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Abstract. Electric and autonomous mobility will increasingly rely on
advanced route planning algorithms. Robust testing of these algorithms
is dependent on the availability of large realistic data sets. Such data sets
should capture realistic time-varying traffic patterns and corresponding
travel-time and energy-use predictions. Ideally, time-varying availabil-
ity of charging infrastructure and vehicle-specific charging-power curves
should be included in the data to support advanced planning.

We contribute with a modular testbed architecture including a semi-
synthetic data generator that uses a state-of-the-art traffic simulator,
real traffic distribution patterns, EV-specific data, and elevation data to
generate time-dependent travel-time and energy-use weights in a road-
network graph. The experimental study demonstrates that the testbed
can reproduce travel-time and energy-use patterns for long-distance trips
similar to commercially available services.

Keywords: Semi-synthetic data · Data generation · Testbed · Electric
vehicle · Long-distance EV routing · Time-dependent road network

1 Introduction

Transportation is currently undergoing a profound transformation. This is driven
by the emergence of new automotive technologies, such as electric (EV) and
autonomous vehicles, new business models such as ridesharing, and the contin-
ued digitalization of all aspects of transportation. For example, the efficiency of a
fleet of autonomous electric vehicles will be highly dependent on effective rout-
ing and scheduling algorithms and these will, in turn, depend on data-driven
predictions of travel time and energy use. Furthermore, as real-world routing
problems are often formulated as multi-objective optimization involving mul-
tiple constraints, the optimal algorithms are intractable; thus, only heuristic
algorithms are possible [2]. The efficiency and the efficacy of such algorithms
can only be tested through extensive experimental studies on large datasets and
workloads.
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To understand the complexity of the data required by real-world routing algo-
rithms, consider a long-distance EV routing query. It has to take into account
the predicted traffic to estimate both the expected travel time and the expected
energy use. To plan charging stops, this information is combined with the infor-
mation about the availability and the power of chargers. Both the traffic and
the availability of chargers are time-dependent (TD). Furthermore, we argue
that any realistic long-distance routing system has to work with the inherent
uncertainties of predictions. Thus, the travel time, the used energy, and the time
waiting for charging are all modeled as intervals of expected values.

Research studies that explore advanced routing problems expend much effort
to prepare their experiments. For example, to implement Eur-PTV and Ger-PTV
benchmarks [2], road network data, elevation information, energy consumption
data, traffic data, and charging station data are preprocessed and integrated.
Åkerblom et al. [1] extend the simulation framework of Russo et al. [15] tak-
ing the traffic patterns from the LuST Scenario data [5]. Several studies apply
statistical and machine learning methods to forecast travel time and future con-
gestion along the route using data collected from Google Maps Platform API.
Traffic conditions can be identified by capturing traffic layer image and identi-
fying color data on monitored road segments [14,18], or using Estimated Time
of Arrival [17]. Suggested methodologies are time consuming—to apply machine
learning algorithms, a substantial amount of data has to be collected during an
extended period of time. Brinkhoff [3] pioneered a framework to generate moving
objects on a road network. The framework did not consider traffic models and
resulting vehicle movements were not very realistic. In contrast, the open-source
microscopic traffic simulation tools, such as SUMO [12], used in this work, and
GeoSparkSim [16], were designed to handle realistic traffic simulation on large-
scale road networks.

This paper aims to do the necessary legwork for the road-network algorithms
community. While there are a few traffic simulators and general-purpose spatial
and graph data generators, we provide, to the best of our knowledge, the first
testbed for experimentation with advanced routing algorithms, in particular,
algorithms for EVs.

The paper contributes with a modular architecture and a data preparation
workflow to generate realistic semi-synthetic EV-specific TD traffic data that
captures uncertainty. We provide a layer of services on top of the generated data
to be used as building blocks of future advanced routing algorithms. The experi-
ments indicate that the proposed environment provides data patterns similar to
commercial ones, and it can be used to test the TD routing of EVs.

The work is structured as follows. Section 2 introduces the testbed archi-
tecture. Sections 3 and 4 present implementation details and the experimental
evaluation of the testbed, respectively. Section 5 concludes the paper.
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2 Semi-synthetic Data Generation and Testbed API

2.1 Testbed Architecture and Functionality

Generating and managing the test data introduced above calls for a multi-
component architecture (see Fig. 1). First, driving speed depends on the traffic
at a particular time. Therefore, the TD Traffic Information component requires
Traffic Simulation data and TD Traffic Statistics to define parameters of road
edges. Second, the Energy Consumption component is dependent on elevation
data and the consumption function that uses the EV properties as its parame-
ters. Finally, long-distance EV routing requires charging stops along the road.
Hence, the component of Charging Stations is supported by TD availability data
of charging stations and charging function that uses the parameters of EV type.
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TD Traffic
Information

Elevation Data
Consumption

Function

Charging Function

TD Availability
Statistical Data

EV types
Energy

Consumption
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Road network
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Fig. 1. Components of the testbed architecture
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calcWaitingTime(ch,EV , t) → Δt

calcChargingTime(ch,EV ,SoC ) → (Δt, c)

Fig. 2. Testbed API

While the main contribution and focus of this work is the generation of semi-
synthetic data, a thin layer of services is proposed as well. Such services query
and aggregate the data and can be used as the building elements of advanced
routing algorithms. Figure 2 presents five API functions with optional parameters
marked by �. Function findPath uses a TD router to construct a path P and
to estimate the expected trip duration interval Δt and the expected energy
consumption interval Δc when traveling from start s to destination d and starting
the trip some time during t time interval. The starting time is given as an interval,
which is useful if the function computes a leg of a longer route. If the initial state
of charge of the EV battery SoC is given, the returned Δc is the final expected
interval of the state of charge of the battery, rather than the consumed energy.
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Function calcPath is used to calculate the same travel estimates on an already
known path P . Function findClosestStations returns a set of charging stations
CH∗ containing the stations within a Euclidean buffer δ around path P and
reachable by EV when starting on the path with SoC . Finally, functions cal-
cWaitingTime and calcChargingTime return waiting-time and charging-time
intervals Δt at charging station ch for EV . A waiting time interval depends
on the daytime interval when the EV reaches ch. Also, a charging time interval
depends on the SoC before starting the charging process. The required SoC c
can be provided and the reached SoC c is returned.

2.2 Traffic Data Simulation and Calibration

Traffic data preparation process is shown in Fig. 3. To prepare the road network
(RN), first, map data is filtered leaving only car roads. Next, the road network
graph is made routable (a directed graph), and finally routable network segments
are augmented with length data and free-flow speed data (speed-limit data).

TD Traffic InformationMap Data

Car Roads
graph & weights
(road segment)

Routable Network
directed graph

RN segment
nodes[]
length
free-flow speed

Regular weight

TD segment
congestion speed

TD weight

Traffic profile
traffic distribution{}
type

Node
location

Traffic Simulator
number of trips, duration, etc.

Calibration
TD weights (reference data)

TD Traffic
Statistical Data
speed statistics,
time intervals, cost

Fig. 3. Traffic data preparation

Two main sources are used to generate the semi-synthetic TD weights of road-
network segments. TD traffic statistical data for a given region describes how
traffic at large changes relatively to the time of day. This is used to derive a traffic
profile. Then, network segments are augmented with congestion speed data—
either real statistical data, if available, or synthesized data generated by traffic
simulators. Finally, the results of simulations are calibrated using commercial
traffic data providers.

Semi-synthetic TD segment weights are composed of edge-specific minimum
traffic speed, edge-specific maximum traffic speed, and region-wide TD traffic
distribution. Given a time of day, they are used to calculate edge-specific traffic
speed as a weighted average of the minimum and the maximum traffic speeds of
a segment. We use maps from the OpenStreetMap project (OSM, [7]). Thus, the
maximum speed is the free-flow speed from OSM, the minimum speed is derived
from congestion modeling using open-source traffic simulator SUMO [8], and the
TD traffic distribution is sourced from TomTom’s (TT) Traffic Index.

SUMO takes a routable network as data input for traffic simulation and aug-
ments it with simulated traffic data. The testbed’s routable network is fed to



Semi-synthetic Data and Testbed for Long-Distance E-Vehicle Routing 65

SUMO using the netconvert tool. The output of the simulation is a congestion-
hour travel time for each segment on the routable network. To perform a sim-
ulation, the whole map is divided into regions and each region is simulated
separately. Random traffic generation method of the SUMO tool randomTrips
is used. This method allows choosing different weights affecting the probability
of selecting a segment for routing. Segment length is used as a weight; thus,
dense regions like city centers get more traffic. Finally, the number of trips is
calculated proportionally to the population size of the region and distributed
evenly in an interval from 0 to 3600 s.

Assuring realistic generated data requires calibration of both the free-flow
and congestion travel times. The calibration is implemented via two coefficients
for the congestion speed and the free-flow speed. The coefficients are calculated
by comparing simulated travel times with Google Maps travel times. First, two
sets of routes are generated—inside cities and out of cities—for congestion and
free-flow travel time calibration, respectively. Then, travel times are calculated
at peak hours for inside-cities set and off-peak hours for out-of-cities set.

2.3 Data for Energy Consumption Estimation

Energy consumption (EC) along a given route is estimated by adapting the
Vehicle Energy Model (VEM) as introduced in the SUMO simulator [11]. In
addition, the EC model considers traffic information to estimate TD energy use
along the route.

Energy consumption calculation uses two types of parameters—vehicle
specific and road-network dependent. The following EV characteristics are
employed: battery, vehicle mass, front surface area, air drag coefficient, inter-
nal moment of inertia, radial drag coefficient, roll drag coefficient, propulsion
efficiency, recuperation efficiency, and constant power intake. While we are cur-
rently using a predefined set of these values, the constant power intake param-
eter could be extended and vary based on weather conditions for more precise
modeling. Such EV data can be collected from various sources, including car
manufacturers and EV enthusiasts that try to measure various parameters of
their vehicles under specific conditions.

The core road-dependent parameters, the slope and the radius, are precom-
puted for each EC segment and stored in the database. In addition, a segment
inherits free-flow speed, length, congestion speed, and contains node coordinates,
as it extends the TD segment. Segment geometry is used to compute the length
and the radius of each segment. We deem the slope and the radius as the essential
terrain approximation parameters.

2.4 Charging and Waiting Times at Charging Stations

Each charging station contains a set of chargers (see Fig. 4), a TD availability
profile, and geographic location to be mapped to the road network. The model
could be extended with other features, e.g. connection fee or charging price. Each
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Fig. 4. Domain model of charging stations
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Fig. 5. Charging functions of two different 65 kWh batteries [4] and charging demands

charger of the station is described by a connector type, power, and its own avail-
ability profile. Figure 5a presents two charging functions for 65 kWh battery—the
default one and one measured by observation. The charging function depends
on EV features and charger properties. First, some EV types are limited by
their own maximum charging power. Second, charging process is slower when
the battery’s SoC is below 20% and above 80%, especially in the case of rapid
charging. Charging functions are retrieved from open data available on the inter-
net, e.g. [4], to get EV maximum power and power at different points of charging
(piece-wise linear function) for different chargers. Availability of a charging sta-
tion or an individual charger can be represented by a piece-wise linear function
of time. Features like type, e.g. rural areas, and weekdays, e.g. Sunday and
Saturday, define a particular availability profile. Figure 5b shows percentage of
charging cases throughout a 24-h period for private, public, and workplace charg-
ing points on work days [6]. For example, at 9:00 the need for power is very high
at workplaces. At night a number of charging cases is low in all cases. Therefore,
the availability profile can be constructed based on observation data with a high
probability of a waiting time that depends on the charger power.

3 Testbed Implementation

Figure 6 summarizes the process of semi-synthetic data preparation using open
tools and data sources. Germany map was retrieved from OSM and filtered for
vehicle roads using osmfilter. The osm2po tool generated a routable network
and it was stored in PostgreSQL with PostGIS extension. SUMO tool was used
to simulate traffic flow. Congestion index was obtained from TomTom. Network-
segment slopes were calculated based on CGIAR-CSI SRTM 90 m Digital Ele-
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Fig. 6. Data sources and processing

vation Data [10]. EV features and charging stations [13] with their availability
patterns were set up using publicly available data.

At the core of findPath and calcPath functions (see Fig. 2) is the computation
of the total energy and the total driving time on a route. For each segment, the
EC segment properties at a given time are used to calculate the travel time and
energy required to traverse the segment. For some segments, it might result in
a negative value e.g. going downhill. If so, the calculation has to make sure that
the battery is not charged more than its capacity. Finally, the estimations for
each route segment are added up to get the total energy and travel time.

Travel speed v(t, seg) along the segment seg is a time function as it varies
based on traffic conditions. Each TD segment has an estimated free-flow speed,
vfreeflow (seg), and congestion speed, vcongestion(seg). The speed along the seg-
ment varies between the two extremes. This is modeled via the cost(t) function
defined by the traffic profile:

v(seg, t) = vfreeflow (seg) − (vfreeflow (seg) − vcongestion(seg)) · cost(t).
The testbed simulates the uncertainty of prediction by assuming that the

timing of peaks in the traffic profile might slightly shift from day to day. The
testbed calculates the minimal cost value and the maximal cost value for each
segment using the time window defined by t and uncertainty ε:

mincost(t) = min(cost([t − ε, t + ε])), maxcost(t) = max(cost([t − ε, t + ε])).

The default ε value is set to 30 minutes, but can be adjusted. Note that t is a
time when an EV reaches a given segment seg i along the route. Thus, it depends
on the travel speed and departure time of previous i−1 segments. Let us assume
the trip start time is tstart and Δti is the time required to pass segment i, then
seg i entrance time ti is ti = tstart +

∑i−1
n=1 Δtn. For the whole route, the bounds

of the estimated energy and time intervals are calculated in two iterations. The
first iteration uses mincost(t) as the cost function for the lower bound and the
second iteration—maxcost(t) for the upper bound.

The testbed contains synthetic data to estimate waiting times at charging
stations at different times of the day. Various profiles, e.g. business premises,
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were integrated to follow statistical data on charging patterns [6]. Then, waiting
time intervals were constructed as wt = (wtmin, wtmax) = (0,Δch) where Δch
is the time needed to charge from 10% to 100% SoC and 80% at AC and DC
chargers, respectively. For example, Δch = 15min in the case of rapid charging.
Afterwards, the intervals were shifted based on the number of chargers of the
same type, location of the charging station in relation to the highway, and charg-
ing patterns (similar to TD travel speed). The calculation and tuning details are
left out of the scope of this paper.

4 Experiments and Results

KaTCH [9] implementation of time-dependent contraction hierarchies was inte-
grated into the testbed as a routing engine, and several tests were run to illustrate
realistic results and appropriate scalability within the testbed.

As a case study, sources and destinations were chosen for 8 representative
trips in Germany. Then, the travel-time and energy-consumption intervals were
calculated for all of them when traveling from a source to a destination and
back—16 individual trips in total. Also, the departure times were set to 00:00
and 16:00 as non-congestion and congestion-time representatives. To estimate
energy consumption in both testing environments, the energy use curve was con-
structed as a sequence of pairs (kWh per 100 km, km/h)—(24.94, 10), (15.91, 20),
(12.73, 30), (11.65, 40), (12.06, 60), (15.25, 80), (19.36, 100), (22.50, 120).
The prototype vehicle had the following characteristics: mass 1785 kg, battery
62 kWh, 1.5 kW constant power consumption, 0.28 air drag coefficient and 2.44
m2 front surface area, 0.8 propulsion efficiency and 0.8 recuperation efficiency.

Figure 7 plots estimated travel time and energy consumption for different
departure times on the testbed with the results from TomTom shown for ref-
erence. The results show that the testbed is more conservative regarding travel
time and energy consumption when leaving at non-congestion time. For the con-
gestion hour, the testbed is more optimistic regarding travel time and energy
consumption, and the generated uncertainty intervals are longer—for long trips
interval length is approximately half an hour. The testbed provides different
results for forward and backward trips as the model considers elevation details
and recuperation.

Figure 8 plots results of scalability tests, which were run on a Linux work-
station with Intel(R) 16 Core(TM), i9-9880H CPU @ 2.30 GHz, 32 GB RAM
with an equivalent remote database server. For each different trip length (air dis-
tance), 1000 source-destination pairs were generated, their routing was executed,
and routes were saved in the database. The region was loaded into the main-
memory KaTCH data structure, with approx. 21GB RAM used. The difference
in the air distance and route length is app. 30%. The results show that the query
cost without energy consumption calculation is almost constant, whereas energy
computation grows linearly to the length of the path.
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Fig. 7. Travel time and energy consumption for different departure times
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Fig. 8. Scalability tests

5 Conclusions and Future Work

Motivated by the inherent complexity of testing advanced routing algorithms,
the paper proposes a testbed that integrates state-of-the-art tools and provides
a systematic approach to available open-source data. We believe the provided
insights and the testbed itself will shorten the preparation phase of future exper-
imental studies. The scalability and reference-based tests demonstrate the merits
of the testbed. The work can be extended in several directions, e.g. to enable
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functions to switch among EV energy consumption and life-cycle profiles or to
enrich the environment with a flexible setup for experiments.
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