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1 Introduction

In this paper we focus on the Zbb̄ coupling

LZbb = g

cw
Zµ b̄γ

µ (gLPL + gRPR) b, (1.1)

where cw is the cosine of the weak mixing angle and PL and PR are the projection operators
of chirality. At tree level,

gtree
L = s2

w

3 −
1
2 , gtree

R = s2
w

3 , (1.2)

where sw is the sine of the weak mixing angle. With s2
w = 0.22337 [1], one obtains gtree

L =
−0.42554 and gtree

R = 0.07446. The Standard Model (SM) prediction is [2]

gSM
L = −0.420875, gSM

R = 0.077362. (1.3)

In the presence of New Physics, we write

gL = gSM
L + δgL, gR = gSM

R + δgR. (1.4)
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Experimentally, we get at gL and gR by measuring two quantities called Ab and Rb;
their precise experimental definitions may be found in refs. [2–4] and in appendix A. One has

Ab = 2rb
√

1− 4µb
1− 4µb + (1 + 2µb) r2

b

, (1.5)

where rb = (gL + gR)/(gL − gR) and µb =
[
mb

(
m2
Z

)]2/
m2
Z . We use the numerical values

mb

(
m2
Z

)
= 3GeV and mZ = 91.1876GeV [1]. Equation (1.5) may be inverted to yield

gL
gR

:= % =
√

1− 4µb
[
1±

√
1− (1 + 2µb)A2

b

]
+ (1 + 2µb)Ab

√
1− 4µb

[
1±

√
1− (1 + 2µb)A2

b

]
− (1 + 2µb)Ab

. (1.6)

Notice the existence of two solutions for %. The other measured quantity is

Rb = sb c
QCD cQED

sb cQCD cQED + sc + su + ss + sd
, (1.7)

where cQCD = 0.9953 and cQED = 0.99975 are QCD and QED corrections, respectively,

sb = (1− 6µb) (gL − gR)2 + (gL + gR)2 (1.8a)
= g2

R

[
(2− 6µb)

(
1 + %2

)
+ 12µb%

]
, (1.8b)

and sc + su + ss + sd = 1.3184. The solution to equations (1.7) and (1.8b) is

g2
R = sc + su + ss + sd

cQCDcQED [(2− 6µb) (1 + %2) + 12µb%]
Rb

1−Rb
. (1.9)

Notice the two possible signs of gR in equation (1.9).
An overall fit of many electroweak observables gives [4]

Rfit
b = 0.21629± 0.00066, (1.10a)

Afit
b = 0.923± 0.020. (1.10b)

On the other hand, Ab has been directly measured at LEP1 and at SLAC in two different
ways, see appendix A. The averaged result of those measurements is

Aaverage
b = 0.901± 0.013. (1.11)

While the Ab value of equation (1.10b) deviates from the Standard-Model Ab value 0.9347
by just 0.6σ, the Ab value of equation (1.11) displays a much larger disagreement of 2.6σ.

In this work we consider both the set of values (1.10), which we denote through the su-
perscript “fit,” and the set formed by the values (1.10a) and (1.11), which we denote through
the superscript “average.” Plugging the central values of those two sets into equations (1.6)
and (1.9), we obtain solutions 1, 2, 3, and 4 for gL and gR in table 1. We also display in
that table the corresponding values of δgL = gL + 0.420875 and δgR = gR − 0.077362. We
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solution gL gR δgL δgR

1fit −0.420206 0.084172 0.000669 0.006810
2fit −0.419934 −0.082806 0.000941 −0.160168
3fit 0.420206 −0.084172 0.841081 −0.161534
4fit 0.419934 0.082806 0.840809 0.005444

1average −0.417814 0.095496 0.003061 0.018134
2average −0.417504 −0.094139 0.003371 −0.171501
3average 0.417814 −0.095496 0.838688 −0.172858
4average 0.417504 0.094139 0.838379 0.016777

Table 1. The results of equations (1.6) and (1.9) for gL and gR and the corresponding values of δgL

and δgR extracted from equations (1.3) and (1.4). The superscript “fit” corresponds to the input
values (1.10), while the superscript “average” corresponds to the input values (1.10a) and (1.11).

see that solutions 3 and 4 have a much too large δgL; we outright discard those solutions.1
Solution 1 seems to be preferred over solution 2 because it has much smaller |δgR|.2 Still,
in this work we shall also consider solution 2.

In this paper we seek to reproduce solutions 1 and 2 by invoking New Physics,
specifically either the two-Higgs-doublet model (2HDM) or the three-Higgs-doublet model
(3HDM). The 2HDM is one of the simplest possible extensions of the SM. One of the
many motivations for the 2HDM is supersymmetry: the Minimal Supersymmetric Stan-
dard Model has two Higgs doublets. Also, the 2HDM may generate a Baryon Asymmetry
of the Universe sufficiently large, due to the flexibility of its scalar mass spectrum. We rec-
ommend the review [7] on the 2HDM in general, and refs. [8, 9] on the aligned 2HDM. In
recent years the 3HDM has received increased attention, see e.g. refs. [10–12]. The aligned
3HDM is discussed in refs. [9, 13].

The plan of this work is as follows. In section 2 we present the general formulas of
δgL and δgR in the n-Higgs-doublet model. In section 3 we consider the particular case of
an aligned 2HDM and we specify the constraints on the scalar masses that we have used
in that case. We do the same job for an aligned 3HDM in section 4. We then present
numerical results in section 5, followed by our conclusions in section 6. Appendix A deals
on the definition of Rb and Ab and on the experimental data for them. Appendix B works
out the derivation of the neutral-scalar contributions to δgL and δgR.

1Solutions 3 and 4 are good when one only measures Rb and Ab at the Z0 peak; when one gets away
from that peak, the diagram with an intermediate photon becomes significant and one easily finds that
solutions 3 and 4 are not really experimentally valid [5]. So, there are both theoretical and experimental
reasons for discarding them.

2A recent preprint [6] claims that there are already a couple LHC points that favour solution 1 over
solution 2 and that in the future the two solutions could be decisively discriminated through the high-
luminosity-LHC data. On the other hand, the older ref. [5] claims that the PETRA (35GeV) data actually
favour solution 2 over solution 1.

– 3 –
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2 The Zbb̄ vertex in the aligned nHDM

2.1 Mixing formalism

In a general n-Higgs-doublet model (nHDM) and utilizing, without loss of generality, the
‘charged Higgs basis’ [14], the scalar doublets Φ1, . . .Φn are written

Φ1 =
(

S+
1(

v +H + iS0
1
)/√

2

)
, Φk =

(
S+
k

(Rk + iIk)
/√

2

)
(k = 2, . . . , n), (2.1)

where S+
1 is a charged Goldstone boson, S0

1 is the neutral Goldstone boson, v ≈ 246GeV
is the (real and positive) vacuum expectation value (VEV), and S+

2 , . . . , S
+
n are physical

charged scalars with masses mC2, . . . ,mCn, respectively. Without loss of generality, we
order the doublets Φk through mC2 ≤ mC3 ≤ · · · ≤ mCn. We are free to rephase each of
the Φk, thereby mixing Rk and Ik through a 2× 2 orthogonal matrix.

The real fields H, Rk, and Ik (k = 2, . . . , n) are not eigenstates of mass, rather
H + iS0

1
R2 + iI2

...
Rn + iIn

 = V


S0

1
S0

2
...
S0

2n

 , (2.2)

where V is an n × 2n matrix with (1, 1) matrix element V11 = i. The physical neutral-
scalar fields S0

2 , . . . , S
0
2n are real and have masses m2, . . . ,m2n, respectively. An important

property of V is that(
R
I

)
:=
(

ReV
ImV

)
is a 2n× 2n real orthogonal matrix. (2.3)

For the sake of simplicity, we assume alignment. This means that H ≡ S0
2 is a physical

neutral scalar that does not mix with the Rk and Ik. Hence, V12 = 1 and V1j = 0, ∀j =
3, . . . , 2n; also, Vk1 = Vk2 = 0, ∀k = 2, . . . , n. The scalar H is assumed to be the particle
with mass m2 ≈ 125GeV that has been observed at the LHC. In this paper, alignment
is just a simplifying assumption that we do not pretend to justify through any symmetry
imposed on the nHDM. We order the S0

j through m3 ≤ m4 ≤ . . . ≤ m2n. Notice that, in
principle, one or more of these masses may be lower than m2.

We define the real antisymmetric matrix

A := Im
(
V†V

)
= RTI − ITR =



0 −1 0 0 0 . . . 0
1 0 0 0 0 . . . 0
0 0 0 A34 A35 . . . A3,2n
0 0 −A34 0 A45 . . . A4,2n
...

...
...

...
...

...
...


. (2.4)

To compute the one-loop corrections to the Zbb̄ vertex in the nHDM, we make the
simplifying assumption that only the top and bottom quarks exist and the (t, b) Cabibbo-
Kobayashi-Maskawa matrix element is 1. The relevant part of the Yukawa Lagrangian

– 4 –
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is [15]

LYukawa = −
(
tL bL

) n∑
k=2

 fk√
2

 √2S+
k

Rk + iIk

 bR + ek√
2

(
Rk − iIk
−
√

2S−k

)
tR

+ H.c., (2.5)

where the ek and fk are Yukawa coupling constants.

2.2 Passarino-Veltman functions

The Passarino-Veltman function B1
(
r2,m2

0,m
2
1
)
is defined through∫ d4k

(2π)4
1

k2 −m2
0

1
(k + r)2 −m2

1
kλ = i

16π2 rλB1
(
r2,m2

0,m
2
1

)
. (2.6)

The Passarino-Veltman function C0
[
r2

1, (r1 − r2)2 , r2
2,m

2
0,m

2
1,m

2
2

]
is defined through

∫ d4k

(2π)4
1

k2−m2
0

1
(k + r1)2−m2

1

1
(k + r2)2−m2

2
= i

16π2 C0
[
r2

1, (r1 − r2)2 , r2
2,m

2
0,m

2
1,m

2
2

]
.

(2.7)

The Passarino-Veltman functions C00, C11, C22, and C12, which depend on r2
1, (r1 − r2)2,

r2
2, m2

0, m2
1, and m2

2 are defined through∫ d4k

(2π)4
1

k2−m2
0

1
(k + r1)2−m2

1

1
(k + r2)2−m2

2
kλkν = i

16π2

[
gλνC00 + rλ1 r

ν
1C11 + rλ2 r

ν
2C22

+
(
rλ1 r

ν
2 + rλ2 r

ν
1

)
C12

]
×
[
r2

1, (r1 − r2)2 , r2
2,m

2
0,m

2
1,m

2
2

]
.

(2.8)

The functions B1
(
r2,m2

0,m
2
1
)
and C00

[
r2

1, (r1 − r2)2 , r2
2,m

2
0,m

2
1,m

2
2

]
are divergent, yet

the functions fL,R
(
m2) and hL,R

(
m2
j , m

2
j′

)
that are defined below in equations (2.11)

and (2.14), respectively, are finite.

2.3 The charged-scalar contribution

In the nHDM at the one-loop level, both δgL and δgR are the sum of a contribution, which
we denote through a superscript c, from diagrams having charged scalars and top quarks
in the internal lines of the loop, and another contribution, which we denote through a
superscript n, from diagrams with neutral scalars and bottom quarks in the internal lines:

δgL = δgcL + δgnL, δgR = δgcR + δgnR. (2.9)

The charged-scalar contribution has been computed long time ago [3]. It corresponds to
the computation of the diagrams in figure 1. It is

δgcL = 1
16π2

n∑
k=2
|ek|2 fL

(
m2
Ck

)
, δgcR = 1

16π2

n∑
k=2
|fk|2 fR

(
m2
Ck

)
, (2.10)

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
5

H+
a′

t

H+
a

Z

b

b

(a)

t

H+
a

t

Z

b

b

(b)

b

H+
a

t

Z

b

b

(c)

b
H+

a

t

Z

b

b

(d)

Figure 1

S0
l

b

S0
l′

Z

b

b

(a)

b

S0
l

b

Z

b

b

(b)

b

S0
l

b

Z

b

b

(c)

b
S0
l

b

Z

b

b

(d)

Figure 2

H+
a

t

W+

Z

b

b

(a)

W+

t

H+
a

Z

b

b

(b)

Z

b

S0
l

Z

b

b

(c)

S0
l

b

Z

Z

b

b

(d)

Figure 3

1

Figure 1. Feynman diagrams that produce equations (2.10) and (2.11).

where the functions fL and fR are defined through

fL
(
m2
)

=
(
2s2
w − 1

)
C00

(
0, m2

Z , 0, m2
t , m

2, m2
)

+
(

2s2
w

3 − 1
2

)
m2
t C0

(
0, m2

Z , 0, m2, m2
t , m

2
t

)
−2s2

w

3

[
2C00

(
0, m2

Z , 0, m2, m2
t , m

2
t

)
− 1

2

−m2
Z C12

(
0, m2

Z , 0, m2, m2
t , m

2
t

) ]
+
(
s2
w

3 −
1
2

)
B1
(
0, m2

t ,m
2
)
, (2.11a)

fR
(
m2
)

=
(
2s2
w − 1

)
C00

(
0, m2

Z , 0, m2
t , m

2, m2
)

+2s2
w

3 m2
t C0

(
0, m2

Z , 0, m2, m2
t , m

2
t

)
+
(

1
2 −

2s2
w

3

)[
2C00

(
0, m2

Z , 0, m2, m2
t , m

2
t

)
− 1

2

−m2
Z C12

(
0, m2

Z , 0, m2, m2
t , m

2
t

) ]
+s2

w

3 B1
(
0, m2

t ,m
2
)
. (2.11b)

In equations (2.11) mt is the top-quark mass and mZ is the mass of the gauge boson Z0.
In the approximation mZ = 0, the functions fL and fR do not depend of sw,3 and are
symmetric of each other:

fR
(
m2
)
≈ −fL

(
m2
)
≈ 1

2
x

1− x

(
1 + ln x

1− x

)
, (2.12)

where x = m2
t /m

2. Remarkably, the approximations (2.12) hold very well even when one
computes fL and fR with mZ = 91.1876GeV. The functions fL and fR are depicted in
figure 2.4 One sees that fL

(
m2) > 0, fR

(
m2) < 0, and fR

(
m2) ≈ −fL (m2) for all

3When mZ = 0 the Z0 is indistinguishable from the photon and therefore the weak mixing angle is
arbitrary and unphysical.

4We have performed the numerical computation of Passarino-Veltman functions by using the Fortran
library Collier [16] through interface CollierLink [17].
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Figure 3. Feynman diagrams that produce equations (2.13) and (2.14).

values of m2. Moreover, the absolute values of both functions decrease with increasing
m2. Therefore, δgcL > 0, δgcR < 0, and both δgcL and −δgcR are monotonically decreasing
functions of the charged-scalar masses.

2.4 The neutral-scalar contribution

The neutral-scalar contribution to δgL and δgR has been recently emphasized in ref. [15],
following the original computation in ref. [3]; it corresponds to the computation of the
diagrams in figure 3 and it is recapitulated in appendix B.5 Assuming alignment and
discarding the Standard-Model contributions that involve S0

1 and S0
2 , one has

δgnL = 1
16π2

2n−1∑
j=3

2n∑
j′=j+1

Ajj′ Im
[(
V†F∗

)
j

(
VTF

)
j′

]
hL
(
m2
j , m

2
j′

)
, (2.13a)

δgnR = 1
16π2

2n−1∑
j=3

2n∑
j′=j+1

Ajj′ Im
[(
V†F∗

)
j

(
VTF

)
j′

]
hR
(
m2
j , m

2
j′

)
, (2.13b)

5The diagrams in figure 4 do not contribute to δgL and δgR in our case. This is so because diagrams (a)
and (b) only exist, if there are only scalar doublets, when H+

a is the charged Goldstone boson, and because
diagrams (c) and (d) are proportional to the bottom-quark mass.

– 7 –
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Figure 4. Feynman diagrams that do not contribute to δgL and δgR in the specific case of this
paper.

where F is an n× 1 vector with kth component Fk = fk for k = 2, . . . , n, and

hL
(
m2
j , m

2
j′

)
= −C00

(
0, m2

Z , 0, 0, m2
j , m

2
j′

)
+s2

w

6
[
2C00

(
0, m2

Z , 0, m2
j , 0, 0

)
+ 2C00

(
0, m2

Z , 0, m2
j′ , 0, 0

)
−1−m2

Z C12
(
0, m2

Z , 0, m2
j , 0, 0

)
−m2

Z C12
(
0, m2

Z , 0, m2
j′ , 0, 0

)]
+
(
s2
w

6 −
1
4

)[
B1
(
0, 0, m2

j

)
+B1

(
0, 0, m2

j′

)]
, (2.14a)

hR
(
m2
j , m

2
j′

)
= C00

(
0, m2

Z , 0, 0, m2
j , m

2
j′

)
+
(
s2
w

6 −
1
4

)[
2C00

(
0, m2

Z , 0, m2
j , 0, 0

)
+ 2C00

(
0, m2

Z , 0, m2
j′ , 0, 0

)
−1−m2

Z C12
(
0, m2

Z , 0, m2
j , 0, 0

)
−m2

Z C12
(
0, m2

Z , 0, m2
j′ , 0, 0

)]
+s2

w

6
[
B1
(
0, 0, m2

j

)
+B1

(
0, 0, m2

j′

)]
. (2.14b)

The functions hL and hR are independent of sw when mZ = 0; however, that approx-
imation is not a good one for those functions. We depict their real parts in figure 5.6
One sees that, when both mj and mj′ are larger than the Fermi scale, hL

(
m2
j , m

2
j′

)
> 0

and hR
(
m2
j , m

2
j′

)
< 0. However, if both mj . 100GeV and mj′ . 100GeV, then both

hL
(
m2
j , m

2
j′

)
and hR

(
m2
j , m

2
j′

)
invert their usual signs. Moreover,

∣∣∣hL (m2
j , m

2
j′

)∣∣∣ and∣∣∣hR (m2
j , m

2
j′

)∣∣∣ become rather large either when
∣∣mj −mj′

∣∣ & 200GeV and one of the
masses . 50GeV, or when both mj and mj′ . 50GeV.

6The functions hL and hR are complex. However, their imaginary parts are irrelevant for the computation
of gL and gR, since they do not interfere with the tree-level contributions to those parameters [15], which
are real. Therefore, in this paper whenever we talk about hL and hR we really mean just the real parts of
those two functions.
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Figure 5. The functions hL

(
m2

j , m
2
j′

)
and hR

(
m2

j , m
2
j′

)
.

3 The aligned 2HDM

In a two-Higgs-doublet model with alignment [15], the doublet Φ2 may be rephased so that
R2 ≡ S0

3 and I2 ≡ S0
4 are the new physical neutral scalars. Then,

V =
(
i 1 0 0
0 0 1 i

)
, (3.1)

hence A34 = 1 and
(
V†F∗

)
3

(
VTF

)
4

= i |f2|2. There are five New-Physics parameters on
which δgL and δgR depend: the neutral-scalar masses m3 and m4, the charged-scalar mass
mC2, and the Yukawa couplings e2 and f2. One has [15]

δgL = |e2|2 fL
(
m2
C2
)

+ |f2|2 hL
(
m2

3, m
2
4
)

16π2 , (3.2a)

δgR = |f2|2
[
fR
(
m2
C2
)

+ hR
(
m2

3, m
2
4
)]

16π2 . (3.2b)

We now consider the scalar potential of the 2HDM [18],

V = µ1 Φ†1Φ1 + µ2 Φ†2Φ2 +
(
µ3 Φ†1Φ2 + H.c.

)
+λ1

2
(
Φ†1Φ1

)2
+ λ2

2
(
Φ†2Φ2

)2
+ λ3 Φ†1Φ1 Φ†2Φ2 + λ4 Φ†1Φ2 Φ†2Φ1

+
[
λ5
2
(
Φ†1Φ2

)2
+ λ6 Φ†1Φ1 Φ†1Φ2 + λ7 Φ†2Φ2 Φ†1Φ2 + H.c.

]
. (3.3)

In the Higgs basis, µ1 = − λ1v
2/ 2 and µ3 = − λ6v

2/ 2. Because of alignment, λ6 (and µ3)
are zero and

λ1 = m2
2

v2 =
(125 GeV

246 GeV

)2
≈ 0.258. (3.4)

From the masses of the scalars we compute

λ4 = m2
3 +m2

4 − 2m2
C2

v2 , Λ5 = m2
4 −m2

3
v2 , (3.5)

where Λ5 := |λ5|.
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The masses mC2, m3, and m4 are not completely free, because they must comply
with unitarity (UNI) and bounded-from-below (BFB) requirements [18]. For the sake of
simplicity, in our analysis we assume λ2 = λ7 = 0. We enforce the UNI conditions

λ2
4 < 64π2 − 8πλ1, Λ2

5 < 64π2 − 8πλ1 (3.6)

on the quantities (3.5). Additionally, there are

• BFB conditions [18]
λ3 > 0, λ3 + λ4 − Λ5 > 0; (3.7)

• UNI conditions [18]

|λ3|+ |λ4| < 8π, |λ3|+ Λ5 < 8π,
|λ3 + 2λ4|+ 3Λ5 < 8π, (2λ3 + λ4)2 < 64π2 − 24πλ1;

(3.8)

• the condition to avoid the situation of ‘panic vacuum’, namely [19–22](m2
C2
v2 + λ4

2

)2

− Λ2
5

4

(m2
C2
v2 −

λ3
2

)
> 0. (3.9)

After computing λ4 and Λ5 through equations (3.5) and after checking inequalities (3.6),
we verify whether there is any value of λ3 that satisfies the inequalities (3.7)–(3.9); if there
is, then the inputed masses mC2, m3, and m4 are valid; else, they are not.

We also compute the contribution of the new scalars to the oblique parameter

T = 1
16πs2

wm
2
W

[
F
(
m2
C2, m

2
3

)
+ F

(
m2
C2, m

2
4

)
− F

(
m2

3, m
2
4

)]
, (3.10)

where mW = 80.4GeV is the mass of the gauge bosons W± and

F (A, B) =


A+B

2 − AB

A−B
ln A
B
⇐ A 6= B,

0 ⇐ A = B.

(3.11)

Additionally, we apply constraints on the oblique parameter [23–26]

S = 4s2
wc

2
w

α

 ∂AZZ (q2)
∂q2

∣∣∣∣∣
q2=m2

Z

− ∂Aγγ
(
q2)

∂q2

∣∣∣∣∣
q2=0

+ c2
w − s2

w

cwsw

∂AγZ
(
q2)

∂q2

∣∣∣∣∣
q2=0

 . (3.12)

This parameter has been computed in ref. [27] to be

S = 1
24π

[
ln m

2
3m

2
4

m4
C2

+
(
s2
w − c2

w

)2
f
(
m2
C2, m

2
C2, m

2
Z

)
+ f

(
m2

3, m
2
4, m

2
Z

)]
. (3.13)

Here,

f (A, B, C) = −10
3 − 4 A+B

C
+ 4 (A−B)2

C2 +
[
3 A

2 −B2

C2 − 2 (A−B)3

C3

]
ln A
B

(3.14a)

+
[

1
C

+ A+B

C2 − 2 (A−B)2

C3

]
h (t, r) , (3.14b)
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where t ≡ A+B − C, r ≡ A2 +B2 + C2 − 2 (AB +AC +BC), and

h (t, r) =



√
r ln

∣∣∣∣∣ t−
√
r

t+
√
r

∣∣∣∣∣ ⇐ r > 0,

0 ⇐ r = 0,

2
√
−r arctan

√
−r
t
⇐ r < 0.

(3.15)

We either enforce the phenomenological constraint [1]

T = 0.03± 0.12, (3.16a)
S = −0.01± 0.10 (3.16b)

or we allow for other New Physics beyond the 2HDM and apply milder requirements by
allowing values of T and S within its 3σ and 2σ bounds, respectively.

4 The aligned 3HDM

4.1 Parameterization of the neutral-scalar mixing

In the three-Higgs-doublet model with alignment,


R2
R3
I2
I3

 = T


S0

3
S0

4
S0

5
S0

6

 , (4.1)

where T is a 4× 4 real orthogonal matrix. We parameterize

T = O13 (θ5)×O24 (θ6)×O12 (θ1)×O34 (θ2)×O14 (θ3)×O23 (θ4) , (4.2)

where Opq (θ) represents a rotation through an angle θ in the (p, q) plane. Now, O13 (θ5)
is a rotation that mixes R2 and I2, and O24 (θ6) is a rotation mixing R3 and I3, viz.
they represent rephasings of the doublets Φ2 and Φ3, respectively. Since such rephasings
are unphysical, one may without loss of generality drop those two rotations from the
parameterization (4.2), obtaining

T =


c1c3 −s1c4 s1s4 −c1s3
s1c3 c1c4 −c1s4 −s1s3
−s2s3 c2s4 c2c4 −s2c3
c2s3 s2s4 s2c4 c2c3

 , (4.3)
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where cp = cos θp and sp = sin θp for p = 1, 2, 3, 4. Then,

δgL = |e2|2 fL
(
m2
C2
)

+ |e3|2 fL
(
m2
C3
)

16π2

+ 1
16π2

5∑
j=3

6∑
j′=j+1

Ajj′ Im
[(
V†F∗

)
j

(
VTF

)
j′

]
hL
(
m2
j , m

2
j′

)
, (4.4a)

δgR = |f2|2 fR
(
m2
C2
)

+ |f3|2 fR
(
m2
C3
)

16π2

+ 1
16π2

5∑
j=3

6∑
j′=j+1

Ajj′ Im
[(
V†F∗

)
j

(
VTF

)
j′

]
hR
(
m2
j , m

2
j′

)
, (4.4b)

with

A34 = −A56 = (c1c2 + s1s2) (c3s4 − s3c4) , (4.5a)
A35 = A46 = (c1c2 + s1s2) (c3c4 + s3s4) , (4.5b)
A36 = −A45 = s1c2 − c1s2, (4.5c)

and

Im
[(
V†F∗

)
3

(
VTF

)
4

]
= |f2|2 (c1c2c3s4 − s1s2s3c4) + |f3|2 (s1s2c3s4 − c1c2s3c4)

+Re (f2f
∗
3 ) (c1s2 + s1c2) (c3s4 + s3c4)

+Im (f2f
∗
3 ) (s3s4 − c3c4) , (4.6a)

Im
[(
V†F∗

)
3

(
VTF

)
5

]
= |f2|2 (c1c2c3c4 + s1s2s3s4) + |f3|2 (s1s2c3c4 + c1c2s3s4)

+Re (f2f
∗
3 ) (c1s2 + s1c2) (c3c4 − s3s4)

+Im (f2f
∗
3 ) (c3s4 + s3c4) , (4.6b)

Im
[(
V†F∗

)
3

(
VTF

)
6

]
= −c1s2 |f2|2 + s1c2 |f3|2 + Re (f2f

∗
3 ) (c1c2 − s1s2) , (4.6c)

Im
[(
V†F∗

)
4

(
VTF

)
5

]
= −s1c2 |f2|2 + c1s2 |f3|2 + Re (f2f

∗
3 ) (c1c2 − s1s2) , (4.6d)

Im
[(
V†F∗

)
4

(
VTF

)
6

]
= |f2|2 (s1s2c3c4 + c1c2s3s4) + |f3|2 (c1c2c3c4 + s1s2s3s4)
−Re (f2f

∗
3 ) (c1s2 + s1c2) (c3c4 − s3s4) ,

−Im (f2f
∗
3 ) (c3s4 + s3c4) , (4.6e)

Im
[(
V†F∗

)
5

(
VTF

)
6

]
= |f2|2 (c1c2s3c4 − s1s2c3s4) + |f3|2 (s1s2s3c4 − c1c2c3s4)

+Re (f2f
∗
3 ) (c1s2 + s1c2) (c3s4 + s3c4) ,

+Im (f2f
∗
3 ) (s3s4 − c3c4) . (4.6f)

The contribution of the new scalars to the oblique parameter T , given in equation (23)
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of ref. [28], is

T = 1
16πs2

wm
2
W

{(
c2

1c
2
3 + s2

2s
2
3

)
F
(
m2
C2, m

2
3

)
+
(
s2

1c
2
4 + c2

2s
2
4

)
F
(
m2
C2, m

2
4

)
+
(
s2

1s
2
4 + c2

2c
2
4

)
F
(
m2
C2, m

2
5

)
+
(
c2

1s
2
3 + s2

2c
2
3

)
F
(
m2
C2, m

2
6

)
+
(
s2

1c
2
3 + c2

2s
2
3

)
F
(
m2
C3, m

2
3

)
+
(
c2

1c
2
4 + s2

2s
2
4

)
F
(
m2
C3, m

2
4

)
+
(
c2

1s
2
4 + s2

2c
2
4

)
F
(
m2
C3, m

2
5

)
+
(
s2

1s
2
3 + c2

2c
2
3

)
F
(
m2
C3, m

2
6

)
− (A34)2

[
F
(
m2

3, m
2
4

)
+ F

(
m2

5, m
2
6

)]
− (A35)2

[
F
(
m2

3, m
2
5

)
+ F

(
m2

4, m
2
6

)]
− (A36)2

[
F
(
m2

3, m
2
6

)
+ F

(
m2

4, m
2
5

)]}
. (4.7)

For the oblique parameter S one has

S = 1
24π

{(
s2
w − c2

w

)2 [
f
(
m2
C2, m

2
C2, m

2
Z

)
+ f

(
m2
C3, m

2
C3, m

2
Z

)]
(4.8a)

+ ln m
2
3m

2
4m

2
5m

2
6

m4
C2m

4
C3

+ (A34)2
[
f
(
m2

3, m
2
4, m

2
Z

)
+ f

(
m2

5, m
2
6, m

2
Z

)]
(4.8b)

+ (A35)2
[
f
(
m2

3, m
2
5, m

2
Z

)
+ f

(
m2

4, m
2
6, m

2
Z

)]
(4.8c)

+ (A45)2
[
f
(
m2

3, m
2
6, m

2
Z

)
+ f

(
m2

4, m
2
5, m

2
Z

)]}
. (4.8d)

4.2 The scalar potential

The parameters The scalar potential of the 3HDM has lots of couplings and it is im-
practical to work with it. So we concentrate on a truncated version of the potential, viz.
we discard from the quartic part of the potential all the terms that either do not contain
Φ1 or are linear in Φ1.7 The remaining potential is

V = µ1 Φ†1Φ1 + µ2 Φ†2Φ2 + µ3 Φ†3Φ3 +
(
µ4 Φ†1Φ2 + µ5 Φ†1Φ3 + µ6 Φ†2Φ3 + H.c.

)
+λ1

2
(
Φ†1Φ1

)2
+ λ4 Φ†1Φ1 Φ†2Φ2 + λ5 Φ†1Φ1 Φ†3Φ3 + λ7 Φ†1Φ2 Φ†2Φ1 + λ8 Φ†1Φ3 Φ†3Φ1

+
[
λ10
2
(
Φ†1Φ2

)2
+ λ11

2
(
Φ†1Φ3

)2
+ λ13 Φ†1Φ1 Φ†1Φ2 + λ14 Φ†1Φ1 Φ†1Φ3

+λ19 Φ†1Φ1 Φ†2Φ3 + λ22 Φ†1Φ3 Φ†2Φ1 + λ25 Φ†1Φ2 Φ†1Φ3 + H.c.
]
, (4.9)

where µ1,2,3 and λ1,4,5,7,8 are real and the remaining parameters are in general complex. In
order that the VEV of Φ1 is v

/√
2 and the VEVs of Φ2 and Φ3 are zero, one must have

µ1 = −λ1v
2

2 , µ4 = −λ13v
2

2 , µ5 = −λ14v
2

2 . (4.10)

7This is equivalent to discarding from the scalar potential of the 2HDM the terms with coefficients λ2

and λ7, like we did in the previous section.
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In order that the charged-scalar mass matrix is diag
(
m2
C2, m

2
C3
)
, one must have

µ2 = m2
C2 −

λ4v
2

2 , µ3 = m2
C3 −

λ5v
2

2 , µ6 = −λ19v
2

2 . (4.11)

Equations (4.10) and (4.11) are the conditions for the charged Higgs basis. Next we write
down the conditions for alignment, i.e. for H ≡ S0

2 to have mass m2 and not to have mass
terms together with either R2, R3, I2, or I3:

λ1 = m2
2

v2 ≈ 0.258, λ13 = λ14 = 0, (4.12)

hence µ4 and µ5 are zero too. The mass terms of R2, R3, I2, and I3 are given by

V = · · ·+ 1
2
(
R2, R3, I2, I3

)
N


R2
R3
I2
I3

 , (4.13)

where N is a 4× 4 real symmetric matrix. Using equations (4.1) and (4.3), one finds that

N11 −m2
C2 =

v2

2 (λ7 + Reλ10) = m2
3c

2
1c

2
3 +m4

4s
2
1c

2
3 +m2

5s
2
2s

2
3 +m2

6c
2
2s

2
3 −m2

C2, (4.14a)

N33 −m2
C2 =

v2

2 (λ7 − Reλ10) = m2
3s

2
1s

2
4 +m4

4c
2
1s

2
4 +m2

5c
2
2c

2
4 +m2

6s
2
2c

2
4 −m2

C2, (4.14b)

N13 = −v
2

2 Imλ10 =
(
m2

3 −m2
4

)
c1s1c3s4 +

(
m2

6 −m2
5

)
c2s2s3c4, (4.14c)

N22 −m2
C3 =

v2

2 (λ8 + Reλ11) = m2
3s

2
1c

2
4 +m4

4c
2
1c

2
4 +m2

5c
2
2s

2
4 +m2

6s
2
2s

2
4 −m2

C3, (4.14d)

N44 −m2
C3 =

v2

2 (λ8 − Reλ11) = m2
3c

2
1s

2
3 +m4

4s
2
1s

2
3 +m2

5s
2
2c

2
3 +m2

6c
2
2c

2
3 −m2

C3, (4.14e)

N24 = −v
2

2 Imλ11 =
(
m2

3 −m2
4

)
c1s1s3c4 +

(
m2

6 −m2
5

)
c2s2c3s4, (4.14f)

N12 = v2

2 Re (λ22 + λ25) =
(
m2

4 −m2
3

)
c1s1c3c4 +

(
m2

6 −m2
5

)
c2s2s3s4, (4.14g)

N34 = v2

2 Re (λ22 − λ25) =
(
m2

4 −m2
3

)
c1s1s3s4 +

(
m2

6 −m2
5

)
c2s2c3c4, (4.14h)

N14 = −v
2

2 Im (λ22 + λ25) = c3s3
(
−c2

1m
2
3 − s2

1m
2
4 + s2

2m
2
5 + c2

2m
2
6

)
, (4.14i)

N23 = v2

2 Im (λ22 − λ25) = c4s4
(
−s2

1m
2
3 − c2

1m
2
4 + c2

2m
2
5 + s2

2m
2
6

)
. (4.14j)

Equations (4.14) allow one to compute λ7, λ8, λ10, λ11, λ22, and λ25 by using as input the
masses of the charged scalars and the masses and mixings of the neutral scalars. On the
other hand, λ4, λ5, and λ19 constitute extra parameters that we input by hand — just as
we did with λ3 in section 3.
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UNI constraints. These constraints state that the moduli of the eigenvalues of some
matrices must be smaller than 8π. The method for the derivation of those matrices in
a general nHDM was explained in ref. [14]. In our specific case, the UNI constraints are
(using Λi ≡ |λi| for i = 10, 11, 19, 22, 25),

|λ4 + λ5 − λ7 − λ8|+
√

(λ4 − λ5 − λ7 + λ8)2 + 4 |λ19 − λ22|2 < 16π, (4.15a)

|λ4 + λ5 + λ7 + λ8|+
√

(λ4 − λ5 + λ7 − λ8)2 + 4 |λ19 + λ22|2 < 16π, (4.15b)

λ1 +
√
λ2

1 + 4
(
Λ2

10 + Λ2
11 + 2Λ2

25
)
< 16π, (4.15c)

λ1 +
√
λ2

1 + 4
(
λ2

7 + λ2
8 + 2Λ2

22
)
< 16π, (4.15d)

3λ1 +
√

9λ2
1 + 4

[
(2λ4 + λ7)2 + (2λ5 + λ8)2 + 2 |2λ19 + λ22|2

]
< 16π, (4.15e)

and the moduli of the eigenvalues of
λ4 λ10 λ

∗
19 λ25

λ∗10 λ4 λ∗25 λ19
λ19 λ25 λ5 λ11
λ∗25 λ

∗
19 λ

∗
11 λ5

 and


λ4 + 2λ7 3λ10 λ∗19 + 2λ∗22 3λ25

3λ∗10 λ4 + 2λ7 3λ∗25 λ19 + 2λ22
λ19 + 2λ22 3λ25 λ5 + 2λ8 3λ11

3λ∗25 λ∗19 + 2λ∗22 3λ∗11 λ5 + 2λ8

 (4.16)

must be smaller than 8π. In the inequalities (4.15), all the square roots are taken positive
and λ1 = m2

2/v
2 is positive too.

Necessary conditions for boundedness-from-below (BFB). The quartic part of the
potential, call it V4, must be positive for all possible configurations of the scalar doublets,
else the potential will be unbounded from below. In the configuration Φ3 = 0, the 3HDM
becomes a 2HDM and one may use the BFB conditions for the 2HDM [18]:

λ4 > 0, λ4 + λ7 − Λ10 > 0. (4.17)

Similarly, from the configuration Φ2 = 0,

λ5 > 0, λ5 + λ8 − Λ11 > 0. (4.18)

We also consider the configuration

Φ1 =
(
ϕ1
0

)
, Φ2 =

(
0
ϕ2

)
, Φ3 =

(
0
ϕ3

)
, (4.19)

wherein Φ†1Φ2 = Φ†1Φ3 = 0 but Φ†2Φ3 6= 0. Then,

V4 ≥
λ1
2 r2

1 + r1 (λ4r2 + λ5r3 − 2Λ19
√
r2r3) , (4.20)

where rq := Φ†qΦq for q = 1, 2, 3. By forcing λ4r2 + λ5r3 − 2Λ19
√
r2r3 to be positive for

every positive r2 and r3, one obtains the necessary BFB condition

λ4 + λ5 −
√

(λ4 − λ5)2 + 4 Λ2
19 > 0. (4.21)
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Sufficient BFB conditions. We know that Φ†qΦq Φ†q′Φq′−Φ†qΦq′ Φ†q′Φq ≥ 0 when q 6= q′.
Therefore, we may parameterize

Φ†1Φ2 = √r1r2 k12e
iφ12 , Φ†1Φ3 = √r1r3 k13e

iφ13 , Φ†2Φ3 = √r2r3 k23e
iφ23 , (4.22)

where k12, k13, and k23 are real numbers in the interval [0, 1]. Then,

V4 = λ1
2 r2

1 + λ4r1r2 + λ5r1r3 + λ7r1r2k
2
12 + λ8r1r3k

2
13 +

{
λ10
2 r1r2k

2
12e

2iφ12

+λ11
2 r1r3k

2
13e

2iφ13 + r1
√
r2r3

[
λ19k23e

iφ23 + λ22k12k13e
i(φ13−φ12)

+λ25k12k13e
i(φ13+φ12)

]
+ c.c.

}
(4.23a)

≥ λ1
2 r2

1 + λ4r1r2 + λ5r1r3 + (λ7 − Λ10) r1r2k
2
12 + (λ8 − Λ11) r1r3k

2
13 (4.23b)

−2r1
√
r2r3 (Λ19k23 + Λk12k13) (4.23c)

≥ λ1
2 r2

1 + λ4r1r2 + λ5r1r3 + (λ7 − Λ10) r1r2k
2
12 + (λ8 − Λ11) r1r3k

2
13 (4.23d)

−r1 (r2 + r3) (Λ19k23 + Λk12k13) (4.23e)

≥ λ1
2 r2

1 + r1r2
[
λ4 − Λ19 + (λ7 − Λ10) k2

12 − Λ k12k13
]

(4.23f)

+r1r3
[
λ5 − Λ19 + (λ8 − Λ11) k2

13 − Λ k12k13
]

(4.23g)

≥ λ1
2 r2

1 + r1r2
[
λ4 − Λ19 + (λ7 − Λ10) k2

12 − Λ k12
]

(4.23h)

+r1r3
[
λ5 − Λ19 + (λ8 − Λ11) k2

13 − Λ k13
]
. (4.23i)

where Λ := Λ22 + Λ25. Thus, denoting L7 and L8 the minimum values of (λ7 − Λ10) k2
12 −

Λ k12 and (λ8 − Λ11) k2
13 − Λ k13, respectively, one has the sufficient BFB conditions [29]

λ4 − Λ19 + L7 > 0 and λ5 − Λ19 + L8 > 0. (4.24)

It is easy to find that

L7 =


λ7 − Λ10 − Λ ⇐ λ7 − Λ10 <

Λ
2 ,

− Λ2

4 (λ7 − Λ10) ⇐ λ7 − Λ10 >
Λ
2 ;

(4.25a)

L8 =


λ8 − Λ11 − Λ ⇐ λ8 − Λ11 <

Λ
2 ,

− Λ2

4 (λ8 − Λ11) ⇐ λ8 − Λ11 >
Λ
2 .

(4.25b)

5 Numerical results

In this section we display various scatter plots obtained by using the formulas in sections 3
and 4. In all the plots, we have restricted the Yukawa couplings e2, e3, f2, and f3 to
have moduli smaller than 4π. The charged-scalar masses mC2 and mC3 were assumed to
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be between 150GeV and 2TeV. The neutral-scalar masses m3, . . . ,m6 were supposed to
be lower than 2TeV, but they have sometimes been allowed to be as low as 50GeV. In
practice, the upper bound on the scalar masses is mostly irrelevant, since the contributions
of the new scalars to δgL and δgR tend to zero when the scalars become very heavy.

Constraints on the masses of the new scalars of the 2HDM and 3HDM may be de-
rived from collider experiments on the production and subsequent decay of on-shell Higgs
bosons. The sensitivity is limited by the kinematic reach of the experiments; moreover,
the constraints usually depend on the assumed Yukawa couplings of the scalars and the
fermions, which we do not want to specify in our work.

Constraints from the process b → sγ are most stringent. For a 2HDM of type II, a
lower bound mC2 > 480GeV at 95% CL has been derived in ref. [32]. However, in the
case of the 3HDM, it has been shown in refs. [10, 33] that, due to the increased number
of parameters, mC2 and mC3 may actually be lighter than the mass of top quark while
complying with the constraints from b→ sγ.

In the 2HDM, a bound mC2 & 150GeV on the mass of the charged Higgs boson has
been derived from searches at the LHC [34, 35]. Recent global fits [36, 37] give bounds
on the scalar masses for various types of Yukawa couplings in the 2HDM. In ref. [36] it
is claimed that the mass of the heavy CP-even Higgs boson mH > {450, 700} GeV, the
mass of the CP-odd Higgs boson mA > {500, 750}GeV, and the mass of the charged Higgs
boson mC2 > {460, 740}GeV; the first values in the curled brackets correspond to the
“lepton specific” type of 2HDM while the second values correspond to the type II and
the “flipped” 2HDM. In the fit [37] of the aligned 2HDM one finds a lower bound of the
new-scalar masses mC2, m3, and m4 around 500GeV or around 750GeV, depending on the
fitted mass range.

We depict in figure 6 the confrontation between experiment and the values of δgL and
δgR attainable in the aligned 2HDM. One sees that, if one forces the 2HDM to comply
with the S and T -oblique parameter constraints (3.16), then the 2HDM cannot achieve a
better agreement with solution 1 for gL and gR than the SM; in particular, when one uses
the Ab value (1.11), the 2HDM cannot even reach the 2σ interval. Only when one allows
both for a laxer S- and T -oblique parameters constraints and for a very low neutral-scalar
mass m3 . 60GeV are the central values of both solutions 1fit and 1average attainable. In
the right panel of figure 6 one sees that, if both new neutral scalars of the 2HDM have
masses larger than 150GeV, then the fit to solution 1 is never better than in the SM case,
even if one does not take into account the S and T -parameter constraints.8

In figure 7 we display the same points as in figure 6, now distinguishing the neutral-
scalar contribution to δgL from the charged-scalar contribution to the same quantity. The
same exercise is performed in figure 8 for the contributions to δgR. In the left panels of
figures 7 and 8 one can see that the agreement of some blue points with solution 1fit is

8We want to emphasize that the constraint on the oblique parameter S does not modify most of our
figures much (notable exceptions are the blue areas in the left panels of figures 6–9); usually (but not
always!), the points that comply with all other constraints also comply with the S ones. The oblique
parameter S does not affect as much models with new scalars as models with new fermions, like for instance
the ones in ref. [30].
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Figure 6. Scatter plot of values of δgL and δgR in the aligned 2HDM. A crossed circle marks the
point δgL = δgR = 0. A star marks the best-fit point of solution 1fit, and a cross the best-fit point
of solution 1average. The orange lines mark the 1σ (full lines) and 2σ (dashed lines) boundaries
of the region determined by the experimental value (1.10a); similarly, the violet lines correspond
to the value (1.10b) and the light-blue lines to the value (1.11). Red points agree with the 1σ
intervals (1.10); green points agree with the 2σ, but not with the 1σ, intervals (1.10); and blue
points agree either with the 1σ or the 2σ intervals (1.10). Both the red and the green points satisfy
the 1σ limits in equation (3.16), while the blue points comply with laxer conditions where S can
reach 2σ bounds and T can reach 3σ bounds in equation (3.16). Note that some blue points are
underneath either red or green points. Left panel: both new neutral scalars have masses above
50GeV; middle panel: both new neutral scalars have masses above 75GeV; right panel: both new
neutral scalars have masses above 150GeV.

Figure 7. Scatter plot of δgn
L versus δgc

L in the aligned 2HDM. The displayed points and the colour
code employed are the same as in figure 6. The dashed straight lines mark the condition δgn

L = δgc
L

and the dashed-dotted lines correspond to δgn
L = −δgc

L. Notice the vastly different scales in the
three panels.

obtained not just by using very light neutral scalars and laxer oblique parameters S and T ,
but also through a fine-tuning where large neutral-scalar and charged-scalar contributions
almost cancel each other. In the right panels of those figures one sees that, when both
neutral scalars have masses above 150GeV, the signs of the neutral-scalar and charged-
scalar contributions are the same — this explains the agreement worse than in the SM
observed in figure 6.

One also sees in figures 7 and 8 that the neutral-scalar contributions δgnL and δgnR are
often comparable in size to, or even larger than, the charged-scalar contributions δgcL and
δgcR, respectively. Thus, the usual practice of taking into account just the charged-scalar
contribution may lead to erroneous results.
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Figure 8. Scatter plot of δgn
R versus δgc

R in the aligned 2HDM. The displayed points and the
colour code employed are the same as in figure 6. The dashed straight lines mark the condition
δgn

R = δgc
R and the dashed-dotted lines correspond to δgn

R = −δgc
R.

Figure 9. Scatter plot of values of δgL and δgR in the aligned 3HDM. All the conventions are the
same as in figure 6.

One might hope the situation of disagreement with experiment to be milder in the
3HDM relative to the 2HDM, but one sees in figure 9 that this hardly happens. The
agreement of the 3HDM with experiment may be better than the one of the 2HDM, but
only in the case where very light neutral scalars exist. We have checked that, just as in the
2HDM, the better agreement occurs through an extensive finetuning where δgnL ≈ −δgcL
and δgnR ≈ −δgcR.

In figures 6–9 we have tried, and failed, to make the fits of solution 1 in the 2HDM
and in the 3HDM better than in the SM. Things are different with solution 2, which the
nHDM models can easily reproduce — with some caveats. We remind the reader that in
solution 2 the parameter gL is about the same as predicted by the SM, but the parameter
gR has sign opposite to the one in the SM, viz. gR ≈ −0.08 in solution 2 while gR ≈ +0.08
in the SM. In the left panel of figure 10 and in figure 11 we see how the fit of solution 2
works out in the case of the 2HDM. One sees that one can attain the 1σ intervals and
the best-fit points both of solution 2fit and of solution 2average, but this requires (1) the
new scalars of the 2HDM to be lighter than 440GeV, (2) the Yukawa coupling f2 to be
quite large, and (3) the Yukawa coupling e2 to be relatively small, possibly even zero. In
practice, the upper bound on the masses of the scalars originates in the upper bound that
unitarity imposes on f2, as seen in the middle panel of figure 11; we have taken (rather
arbitrarily) that upper bound to be |f2| < 4π ≈ 12.5. In the left panel of figure 11 one sees
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Figure 10. Scatter plot of values of δgL and δgR in the aligned 2HDM (left panel) and in the
aligned 3HDM (right panel) that suit the solution 2 for Rb and Ab. All the points depicted comply
with the S and T -oblique parameters constraint of equation (3.16). A star marks the best-fit point
of solution 2fit, and a cross the best-fit point of solution 2average. The orange lines mark the 1σ (full
lines) and 2σ (dashed lines) boundaries of the region determined by the experimental value (1.10a);
similarly, the violet lines correspond to the value (1.10b) and the light-blue lines to the value (1.11).
Blue points have new neutral scalars heavier than 500GeV, pink points have them heavier than
300GeV, light blue points have the lightest new neutral scalar in between 175GeV and 300GeV,
green points have it in between 150GeV and 175GeV, and yellow points have it between 100GeV
and 150GeV.

Figure 11. Scatter plot of 2HDM points that obey the S- and T -oblique parameters constraints,
fit solution 2average at the 1σ level, and have m3 > 100GeV.

that |f2| must be larger than 9 anyway. It is also clear from figure 10 that, the lighter the
new scalars are allowed to be, the easier it is to reproduce solution 2; moreover, it is easier
to reproduce solution 2average, viz. with the value (1.11) for Ab, than solution 2fit, viz. with
the value (1.10b) for Ab, because solution 2average does not necessitate m3 to be as low as
solution 2fit.

In the right panel of figure 10 and in figures 12 and 13 we illustrate the fitting of
solution 2 in the 3HDM. Comparing the left and right panels of figure 10, we see that
the 2HDM and the 3HDM give similar results, but in the 3HDM it is possible to reach
solution 2average with larger masses of the new scalars. Indeed, in the 3HDM the lightest
neutral scalar m3 may be as heavy as 620GeV, while in the 2HDM m3 < 420GeV. Like in
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Figure 12. Scatter plot of 3HDM points that obey the S- and T -oblique parameters constraints, fit
solution 2average at the 1σ level, and have m3 > 100GeV. Left panel: the neutral-scalar contribution
to δgR versus the charged-scalar contribution to the same quantity. Right panel: the same for δgL

instead of δgR. In the right panel, the dashed line marks the condition δgn
L = δgc

L and the dashed-
dotted line corresponds to δgn

L = −δgc
L.

Figure 13. Scatter plot of 3HDM points that obey the S- and T -oblique parameters constraints,
fit solution 2average at the 1σ level, and have m3 > 100GeV. Left panel: the modulus of the Yukawa
coupling f3 versus the modulus of f2. Right panel: the largest of the two Yukawa couplings f2 and
f3 versus the mass of the lightest charged scalar.

figure 11, in figures 12 and 13 we have used points that satisfy the S- and T -parameters
1σ bounds (3.16), that fall into the 1σ intervals of δgL and δgR for solution 2average,9
and that have m3 > 100GeV. In figure 12 we display the charged- and neutral-scalar
contributions to δgL and δgR. One sees that solution 2 may be considered a finetuning,
with |δgcR| � |δgnR, δgcL, δgnL|. We stress once again that the neutral-scalar contributions
are as instrumental as the charged-scalar ones in obtaining decent fits. In figure 13 we
illustrate the moduli of the f Yukawa couplings and their relationship to the masses of the

9The fit of solution 2fit is not qualitatively different from the one of 2average; we concentrate on the latter
just for the sake of simplicity.
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scalars. One sees in the left panel that there is a bound
√
|f2|2 + |f3|2 & 9, but each one

of the Yukawa couplings f2 and f3 may separately vanish. In the right panel one observes
that there is a simple straight-line correlation between the maximum possible value for the
mass of the lightest charged scalar, mC2, and the minimum possible value for the largest of
the Yukawa couplings f2 and f3. It is worth pointing out that in the 3HDM, just as in the
2HDM, the masses m3, m4, and mC2 must be low (because of the unitarity upper bound
on the f Yukawa couplings), but in the 3HDM the masses m5, m6, and mC3 do not need
to be low — they may be of order TeV.

6 Conclusions

The Standard Model (SM) has a slight problem in fitting the Zbb̄ vertex, since it produces
a gR smaller than what is needed to reproduce the fit (1.10); this discrepancy becomes
larger when one uses for Ab the value (1.11). In this paper we have found that this small
problem can only worsen when one extends the SM through a nHDM. This is because the
contributions of the new scalars usually produce a negative δgR, i.e. they go in the wrong
direction to alleviate the problem, aggravating it instead.

There is one possible escape from this conclusion if the extra neutral scalars of the
nHDM are very light, i.e. lighter than the Fermi scale, because the contribution of the neu-
tral scalars to δgR may in that case be positive and partially compensate for the inevitably
negative contribution of the charged scalars. This is a contrived effort, though, both be-
cause it is experimentally difficult to accomodate very light neutral scalars and because,
from the theoretical side, light neutral scalars together with heavy charged scalars easily
lead to a much-too-large oblique parameter T .

In this paper we have considered the possibility that, in nHDM models, we might look
instead at an alternative fit of the Zbb̄ vertex, wherein gR has the opposite sign from the
one predicted by the SM. This is what we have called “solution 2” in table 1. That solution
necessitates a very large negative δgR (together with a small δgL), that may seem like a
finetuning, but is easy to obtain in a nHDM. This solution, though, also works only if the
new scalars are relatively light and if at least one of the Yukawa couplings denoted fk in
equation (2.5) is quite large, viz. larger than 9 or so.
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A Definition and measurements of Rb and Ab

The experimental quantities Rb and Ab are defined for e+e− collisions at the Z0 peak, i.e.
with

√
s ≈ mZ . Let the quark q (q = u, d, s, c, b) couple to the Z0 as

LZqq = g

cw
Zµ q̄γ

µ (gLqPL + gRqPR) q. (A.1)
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One has
gLq = 1

2 −
2s2
w

3 , gRq = −2s2
w

3 (A.2)

for q = c and q = u, and

gLq = s2
w

3 −
1
2 , gRq = s2

w

3 (A.3)

for q = b, q = s, and q = d. The probability that one produces a qq̄ pair in an e+e− collision
at the Z0 peak is, in the absence of QCD, QED, and mass corrections proportional to

sq = 2
(
g2
Lq + g2

Rq

)
. (A.4)

One finds from equations (A.2)–(A.4) that

sc + su + ss + sd = 2− 4s2
w + 40

9 s4
w ≈ 1.32827. (A.5)

The experimental definition of Rb is

Rb = Γbb̄
Γhadrons

(A.6)

in e+e− collisions at the Z0 peak; thus, Rb is the fraction of the produced hadrons that
contain a bb̄ pair. Clearly, in the absence of QCD, QED, and mass corrections,

Rb = sb
sb + sc + su + ss + sd

(A.7a)

= 9− 12s2
w + 8s4

w

45− 84s2
w + 88s4

w

≈ 0.21937. (A.7b)

When one includes QCD, QED, and mass corrections equation (A.7a) gets substituted by
equation (1.7) and Rb decreases from the value in equation (A.7b) to the SM prediction [4]
0.21581. Similarly, sc+su+ss+sd becomes 1.3184 instead of 1.32827 as in equation (A.5).

If the mass of the bottom quark was zero, equation (1.5) would read

Ab = g2
L − g2

R

g2
L + g2

R

= 9− 12s2
w

9− 12s2
w + 8s4

w

≈ 0.94059 (A.8)

at the tree level. The quantity Ab was accessed at LEP 1 through the forward-backward
asymmetry of the produced bb̄ quark pairs,

A0,b
FB = 3

4 AeAb, (A.9)

where Ae, that is

Ae = 1− 4s2
w

1− 4s2
w + 8s4

w

≈ 0.21065 (A.10)

at the tree level, can be extracted from other experiments. Equation (A.9) is the limit of

APe,b
FB = 3

4
Ae + Pe
1 +AePe

Ab (A.11)
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when the polarization Pe of the electron beam is zero. The SLD Collaboration has used
polarized beams (Pe = 1) and therefore it could directly access

3
4 Ab = σLF + σRB − σLB − σRF

σLF + σRB + σLB + σRF
, (A.12)

where the subscripts L and R refer to the electron’s polarization and the subscripts F and
B refer to the forward or backward direction of travel of the final-state bottom quarks.

The value of Ab obtained from the SLD measurement is Afit
b = 0.923 ± 0.020 and is

0.6σ below the SM value [1]. However, this good agreement only applies to the overall
fit of many observables. Extracting Ab from A0,b

FB when Ae = 0.1501 ± 0.0016 leads to
Ab = 0.885 ± 0.0017, which is 2.9σ below the SM prediction. The combined value Ab =
0.901± 0.013 deviates from the SM value by 2.6σ. These discrepancies in Ab could be an
evidence of New Physics, but they could also be due to a statistical fluctuation or another
experimental effect in one of asymmetries; more precise experiments are needed.

A direct measurement of the Zbb̄ couplings at the LHC is challenging because of the
large backgrounds in the detection of a Z0 decaying into a bottom quark-antiquark pair.
A recent study [6] has proposed a novel method to probe the anomalous Zbb̄ couplings
through the measurement of the cross section of the associated production gg → Zh at the
High Luminosity LHC.

Lepton colliders of the next generation, vg. the CEPC, ILC, or FCC-ee offer great
opportunities for further studies of the Zbb̄ vertex, because they could collect a large
amount of data around the Z0 pole. In the analysis [31] there is a list of the observables
that are most important for improving the constraints on the Zbb̄ coupling, and of the
expected precision reach of those three proposed future e+e− colliders. These estimates,
for the observables directly related to the Zbb̄ coupling, are summarized in table 2. We
see that, with an increase of precision of more than one order of magnitude, a future
collider has the potential to solve the A0,b

FB discrepancy found at LEP. If its results are
SM-like, a future lepton collider can provide strong constraints on models beyond the
SM; if the A0,b

FB discrepancy found at LEP does come from New Physics, then any of the
three next-generation e+e− colliders will be able to rule out the SM with more than 5σ
significance [31].

B General formula for the neutral-scalar contribution

According to ref. [15], the contributions to δgL and δgR of loops with internal lines of neutral
scalars and bottom quarks are the sums of three types of Feynman diagrams. Thus,

δgnL = δgnL(a) + δgnL(b) + δgnL(c), δgnR = δgnR(a) + δgnR(b) + δgnR(c). (B.1)

Equations (24), (42), and (46) of ref. [15] inform us that

δgnL(a) = −i
32π2

2n∑
l,l′=1

All′
(
VTF

)
l

(
V†F ∗

)
l′
C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
, (B.2a)

δgnR(a) = −i
32π2

2n∑
l,l′=1

All′
(
V†F ∗

)
l

(
VTF

)
l′
C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
, (B.2b)
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Observable
Current Precision

measurement Current CEPC ILC FCC-ee

Rb 0.21629
0.00066 0.00017 0.00014 0.00006
(0.00050) (0.00016) (0.00006)

A0,b
FB 0.0996

0.0016 0.00015
(0.0007) (0.00014)

Ab 0.923
0.020 0.001 0.00021

(0.00015)
# of Z0s ∼ 2× 107 ∼ 2× 109 ∼ 109 ∼ 1012

Table 2. The estimated precision reach for Zbb̄ observables at future e+e− colliders according to
ref. [31]. The present result for each observable is shown in the second column. The third column
shows the σ of the present measurements at LEP and SLC, respectively, while the other columns
show the estimates of the precision reach for the future colliders. In each entry, the number in the
top line shows the total uncertainty and the number (in parenthesis) in the bottom line shows the
systematic uncertainty. The last row shows the expected number of Z0 events that will be collected.

where A is the matrix defined in equation (2.4), and

F =


√

2mb

/
v

f2
...
fn

 (B.3)

is a vector formed by Yukawa coupling constants. Now,

C00
(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
= C00

(
0, m2

Z , 0, 0, m2
l , m

2
l′

)
, (B.4)

while All′ = −Al′l. Therefore, equations (B.2) may be rewritten

δgnL(a) = 1
16π2

2n−1∑
l=2

2n∑
l′=l+1

All′ Im
[(
VTF

)
l

(
V†F ∗

)
l′

]
C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
, (B.5a)

δgnR(a) = −δgnL(a), (B.5b)

where we have dropped from the sum over the scalars the Standard-Model contribution
proportional to A12.

According to equations (2), (25), and (26) of ref. [15],

δgnL(b) + δgnL(c) = 1
16π2

2n∑
l=2

∣∣∣(VTF)
l

∣∣∣2 θ (m2
l

)
, (B.6a)

δgnR(b) + δgnR(c) = 1
16π2

2n∑
l=2

∣∣∣(VTF)
l

∣∣∣2 λ (m2
l

)
, (B.6b)
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where

θ
(
m2
l

)
:= s2

w

6

[
2C00

(
0, m2

Z , 0, m2
l , 0, 0

)
− 1

2

−m2
Z C12

(
0, m2

Z , 0, m2
l , 0, 0

) ]
+
(
s2
w

6 −
1
4

)
B1
(
0, 0, m2

l

)
, (B.7a)

λ
(
m2
l

)
:=
(
s2
w

6 −
1
4

)[
2C00

(
0, m2

Z , 0, m2
l , 0, 0

)
− 1

2

−m2
Z C12

(
0, m2

Z , 0, m2
l , 0, 0

) ]
+ s2

w

6 B1
(
0, 0, m2

l

)
. (B.7b)

We now write
V = R+ iI, (B.8)

where the n× 2n matrices R and I are real and satisfy

RRT = IIT = 1nd×nd
, RIT = IRT = 0nd×nd

, (B.9)

cf. equation (2.3). From equation (B.8),

A := Im
(
V†V

)
= RTI − ITR. (B.10)

It follows that

2n∑
l′=1
All′

(
V†F ∗

)
l′

= −i
(
V†F ∗

)
l
,

2n∑
l=1

(
VTF

)
l
All′ = −i

(
VTF

)
l′
. (B.11)

Therefore, from equations (B.6),

δgnL(b) + δgnL(c) = 1
32π2

[ 2n∑
l=2

(
VTF

)
l

(
V†F ∗

)
l
θ
(
m2
l

)

+
2n∑
l′=2

(
VTF

)
l′

(
V†F ∗

)
l′
θ
(
m2
l′

)]
(B.12a)

= 1
32π2

{ 2n∑
l=2

(
VTF

)
l

[
i

2n∑
l′=1
All′

(
V†F ∗

)
l′

]
θ
(
m2
l

)

+
2n∑
l′=2

[
i

2n∑
l=1

(
VTF

)
l
All′

] (
V†F ∗

)
l′
θ
(
m2
l′

)}
(B.12b)

= i

32π2

2n∑
l,l′=1

(
VTF

)
l
All′

(
V†F ∗

)
l′

[
θ
(
m2
l

)
+ θ

(
m2
l′

)]
, (B.12c)

δgnR(b) + δgnR(c) = i

32π2

2n∑
l,l′=1

(
VTF

)
l
All′

(
V†F ∗

)
l′

[
λ
(
m2
l

)
+ λ

(
m2
l′

)]
. (B.12d)

– 26 –
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Thus, from equations (B.1) and (B.2),

δgnL = −i
32π2

2n∑
l,l′=1

All′
(
VTF

)
l

(
V†F ∗

)
l′

[
C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
−θ
(
m2
l

)
− θ

(
m2
l′

)]
, (B.13a)

δgnR = −i
32π2

2n∑
l,l′=1

All′
(
VTF

)
l

(
V†F ∗

)
l′

[
−C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
−λ

(
m2
l

)
− λ

(
m2
l′

)]
. (B.13b)

We define the functions

hL
(
m2
l′ , m

2
l

)
:= −C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
+ θ

(
m2
l′

)
+ θ

(
m2
l

)
, (B.14a)

hR
(
m2
l′ , m

2
l

)
:= C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
+ λ

(
m2
l′

)
+ λ

(
m2
l

)
. (B.14b)

These functions are symmetric under the interchange of their two arguments:

hL
(
m2
l′ , m

2
l

)
= hL

(
m2
l , m

2
l′

)
, hR

(
m2
l′ , m

2
l

)
= hR

(
m2
l , m

2
l′

)
. (B.15)

Moreover, by utilizing equations (21) of ref. [15] it is easy to show that, although the
functions θ

(
m2
l

)
, λ
(
m2
l

)
, and C00

(
0, m2

Z , 0, 0, m2
l′ , m

2
l

)
contain divergences, the functions

hL
(
m2
l′ , m

2
l

)
and hR

(
m2
l′ , m

2
l

)
do not. From equation (B.13) we obtain

δgnL = 1
16π2

2n−1∑
l=2

2n∑
l′=l+1

All′ Im
[(
V†F ∗

)
l

(
VTF

)
l′

]
hL
(
m2
l′ , m

2
l

)
, (B.16a)

δgnR = δgnL

[
hL
(
m2
l′ , m

2
l

)
→ hR

(
m2
l′ , m

2
l

)]
. (B.16b)

Thus, the functions hL and hR are crucial in the computation of the neutral-scalar con-
tributions to δgL and δgR, respectively. Those functions were not explicitly defined in
ref. [15], even though they were utilized in that paper.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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