case of the CIR process (Alfonsi [5],
Mackevičius [7]). Our construction method is significantly different from that of the first-
order approximation in our previous paper [8]. Another novel feature of our result is
that in our schemes, no switching between schemes near zero is used, in contrast to [5,7].
This simplifies the implementation of approximations. We illustrate the accuracy of our
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approximations by several simulation examples with comparison with schemes of Alfonsi
in the particular case of the CIR process and our first-order approximations of the CKLS
processes constructed in [8].

Why are second-order schemes better than first-order ones? On the one hand, the
former are more accurate when using the same discretization step size. On the other
hand, by the former, we can reach the same accuracy under larger step sizes, which
implies lower computation costs. Of course, if high accuracy is not required, first-order
approximations suffice.

The paper is organized as follows. In Section 2, we recall some definitions and results.
In Section 3, we derive sufficient conditions for a discretization scheme to be a potential
second-order approximation for the stochastic part (dSt = σSγ

t dBt) of the CKLS and CEV
equations. In Section 4, we construct second-order approximations for the CIR equation by
three-valued discrete random variables. In Section 5, we apply the approach of Section 4 to
the CKLS and CEV equations. In Section 6, we give several simulation examples illustrating
our results. Finally, in the Appendix A, we derive some exact formulas for moments of the
stochastic parts of the CKLS equations, which we need for simulation examples.

2. Preliminaries

In this section, we give some definitions for the general one-dimensional stochastic
differential equation

Xx
t = x +

∫ t

0
b(Xx

s )ds +
∫ t

0
σ(Xx

s )dBs, t ≥ 0, x ∈ D ⊂ R. (2)

We assume that the equation has a unique weak solution Xx
t such that P(Xx

t ∈ D, t ≥
0) = 1 for all x ∈ D. For example, for Equation (1), we can take D = R+.

Having a fixed time interval [0, T], consider an equidistant time discretization ∆h =
{ih, i = 0, 1, . . . , [T/h], h ∈ (0, T]}, where [a] is the integer part of a. By a discretization
scheme of Equation (2) we mean a family of discrete-time homogeneous Markov chains
X̂h = {X̂h(x, t), x ∈ D, t ∈ ∆h} with initial values X̂h(x, 0) = x and one-step transition
probabilities ph(x, dz), x ∈ D, in D. For convenience, we only consider steps h = T/n,
n ∈ N. For brevity, we write X̂x

t or X̂(x, t) instead of X̂h(x, t). Note that because of the
Markovity, a one-step approximation X̂x

h of the scheme completely defines the distribution
of the whole discretization scheme X̂x

t , so that we only need to construct the former.
We denote by C∞(D) the space of C∞ functions f : D → R, by C∞

0 (D) the functions
f ∈ C∞(D) with compact support in D, and by C∞

pol(D) the functions f ∈ C∞(D) such that

| f (n)(x)| ≤ Cn(1 + |x|kn), x ∈ D, n ∈ N0 := {0, 1, 2, . . . },

for some sequence (Cn, kn) ∈ R+ × N0. Following [5], we say that such a sequence
{(Cn, kn), n ∈ N0} is a good sequence for f .

We will write g(x, h) = O(hn) if, for some C > 0, k ∈ N, and h0 > 0,

|g(x, h)| ≤ C(1 + |x|k)hn, x ≥ 0, 0 < h ≤ h0.

If, in particular, the function g is expressed in terms of another function f ∈ C∞
pol(R)

and the constants C, k, and h0 only depend on a good sequence for f , then we will write,
instead, g(x, h) = O(hn).

Definition 1. A discretization scheme X̂h is a weak νth-order approximation for the solution
(Xx

t , t ∈ [0, T]) of Equation (2) if for every f ∈ C∞
0 (D), there exists C > 0 such that

|E f (Xx
T)−E f (X̂x

T)| ≤ Chν, h > 0.
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Definition 2. Let L f = b f ′ + 1
2 σ2 f ′′ be the generator of the solution of Equation (2). Suppose

L f ∈ C∞
pol(D) for all f ∈ C∞

pol(D), that is, b, σ2 ∈ C∞
pol(D). The νth-order remainder of a

discretization scheme X̂x
t for Xx

t is the operator Rh
ν : C∞

pol(D)→ C(D) defined by

Rh
ν f (x) := E f (X̂x

h)−
[

f (x) +
ν

∑
k=1

Lk f (x)
k!

hk
]

, x ∈ D, h > 0. (3)

A discretization scheme X̂x
t is a local νth-order weak approximation of Equation (2) if

Rh
ν f (x) = O(hν+1), h→ 0,

for all f ∈ C∞
pol(D) and x ∈ D.

Remark 1. Iterating the Dynkin formula E f (Xx
h) = f (x) +

∫ h
0 EL f (Xx

s )ds, we have

E f (Xx
h) = f (x) +

ν

∑
k=1

Lk f (x)
k!

hk

+
∫ h

0

∫ s1

0
· · ·

∫ sν

0
ELν+1 f (Xx

sν+1
)dsν+1 · · ·ds2ds1,

which motivates Definition 2: If Lν+1 f behaves “well” (e.g., b, σ2, f ∈ C∞
0 (D), and ELν+1 f is

bounded), then for the “one-step” νth-order weak approximation scheme X̂x
h , we have

|E f (Xx
h)−E f (X̂x

h)| = O(hν+1), h→ 0. (4)

We may expect that in “good” cases, a local νth-order weak discretization scheme is a νth-order
(global) approximation. Rigorous statements require certain uniformity of (4) with respect to f and
regularity of L.

Definition 3. A discretization scheme X̂x
t is a potential νth-order weak approximation for

Equation (2) if for every f ∈ C∞
pol(D),

|Rh
ν f (x)| = O(hν+1).

Definition 4. A discretization scheme X̂x
t = X̂h(x, t), h > 0, has uniformly bounded moments if

there exists h0 > 0 such that

sup
0<h≤h0

sup
t∈∆h

E(|X̂h(x, t)|n) < +∞, n ∈ N, x ∈ D.

We say that a potential νth-order weak approximation is a strongly potential νth-order weak
approximation if it has uniformly bounded moments.

Remark 2. Typically, a strongly potential νth-order discretization is a νth-order weak approxima-
tion in the sense of Definition 1. At least, we do not know any counterexample. A rigorous proof for
the CIR equation is given by Alfonsi [9] (see also [10]).

We split Equation (1) into the deterministic part

dDx
t = (θ − βDx

t )dt, Dx
0 = x ≥ 0,

and the stochastic part
dSx

t = σ(Sx
t )

γ dBt, Sx
0 = x ≥ 0. (5)
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The solution of the deterministic part is positive for all (x, t) ∈ R+ × (0, T], namely:

Dx
t = D(x, t) =

{
xe−βt + θ

β (1− e−βt), β 6= 0,
x + θt, β = 0.

The solution of the stochastic part is not explicitly known. The following theorem
allows us to reduce the construction of a weak second-order approximation to that of the
stochastic part. Let Ŝx

t = Ŝ(x, t) be a discretization scheme for the stochastic part (5).

Theorem 1 ([5] (Thm. 1.17)). Let Ŝx
t be a potential second-order weak approximation of the

stochastic part (5) of Equation (1). Then the (split-step) composition

X̂h(x, h) :=

{
D
(

Ŝ
(

D(x, h/2), h
)
, h/2

)
, h > 0,

x, h = 0,
(6)

defines a potential second-order weak approximation of Equation (1).

Corollary 1. If Ŝx
t is a strongly potential second-order weak approximation of the stochastic part (5)

of Equation (1), then composition (6) is a strongly potential second-order weak approximation of
Equation (1).

The theorem and corollary allow us to restrict ourselves, without loss of generality, on
the (strongly) potential second-order weak approximations of the stochastic part dSx

t =
σ(Sx

t )
γ dBt of Equation (1).

3. A Strongly Potential Second-Order Approximation of the Stochastic Part of the
CKLS and CEV Equations

Let Ŝx
h be any discretization scheme. Denote a := σ2. Using Taylor’s formula for

f ∈ C6(R), we get

E f (Ŝx
h) = f (x) + f ′(x)E(Ŝx

h − x) +
f ′′(x)

2
E(Ŝx

h − x)2 +
f ′′′(x)

6
E(Ŝx

h − x)3

+
f (4)(x)

4!
E(Ŝx

h − x)4 +
f (5)(x)

5!
E(Ŝx

h − x)5

+
1
5!
E
∫ Ŝx

h

x
f (6)(s)(Ŝx

h − s)5ds.

It is worth noting that further technical calculations were mainly made by using
MAPLE software.

Since the first and second power of the generator of stochastic part (5) are (see Defini-
tion (3))

L0 f (x) =
1
2

ax2γ f ′′(x) and

L2
0 f (x) = γ

(
γ− 1

2

)
a2x4γ−2 f ′′(x) + γa2x4γ−1 f ′′′(x) +

1
4

a2x4γ f (4)(x),
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the second-order remainder for Ŝx
h is

Rh
2 f (x) = E f (Ŝx

h)−
[

f (x) + L0 f (x)h + L2
0 f (x)

h2

2

]
= f ′(x)E(Ŝx

h − x)

+
f ′′(x)

2
[E(Ŝx

h − x)2 − (1 + γ(γ− 1/2)x2(γ−1)ah)x2γah]

+
f ′′′(x)

6
[E(Ŝx

h − x)3 − 3γx4γ−1(ah)2]

+
f (4)(x)

4!
[E(Ŝx

h − x)4 − 3x4γ(ah)2]

+
f (5)(x)

5!
E(Ŝx

h − x)5 + r2(x, h), x ≥ 0, h > 0,

where

|r2(x, h)| = 1
5!

∣∣∣∣∣E
∫ Ŝx

h

x
f (6)(s)(Ŝx

h − s)5ds

∣∣∣∣∣ ≤ 1
6!
E
[

max
0≤s≤Ŝx

h

| f (6)(s)|(Ŝx
h − x)6

]
.

For brevity, we denote z := ah = σ2h. By the above expression of the remainder
Rh

2 f (x), the discretization scheme Ŝx
h is a potential second-order approximation of the

stochastic part (5) if

E(Ŝx
h − x) = O(h3), x ≥ 0, (7)

E(Ŝx
h − x)2 = (1 + γ(γ− 1/2)x2(γ−1)z)x2γz + O(h3), x ≥ 0, (8)

E(Ŝx
h − x)3 = 3γx4γ−1z2 + O(h3), x ≥ 0, (9)

E(Ŝx
h − x)4 = 3x4γz2 + O(h3), x ≥ 0, (10)

|E(Ŝx
h − x)5| = O(h3), x ≥ 0, (11)

E
[

max
0≤s≤Ŝx

h

| f (6)(s)|(Ŝx
h − x)6

]
= O(h3). (12)

Initially, for constructing our approximations, instead of (12), we will require a slightly
weaker condition

E(Ŝx
h − x)6 = O(h3). (13)

Later, we will see that, actually, all our approximations satisfy the required stronger
condition (12).

We easily convert conditions (7)–(11) and (13) for the central moments of Ŝx
h into

conditions for the noncentral moments:

E(Ŝx
h)

i = m̂i + O(h3), i = 1, 2, . . . , 6, (14)

where the “moments” m̂i = m̂i(x, h), x ≥ 0, h > 0, i = 1, 2, . . . , 6, are defined as

m̂1 =x,

m̂2 =γ
(

γ− 1
2

)
x4γ−2z2 + x2γz + x2,

m̂3 =
3
2

γ(1 + 2γ)x4γ−1z2 + 3x1+2γz + x3,

m̂4 =6x2+2γz + 3(1 + γ)(1 + 2γ)x4γz2 + x4,

m̂5 =5(3 + 2γ)(1 + γ)x1+4γz2 + 10x3+2γz + x5,

m̂6 =
15
2
(2 + γ)(3 + 2γ)x2+4γz2 + 15x4+2γz + x6.

(15)
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4. A Strongly Potential Second-Order Approximation of the CIR Equation

In this section, we construct a strongly potential second-order approximation for the
CIR Equation (γ = 1/2) using a three-valued random variable at each generation step
without switching to another scheme in a neighborhood of zero. The “moments” (15) in
conditions (14) for the central moments E(Ŝx

h)
i in this case become as follows (recall that

z := ah = σ2h):

m̂1 = x,

m̂2 = x2 + xz,

m̂3 = x3 + 3x2z + 3
2 xz2,

m̂4 = x4 + 6x3z + 9x2z2,

m̂5 = x5 + 10x4z + 30x3z2,

m̂6 = x6 + 15x5z + 75x4z2.

(16)

We therefore look for approximations Ŝx
h taking three positive values x1, x2, and x3

with probabilities p1, p2, and p3 such that

E(Ŝx
h)

i = m̂i + O(h3), i = 1, 2, . . . , 6, (17)

where x ≥ 0, h > 0, together with obvious requirement

p1 + p2 + p3 = m0 := 1. (18)

Denote mp = mp(h, x) := E(Sx
h)

p, p ∈ N. We have (see [8], Appendix)

m1 = m̂1 = x,

m2 = m̂2 = x2 + xz,

m3 = m̂3 = x3 + 3 x2z + 3 xz2

2 .

Solving the system

xi
1 p1 + xi

2 p2 + xi
3 p3 = mi, i = 1, 2, 3,

with respect to unknowns x1, x2, and x3, we get:

p1 =
m1x2x3 −m2(x2 + x3) + m3

x1(x3 − x1)(x2 − x1)
,

p2 =
m2(x1 + x3)−m1x1x3 −m3

x2(x2 − x1)(x3 − x2)
, (19)

p3 =
m1x1x2 −m2(x1 + x2) + m3

x3(x3 − x2)(x3 − x1)
.

We can get analogous expressions from the last three equations of system (17) (with
m4, m5, m6 instead of m1, m2, m3). However, trying to directly solve the obtained six equa-
tions with respect to all unknowns x1, x2, x3, p1, p2, p3 gave no satisfactory results. In view
of the form of approximations presented by Alfonsi [5] and Mackevičius [7] for the CIR
equation and of our first-order approximations for the CKLS equations [8], after a number
of experiments, we arrived at the following conclusions:

• the values of the discretization scheme Ŝx
h may be chosen of the form

x1,3 = x + A1z∓
√
(Bx + Cz)z, x2 = x + A2z, (20)

with parameters A1, A2, B, C > 0;
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• Instead of the exact matching of moments E(Ŝx
h)

i = mi for i = 4, 5, 6, it is more
convenient to require E(Ŝx

h)
i = m̂i, i = 4, 5, 6.

Solving systems (17)–(19) with x1, x2, x3 of the form (20), together with ensuring the
nonnegativity of the solution {x1, x2, x3, p1, p2, p3}, still is a rather technical and long task,
even with the help of MAPLE. Note that the right-hand sides O(h3) in conditions (17) give
us certain flexibility in finding relatively simple expressions of solutions.

This way we get a family of second-order discretization schemes Ŝx
h depending on the

parameter A ∈ [3/4, 3/2]:

x1,3 = x + (A + 3
4 )z∓

√(
3x + (A + 3

4 )
2z
)
z, x2 = x + Az, (21)

with probabilities p1, p2, and p3 given by (19). The interval of possible values of the param-
eter A is conditioned by the necessary nonnegativity of the solution {x1, x2, x3, p1, p2, p3}.
In particular, the value A = (3 +

√
3)/4 ≈ 1.183 ensures the exact matching of the fourth

moment, E(Ŝx
h)

4 = m4, in addition to the exact matching of the first three moments.

Theorem 2. Let X̂x
t be the discretization scheme defined by composition (6), where Ŝx

h takes the
values x1, x2, and x3 defined in (21) with probabilities p1, p2, and p3 defined in (19) (Ŝ0

h = 0).
Then X̂x

t is a strongly potential second-order discretization scheme for the CIR equation.

Proof. Let us first check that

x1 = x + (A + 3
4 )z−

√
(3x + (A + 3

4 )
2z)z ≥ 0

for all x ≥ 0 and z > 0. This is equivalent to

(A + 3
4 )

2z2 + 2(A + 3
4 )xz + x2 ≥ (A + 3

4 )
2z2 + 3xz,

which in turn is equivalent to

(4A− 3)xz + 2x2 ≥ 0.

This implies that x1 ≥ 0 for all x, z ≥ 0, provided that A ≥ 3/4. Obviously, x2, x3 ≥
x1 ≥ 0.

Now let us check the nonnegativity of p1, p2, and p3. For p1, we have

p1 =
m1x2x3 −m2(x2 + x3) + m3

x1(x3 − x1)(x2 − x1)

=
8xz((4A2 − 5A + 3)z + 4x− (1− A)

√
((4A + 3)2z + 48x)z)

((4A + 3)z + 4x−
√
((4A + 3)2z + 48x)z)

√
((4A + 3)2z + 48x)z

× 1
(
√
((4A + 3)2z + 48x)z− 3z)

,

where x ≥ 0, z > 0. We have already checked the nonnegativity of

4x + (4A + 3)z−
√
(48x + (4A + 3)2z)z = 4x1.

The positivity of
√
(4A + 3)2z + 48x)z− 3z is obvious, and 4A2 − 5A + 3 > 0 for all

A ∈ R. Thus, clearly, p1 ≥ 0 if A ≥ 1. Now let A < 1. Then p1 ≥ 0 if and only if

((4A2 − 5A + 3)z + 4x)2 ≥ (1− A)2((4A + 3)2z + 48x)z

or, equivalently,

−A(4A− 3)(2A− 3)z2 − 2(2A− 1)(A− 3)xz + 4x2 ≥ 0,
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which clearly holds for all x ≥ 0 and z > 0 if A ∈ [3/4, 3/2]. Thus, p1 ≥ 0 for x ≥ 0 and
z > 0 if A ∈ [3/4, 3/2]. For p2, we obviously have

p2 =
m2(x1 + x3)−m1x1x3 −m3

x2(x2 − x1)(x3 − x2)

=
32xz(Az + x)

(−3z +
√
((4A + 3)2z + 48x)z)(Az + x)(3z +

√
((4A + 3)2z + 48x)z)

=
32xz

16A2z2 + 24Az2 + 48xz
=

4x
2A2z + 3Az + 6x

≥ 0

for x ≥ 0, z > 0. Finally, for p3, we have

p3 =
m1x1x2 −m2(x1 + x2) + m3

x3(x3 − x2)(x3 − x1)

=
8xz((4A2 − 5A + 3)z + 4x− (A− 1)

√
((4A + 3)2z + 48x)z)

((4A + 3)z + 4x +
√
((4A + 3)2z + 48x)z)

√
((4A + 3)2z + 48x)z

× 1
(
√
((4A + 3)2z + 48x)z + 3z)

for x ≥ 0 and z > 0. The numerator is obviously positive, and the nonnegativity of the
denominator follows similarly to that of p1.

Let us check that, indeed, the central moments of Ŝx
h satisfy conditions (7)–(12) (with

γ = 1/2). The first three are obvious, since the moments of the random variable Ŝx
h exactly

match the three first moments of Sx
h , so they also match the first three central moments:

E(Ŝx
h − x) = E(Sx

h − x) = 0, E(Ŝx
h − x)2 = E(Sx

h − x)2 = xz,

E(Ŝx
h − x)3 = E(Sx

h − x)3 = 3xz2/2.

Conditions (10), (11), and (13) are satisfied, since, respectively,

E(Ŝx
h − x)4 = (−2A2 + 3A + 9/4)xz3 + 3x2z2 = 3x2z2 + O(h3),

|E(Ŝx
h − x)5| = |(−6A3 + 3A2 + 9A + 27/8)xz4 + (6A + 9)x2z3| = O(h3),

E(Ŝx
h − x)6 = (−14A4 − 3A3 + (45/2)A2 + (81/4)A + 81/16)xz5

+ (6A2 + 36A + 81/4)x2z4 + 9x3z3 = O(h3)

for A ∈ [3/4, 3/2].
Finally, by the last relation and the expression of the maximal value x3 of Ŝx

h ,
condition (12) is satisfied for every f ∈ C∞

pol(D) (suppose | f (6)(x)| ≤ C6(1 + xk6)):

E
[

max
0≤s≤Ŝx

h

| f (6)(s)|(Ŝx
h − x)6

]
≤ max

0≤s≤x3
| f (6)(s)|E(Ŝx

h − x)6

≤ C6(1 + xk6
3 )E(Ŝx

h − x)6 ≤ C(1 + xk6+1)E(Ŝx
h − x)6 = O(h3).

It remains to check that the discretization scheme Ŝx
h has uniformly bounded moments,

that is, that there exists h0 > 0 such that

sup
0<h≤h0

sup
t∈∆h

E(|Ŝ(x, t)|p) < +∞, p ∈ N, x ≥ 0.
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By elementary but tedious calculations, we arrive at the following expression for the
moments:

E(Ŝx
h)

p = xp + p(p−1)
2 xp−1 z + p(p−1)2(p−2)

8 xp−2 z2 + · · ·
≤ xp + C(1 + xp)h = xp(1 + Ch) + Ch, x ≥ 0, h ≤ h0 = 1

σ2 ,

where the constant C > 0 depends on p and σ, from which the boundedness of the moments
of the approximation follows in a standard way (see [5] [Prop. 1.5]).

Remark 3. (Third-order approximation for the stochastic part of the CIR equation) By a similar
procedure, we can obtain a strongly potential third-order weak approximation of the stochastic part
(5) of the CIR Equation (1) (γ = 1/2). Although composition (6) then theoretically gives only
second-order approximation, numerical simulations show that, practically, it gives a slightly better
accuracy of approximation than with second-order approximation of the stochastic part.

Let mi = mi(x, h) = E(Sx
h)

p, i = 1, 2, 3, 4. We look at a discretization scheme Ŝx
h taking

four values x1, x2, x3, x4 with probabilities p1, p2, p3, p4 such that

xi
1 p1 + xi

2 p2 + xi
3 p3 + xi

4 p4 = mi, i = 1, 2, 3, 4, (22)

and

xi
1 p1 + xi

2 p2 + xi
3 p3 + xi

4 p4 = mi + O(h3), i = 5, 6, 7, 8. (23)

Its solution with respect to x1, x2, x3, and x4 is as follows:

p1 = −m1 x2 x3 x4−m2(x2 x3+x2 x4+x3 x4)+m3(x2+x3+x4)−m4
x1 (x1−x4)(x1−x3)(x1−x2)

,

p2 = m1 x1 x3 x4−m2(x1 x3+x1 x4+x3 x4)+m3(x1+x3+x4)−m4
(x1−x2)x2 (x2−x4)(x2−x3)

,

p3 = −m1 x1 x2 x4−m2(x1 x2+x1 x4+x2 x4)+m3(x1+x2+x4)−m4
(x2−x3)(x1−x3)x3 (x3−x4)

,

p4 = m1 x1 x2 x3−m2(x1 x2+x1 x3+x2 x3)+m3(x1+x2+x3)−m4
x4 (x3−x4)(x2−x4)(x1−x4)

.

(24)

Again, after a number of experiments, we chose to look for a solution of (22) and (23),
together with ∑i pi = 1 and pi ≥ 0, in the form

x1,3 = x+A1z∓
√
(B1x + C1z)z ≥ 0,

x2,4 = x+A2z∓
√
(B2x + C2z)z ≥ 0,

with parameters A1, A2, B1, B2, C1, C2 > 0 and probabilities p1, p2, p3, p4 defined in (24).
The main difficulty was obtaining a nonnegative solution {x1, x2, x3, x4, p1, p2, p3, p4}.

The final result is a strongly potential third-order weak approximation Ŝx
h of the

stochastic part (5) of the CIR equation taking the four values

x1,2 =x + 3
2 z∓

√(
(3−

√
6)x + 3

4 z
)
z,

x3,4 =x +
( 3

2 + 1
2

√
6
)
z∓

√(
(3 +

√
6)x +

( 15
4 + 3

2

√
6
)
z
)
z,

(25)

with the corresponding probabilities pi, i = 1, 2, 3, 4, given by (24).

5. A Strongly Potential Second-Order Approximation of the CKLS Equations

In this section, we apply to the CKLS equations the method of constructing second-
order approximations used in the previous section in the CIR case. As an example, we
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present strongly potential second-order approximations in the cases γ = 3/4 and γ = 5/6,
where the results look relatively simple.

Let γ = 3/4 in the CKLS Equation (1). Then for the stochastic part dSx
t = σ(Sx

t )
3/4 dBt,

Sx
0 = x ≥ 0, we have (see [8], Appendix)

m1 = x,

m2 = x2 + x3/2z + 3
16 xz2,

m3 = x3 + 3 x5/2z + 45
16 x2z2 + 15

16 x3/2z3 + 45
512 xz4.

In [8], we have constructed a strongly potential first-order two-valued approximation
of the stochastic part with

x1,2 =
m2

m1
∓

√
m2(m2 −m2

1)

m2
1

. (26)

In particular, for γ = 3/4,

x1,2 = x + x1/2z + 3
16 z2 ∓

√(
x3/2 + 19

16 xz + 3
8 x1/2z2 + 9

256 z3
)
z.

This motivated us to look for the second-order approximations with values of the
following form:

x1,3 = x + A1x1/2z+A2z2 ∓
√(

B1x3/2 + B2xz + B3x1/2z2 + B4z3
)
z,

x2 = x + C1x1/2z+C2z2, A1, A2, B1, B2, B3, B4, C1, C2 > 0,

with probabilities (19). Using the same method as in the CIR case, after tedious and rather
complex calculations, we arrived at the scheme with values

x1,3 = x + 5
2 x1/2z + 15

64 z2

∓
√(

3 x3/2 + 103
16 xz + 75

64 x1/2z2 + 225
4096 z3

)
z, (27)

x2 = x + 11
8 x1/2z + 15

64 z2,

and probabilities p1, p2, and p3 defined in (19). Similarly, in the case γ = 5/6, we have

m1 = x,

m2 = x2 + x5/3z + 5
18 x4/3z2 + 5

243 xz3,

m3 = x3 + 3 x8/3z + 10
3 x7/3z2 + 140

81 x2z3 + 35
81 x5/3z4 + 35

729 x4/3z5 + 35
19683 xz6.

The corresponding approximation takes the values

x1,3 = x + 3
2 x2/3z + 485

816 x1/3z2 + 1681
22032 z3

∓
(
(3 x5/3 + 2077

612 zx4/3 + 1162907
1997568 x2/3z3

+ 815285
8989056 x1/3z4 + 2825761

485409024 z5 + 125695
66096 z2x)z

)1/2, (28)

x2 = x + 1
4 x2/3z + 5

72 x1/3z2 + 1
72 z3,

with probabilities p1, p2, and p3 defined in (19).
In summary, we have the following:

Theorem 3. Let X̂x
t be the discretization scheme defined by composition (6), where Ŝx

h takes the
values x1, x2, and x3 defined in (27) in the case γ = 3/4 or in (28) in the case γ = 5/6 with
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probabilities p1, p2, and p3 defined in (19) (Ŝ0
h = 0). Then X̂x

t is a strongly potential second-order
discretization scheme for the CKLS equation with γ = 3/4 or γ = 5/6, respectively.

6. Simulation Examples

We indicate a particular γ of the stochastic part (5) by the left subscript γ as in γSx
t .

We first give a short algorithm for calculating X̂(i+1)h given X̂ih = x at each simulation
step i:

1. Substitute x := D(x, h/2).
2. Draw a uniform random number U in the interval [0, 1].
3. Generate a random variable Ŝ taking the values x1, x2, and x3 defined by (21), (27),

or (28) (for 1/2Ŝx
h , 3/4Ŝx

h , or 5/6Ŝx
h , respectively) with probabilities p1, p2 and p3 defined

in (19):
if U < p1, then Ŝ := x1; otherwise, if U < p1 + p2, then Ŝ := x2; otherwise, Ŝ := x3. If
x = 0, then Ŝ := 0.

4. Calculate (see (6))

X̂(i+1)h = D
(

Ŝ, h/2
)

.

In the case of a strongly potential third-order approximation of 1/2Ŝx
h , step (3) should

be replaced by

(3’) Generate a random variable Ŝ taking the values x1, x2, x3, and x4 defined by (25) with
probabilities p1, p2, p3, and p4 defined in (24):
if U < p1, then Ŝ := x1; otherwise, if U < p1 + p2, then Ŝ := x2; otherwise, if
U < p1 + p2 + p3, then Ŝ := x3; otherwise, Ŝ := x4. If x = 0, then Ŝ := 0.

Using our discretization schemes, we simulate the solutions of the CLKS Equation (1)
or its stochastic part (5) for γ = 1/2, 3/4, and 5/6 with test functions f (x) = x3, x4, x5,
and e−x. Such a choice of f is motivated by having explicit formulas for the expectations
E f (Sx

t ) (see Appendix A) and, in the case γ = 1/2,

Ee−Xx
t =

(
β

1/2 σ2
(
1− e−βt

)
+ β

)2 θ
σ2

e
− xβe−βt

1/2 σ2(1−e−βt)+β

(see, e.g., [11] [Prop. 6.2.4]). We also simulate the solution of the CLKS Equation (1) for
γ = 1/2 (i.e., the CIR equation) with discretization scheme defined in (24) and (25) and
test function f (x) = e−x.

Below, we present the results by a number of figures, where the exact and approximate
expectations are given as functions of the approximation step size h. For the reader’s
convenience, we give a list of graphs in the figures:

• Figures 1 and 2: Ee−(1/2Xx
1 ) and Ee−(1/2X̂x

1 ) with the same parameters as in Alfonsi [5];
• Figures 3 and 4: E(3/4Sx

1)
3 and E(3/4Ŝx

1)
3;

• Figures 5 and 6: E(3/4Sx
1)

4 and E(3/4Ŝx
1)

4;
• Figures 7 and 8: E(3/4Sx

1)
5 and E(3/4Ŝx

1)
5;

• Figures 9 and 10: E(5/6Sx
1)

3 and E(5/6Ŝx
1)

3;
• Figures 11 and 12: E(5/6Sx

1)
4 and E(5/6Ŝx

1)
4;

• Figures 13 and 14: E(5/6Sx
1)

5 and E(5/6Ŝx
1)

5;

• Figures 15 and 16: Ee−(3/4X̂x
1 );

• Figures 17 and 18: Ee−(5/6X̂x
1 ).

Figures 1, 15, and 17 represent the values of Ee−Xx
1 with “low” volatility (σ = 0.8,

θ = 0.5, β = 0.5, x0 = 1.5). Figures 2, and 16 and 18 represent the values of Ee−Xx
1 with

“high” volatility (σ = 2.0, θ = 0.04, β = 0.1, x0 = 0.3). Figures 3, 5, 7, 9, 11, and 13 represent
values of E f (Sx

1) with “low” volatility (σ = 0.8, x0 = 1.5). Figures 4, 6, 8, 10, 12, and 14
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represent the values of E f (Sx
1) with “high” volatility (σ = 1.5, x0 = 0.3). In all the graphs,

the error bars show 95% confidence intervals. To shorten the bars, for approximation
time-step sizes h = 1/2i, i = 0, 1, 2, 3, 4, 5, we have generated N = 90,000 · 4i samples of
approximations.

In the legends of figures, we use the following notation.

1. “First ord. GLVM”: the modified first-order scheme for CIR [8] [Rem. 4] (for compari-
son with higher-order schemes);

2. “Second ord. GLVM”: our second-order scheme for CIR (Thm. 2);
3. “Third ord. GLVM”: the second-order composition (6) with our third-order scheme

1/2Ŝx
h taking the values x1, x2, x3, and x4 defined in (25) with probabilities p1, p2, p3,

and p4 defined in (24)’
4. “First ord.”: our first-order scheme for CKLS [8] [Thm. 2];
5. “Second ord.”: our second-order schemes for CKLS (Thm. 3);
6. “Second ord. AA”: the second-order scheme of Alfonsi for CIR [5] [Thm. 2.8];
7. “Third ord. AA”: the third-order scheme of Alfonsi for CIR [5] [Thm. 3.7].

Figure 1. Ee−(1/2X̂x
1 ) as functions of h: σ = 0.8, θ = 0.5, β = 0.5, x0 = 1.5.

Figure 2. Ee−(1/2X̂x
1 ) as functions of h: σ = 2.0, θ = 0.04, β = 0.1, x0 = 0.3.
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Figure 3. E(3/4Ŝx
1)

3 as functions of h: σ = 0.8, x0 = 1.5.

Figure 4. E(3/4Ŝx
1)

3 as functions of h: σ = 1.5, x0 = 0.3.

Figure 5. E(3/4Ŝx
1)

4 as functions of h: σ = 0.8, x0 = 1.5.
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Figure 6. E(3/4Ŝx
1)

4 as functions of h: σ = 1.5, x0 = 0.3.

Figure 7. E(3/4Ŝx
1)

5 as functions of h: σ = 0.8, x0 = 1.5.

Figure 8. E(3/4Ŝx
1)

5 as functions of h: σ = 1.5, x0 = 0.3.
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Figure 9. E(5/6Ŝx
1)

3 as functions of h: σ = 0.8, x0 = 1.5.

Figure 10. E(5/6Ŝx
1)

3 as functions of h: σ = 1.5, x0 = 0.3.

Figure 11. E(5/6Ŝx
1)

4 as functions of h: σ = 0.8, x0 = 1.5.
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Figure 12. E(5/6Ŝx
1)

4 as functions of h: σ = 1.5, x0 = 0.3.

Figure 13. E(5/6Ŝx
1)

5 as functions of h: σ = 0.8, x0 = 1.5.

Figure 14. E(5/6Ŝx
1)

5 as functions of h: σ = 1.5, x0 = 0.3.
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Figure 15. Ee−(3/4X̂x
1 ) as functions of h: σ = 0.8, θ = 0.5, β = 0.5, x0 = 1.5.

Figure 16. Ee−(3/4X̂x
1 ) as functions of h: σ = 2.0, θ = 0.04, β = 0.1, x0 = 0.3.

Figure 17. Ee−(5/6X̂x
1 ) as functions of h: σ = 0.8, θ = 0.5, β = 0.5, x0 = 1.5.
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Figure 18. Ee−(5/6X̂x
1 ) as functions of h: σ = 2.0, θ = 0.04, β = 0.1, x0 = 0.3.

7. Conclusions

We have constructed second-order weak split-step approximations of the Chan–
Karolyi–Longstaff–Sanders (CKLS) and constant elasticity of variance (CEV) processes.
The approximations use generation of a three-valued random variable at each discretiza-
tion step. To illustrate the accuracy of constructed approximations, we performed several
simulations with different parameters and test functions. Our method can be applied
to constructing second-order weak approximations for other stochastic differential equa-
tions. It would be interesting to construct third-order weak approximations for the CKLS
equations, as we did for the CIR equation.
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Abbreviations
The following abbreviations are used in this manuscript:

CKLS Chan–Karolyi–Longstaff–Sanders model
CEV Constant elasticity of variance model
CIR Cox–Ingersoll–Ross model
R+ The set of positive real numbers (0, ∞)

R+ The set of nonnegative real numbers [0, ∞)

N The set of positive integers {1, 2, . . .}
N0 The set of nonnegative integers, N

⋃ {0}
D The domain of the solution of CKLS, D = R+

E(X) The mean of a random variable X
∆h Equidistant time interval discretization
C∞(D) The set of infinitely differentiable functions f : D→ R
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C∞
0 (D) The set of functions f : D→ R of class C∞ with compact

support
C∞

pol(D) The set of functions f : D→ R of class C∞ with all partial
derivatives of polynomial growth

O(hn) A function of polynomial growth with respect to hn, i.e.,
we write g(x, h) = O(hn) if for some C > 0, k ∈ N,
and h0 > 0, |g(x, h)| ≤ C(1 + |x|k)hn, x ≥ 0, 0 < h ≤ h0

O(hn) A function of polynomial growth with respect to hn

when the function g is expressed in terms of another
function f ∈ C∞

pol(D) and the constants C, h0, and k
depend on a good sequence for f only

Appendix A

We further indicate a particular power γ of the stochastic part (5) by the left subscript
γ as in γSx

t . It is known (see [8] [A.7]) that

E(γSx
t )

p = xp +
p(p− 1)σ2

2

∫ t

0
E(γSx

s )
2γ+p−2ds,

where p ∈ N0, γ ∈ [1/2, 1). Using this formula, we calculate (recall that z := ah = σ2h):

E(1/2Sx
t )

4 = x4 + 6 x3z + 9 x2z2 + 3 xz3,

E(1/2Sx
t )

5 = x5 + 10 x4z + 30 x3z2 + 30 x2z3 + 15
2 xz4,

E(1/2Sx
t )

6 = x6 + 15 x5z + 75 x4z2 + 150 x3z3 + 225
2 x2z4 + 45

2 xz5,

E(3/4Sx
t )

4 = x4 + 6 x7/2z + 105
8 x3z2 + 105

8 x5/2z3 + 1575
256 x2z4 + 315

256 x3/2z5

+ 315
4096 xz6,

E(3/4Sx
t )

5 = x5 + 10 x9/2z + 315
8 x4z2 + 315

4 x7/2z3 + 11025
128 x3z4 + 6615

128 x5/2z5

+ 33075
2048 x2z6 + 4725

2048 x3/2z7 + 14175
131072 xz8,

E(3/4Sx
t )

6 = x6 + 15 x11/2z + 1485
16 x5z2 + 2475

8 x9/2z3 + 155925
256 x4z4 + 93555

128 x7/2z5

+ 1091475
2048 x3z6 + 467775

2048 x5/2z7 + 7016625
131072 x2z8 + 779625

131072 x3/2z9 + 467775
2097152 xz10,

E(5/6Sx
t )

4 = x4 + 6 x11/3z + 44
3 x10/3z2 + 1540

81 x3z3 + 385
27 x8/3z4 + 1540

243 x7/3z5

+ 10780
6561 x2z6 + 1540

6561 x5/3z7 + 1925
118098 x4/3z8 + 1925

4782969 xz9,

E(5/6Sx
t )

5 = x5 + 10 x14/3z + 385
9 x13/3z2 + 25025

243 x4z3 + 25025
162 x11/3z4 + 110110

729 x10/3z5

+ 1926925
19683 x3z6 + 275275

6561 x8/3z7 + 1376375
118098 x7/3z8 + 9634625

4782969 x2z9

+ 1926925
9565938 x5/3z10 + 875875

86093442 x4/3z11 + 875875
4649045868 xz12,

E(5/6Sx
t )

6 = x6 + 15 x17/3z + 595
6 x16/3z2 + 30940

81 x5z3 + 77350
81 x14/3z4 + 1191190

729 x13/3z5

+ 38713675
19683 x4z6 + 11061050

6561 x11/3z7 + 60835775
59049 x10/3z8 + 2129252125

4782969 x3z9

+ 425850425
3188646 x8/3z10 + 387136750

14348907 x7/3z11 + 1354978625
387420489 x2z12 + 104229125

387420489 x5/3z13

+ 74449375
6973568802 x4/3z14 + 14889875

94143178827 xz15.
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10. Mackevičius, V.; Mongirdaitė, G. On backward Kolmogorov equation related to CIR process. Mod. Stochastics Theory Appl. 2018,

5, 113–127. [CrossRef]
11. Lamberton, D.; Lapeyre, B. Introduction to Stochastic Calculus Applied to Finance; Chapman & Hall: London, UK, 1996.

http://dx.doi.org/10.1090/S0025-5718-09-02252-2
http://dx.doi.org/10.1016/j.matcom.2009.11.001
http://dx.doi.org/10.1007/s10986-011-9134-4
http://dx.doi.org/10.1007/s10986-020-09474-w
http://dx.doi.org/10.1515/156939605777438569
http://dx.doi.org/10.15559/18-VMSTA98

	Introduction
	Preliminaries
	A Strongly Potential Second-Order Approximation of the Stochastic Part of the CKLS and CEV Equations
	A Strongly Potential Second-Order Approximation of the CIR Equation
	A Strongly Potential Second-Order Approximation of the CKLS Equations
	Simulation Examples
	Conclusions
	
	References

