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Bioinformatics methods 
for identification of amyloidogenic 
peptides show robustness 
to misannotated training data
Natalia Szulc1,2, Michał Burdukiewicz3,4,7*, Marlena Gąsior‑Głogowska1, 
Jakub W. Wojciechowski1, Jarosław Chilimoniuk5, Paweł Mackiewicz5, Tomas Šneideris6, 
Vytautas Smirnovas6 & Malgorzata Kotulska1,7*

Several disorders are related to amyloid aggregation of proteins, for example Alzheimer’s or 
Parkinson’s diseases. Amyloid proteins form fibrils of aggregated beta structures. This is preceded by 
formation of oligomers—the most cytotoxic species. Determining amyloidogenicity is tedious and 
costly. The most reliable identification of amyloids is obtained with high resolution microscopies, such 
as electron microscopy or atomic force microscopy (AFM). More frequently, less expensive and faster 
methods are used, especially infrared (IR) spectroscopy or Thioflavin T staining. Different experimental 
methods are not always concurrent, especially when amyloid peptides do not readily form fibrils but 
oligomers. This may lead to peptide misclassification and mislabeling. Several bioinformatics methods 
have been proposed for in-silico identification of amyloids, many of them based on machine learning. 
The effectiveness of these methods heavily depends on accurate annotation of the reference training 
data obtained from in-vitro experiments. We study how robust are bioinformatics methods to weak 
supervision, encountering imperfect training data. AmyloGram and three other amyloid predictors 
were applied. The results proved that a certain degree of misannotation in the reference data can be 
eliminated by the bioinformatics tools, even if they belonged to their training set. The computational 
results are supported by new experiments with IR and AFM methods.

Amyloids are a group of proteins folding into assemblies of insoluble fibrils of very regular and tightly packed 
β-structures, which resemble a steric zipper. Despite the importance of amyloids, which is related to their roles in 
various diseases, their formation and unique behavior are not fully explained1. One of the challenges associated 
with amyloid studies is to establish computationally, whether a protein can form amyloids. Currently available 
tools addressing this question use statistical and physical models2,3. The statistical methods are only based on 
the amino acid composition of previously annotated amyloid and non-amyloid proteins and use computational 
models recognizing regularities in the sequences4–6. The physical models, on the other hand, determine folding 
of proteins into fibrils and use structural constraints7–9. All these methods first require reference data, i.e. a col-
lection of sequences and/or structures of proteins labeled with their ability or inability to form amyloid fibrils. 
This information is crucial and its imperfection may introduce a bias into prediction methods10. However, the 
process of labeling potential amyloid sequences and confirming the ability to form amyloid fibrils is costly and 
laborious, usually involving a set of diverse experiments.

Amyloids can be recognized by a characteristic cross-β sheet diffraction pattern observable in X-ray studies. 
However, to identify the occurrence of an amyloid, less precise methods are usually applied, some of which are 
direct and others indirect. Direct methods involve microscopy and spectroscopy11,12. High resolution micro-
scopic techniques, such as atomic force microscopy (AFM) or transmission electron microscopy (TEM), allow 
for direct examination of amyloid fibril structures. These methods are focused on their topology and mechanical 
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properties, such as Young modulus13,14. Spectroscopic methods involve vibrational spectroscopy15, especially IR 
spectroscopy16. In addition to precise information about the kinetics of self-assembly and details about their 
secondary structures, spectroscopic methods reveal the fraction of amyloid aggregates in the structure.

Indirect techniques rely on the detection (usually through fluorescence) of probes selectively binding to amy-
loid fibrils. Thioflavin T (ThT) is considered to be the most reliable probe17, but Congo Red can also be applied18. 
Although indirect methods are less expensive, there are some concerns regarding their specificity19. Therefore, 
it is helpful if such methods are complemented with direct experimental verification.

As direct and indirect methods focus on different aspects of amyloid fibrils, their results may differ. The prob-
lem of experimental validation is further heightened by the elusiveness of amyloid properties20. Experimental 
conditions, such as incubation time, pH and ionic strength, may greatly affect the kinetics of self-assembly, which 
effectively prevent the development of amyloid fibrils21. Therefore, even experimental results bring only partial 
confidence into the amyloid properties of a peptide or protein.

Such a situation leads to a classical problem of weak labeling (weak supervision)22, where some labels (amy-
loid or non-amyloid) are wrongly assigned to reference instances (proteins or peptides). The weak supervision 
is common in all applications of machine learning and significantly lowers the performance of a model. Among 
several approaches proposed to solve this issue, it is suggested to detect mislabeled training data by applying a 
computational model as a filter, capable of identifying outliers23. Here, the outliers are defined as instances pre-
dicted computationally with a high probability to have a label opposite to that obtained from a reference dataset. 
This approach can enhance the classification accuracy achieved by learning algorithms by improving the quality 
of training data. However, a potential obstacle should be considered, related to overfitting of prediction methods, 
which may not so easily find mislabeled data in their own training data sets.

To investigate the impact of weak supervision in computational prediction of amyloid proteins, we decided 
to test AmyloGram, as a filter on training data, which may be mislabeled in databases. The objective was verify-
ing the filtering approach and detecting possible outliers in the learning set. To do this, we selected a subset of 
peptides for which bioinformatics predictions by AmyloGram were opposite to their labels assigned in experi-
mental AmyLoad and Waltz databases24,25. The most extreme outliers, with the highest probability of a predicted 
label being opposite to that in databases, were then evaluated experimentally. It allowed to verify if the filtering 
properties of AmyloGram were sufficient to clean the training data from doubtful instances. To strengthen the 
analysis, we also tested three different bioinformatics predictors of amyloids in this regard. The results revealed 
how robust are bioinformatics predictors of amyloids to errors in learning datasets.

Materials and methods
Data selection.  Peptides were uploaded from AmyLoad24 database. The original dataset used for training 
AmyloGram included 421 amyloid peptides and 1044 non-amyloid peptides (1465 sequences in total). In terms 
of their amyloid propensities, all these peptides were also identically annotated in Waltz 2.0 database25. The 
flow chart of the data selection procedure is presented in Fig. 1. First, all sequences with six residues (hexapep-
tides) and without atypical amino acids were selected. The obtained set included 1088 sequences. It was then 
divided into two subsets, based on their origin. The first subset contained 158 (67 amyloid and 91 non-amyloid) 
sequences which were based on the original AmylHex database26, and the other set of 930 (180 amyloid and 750 
non-amyloid) sequences was based on instances from other sources. AmylHex was the first available data set of 
amyloid peptides and, although still valuable, it has a strongly biased pattern related to the method by which it 
was obtained. Therefore, the division in our data processing was introduced to avoid overrepresentation of the 
AmylHex sequences in the final set and diminish the influence of these biases. Then, all non-redundant amino 
acid sequences of hexapeptides were converted into the simplified amino acid alphabet obtained in AmyloGram 
and redundant sequences were removed, leading to 184 encoded amyloid sequences and 683 encoded non-
amyloid sequences4. Importantly, each of these sequences previously belonged to the reference training dataset 
and were used to develop AmyloGram.

Since the original experimental annotations do not necessarily have to agree with the classifications obtained 
with a computational method, the peptides were again classified, now computationally, with AmyloGram 
(AmyloGram available at: http://​www.​smorf​land.​uni.​wroc.​pl/​shiny/​Amylo​Gram/). Peptides that obtained a high 
probability of classification in agreement with their original database annotations were defined as references. 
Peptides with a high probability of labels opposite to their original database annotations were defined as outliers. 
Finally, 10 sequences out of the references were selected and represented with the full amino acid alphabet—we 
denote this dataset as the reference dataset. Similarly, 24 sequences from outliers (represented here with the full 
amino acid alphabet) were selected and labeled as the test dataset. Both sets were used in further experimental 
validations. The first set served to set up and validate our experimental and chemometric methods, while the 
other to verify whether the original database annotations of the peptides were correct.

Materials.  All hexapeptide sequences selected for experimental validation were provided by CASLO 
(CASLO ApS, Denmark). The experiments were carried out on 34 sequences, out of which 10 were reference 
sequences (FNPQGG, FTFIQF, ISFLIF, KPAESD, LVFYQQ, NPQGGY, SFLIFL, TKPAES, YLLYYT, YTVIIE), 
and 24 were test sequences (ALEEYT, ASSSNY, DETVIV, ELNIYQ, FGELFE, FQKQQK, FTPTEK, HGFNQQ, 
HLFNLT, HSSNNF, MIENIQ, MIHFGN, MMHFGN, NIFNIT, NNSGPN, NTIFVQ, QANKHI, QEMRHF, 
SHVIIE, STTIIE, STVVIE, SWVIIE, WSFYLL, YYTEFT). The purity of synthesized peptides was in the range 
between 95% and 99.6%.

Sample preparation.  First, lyophilized hexamers were dissolved and vortexed in 0.1  M NaOH. Next, 
phosphate-buffered saline (50 mM, pH 7.2) was added to obtain pH = 7. Samples were diluted to the final con-

http://www.smorfland.uni.wroc.pl/shiny/AmyloGram/
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centration of 4 mg/ml with Milli-Q water. Then, they were incubated at 37 °C for one month. To assure the 
reproducibility of new experimental results, reported in this work, the table based on the MIRRAGGE protocol27 
is available in the Supplement 1, 2, Table 1.

Experimental evaluation.  To keep the experimental validation robust, we employed three direct tech-
niques: two methods of IR spectra measurements and AFM. They complement each other in terms of the pres-
ence of aggregates and the exact morphology of fibrils.

Atomic force microscopy.  AFM images were recorded using Dimension Icon (Bruker) atomic force microscope 
operating in tapping mode and equipped with a silicon cantilever RTESPA-300 (40 N/m, Bruker), with a typical 
tip radius of curvature 8 nm. Images (4 × 4, 5 × 5 and 10 × 10 µm2) of sample topography were recorded at the 
resolution of 1024 × 1024 pixels. The scan rate was 0.5–1.0 Hz. In each experiment, 20 µl of peptide solution was 
deposited on freshly etched mica surface and incubated for 10 min. Subsequently, samples were rinsed with 1 ml 
of MilliQ water and dried under gentle airflow.

Figure 1.   Scheme of peptide selection. (A) 1088 hexapeptides in the simplified amino acid alphabet were 
used to train AmyloGram. (B) Two subsets of the sequences were defined. (C) Sequences were divided into 
amyloids and non-amyloids according to their annotations in the database. (D) Each peptide was classified with 
AmyloGram. Peptides with a high probability of classification in agreement with their original annotations were 
defined as references. Peptides with a high probability of classification opposite to their original annotations 
were defined as outliers. (E) Ten references and 24 outliers were selected for experiments.
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Infrared spectroscopy.  Two vibrational spectroscopic techniques28, commonly used in the field of peptide 
aggregation, were used in the study: Attenuated Total Reflection—Fourier Transform Infrared (ATR-FTIR)29, 
and Fourier Transform Infrared Microscopy using transmission mode (IR microscopy)30. The main drawback 
of examining proteins in aqueous solutions by means of IR spectroscopy is strong absorbance of water in the 
region of approximately 1634  cm-131. Therefore, in our procedures of spectroscopic measurements we used a 
dry-film technique32.

The ATR-FTIR spectra were collected using a Nicolet 6700 spectrometer (Thermo Scientific, USA) equipped 
with ATR Accessory with Heated Diamond Top-plate (PIKE Technologies, USA). The spectrometer was con-
tinuously purged with dry air. Peptides aliquots of 20 μl volumes were pipetted onto the ATR crystal and 
allowed to dry out. Spectra were recorded with a resolution of 4 cm-1 with 128 co-added scans over the range of 
3600–150 cm-1, at the constant temperature of 25 °C. The background spectrum was recorded before measure-
ment of the sample spectra using 512 scans under resolution 4 cm-1.

The spectra from IR microscopy were recorded using Nicolet iN10 FTIR microscope (Thermo Scientific, 
USA). Samples were measured with a liquid nitrogen cooled mercury cadmium telluride (MCT-A) detector at the 
spatial resolution of 10 μm. The microscope was continuously purged with dry air. An area of 450 μm × 450 μm 
was first selected with the upper aperture (100/5 = 50 μm), then the data were collected. All spectra were recorded 
in the wave number range from 4000 to 500 cm-1; 64 interferograms per sample at the resolution of 4 cm-1 were 
collected. The volume of 10 μl of the solution was applied to barium chloride window cell and allowed to dry out 
until the coffee-ring was formed33. The measurements were carried out at room temperature. For each spectral 
map the average spectrum was calculated.

Using two IR methods with different acquisition modes allowed us to verify the observations and avoid ambi-
guity that may arise due to high water absorption34. ATR-FTIR spectrophotometer provides one average single 
spectra obtained from a small area (typically of 3 mm2). The FTIR microscopy allows for mapping the probe 
with a step of 10 μm or less. The liquid nitrogen cooled MCT-A detector is more sensitive and allows to measure 
smaller aliquots. The built-in camera allows to choose a region of interest, significant for non-homogeneous 
deposition patterns, created in film techniques. Although IR microscopy is a more precise method and was finally 
selected as our reference experimental method, we also examined whether ATR-FTIR, which is a cheaper and a 
more widespread method, would provide different annotations of the peptides.

Spectroscopic data processing.  All spectra were analyzed using the OriginPro 2019 program (OriginLab 
Corporation, USA). The spectra preprocessing included: baseline correction35 and normalization for the Amide 
I band maximum. The second derivative (DII)36 was performed in the range of 1720–1580 cm-1 to identify the 
local maximum of the component bands. The second derivative spectra were smoothed with the Savitzky-Golay 
filter (parameters: polynomial order 2, window 30)37.

Chemometric analysis.  For both types of the IR spectra, Principal Component Analysis (PCA)38,39 was 
performed on DII of the described region, using PCA function from scikit-learn Python library40 with default 
parameters.

Bioinformatics methods.  The hexapeptide sequences were classified by bioinformatics methods, such 
as AmyloGram4 (http://​www.​smorf​land.​uni.​wroc.​pl/​shiny/​Amylo​Gram/), PATH41 (in-house software), 
FoldAmyloid6 (http://​bioin​fo.​protr​es.​ru/​fold-​amylo​id/), and PASTA 2.09 (http://​old.​prote​in.​bio.​unipd.​it/​
pasta2/). AmyloGram is a tool based on machine learning methods, FoldAmyloid and PASTA 2.0 are based 
on physical models, whereas PATH is our latest method combining physical modeling with machine learn-
ing. AmyloGram and PATH were previously trained on the reference peptide sequences, which included all 

Table 1.   Reference data set of sequences and their amyloid propensity by different experimental methods 
(’Yes’—identified as amyloid, ’No’—non-amyloid, ’Yes*’—oligomer, ’s’—strong band, ’m’—medium band, ’w’—
weak band, ’br’—broad band, ’sh’—shoulder band, band maxima in bold).  The results agree with the original 
database annotations, which were also in agreement with AmyloGram predictions.

No Sequence Database

IR microscopy ATR-FTIR AFM Consensus with database 
annotationAmide I [cm−1] Class Amide I [cm−1] Class Class

1 FNPQGG No 1679(m)/1641(s) No 1655(s,br) No No Yes

2 FTFIQF Yes 1689(m,sh)/1628(s) Yes 1690(w)/1622(s) Yes Yes* Yes

3 ISFLIF Yes 1689(m,sh)/1631(s) Yes 1685(w)/1631(s) Yes Yes Yes

4 KPAESD No 1665(s,br) No 1678(s,br)/1640(m,sh) No No Yes

5 LVFYQQ Yes 1631(s) Yes 1683(w,sh)/1629(s) Yes* Yes Yes

6 NPQGGY​ No 1658(s,br) No 1658(s,br) No No Yes

7 SFLIFL Yes 1689(m)/1633(s) Yes* 1632(s) Yes Yes* Yes

8 TKPAES No 1652(s,br) No 1678(s)/1640(sh) No No Yes

9 YLLYYT​ Yes 1686(m,sh)/1629(s) Yes 1685(m)/1630(s) Yes Yes* Yes

10 YTVIIE Yes 1685(m)/1627(s) Yes 1684(m)/1626(s) Yes Yes Yes

http://www.smorfland.uni.wroc.pl/shiny/AmyloGram/
http://bioinfo.protres.ru/fold-amyloid/
http://old.protein.bio.unipd.it/pasta2/
http://old.protein.bio.unipd.it/pasta2/
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sequences verified here anew (reference and test sets), using their original annotations in the database. All predic-
tors, excluding PASTA 2.0, were used with their default parameters. In PASTA 2.0, the peptide option was chosen 
to set the thresholds. The presented statistics of classification results included: Accuracy (Acc) calculated as the 
ratio of correctly assigned data labels, Sensitivity (Sn) denoting the ratio of correctly identified true positives 
versus actual positives, and Specificity (Sp) meaning the ratio of true negatives versus actual negatives.

Results
Experimental verification of the reference dataset of sequences.  First, we examined the reference 
set, whose instances had identical annotations in reference databases (AmyLoad and Waltz) and classifications 
by AmyloGram. The direct microscopy method AFM and two IR methods (ATR-FTIR and IR microscopy) were 
used to experimentally verify these instances, as well as calibrate our empirical and chemometric methods.

Based on the AFM micrographs (Supplement 1, 1.1) and spectral characteristics (Supplement 1, 2.1 and 2.2), 
peptides were annotated into three classes: positive (amyloids), negative (non-amyloids), and oligomers (Fig. 2). 
The last class is not considered by any bioinformatics method but is evident in experimental analyses and may 
pose a problem for computational tools in its correct classification.

The IR spectra can be fairly easily analyzed in terms of potential amyloidogenicity of the peptides, showing 
different characteristics for non-amyloids, small assemblies of amyloid aggregates known as oligomers, and 
mature fibrils. Exemplary spectra of our reference set, representing each of these classes, are presented in Fig. 3.

Amide bands characteristic of peptide bonds dominate in the protein infrared spectra. The most intensive, 
Amide I, occurs in the range of 1700–1600 cm-1, which corresponds to C = O stretching vibrations34. Amyloid 
fibrils show absorbance between 1611 and 1630 cm-1, usually close to 1630 cm-1, while for native β-sheet proteins 
it extends from 1630 to 1643 cm-1. This method also enables recognition of typical amyloid oligomers, indicated 

Figure 2.   Schemes of peptide classes, representing a general idea.

Figure 3.   Representative IR microscopy spectra: amyloid (LVFYQQ) in red, oligomer (SFLIFL) in green, non-
amyloid (KPAESD) in blue.
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by the presence of two local maxima in Amide I region. The major one is located at 1630 cm-1, and the minor 
peak, resulting from a strong dipolar coupling, ranges between 1695 and 1685 cm-1. The latter peak is often 
approximately five-fold weaker than the absorption at 1630 cm-1 (Fig. 3)29,35,36.

Both IR methods, used in our studies, provided compatible results. As expected, they were in general agree-
ment with their original annotations in the databases (Table 1). However, there were differences, which may 
have resulted from the experimental specifics (see Materials and Methods), or the oligomer class. The sequence 
SFLIFL provided slightly different spectra in both IR methods: transmission (microscopy) and attenuated reflec-
tion (ATR-FTIR) (Table 1 and Supplement 1, 2.4, Table 7), indicating formation of oligomers which did not 
transform into fibrils.

The differences may be caused by the artifacts incited by the thickness of the sample—thicker samples can 
raise the spectrum in the transmission mode in IR microscopy. On the other hand, the signal registered with 
ATR-FTIR could be influenced by water molecules in contact with the crystal42. The contact of peptide molecules 
with the diamond surface in ATR-FTIR can accelerate the aggregation process. Therefore, IR microscopy could 
be regarded as a more accurate experimental method. The study confirmed that infrared spectroscopy could be 
used as a time-efficient tool to investigate the formation of different types of aggregates.

Furthermore, for fast and more robust identification of amyloids and non-amyloids, we applied principal 
component analysis (PCA) on the IR spectra38,39. PCA separated out 4 sequences in the ATR-FTIR spectra of the 
reference set: NPQGGY, FNPQGG, KPAESD, TKPAES. All these sequences were identified as non-amyloids by 
a human expert based on different experimental methods. Each of the remaining sequences, more dispersed in 
the plot, was previously identified either as an amyloid or oligomer—based on the same experimental methods. 
Similarly, PCA for IR microscopy spectra also distinguished the group of non-amyloid peptides (Figs. 4A,B). 

Figure 4.   PCA plots for IR spectra of the reference set: (A) ATR-FTIR. (B) IR microscopy. Crosses denote 
amyloids and dots represent non-amyloids, as identified on the spectra by a human expert.

Figure 5.   Representative AFM micrographs: (A) oligomer (FTFIQF), (B) amyloid (LVFYQQ), C. non-amyloid 
(NPQGGY).
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The results obtained by means of IR spectroscopy were verified with high resolution microscopy using AFM 
(Fig. 5, Supplement 1, 2.1, Table 2). In these studies, the process of hexapeptide self-assemblance was observed 
a few minutes after preparation of the peptide solution.

Bioinformatics analysis of the reference dataset.  The annotations based on IR microscopy results 
were compared with all bioinformatics methods, including not only AmyloGram, but also FoldAmyloid, PASTA 
2.0 and PATH (Table 2). Generally, all methods recognized the sequences correctly and in agreement with IR 
spectroscopy. Concurrence of the IR microscopy and computational results was at a high level, reaching 75 or 
100%. We want to emphasize that due to the very small size of the set and the method of its selection (based on 
the strong prediction probabilities by AmyloGram), the prediction results from different bioinformatics meth-
ods by no means should be treated as benchmarks of their individual general performances.

Annotations of sequences in the test dataset.  The experiments on the reference dataset showed that 
IR spectroscopy is in good agreement with much more laborious and expensive AFM method. Therefore, IR 
spectroscopy was selected for experimental validation of the annotations in the test set, which was the main 
objective of our studies. The results obtained for 24 sequences that constituted this set are presented in Table 3. 
These data did not take into account the component bands from aromatic amino acids, such as: phenylalanine 
(1600), tyrosine (1616) and tryptophan (1620)43.

Out of 24 hexapeptides, only one peptide, STTIIE, gave an ambiguous result in terms of IR spectroscopic 
methods (Table 3 and Supplement 1, 3.2, Table 12). For STTIIE, we observed in IR microscopy two local maxima, 
1657 cm-1 corresponding to the strong band from α- helix and 1607 cm-1 assigned to tyrosine vibrations. There-
fore, this peptide was labeled as non-amyloid. Although Amide I band is very broad, there are many component 
bands, which are confirmed by the second derivative (Supplement 1, 3.1.2.2., Table 11). This fact cannot exclude 
that the oligomerization process could have occurred. However, based on the ATR-FTIR, this structure can be 
identified as oligomer, therefore in terms of classification by bioinformatics tools—positively. Two local maxima 
characteristic of oligomers can be observed in the spectrum. The first maximum at 1684 cm-1 and the second, 
more intense, at 1633 cm-1 (Supplement 1, 3.2). The spectral features can be assigned to anti-parallel oligomeric 
β-sheets. For the remaining 23 sequences both IR techniques provided consistent results.

Based on the results presented in Table 4, we observed that in the test set, for which AmyloGram’s classifica-
tion disagreed with the original database annotations, 17 (71%) peptides were indeed misannotated, 12 (70%) 
of them were false positives and 5 (30%) were false negatives. In the set of misannotated sequences, five were 
actually amyloids and all of them (100%) were misannotated, while 19 were non-amyloids and 12 (63%) of them 
were misannotated. A variety of reasons could have contributed to it, which is shown in Supplement 2, Table 1.

Importantly, all these sequences were previously used for training of AmyloGram, using the misannotated 
labels. However, AmyloGram was capable of recognizing misannotated instances in its training dataset, which 
showed its robustness with regard to incorrect labeling. Only 7 sequences out of this set were correctly annotated 
in the database and misclassified by AmyloGram. The majority of them were sequences rich in aromatic and 
charged amino acids.

IR spectra of the test set were analyzed with PCA. Similar to the reference set, a good separation between amy-
loids and non-amyloids (as previously identified by the human expert) was obtained for majority of the sequences 
(Fig. 6), especially good agreement was obtained for the data from IR microscopy (Fig. 6B). The automated PCA 
analysis on the spectra from ATR-FTIR located the sequence no 20 (STTIIE), which was ambiguous with regard 
to IR experiments, outside the amyloid and non-amyloid clusters. As expected, PCA based on the spectra from 
the IR microscopy assigned it to the cluster of non-amyloids. A few other sequences were also located outside the 
aggregated clusters, either in the PCA analysis on ATR-FTIR or IR microscopy, but there was no overlap between 
them, except the sequence no 4 (ELNIYQ). Interestingly, although this sequence was experimentally verified as 
non-amyloid, it was predicted by AmyloGram and FoldAmyloid as a potential amyloid.

Table 2.   Reference sequences and their amyloid propensity obtained by different bioinformatic methods, 
compared to IR microscopy (’Yes’—amyloid, ’No’—non-amyloid, ’Yes*’—oligomer).

No Sequence IR microscopy AmyloGram FoldAmyloid PASTA 2.0 PATH (LR) PATH (RF)
Consensus with 
IR (%)

1 FNPQGG No No No No No No 100

2 FTFIQF Yes Yes Yes No Yes Yes 80

3 ISFLIF Yes Yes Yes Yes Yes Yes 100

4 KPAESD No No No No No No 100

5 LVFYQQ Yes Yes Yes No Yes Yes 80

6 NPQGGY​ No No No No No No 100

7 SFLIFL Yes* Yes Yes Yes Yes Yes 100

8 TKPAES No No No No No No 100

9 YLLYYT​ Yes Yes Yes No Yes Yes 80

10 YTVIIE Yes Yes Yes Yes No Yes 80
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The annotations from IR microscopy for the test set were compared with results from other bioinformatics 
predictors, out of which PATH is another method also trained on the set including the misannotated sequences, 
which can use either logistic regression (LR) or random forest (RF) classification methods. Except for Amylo-
Gram and PATH, other bioinformatics methods might have not been trained on the misannotated data (methods 
not developed in our group). The majority of methods agreed with our IR results (Table 4, detailed scores in 
Supplement 2: Table 2 and Table 3), including the cases in which the original annotation in the database was 
contradicted by the experiments presented in Table 3. There were a few less obvious instances. For example, the 
consensus between bioinformatics methods dropped for two sequences: DETVIV and ELNIYQ. In case of DET-
VIV, the IR microscopy result was also ambiguous—it showed oligomeric rather than fibril aggregates. In case 
of ELNIYQ, PCA-based classification of the spectra did not locate it in the cluster of non-amyloids. The bioin-
formatics analysis identified the sequence no 20 (STTIIE), which was ambiguous regarding IR experiments, as 
non-amyloid (3 out of 4 methods), which agrees with IR microscopy and associated PCA analysis. AmyloGram 
was the only method which misclassified it as amyloid. Table 5 presents aggregated results of the bioinformatics 
analysis.

All computational methods correctly identified the majority of misannotated sequences. Again, we want to 
emphasize that due to the size of the set and the method of its selection (based on the strong adverse predic-
tions by AmyloGram), the prediction results from different bioinformatics methods should not be treated as 
benchmarks of their general performances.

Discussion
Amyloid aggregates may lead to serious health problems, when peptides enter the amyloid pathway, therefore it 
is crucial to recognize them correctly and identify specific sequence features, which can be associated with amy-
loidogenicity. Although several direct and indirect experimental methods are available to determine the amyloid 
propensity of a sequence, all of them are laborious and expensive. What is even more important, the results of 
the experiments are not always conclusive and identical, if obtained with different experimental methods. This 
may lead to misannotation of the sequences regarding their amyloidogenicity. Moreover, errors occurring in 
databases, related to data retrieval or curation, may additionally contribute to mislabeling of the data.

Many bioinformatics methods have been developed  to classify amyloidogenicity of amino acid 
sequences. These methods readily and efficiently support experiments, saving time and money. However, all 

Table 3.   Test sequences and their amyloid propensities (’Yes’—identified as amyloid, ’No’—non-amyloid, 
’Yes*’—oligomer, ’s’—strong band, ’m’—medium band, ’w’—weak band, ’br’—broad band, ’sh’—shoulder band, 
band maxima in bold), compared with the original database annotation (all in disagreement with AmyloGram 
predictions).

No Sequence Database

IR microscopy ATR-FTIR Consensus with database 
annotationAmide I [cm−1] Class Amide I [cm−1] Class

1 ALEEYT Yes 1655(s,br) No 1654(s) No No

2 ASSSNY Yes 1649(m,sh) No 1655(m,br) No No

3 DETVIV No 1685(w)/1635(s) Yes* 1685(m)/1633(s) Yes* No

4 ELNIYQ No 1661(w,sh)/1635(s) No 1681(m,br)/1668(m,br)/16
35(s) No Yes

5 FGELFE No 1660(s)/1650(w) No 1659(s) No Yes

6 FQKQQK No 1660(s,br) No 1682(s,br) No Yes

7 FTPTEK No 1660(s,br) No 1680(s,br) No Yes

8 HGFNQQ Yes 1662(s,br) No 1682(s,br) No No

9 HLFNLT Yes 1674(s,br) No 1680(s,br)/1633(m,br) No No

10 HSSNNF Yes 1649(m,br) No 1680(s)/1646(m,sh) No No

11 MIENIQ Yes 1656(s,br) No 1655(s,br) No No

12 MIHFGN Yes 1677(s,br) No 1680(s,br)/1646(m,br) NO NO

13 MMHFGN Yes 1675(s) No 1676(s,br) No No

14 NIFNIT Yes 1657(s) No 1663(s,br) No No

15 NNSGPN Yes 1676(sh)/1648(s,br) No 1676(s,br)/1654(m,br) No No

16 NTIFVQ No 1629(s) Yes 1682(w)/1631(s) Yes* No

17 QANKHI Yes 1680(s,br) No 1681(s)/1653(sh) No No

18 QEMRHF Yes 1679(s,br) No 1676(s,br)/1655(sh) No No

19 SHVIIE No 1688(m)/1630(s) Yes 1684(m)/1633(s) Yes No

20 STTIIE No 1657(s,br) No 1681(m)/1630(s) Yes* Yes ambiguous

21 STVVIE No 1685(w,br)/1633(s) Yes 1682(w,br)/1630(s) Yes* NO

22 SWVIIE No 1682(w,sh)/1631(s) Yes 1684(w)/1631(s) Yes No

23 WSFYLL No 1658(s,br) No 1675(w,sh)/1637(s) No Yes

24 YYTEFT No 1665(s,br) No 1659(s,br) No Yes
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computational methods, like modeling in general, heavily depend on the data used in the model construction. 
Data including misannotated instances may lead to an incorrect model, not even revealed by standard evaluation 
methods, which would also rely on the mislabeled reference data.

Therefore, we posed a question: How robust could be bioinformatics methods to the problem of certain 
misannotations in the reference data? The problem occurred when we observed that some of the computational 
classifications did not always agree with labeling of the reference training data. To address the question, we 

Table 4.   Test sequences and their amyloid propensities predicted by different bioinformatics methods and 
compared with IR microscopy (’Yes’—amyloid, ’No’—non-amyloid, ’Yes*’—oligomer). For comparison, the 
’Database’ column presents original annotations from the databases.

No Sequence Database
IR 
microscopy AmyloGram PATH (LR) PATH (RF) FoldAmyloid PASTA 2.0

Bioinformatics 
consensus with 
IR [%]

1 ALEEYT Yes No No No No No No 100

2 ASSSNY Yes No No No No No No 100

3 DETVIV No Yes* Yes No Yes No Yes 60

4 ELNIYQ No No Yes No No Yes No 60

5 FGELFE No No Yes No No No No 80

6 FQKQQK No No Yes No No No No 80

7 FTPTEK No No Yes No No No No 80

8 HGFNQQ Yes No No No No No No 100

9 HLFNLT Yes No No No Yes Yes No 60

10 HSSNNF Yes No No No No No No 100

11 MIENIQ Yes No No No No No No 100

12 MIHFGN Yes No No No No No No 100

13 MMHFGN Yes No No No No No No 100

14 NIFNIT Yes No No No Yes Yes No 60

15 NNSGPN Yes No No No No No No 100

16 NTIFVQ No Yes YES Yes Yes Yes No 80

17 QANKHI Yes No No No No No No 100

18 QEMRHF Yes No No No No No No 100

19 SHVIIE No Yes Yes No No Yes Yes 60

20 STTIIE No No Yes No No No No 80

21 STVVIE No Yes Yes No Yes Yes Yes 80

22 SWVIIE No Yes Yes No Yes Yes Yes 80

23 WSFYLL No No Yes Yes Yes Yes No 80

24 YYTEFT No no Yes No No No No 80

Figure 6.   PCA plots for IR spectra of the test set: (A) ATR-FTIR. (B) IR microscopy. Crosses denote amyloids 
and dots represent non-amyloids, as identified on the spectra by a human expert.
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selected a set of sequences and tested their amyloidogenicity by experimental and computational methods. The 
first part of the set, when classified by our predictor AmyloGram, strongly agreed with the initial labeling in 
the database, as it was expected. We used it to set up our experimental and chemometric methods, including 
two IR spectroscopy methods, ATR-FTIR and IR microscopy, and AFM microscopy. The second part of the set 
included sequences whose classification by AmyloGram strongly disagreed with the initial labeling in the refer-
ence databases. Besides amyloids and non-amyloids, we also noted that a third class of structures, i.e. oligomers, 
should be included in the analyses.

As a result, we observed that 17 out of 24 non-compatible sequences were actually misannotated in the origi-
nal databases. Therefore, the bioinformatics predictor proved resistant to overfitting, and able to find errors in 
its own training data. Tests on other bioinformatics predictors showed that all of them were able to classify the 
misannotated data correctly, with accuracies reaching at least 80% or more—also for methods which were trained 
on all these mislabeled data. This proves that bioinformatics methods can be successfully applied to evaluate 
quality of experimental data and used for their filtering. However, we underline that the fraction of mislabeled 
instances cannot be excessively high in the training set.
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