
The American Journal of Pathology, Vol. -, No. -, - 2021
ajp.amjpathol.org
Artificial Intelligence and Deep Learning in Pathology Theme Issue
MINI-REVIEW

Machine-LearningeBased Evaluation of

Intratumoral Heterogeneity and Tumor-Stroma

Interface for Clinical Guidance
Arvydas Laurinavicius,*y Allan Rasmusson,*y Benoit Plancoulaine,*z Michael Shribak,*x and Richard Levenson*{
From the Department of Pathology, Forensic Medicine and Pharmacology,* Institute of Biomedical Sciences of the Faculty of Medicine of Vilnius University,
Vilnius, Lithuania; the National Center of Pathology,y Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania; the ANTICIPE,z Inserm
(UMR 1086), Cancer Center F. Baclesse, Normandy University, Caen, France; the Marine Biological Laboratory of University of Chicago,x Woods Hole,
Massachusetts; and the Department of Pathology and Laboratory Medicine,{ University of California Davis Health, Sacramento, California
Accepted for publication
C

T

h

April 15, 2021.

Address correspondence to
Arvydas Laurinavicius, M.D.,
Ph.D., National Center of Pa-
thology, Affiliate of Vilnius
University Hospital Santaros
Klinikos, P. Baublio Str. 5,
LT-08406 Vilnius, Lith-
uania. E-mail: arvydas.
laurinavicius@vpc.lt.
opyright ª 2021 American Society for Inve

his is an open access article under the CC B

ttps://doi.org/10.1016/j.ajpath.2021.04.008
Downloaded for 

For personal
Assessment of intratumoral heterogeneity and tumor-host interaction within the tumor microenvi-
ronment is becoming increasingly important for innovative cancer therapy decisions because of the
unique information it can generate about the state of the disease. However, its assessment and
quantification are limited by ambiguous definitions of the tumor-host interface and by human cognitive
capacity in current pathology practice. Advances in machine learning and artificial intelligence have
opened the field of digital pathology to novel tissue image analytics and feature extraction for gen-
eration of high-capacity computational disease management models. A particular benefit is expected
from machine-learning applications that can perform extraction and quantification of subvisual features
of both intratumoral heterogeneity and tumor microenvironment aspects. These methods generate
information about cancer cell subpopulation heterogeneity, potential tumor-host interactions, and
tissue microarchitecture, derived from morphologically resolved content using both explicit and implicit
features. Several studies have achieved promising diagnostic, prognostic, and predictive artificial in-
telligence models that often outperform current clinical and pathology criteria. However, further effort
is needed for clinical adoption of such methods through development of standardizable high-capacity
workflows and proper validation studies. (Am J Pathol 2021, -: 1e8; https://doi.org/10.1016/
j.ajpath.2021.04.008)
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This article is part of a mini-review series on the applications of artificial

intelligence and deep learning in advancing research and diagnosis in
pathology.
The concepts of intratumoral heterogeneity (ITH) and
tumor-host interaction within the tumor microenvironment
(TME) have been used in oncology and pathology to
designate essential aspects of tumor biology that are
becoming increasingly important for selecting personalized
cancer therapies. The evaluation of ITH aims to reflect the
variability and evolutionary advantage of cancer cell sub-
populations in the tumor tissue ecosystem that lead to se-
lection of the most aggressive and adaptive cell clones
driving the progression of the disease. Stanta and Bonin1

outlined several ITH aspects from morphologic [histologic
patterns, tissue response, and tumor topography (center
versus borders)] to molecular clonal (genetic and epigenetic)
stigative Pathology. Published by Elsevier Inc
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and nonclonal (phenotype and functional). Although ITH of
tumor cell subpopulations has been demonstrated in various
molecular studies, including multiple sampling from various
tumor sites,2 in situ testing techniques are still needed to
assess the ITH properties and variance within the spatial
context of the TME. The reason is that cell clones’ varying
sensitivities to different anticancer therapies (toxic agents or
.

/licenses/by-nc-nd/4.0).
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targeting molecular pathways) are major contributors to
variable therapy efficacy and pose challenges for many
targeted therapy modes.3

The concept of ITH is evolving from an initial focus on
tumor cell properties to considering a more complex situa-
tion reflecting tumor-host interactions and stroma physico-
chemical properties within the TME.4 In part, this is related
to an increasing appreciation of the centrality of the anti-
tumor response of the host and its relevance for novel
immunotherapy modes. For example, different populations
of tumor-infiltrating lymphocytes (TILs) and other inflam-
matory cells within the TME reflect differences in tumor
progression. This has led to the concept of immune
contexture.5 Furthermore, research attention is now directed
toward the extracellular matrix per se, including tumor-
associated collagen architecture,6 although this has not yet
been translated into clinical practice because of technical
and affordability challenges.

Recent progress in digital pathology, with its burst of
computational power for machine-learning methods, brings
opportunities to discover and quantify morphologically
resolved features that can be subvisual or even invisible by
routine microscopy assessment. A wide spectrum of
computer-aided methods, ranging from hand-crafted feature
engineering to deep-learning neural networks, have been
proposed for diverse tasks in tumor pathology.7 The field of
machine learning and artificial intelligence encompasses
complex and sometimes overlapping definitions that makes
it difficult to categorize the methods involved. Broadly
speaking, there are two general approaches: explicit
extraction and exploitation of hand-crafted morphology
features; and application of implicit computationally
extracted, often multiresolution image primitives. Both of
these generate input variables that can be further analyzed
by machine-learning tools or more classic statistical engines
to generate desired outputs. Common to all the methods is
that they extract some features from the image content, and
subsequently use these features to complete higher-level
tasks. With supervised methods, both the task and the
validation data originate from a humanly defined model,
whereas unsupervised methods aim to differentiate input
elements without linkage to a concrete hypothesis and do so
based on implicit features residing in some computer model
that is not instantly understood by humans.

The most promising benefits seem to come from artifi-
cial intelligence methods that enable quantification of
subvisual features of a tumor phenotype in the spatial
context of the tissue, which is an imperative task for both
ITH and tumor-host interaction studies. Often, there is a
considerable overlap between the methods and tasks in
these rapidly emerging applications, which, for this review
of the latest developments, have been categorized into the
following categories: cancer cell ITH; tumor-host inter-
action; tumor-stroma architecture; and data-driven deep-
learning models that can embrace multiple aspects of
tumor tissue pathology. Figure 1 illustrates main steps and
2
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concepts from formulation of hypothesis to final disease
model.
Cancer Cell Intratumoral Heterogeneity

ITH of cancer cell subpopulations became a critical issue for
tissue pathology with the introduction of target therapies,
first introduced for breast cancer patients. The intratumoral
distributions of hormone receptore, human epidermal
growth factor receptor 2 (HER2)-, and Ki-67epositive
cancer cells, assessed by immunohistochemistry (IHC),
have been characterized by many studies and visual scoring
schemes. An illustrative example is set by the efforts to
assess proliferative activity of breast cancer by taking the
ITH of Ki-67 IHC into account. This led to requirements for
pathologists to visually detect the most proliferative areas of
the tumor (hotspots) and to enumerate the proliferation rate
within the hotspots by counting at least 500 cells. However,
the lack of common definitions and objective criteria for a
hotspot (size by area or number of cells, density, and
contrast) made it difficult to agree on cutoffs for interna-
tional clinical guidelines; instead of a binary cutoff, the use
of continuous quantitative metrics of proliferation rates in
various tumors was suggested.8

Since the early days of digital pathology, digital image
analysis (DIA) studies have demonstrated benefits in terms
of capacity, precision, and accuracy for IHC and other tissue
biomarker assessment. More importantly, these studies also
addressed the issue with ITH because DIA-generated spatial
coordinates of biomarker expression within a tissue context
enabled application of spatial analytics for various ITH as-
pects, from automated cell-proximity and density-based
hotspot detection to more sophisticated spatial metrics of
the ITH.9 Also, heat maps of feature expressions within the
tissue provide augmented visualization for decision support
and quality assurance. However, the issue of agreed-on
hotspot definitions remains. For example, it has been
demonstrated that increasing the size of the evaluated hot-
spots decreased the resulting Ki-67 scores.10 An interna-
tional multicenter study on automated Ki-67 assessment in
breast cancer acknowledged that further studies are needed
to optimize hotspot sampling and measurements, potentially
including clinical outcome data to determine the most
predictive analytics.11

Grid-based approaches, based on square or hexagonal
tiling, are widely used for spatial analyses in geography,
ecology, and other areas and form the basis for stereological
analysis of biological specimens. Plancoulaine et al12 pro-
posed a comprehensive quantification of ITH based on
hexagonal grid analytics: cell coordinates from DIA of
breast cancer Ki-67 IHC whole slide images (WSIs) were
systematically subsampled into a grid. This allowed not
only computation of local proliferation rates, but also the
production of a co-occurrence matrix to generate Haralick
texture indicators, which enable quantification of
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Principle steps for machine-learning applications to extract tumor microenvironment features from digital pathology images. Multiple tissue
processing, imaging, and computational methods are to be combined into a standardized workflow that generates relevant disease models for specific clinical
tasks. An abstraction of the methods is presented in the steps. FFPE, formalin fixed, paraffin embedded; HR, hazard ratio; SGH, second harmonic generation.

Tumor Heterogeneity by Machine Learning
proliferation ITH in the form of spatial entropy and
uniformity measures. Furthermore, the grid data enable
assessment of intratumoral variance by SD, percentiles, and
bimodality indicators, which provide alternative metrics to
density-based hotspot sampling approaches. For example,
20% of the most proliferative tumor area (Pareto hotspot)
corresponding to the upper quintile of the local proliferation
rate distribution and represented by the 90th percentile (a
median for the upper quintile) is one approach that allows
for consistent representation of the hottest zone of a
biomarker expression.

A common issue for ITH assessment methods is the
availability of a ground truth (standard criterion). However,
most methods seeking to detect and quantify subvisual
features cannot rely on ground truth data obtained by visual
assessment. For example, three pathologists independently
annotating hotspots in 50 breast cancer surgical excision
images had only moderate agreement; on average, only 26%
of the hotspot areas coincided for all three observers
(ranging from 2% to 71%).12 The limitations in validation of
analytic methods using visually assessed ground truth
The American Journal of Pathology - ajp.amjpathol.org
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indicate the importance of including clinical (diagnostic,
prognostic, and predictive) end points to guide the devel-
opment and testing of applications. Surprisingly, subsequent
studies in two independent breast cancer patient cohorts
revealed that intratumoral Ki-67 bimodality (heterogeneity)
was an independent prognostic factor for overall patient
survival, outperforming other Ki-67 indicators (mean, me-
dian, or any percentile) of proliferation rate, including those
in the manually annotated hotspots.13,14
Tumor-Host Interaction in the Immune
Microenvironment

Tumor-host interactions, in particular, antitumor immune
responses represented by TIL and inflammatory cells, have
been investigated in many studies using both visual and
computational means.15,16 The phenomenon of TIL has been
shown to be a prognostic feature in various tumors and is
becoming of great clinical importance as a prognostic and,
potentially, predictive biomarker for novel immunotherapies.
3
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Computational assessment of TIL poses particular challenges,
from TIL staining and digital image segmentation to wide
spectrum of immune cell subtypes and TME compartment
definitions, as recently reviewed in detail.17,18

TIL distribution assessment in the context of the TME is a
common task for many of the methods proposed. Cell-to-
cell proximities within the compartments of the TME may
reflect the dynamics of the host responses and present a
unique contribution of tissue-based testing. In consequence,
the choice of the spatial analytics methods and data
sampling criteria will affect the nature and granularity of
information obtained. Also, as with hotspots, clear defini-
tions of the TME compartments are needed. Broadly, the
computational approaches can be categorized into those
based on cell densities in various TME compartments and
those measuring explicit spatial relationships between
individual cells and cell types.

DIA and machine-learning applications enable high-
capacity automated tools for assessing global as well as
intratumoral and stromal TIL densities, and can overcome
many of the limitations of visual assessment. DIA was19

applied to measure CD3þ and CD8þ cell densities in the
core tumor and at the invasive margin (IM), and combine
into the immunoscore for prognostic stratification of colo-
rectal cancer patients, outperforming the utility of con-
ventional clinical and pathologic criteria. Other studies
reported prognostic significance of high TIL density in the
IM using a variety of IM definitions and widths in different
tumors. For example, the IM was defined as 0.5 mm
extending into the tumor core and 1.0 mm beyond the tumor
for colorectal cancer20; 50 mm within the tumor to 300 mm
outside the tumor border for head and neck squamous cell
carcinoma21; a tumor region of about 400-mm width be-
tween the tumor and the reticular dermis in primary mela-
noma22; and within 0 to 10 mm of the tumor border in breast
cancer.23 Although it is not unreasonable to use a different
width of the IM in different tumors, another source of
variance between the methods is introduced by different
(manual and automated) approaches to detect the tumor
edge. Altogether, these studies reveal that even with vari-
able IM definitions, the TME compartment adjacent to the
tumor edge in two dimensions, subsampling the tumor-host
interface, does nevertheless represent the most informative
area to measure tissue antitumor response.

Recently, Rasmusson et al24 have proposed a concept of
interface zone with immunogradient indicators to represent
directional TIL density profile across the IM. Instead of
sampling the IM as a ribbon of fixed width, the tumor-
stroma interface is determined using hexagonal grid
processing of tumor location established by an artificial
intelligence tissue classifier. The computations are a set of
explicit rules to assess the probability of interfaces-ness for
each tissue region (hexagon). Each hexagon also maintains
its rank in the direction from stroma to tumor, which allows
quantification of center of mass, representing the directional
TIL density profile (immunogradient) across the interface
4
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zone. More importantly, these statistically defined indicators
add new dimensionality to the assessment of TIL densities
within the IM and other TME compartments and have
demonstrated strong independent prognostic value in breast
and colorectal cancer patients.13,24,25

A set of indicators were reported26 based on spatial dis-
tributions and proximities between lymphocytes and/or
cancer cells in breast cancer hematoxylin and eosin (H&E)
WSIs. The method allowed quantification of the immune
abundance (lymphocyte fractions to other cells) and immune
spatial scores (clusters/hotspots) formed by lymphocytes
and/or cancer cells within tumor regions. Remarkably, the
spatial scoresdnot the abundance scoresdserved as inde-
pendent prognostic factors. A method based on TIL27 was
identified by deep learning from H&E pathology images
from 13 cancer types. It connected regions (clusters) of TIL
image patches to explore spatial patterns of local TIL dis-
tributions and established their correlations with overall
survival. Interestingly, the various indexes were significant
across different tumor types. These global structural patterns
represent distinct immune responses that can be either
specific to cancer subtypes or shared across multiple tumor
types, and play a role in determining the nature of the im-
mune responses. Gong et al28 applied spatial point pattern
and morphometric analyses to quantify spatial heterogeneity
of CD8þ cell clusters in colorectal cancer excision samples
and found that the number of high-density T-cell clusters of
both circular and elongated shapes were higher in patients
who responded to programmed cell death protein 1 (PD-1)
blockade treatment. The number of clusters in the invasive
front was higher in the responders.
Multiple immunofluorescence and other multiplexed

imaging techniques combined with spatial analytics enable
discovery of complex interactions between immune and
other cell subtypes in the TME that are evidently predictive
of clinical outcomes. A Tissue Phenomics method29 based
on coregistration of immunofluorescence images of prostate
cancer was proposed to aggregate the data into a rich set of
multiplexed image-based biomarker candidates (phenes).
Disease recurrence prediction based on selected phenes
yielded accuracies clearly outperforming predictions based
on the Gleason score. For example, a high ratio of areas of
CD8þ cells and CD34þ microvessels in the tight tumor
border correlated with a good prognosis and long-term
disease-free survival. Nearchou et al30,31 proposed and
validated a prognostic signature integrating tumor budding
(see the next chapter below), lymphocytic infiltration in
proximity to the tumor buds, and CD68þ/CD163þ macro-
phage ratio. This computed score provided more clinically
significant cohort stratification for stage II colorectal cancer
than studies based on tumor budding, immunoscore, and pT
stage.
A recent study32 based on highly multiplexed tissue im-

aging using CODEX technology employed DNA-
conjugated antibodies and iterative polymerase extension
with fluorescent nucleotides. It explored 56 markers in
ajp.amjpathol.org - The American Journal of Pathology
 from ClinicalKey.com by Elsevier on August 10, 2021. 
 Copyright ©2021. Elsevier Inc. All rights reserved.

http://ajp.amjpathol.org


Tumor Heterogeneity by Machine Learning
tissue microarrays representing the IM of colorectal cancer
from 35 patients and established nine cellular neighbor-
hoods (regions of the tissue with a specific local density of
various cell types) that were conserved across patient groups
with different types of lymphoid infiltrates (Crohn-like re-
action versus diffuse inflammatory infiltration). In partic-
ular, it found that enrichment of PD-1þCD4þ cells only
within a granulocyte neighborhood positively correlated
with survival in a high-risk patient subset. Another study,33

using high-plex digital spatial profiling in tissue microarray
samples of nonesmall cell lung cancer from 67
immunotherapy-treated patients uncovered 12 spatially
resolved protein biomarkers independently associated with
benefit from single-agent PD-1 checkpoint blockade. High
expression of CD56 and CD4 in the CD45 compartment
was significantly associated with favorable outcomes,
whereas high levels of VISTA and CD127 in the tumor
compartment were markers of immunotherapy resistance.

In summary, immune-context TME can be interrogated
with an expanding spectrum of machine-learning tech-
niques. The discovery process can be aided using high-end
spatial multiplexing methods, but as these currently have
somewhat limited testing capacity and are susceptible to
tissue processing preanalytical variables, the knowledge
obtained will help inform more affordable and robust
multiple-analyte applications.
Tumor-Stroma Architecture

Tumor growth patterns form the basis for many histologic
classifications and grading systems used in pathology
because of their established associations with clinical out-
comes. A set of descriptive terms and definitions have been
developed; however, the features are based on visual pattern
recognition and are prone to interobserver variability and
further obscured by the spatial variance of tumor architec-
tures. Furthermore, pathologists have typically focused on
tumor cell features (foreground) while the accompanying
stroma is in most cases perceived as background (only
weakly stained by eosin) with lack of consistent evaluation
criteria. On the contrary, the concept of TME considers the
tumor and stroma as equal players, where the spatial
configuration of the interface as well as structural properties
of both components may influence the tumor-host
interaction.

The most broadly used concept of tumor-stroma interface
in pathology is exemplified by pushing and infiltrative
growth, descriptively defined by the irregularity of tumor
border. A more specific feature of invasive growth, tumor
budding, internationally defined in 2016 “as single
tumor cells or small clusters of 4 or fewer tumor cells,”34

has been carefully examined in many studies.35 Tumor
budding appears to signal occurrence of dissociated tumor
spread and is increasingly recognized as a feature of
aggressive behavior, providing independent prognostic
The American Journal of Pathology - ajp.amjpathol.org
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information for colorectal and other cancers. Regardless of
the agreed on definition and assessment guidelines,34

intraobserver and interobserver variability and quantifica-
tion of the features make budding studies subject to the
same challenges encountered by DIA and machine-learning
techniques in general.35 The applications were of different
levels of automation, mostly based on IHC or immunoflu-
orescence for cytokeratin (the guidelines require quantifi-
cation based on H&E) and require further standardization
for clinical adoption. Not surprisingly, computer-generated
data help define more specific morphology and spatial
characteristics of the budding, but raise new questions about
tumor cell properties, TME compartment sampling criteria,
and ITH of the budding. Remarkably, ITH of the tumor
budding could be more informative than simple quantifica-
tion of this feature, as demonstrated in a study36 showing
that only spatial clustering of the tumor buds in hotspots
(and especially the number of hotspots), but not the absolute
number of tumor buds, correlated with patient outcomes in
colorectal cancer.

Interestingly, several computational pathology studies
have presented combined predictive models based on both
tumor growth pattern and host response indicators, that
outperformed standard clinical and pathology parameters.
The Spatial Immuno-Oncology Index,30,31 which integrates
tumor budding and lymphocytic infiltration within 50 mm of
the tumor buds with the ratio of CD68þ/CD163þ macro-
phages, was able to stratify stage II colorectal cancer and
outperformed previous scores that incorporated tumor
budding, immunoscore, and pT stage metrics. Farchoukh
et al37 reported CD8þ T-cell density by DIA and intra-
tumoral budding by visual assessment in pretreatment bi-
opsies of rectal adenocarcinoma as independent predictive
biomarkers of response to neoadjuvant therapy. Nestar-
enkaite at al25 proposed a prognostic Immuno-Interface
Score for colorectal cancer survival probability based on
independent contributions of CD8 and CD20 immunogra-
dients along with the invasive growth pattern determined by
pathologists’ visual assessment; this approach outperformed
evaluation of tumor budding alone.

The extracellular matrix forms a major component of the
TME and represents a dynamic infrastructure mainly
supported by fibrillar collagen. The role of collagen fiber
organization for cancer progression and its potential for
clinical applications have been recently reviewed by Ouel-
lette et al.6 Studies in various tumor types have shown
correlation between fiber features with disease progression
and patient outcomes. Although some studies successfully
employed special stains, such as Masson trichrome or pic-
rosirius red, there is an ongoing search for label-free
collagen imaging methods. Second harmonic generation
(SHG) imaging of unstained tissue sections is frequently
deployed in these studies and is considered a gold standard
collagen imaging technique; however, it is costly, is
relatively slow, and requires specialized equipment. Polar-
ization microscopy,38 which can be enabled using liquid
5
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crystal-based optics, is another label-free imaging modality
for collagen. It is less expensive and more feasible for
clinical implementation; however, it requires acquisition of
five images to compute a birefringence map, which is not
suitable for WSIs. Also, this method is insensitive to non-
birefringent structures. Polychromatic polarization imaging
provides snap-shot orientation-independent birefringence
intensity and shows promise for further progress in label-
free-imaging.39

Apart from imaging techniques, computational assess-
ment of collagen distribution presents another challenge for
clinical adoption of image-based collagen fiber biomarkers.6

An abundance of explicit collagen fiber metrics (eg, density,
orientation, alignment, individual fiber properties, texture-
based fiber patterns, fiber network branching, and relation-
ships of the fibers and tumor cells) have been demonstrated
to provide diagnostic and prognostic value in various
tumors.40 However, despite the accumulated evidence of the
informative value of both explicit and implicit collagen
microarchitecture, clinical adoption of the models is delayed
by the lack of affordable high-capacity workflows of his-
tology processing, imaging, and computation. Recently,
computational methods for extracting collagen characteris-
tics from routine H&E sections were proposed by Kei-
khosravi et al,41 who trained a convolutional neural network
model on SHG data to synthesize SHG images from H&E
images. Results were consistent with the SHG ground truth,
and the signal generation method can potentially compen-
sate for some of the limitations (orientation dependence and
sensitivity) of SHG imaging itself. Fereidouni et al42 pro-
posed a combined bright-field and fluorescence microscopy
method (dual emission transmission, or DUET) to generate
trichrome-like images directly from H&E sections. These
have been validated against SHG and shown to provide
equivalent or superior data on spatially resolved and quan-
tifiable collagen signals. Although these approaches support
the potential to use standard histology techniques routinely,
their clinical value remains to be investigated.
Implicit Feature-Based Models

Deep-learning algorithms have been demonstrated as
powerful tools to extract novel tumor histology features that
can predict molecular biomarker expression in the TME and
clinical patient outcomes. Interpretability of these deep-lear-
ningebased features is limited in most cases. Although they
may take advantage of detailed tumor-cell morphology in-
formation, it is likely that they also reflect ITH of tumor cell
and/or stroma properties. Rawat et al43 proposed the concept
of tissue fingerprints, which are the features stored in an inner
layer of a deep-learning method trained to distinguish
different patients using unannotated breast cancer H&E im-
ages. Subsequently, a second biomarker neural network was
trained to predict estrogen receptor status based on these
fingerprints. ERBB2 amplificationeassociated morphology
6
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extracted from H&E images of breast cancer also correlated
with the efficacy of adjuvant trastuzumab therapy and had a
favorable effect on distant disease-free survival in CISH
ERBB2-positive patients.44 Another deep-learning model
exceeded the performance of experienced gastrointestinal
pathologists predicting microsatellite instability from H&E-
stained WSIs.45 More importantly, these methods also
allowed localization of the tumor areas responsible for this
classification, which help in highlighting biologically and
clinically relevant ITH aspects of the tumor morphology.
Another aspect emerging from deep-learning studies is the
discriminative power of tumor-associated stroma, previously
underestimated in diagnostic pathology,46 although identified
previously using conventionally calculated features.47

The informative potential of deep-learningebased
intratumoral phenotype heterogeneity data is further
emphasized by studies aimed at prognostic stratification of
patients. In particular, a machine-learningebased approach
outperformed a visual prognostic assessment in breast and
colorectal cancer tissue microarrays.48,49 A deep-learning
model for predicting postsurgical recurrence of hepatocel-
lular carcinoma from H&E-stained WSIs of liver resections
was recently developed and validated.50 The model
stratified patients into low- and high-risk subgroups and
exceeded the performance of the standard TNM classifica-
tion system.
Although these models, based on implicit features, are

powerful and can help answer complex questions, a major
drawback is their use of pure computerized models that do
not add to the knowledge in the human models. There is a
lack of understaing of why they work. Ongoing studies are
expected to help bridge the implicit computerized models
with human understanding of disease.7
Summary

The abundance of tissue processing, imaging, and compu-
tational processing methods, multiplied by the broad spec-
trum of tumor types and patient management tasks, presents
a vast field of opportunities and challenges for image- and
artificial intelligenceederived biomarker analysis. Many
studies have demonstrated strong informative value of
image-based methods, often outperforming current clinical
and histopathologic predictive systems. ITH and tumor-host
interaction aspects are of particular interest because they are
difficult to include in routine pathology assessment but
appear critical for refining and applying innovative cancer
therapies. For clinical adoption, standard workflows still
need to be established, along with proper analytic and
clinical validation steps. Because machine-learning appli-
cations, both explicit and implicit, extract quantifiable
features of the pathology, the subvisual nature of the fea-
tures makes analytic validation challenging because of
scarcity of robust direct reference values (ground truth).
Therefore, validation against clinical end points seems the
ajp.amjpathol.org - The American Journal of Pathology
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Tumor Heterogeneity by Machine Learning
main option for implementation decisions. It is likely that
the most powerful applications and computational models
will integrate quantification of specific molecular (predic-
tive) biomarkers within the rich spatial context of the tissue.
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