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Abstract: In the face of the upcoming 30th anniversary of econophysics, we review our contributions
and other related works on the modeling of the long-range memory phenomenon in physical,
economic, and other social complex systems. Our group has shown that the long-range memory
phenomenon can be reproduced using various Markov processes, such as point processes, stochastic
differential equations, and agent-based models—reproduced well enough to match other statistical
properties of the financial markets, such as return and trading activity distributions and first-passage
time distributions. Research has lead us to question whether the observed long-range memory is a
result of the actual long-range memory process or just a consequence of the non-linearity of Markov
processes. As our most recent result, we discuss the long-range memory of the order flow data in
the financial markets and other social systems from the perspective of the fractional Lèvy stable
motion. We test widely used long-range memory estimators on discrete fractional Lèvy stable motion
represented by the auto-regressive fractionally integrated moving average (ARFIMA) sample series.
Our newly obtained results seem to indicate that new estimators of self-similarity and long-range
memory for analyzing systems with non-Gaussian distributions have to be developed.

Keywords: long-range memory; 1/f noise; absolute value estimator; anomalous diffusion; ARFIMA;
first-passage times; fractional Lèvy stable motion; Higuchi’s method; mean squared displacement;
multiplicative point process

1. Introduction

Many empirical data sets and theoretical models have been investigated using the tool
of spectral analysis. Many researchers across different fields find the power spectral density
(abbr. PSD) of the 1/ f β form (with 0.5 . β . 1.5) to be of a particular interest [1–10], both
because of its apparent omnipresence and the implication of slowly decaying autocorrela-
tion, which indicates the presence of the long-range memory phenomenon. Long-range
memory is also one of the established stylized facts of the financial markets [11–19]. Con-
sequently, as our group was investigating 1/ f noise [20–23], we have become naturally
interested in the rapidly growing field of econophysics. The term “econophysics” was
coined by H. E. Stanley in the Statphys conference in Kolkata in 1995 [24]. Over the last
three decades, econophysics has matured both from the theoretical and the applied per-
spectives. Here, we review mostly our own and directly adjacent approaches, and we
would like to recommend a couple of broader reviews, which can be found in [25,26].

Our first publications were devoted to the modeling of the financial markets [27,28].
In those works, we have considered trades occurring in the financial markets as point
events driven by a point process proposed in [21–23]. Thanks to the organizers of the
international conference Applications of Physics in Financial Analysis 4, held in Warsaw in
2003, we were able to present our findings to econophysicists. Our first results, inspired by
interaction with the participants of the APFA 4 conference, have been published in [29,30].
We presented our ideas in a more general context of complex systems in [31,32].
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Later, we took part in the COST Action P10 “Physics of Risk” and the follow-up
COST Action MP0801 “Physics of Competition and Conflicts”. Bronislovas Kaulakys and
Vygintas Gontis were executive committee members of both COST Actions, while the
other group members gave talks and poster presentations during the annual meetings and
helped organize an annual action meeting in Vilnius in 2006. This COST action meeting
has helped us embrace econophysics and be recognized as econophysicists.

While it may be natural to see trades in the financial markets as point events [27–30],
modeling volatility and return as a point process was not as straightforward. We have
developed our approach further by abstracting the point process away and considering a
continuous framework of Langevin stochastic differential equations (abbr. SDEs). First,
we have shown that the continuous interpretation of the point process model works well
for trading activity [33]; thus, we have refined the SDE approach with model for volatility
and return [34–38]. Interestingly, similar SDEs can be derived from a simple agent-based
model (abbr. ABM) [39,40], too. With time, we have developed more complicated ABMs to
account for the separation of time scales and order flow [41,42]. We have even branched
out into sociophysics [43–46] as we have understood that the herding ABM we used to
model the financial market is essentially equivalent to the well-known voter model [47–49].

For 10 months (in 2015 and 2016), Vygintas Gontis, with the support of the Baltic Amer-
ican Freedom Foundation, has stayed as a visiting researcher at the Center of Polymer Stud-
ies of Boston University. Discussions with the founding fathers of econophysics, H. E. Stan-
ley, professors Sh. Havlin, B. Podobnik, and S. Buldyrev, resulted in a paper [50]. Together,
we have considered volatility return intervals (term inspired by the studies [51–54]) of
the financial time series at various time scales. In the paper, we have shown that the
time intervals between large financial fluctuations is distributed according to a power–law
probability density function (abbr. PDF) p(τ) ∼ τ−3/2 [50]. The same distribution arise
in our models and from many other one-dimensional Markov processes [55], while the
long-range memory process would exhibit a different distribution, such as p(τ) ∼ τ2−H ,
which is a well-known result for the fractional Brownian motion (abbr. FBM) [56].

Here, we provide an overview of our approach to understanding and modeling the
long-range memory phenomenon in financial markets and other complex systems and
share our most recent result. In Section 2, we introduce the original point process and
discuss how to derive a non-linear SDE, which can reproduce the long-range memory
phenomenon. We also discuss numerous extensions of both the point process model and
non-linear SDE. Next, in Section 3, we show how we can obtain a similar SDE from a simple
herding ABM. Following the overview, we also present a novel result, which concerns
understanding the nature of the self-similarity and long-range memory phenomenon
from the perspective of fractional Lèvy stable motion (abbr. FLSM) and auto-regressive
fractionally integrated moving average (abbr. ARFIMA) time series. In Section 4, we tested
various long-range memory estimators such as mean squared displacement, method of
absolute value estimator, Higuchi’s method, and burst and interburst duration analysis on
fractional Lèvy stable motion (ARFIMA(0,d,0) time series). Finally, in Section 5, we share
our future considerations.

2. The Multiplicative Point Process, the Class of Stochastic Differential Equations, and
Their Applications

In this section, we overview how the physically motivated point process proposed
in [21–23] was applied to model trading activity and absolute returns in the financial
markets. We also discuss numerous extensions of the model into some related research
topics, such as superstatistics and anomalous and non-homogeneous diffusion.

2.1. The Multiplicative Point Process Model

Let us consider signal I(t) composed of pulses with profiles given by Ak(x):

I(t) = ∑
k

Ak(t− tk), (1)
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where tk is the event (pulse) time. There are many physical and social systems, which
generate signals of such nature: electric current [57], music [58], human heartbeat [59],
internet traffic [32], or trading activity [29] to name a few.

As most profiles of the pulses are brief, it is trivial that they would influence only
high frequencies corresponding to the typical inverse pulse length. If we are interested
in longer-term dynamics, it is sufficient to assume that the Kronecker delta function well
approximates the profile, Ak(x) = akδ(x). Many such systems are driven by the flow of
identical or similar objects, such as electrons, packets, or trades. This lets us simplify (1)
and investigate it as a temporal point process with unit events. Such a process can be either
described by the event times {tk} or by the inter-event times {τk = tk+1 − tk}.

The inter-event times are a far more convenient choice to model as they at least can
give a semblance of the stationarity, while event times are obviously non-stationary as {tk}
is monotonically increasing series. In [21–23], it was analytically shown that a relatively
slow autoregressive AR(1) Brownian motion of τk yield 1/ f fluctuations of the signal I(t).
The author of [29] has built upon this observation and introduced multiplicative point
process for the inter-event time

τk+1 = τk + σ2γτ
2µ−1
k + στ

µ
k εk. (2)

In the above, it is assumed that inter-event time fluctuates due to exogenous perturba-
tions. Perturbations are assumed to be standard uncorrelated Gaussian random variables,
εk. The general rate of change is governed by σ, while γ is the damping constant. Multi-
plicativity, specified by µ, ensures that I(t) is multifractal and has a power–law PDF. This
point process model has found its use for the analysis of 1/ f noise and long-range memory
in many diverse phenomena such as musical rhythm spectra [58], human cognition [60],
human interaction dynamics [61], turbulence [62], and few others [63–66]. Inspired by this
model, [67] has shown under which conditions 1/ f β spectrum can arise from reversible
Markov chains.

After closer examination, it should be evident that Equation (2) can be seen as an
iterative solution of a certain SDE if Euler–Maruyama method was used [68]. Hence the
corresponding Langevin SDE can be trivially recovered from the iterative relation (2):

d τ = σ2γτ2µ−1 d k + στµ d Wk. (3)

Here W is uncorrelated standard Wiener process. Note that this SDE is in the event
space (or k–space) and not in the real time. Further, this SDE must be solved by restricting
the diffusion of the inter-event time τ to some arbitrary interval [τmin, τmax] on the positive
half-plane as otherwise this SDE may not have a stationary distribution. If stationary
distribution exists, then the stationary PDF of τ is a power–law:

pk(τ) =
α + 1

τα+1
max − τα+1

min

τα, α = 2(γ− µ). (4)

Yet the main result of [29] is the power–law statistical properties of I(t). In the
limit τmin → 0 and τmax → ∞ PSD of I(t) in arbitrarily long range of frequencies has a
power–law slope:

S( f ) ∼ 1/ f β, β = 1 +
2(γ− µ)

3− 2µ
. (5)

The number of events in a selected time window, for example number of trades per
minute, also has a power–law distribution [29]:

p(N) ∼ N−2(γ−µ)−3. (6)
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Formally, one could define the number of events in a window of length w as N[t] =∫ t+w
t I(u)d u (here the square brackets indicate that N is in discrete time). These analytical

results can be confirmed by numerical simulation (see Figure 1).

Figure 1. Statistical properties of the point process by numerically solving Equation (2): (a) sample fragment of correspond-
ing N[t] time series, (b) PDF of the inter-event times, and (c) PSD of the process. Red curves correspond to numerical results,
while black curves are theoretical power–law fits with (b) α = 0 and (c) β = 1. Model parameter values: γ = 0, µ = 0,
σ = 0.1, w = 1.

2.2. The Class of Non-Linear Stochastic Differential Equations

In [33,69–71], we have made a transition from k-space to real time and this enabled us
to model trading activity and absolute returns in the financial markets not only qualitatively,
but quantitatively, too. The transition from SDE in k-space, Equation (3), to real time is
achieved by substitution d t = τ d k, which yields:

d τ = σ2γτ2µ−2 d t + στµ−1/2 d W. (7)

Modeling inter-event time in real time makes less sense than in the k-space, so let us
change the variable to the number of events per unit time x = 1

τ . Applying Itô transforma-
tion yields:

d x = σ2
(

η − λ

2

)
x2η−1 d t + σxη d W. (8)

In the above, we have introduced a more convenient set of parameters:

η =
5
2
− µ, λ = 2(γ− µ) + 3. (9)

As far as SDE (8) corresponds to the point process defined by Equation (2), the results
for stationary PDF and PSD should apply:

p(x) ∼ x−λ, S( f ) ∼ 1/ f β, β = 1 +
λ− 3
2η − 2

. (10)

The validity of these theoretical predictions was extensively checked numerically (see
Figure 2 for a quick example) and also, in [72], proven analytically. The analytical proof
provided in [72] allows interpreting the process modeled by SDE (8) in a more general
context. In fact we can model any process possessing these power–law statistical properties,
even processes, which make less sense from the perspective of the original point process.
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Figure 2. Various slopes of PDF (a) and PSD (b) reproduced by the numerical solutions of SDE (8). Model parameter values:
σ = 1, η = 2.5 (all cases) and λ = 2 (red curves in both (a,b)), 3 (blue curves), 4 (green curves), and 5 (magenta curves).
Black dashed lines correspond to (a) p(x) ∼ x−λ with λ = 1.5 and λ = 6 (upper and lower curves), (b) S( f ) ∼ 1/ f β with
β = 0.5 and β = 2 (upper and lower curves).

Equation (8) and similar random walk models have been used to model the EUR/CHF
exchange rate [73]. It has also lead to numerous modifications by our group, which we
discuss in detail in the following subsections.

2.3. Reproducing the Long-Range Memory Using GARCH(1,1) Process

Autoregressive conditional heteroscedasticity (abbr. ARCH) family models [74–79]
are quite popular forecasting tools among professional traders as well as researchers
interested in the long-range memory phenomenon. Unlike SDEs, ARCH family models
have explicitly built-in memory, which is built-in either via explicit dependence on the
numerous previous states, infinitely many in the case of the ARCH(∞) model [80–82], or
via fractional integration procedure, which introduces memory similar to the one present in
the fractional Brownian motion, as in the fractionally integrated GARCH (abbr. FIGARCH)
model [83–85]. In [86], we have shown that it is possible to modify the GARCH(1,1) model,
which is Markovian in nature, to reproduce 1/ f spectrum.

Generalized autoregressive conditional heteroskedasticity (abbr. GARCH) processes
can be approximated by the diffusion processes. There are two competing approaches,
which yield continuous approximations of GARCH processes using sets of SDEs. One of
the approaches was proposed by Nelson [87] and the other by Kluppelberg et al. [88,89].
In the GARCH(1,1), Nelson’s approach is easier to apply, but has a drawback that the
resulting COGARCH(1,1) would be driven by two sources of noise, instead of the one in the
GARCH(1,1). Yet, we can circumvent the problem by ignoring the observed heteroskedastic
economic variable zt and focusing on the approximation of the volatility process, σ2

t , of
GARCH(1,1):

zt = σtωt, (11)

σ2
t = a + bz2

t−1 + cσ2
t−1 = a + bσ2

t−1ω2
t−1 + cσ2

t−1. (12)

In the above, ωt is the noise, while a, b, and c are the GARCH(1,1) model parameters.
For Nelson’s approach to work, we need to compute first and second moments of change in
volatility. With the usual GARCH(1,1) we obtain SDE for geometric Brownian motion [86].

Now lets introduce non-linearity into Equation (12). In [86], we have explored two
such options:

σ2
t = a + bσ

µ
t−1ω

µ
t−1 + cσ2

t−1, (13)

σ2
t = a + bσ

µ
t−1|ωt−1|µ + σ2

t−1 − cσ
µ
t−1. (14)
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Both of these options can be approximated by SDEs belonging to the class of SDEs (8)
with λ = µ and η = µ/2. Consequently both of these options reproduce 1/ f spectrum with
µ = 3. Other parameters, a, b, and c, influence only the additional terms, which restrict
the diffusion of σ2

t . Setting these values too high shrinks the interval and the power–law
distribution becomes extremely hard to observe.

2.4. Anomalous Diffusion in the Long-Range Memory Process

SDE (8) can be also seen to describe a heterogeneous diffusion in a non-linear potential.
Such diffusion leads to anomalous growth in variance [90]〈

[x(t)− 〈x(t)〉]2
〉
∼ tθ , θ =

1
1− η

. (15)

This phenomenon is also known as anomalous diffusion [91–93]. If θ = 1 then the
process exhibits normal diffusion. Otherwise if 0 < θ < 1, the diffusion is slower than
normal and is referred to as sub-diffusion. The diffusion may also be faster, if 1 < θ < 2, in
that case it is called super-diffusion.

The anomalous diffusion can be obtained from SDE (8) only for specific parameter
values such as λ < 1 and η < 1/2 [90]. Because power–law slope of the PSD, β, varies
between 0 and 2, from Equation (10), it follows that anomalous diffusion and power–law
noise can be observed at the same time only for negative parameter η values, specifically
for η < (λ− 1)/2 and λ < 1; however, for these parameters values numerical simulation
would become very slow and inefficient [72]; therefore, we have considered generalizing
SDE (8) by considering non-Gaussian white noise.

In [94], we have considered Lévy α-stable noise. SDE equivalent to SDE (8), but with
Lévy α-stable noise takes the following form:

d x
d t

= γ(η, λ, α)xα(η−1)+1 + xηξα(t). (16)

Here, ξα(t) is a white noise, the intensity of which is distributed according to the
symmetric Lévy α-stable distribution. The characteristic function of the noise intensity is
given by:

〈exp(ikξα)〉 = exp
(
−σα|k|α

)
. (17)

Here, α is the index of stability and σ is the scale parameter. We interpret SDE (16) in
an Itô sense and it can also be written in the form

d x = γ(η, λ, α)xα(η−1)+1 d t + xη d Lα
t . (18)

Here, d Lα
t stands for the increments of Lévy α-stable motion Lα

t . If SDE (16) is solved
with reflective boundary conditions and

γ(η, λ, α) =
sin
[
π
(

α
2 − αη + λ

)]
sin[π(α(η − 1)− λ)]

Γ(αη − λ + 1)
Γ(α(η − 1)− λ + 2)

, (19)

then generalized SDE (16) generate time series with power–law steady-state PDF and
power–law PSD:

p(x) ∼ x−λ, S( f ) ∼ 1
f β

, β = 1 +
λ− 3

α(η − 1)
. (20)

Extensive numerical simulations have shown that due to the presence of the multi-
plicative Lévy α-stable noise in Equation (16) both sub-diffusion and super-diffusion can
be observed together with power–law noise even for positive η values [95]; however, no
analytical expression for anomalous diffusion exponent dependence on SDE parameters
has been derived yet.
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In Figure 3, we show a sample series of the solutions of SDE (16) and the statistical
properties of the series when the noise is Lévy α-stable noise with α = 1. The other SDE (16)
parameters were picked so 1/ f spectrum would be reproduced. As can be seen in the
subfigure (a), ongoing diffusion is disrupted by huge jumps, which are characteristic to
Lévy flights.

Figure 3. Statistical properties of the time series obtained by solving SDE with Lévy α-stable noise, Equation (16): (a) sample
fragment of the time series, (b) PDF, and (c) PSD of time series. Red curves correspond to numerical results, while black
curves are power–law best fits with exponents (b) λ ≈ 3.3, (c) β ≈ 1.

If we consider modeling only sub-diffusive processes, then we can study another
generalization of SDE (8), originally proposed in [96]. If we start with a Markovian process
described by the Itô SDE

d x(τ) = f [x(τ)]d τ + g[x(τ)]d W(τ). (21)

The drift and diffusion functions of the above SDE are given by

f (x) = σ2
(

η − λ

2

)
x2η−1, g(x) = σxη . (22)

We interpret the time τ as an internal (operational) time. For the trapping pro-
cesses that have a distribution of the trapping times with power–law tails, the physical
time t = T(τ) is given by the strictly increasing α+-stable Lévy motion defined by the
Laplace transform 〈

e−kT(τ)
〉
= e−τkα+ . (23)

Here, the parameter α+ takes the values from the interval 0 < α+ < 1. Thus, the
physical time t obeys the SDE

d t(τ) = d Lα+(τ), (24)

where dLα+(τ) stands for the increments of the strictly increasing α+-stable Lévy motion
Lα+(τ). For such physical time t the operational time τ is related to the physical time t via
the inverse α+-stable subordinator

S(t) = inf{τ : T(τ) > t}. (25)

Such subordination leads to power spectral density

S( f ) ∼
{

1
ωβ , 1− α+ < β < 1 + α+,

1
ω1+α+

, β > 1 + α+.
, β = 1 +

α+(λ− 3)
(η − 1)

(26)

Proposed SDEs (8), (16), and (21) have served as a basis to study heterogeneous diffu-
sion in a non-homogeneous medium [90,96,97] and time subordinated processes [98,99] as
well as the effects of non-linear variable transformations [100,101].
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In paper [98], we investigated the distinction between the internal time of the system
and the physical time as a source of 1/ f noise. We have introduced the internal (operational)
time into the earlier point process [21–23] together with additional equations relating the
internal time to the physical time. In this scenario, we can still recover power–law statistical
features similar to the ones obtained by solving Equation (8). In the financial markets, the
internal time could reflect the fluctuating human activity, e.g., trading activity, yielding the
long-range correlations in the volatility. The effective approach for the solution of highly
non-linear SDEs was proposed [98] by a suitable choice of the internal time and variable
steps of integration.

The effects of non-linear variable transformations [100,101] suggest that long-range
memory in certain cases can be just a measurement effect. As far as the non-linear transfor-
mation of the observable x to y

x =
1
yδ

, (27)

with δ being the transformation exponent, yields SDE for the variable y of the same form
such as Equation (8) for x.

2.5. Inverse Cubic Law for Long-Range Correlated Processes

The inverse cubic law is an established stylized fact stating that the cumulative
distributions of various financial market time series such as the number of trades, the
trade volume, or the return [12,14,15,19]. Thus, this law is as important for the modeling
as the consideration of long-range memory and fractal scaling, which are also stylized
facts [6,12,14,15,19]. We have in proposed [102] that the non-linear SDE yields both the
power–law behavior of the PSD and the inverse cubic law of the cumulative distribution.
This was achieved using the idea that when the market evolves from calm to violent
behavior there is a decrease of the delay time of multiplicative feedback of the system in
comparison to the driving noise correlation time. This results in a transition from the Itô to
the Stratonovich sense of the SDE and yields a long-range memory process.

We start from a simple quadratic SDE

d x = x2 ◦α d W (28)

where α is the interpretation parameter, defining the α-dependent stochastic integral of the
SDE (28),

∫ T

0
f (x(t)) ◦α dWt ≡ lim

N→∞

N−1

∑
n=0

f (x(tn))∆Wtn . (29)

Here, tn = n+α
N T with 0 ≤ α ≤ 1. Natural choices of the parameter α are: (i) α = 0,

pre-point (Itô convention), (ii) α = 1/2, mid-point (Stratonovich convention), and (iii)
α = 1, post-point (Hänggi–Klimontovich, kinetic, or isothermal convention) [103].

The quadratic SDE (28) is the simplest multiplicative SDE without the drift term
symmetric for the positive and negative deviations of some observable x. More generally,
the same process can be described by the delayed SDE [103]

d x(t) = f (x(t))d t + g(x(t− δ))ζτ
t d t. (30)

Here, f (x) represents arbitrary deterministic drift of the observable x, while g(x) ef-
fectively controls the diffusion as ζτ

t is the noise term, which is assumed to have correlation
time τ. Note that the diffusion function depends on the delayed value of the observable x
(by time interval δ).

It may be shown [103] that in the limit δ → 0 and τ → 0 (under the condition
δ/τ = const) SDE (30) can be transformed into

d x = f (x(t))d t + g(x(t)) ◦α d W (31)
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with the interpretation parameter being determined by

α

(
δ

τ

)
' 1

2(1 + δ/τ)
. (32)

Under the perturbation by the white noise, in a case of τ � δ, even for a short delay
in feedback δ, we achieve the Itô outcome, because there is no correlation between the
sign of the noise ζt and the time-derivative of the feedback g(x). On the contrary, under
the perturbation by the correlated noise, τ � δ, a correlation emerges between the sign
of ζt and the time-derivative of g(x). In this case the correlation yields the Stratonovich
outcome [103].

In general, the value of α may depend on the coordinate x and/or other system’
parameters. SDE (28) with α 6= 0 may be transformed into SDE in Itô sense

d x = 2αx3 d t + x2 d W. (33)

This SDE is a particular case of the general Itô Equation (8) yielding the power–law
steady-state PDF and the power–law PSD (10). These SDEs become identical for η = 2 and
λ = 4(1− α).

Let us note that 1/ f β noise emerges due to the large fluctuations in the time series,
while the finite time studies reveal the commonly observed magnitudes of the observable.
The common fluctuations can be modeled by the familiar in the financial application’s Itô
SDEs. On the other hand, the large rapid fluctuations of the violent market arise due to the
strong correlated influences; the processes of such a market are fast, all durations become
short in comparison to the herding correlation time, and, consequently, the market should
be modeled by the Stratonovich version of SDE.

For the modeling of such dynamics, we generalize Equations (28) and (33) with
x-dependent parameter α(x). Let

d x = 2α(x)x3 d t + x2 d W, (34)

with, e.g.,

α(x) =
1
2

[
1− exp

{
−
(

x
xc

)2
}]

, (35)

where xc is the Itô to Stratonovich interpretations crossover parameter. Equations (34) and (35)
represent transition from Itô to Stratonovich convention with an increase in the variable
x and decrease of the delay time of multiplicative feedback for larger x, according to
the Wong–Zakai theorem [103]. Detailed numerical analysis of the model represented by
Equations (34) and (35) is presented in paper [102].

2.6. 1/ f β Noise with Distributions other than Power–Law

Solutions of the SDE (8) will always have power–law statistical properties of the (10)
form; however, often noise with 1/ f β PSD is distributed according to PDF, which is not
power–law, but Gaussian or some other distribution. Here, we review two different
approaches, which allow for other distributions to be observed in time series with 1/ f β

spectrum: superstatistical and coupled SDE approaches.
In [104], it was suggested that the Poissonian-like process with the slowly changing

average inter-event time may be represented as the superstatistical process exhibiting 1/ f
noise. It was assumed that the inter-event time τk, obtained by solving Equation (2), repre-
sents not the actual (observed) inter-event time, but its average (reciprocal of the event rate).
In this setup, the actual inter-event time τ̂k would be given by the conditional probability

ϕ(τ̂k|τk) =
1
τk

e−τ̂k/τk , (36)
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similar to the non-homogeneous Poisson process. This additional randomization has no
influence on the lower frequencies of the PSD and the intensity of the signal.

The PDF of the observed inter-event time τ̂k may be derived from the superstatisti-
cal model,

p(τ̂k) =
∫ ∞

0
ϕ(τ̂k|τk)pk(τk)d τk. (37)

Equations (36) and (37) generate the q-exponential distribution used in the non-
extensive statistical mechanics and many real systems [105]. Detailed analytical derivations
and the numerical verification were presented in [104].

In the paper [38], a similar superstatistical approach was taken with respect to the
intensity of the signal x, obtained by solving SDE (8). The observed series x̂ is assumed to
be generated from x series by applying exogenous noise, which is described by an arbitrary
conditional distribution ϕ(x̂|x). In this approach, the steady-state distribution of x̂ is given by

p(x̂) =
∫ ∞

0
ϕ(x̂|x)p(x)d x. (38)

Analytical and numerical analysis of inter-trade duration, the trading activity, and the
return using the superstatistical method with the exponential and normal distributions of
the local signal, driven by the stochastic process, were discussed in detail in [38].

In later sections of this paper, we show that the superstatistical approach is not the only
approach that allows us to change the observed signal PDF. The coupled SDE approach,
proposed in [99], allows for more flexibility and easier interpretation of how the statistical
properties become independent of each other. The general form of the set of coupled SDEs
was derived from the scaling properties needed for the realization of 1/ f β noise [99]

d x = f (x)y2η d t + g(x)yη d W1, (39)

d y = σ2
(

η + 1− λ

2

)
y2η+1 d t + σyη+1

t d W2. (40)

Here, f (x) and g(x) are arbitrary drift and diffusion functions, which determine the
stationary PDF of x; W1 and W2 are uncorrelated standard Wiener processes. The first
equation describes the changes in the intensity of the signal, while the second equation
represents fluctuations in the rate of change. These coupled SDEs allow for 1/ f β spectrum
to be reproduced together with arbitrary steady-state PDF of the observed value x. It was
shown that the power–law slope of the PSD, β, of the time series of x generated by solving
SDEs (39) and (40) depends on the parameters η and λ as follows

β = 1 +
λ− 1

2η
. (41)

In Figure 4, we show that one can obtain a Gaussian distribution of x (subfigure (b))
together with 1/ f spectrum (subfigure (c)). In subfigure (a), one can visually see the impact
of the variations in the rate of change.
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Figure 4. Statistical properties of the time series obtained by solving coupled SDEs (39) and (40): (a) sample fragment of x(t)
time series, (b) PDF of the externally observed values x, and (c) PSD of x(t). Red curves correspond to numerical results,
while black curves are theoretical fits: (b) standard Gaussian PDF, (c) S( f ) ∼ 1/ f β.

2.7. Reproducing Statistical Properties of the Financial Markets

While qualitatively, the trading activity and the absolute returns have power–law
distributions and exhibit long-range memory property [14,19], corresponding empirical
statistical properties have a finer structure. In order to reproduce the empirical statistical
properties in detail, some modifications to the SDE are needed.

The author of [13] has determined that Hurst exponents of the trading activity time
series of 1000 US stocks are remarkably close: H ≈ 0.85. This implies that the PSD of the
trading activity should have a power–law slope β = 2H − 1 ≈ 0.7. The author of [13] has
also discovered the that slope of the PDFs of the trading activity also has a power–law
tail with exponent λ ≈ 4.4. It would be impossible to reproduce such values by using
SDE (8), because Equation (10) implies that if λ > 3, then β > 1. In our analysis of 26
US stocks [106], we have confirmed the slope of the PDF, but we have observed a more
complicated PSD, with two slopes instead of one (β < 1 for both slopes).

Both of these issues are resolved by a modified SDE for trade intensity, n [33]:

d n = σ2
[

η − λ

2
+
(n0

n

)2
]

n2η−1

(nε + 1)2 d t + σ
nη

nε + 1
d W. (42)

The problem of the two PSD slopes is resolved, because this SDE has two different
effective η values. For n � ε−1 the effective η is equal to the specified parameter value
(in the numerical simulations we have used η = 5/2, thus η̂1 = 5/2). For n � ε−1 the
effective η is one smaller than the specified parameter value η̂2 = η − 1 = 3/2). The
slope of the PDF increases from the value predicted in Equation (10) due to integration,
as trading activity is defined as number of trades per time window w, or in the current
parametrization, an integral of trade intensity: N[t] =

∫ t+w
t n(u)d u.

Parameter n0 and the related term in the drift function ensure that n would not become
very small as the term causes the potential to rapidly grow for n < n0. This helps us avoid
negative trade intensities, which are impossible by definition, as well as ensure some level
of minimal trading activity, which in our experience may differ for different stocks and
different markets [37,106].

In Figure 5, we have shown that the stochastic model can match statistical properties
of MMM stock traded on NYSE. While the matches are not perfect, some of the noticeable
differences can be explained by the fact that the stochastic model does not take into account
intraday seasonalities.
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Figure 5. Trading activity (a) PDF and (b) PSD for MMM stock traded on NYSE (red curve) and
the numerical solutions of SDE (42). Model parameters values: η = 2.5, λ = 4.3, σ2 = 0.045,
ε = 0.36, n0 = 0.14. Empirical and numerical PDF was obtained by considering trades in the 300 s
time window.

Reproducing statistics of absolute return requires another modification of the SDE [36].
Our empirical analysis, confirmed by the other authors [105], indicated that the q-Gaussian
distribution [38,107] seems to be a good fit for the empirical absolute return, defined as the
log–price difference, distribution. This is achieved by:

d x = σ2

[
η − λ

2
−
(

x
xmax

)2
] (

1 + x2)η−1(
1 + ε

√
1 + x2

)2 x d t + σ

(
1 + x2) η

2

1 + ε
√

1 + x2
d W. (43)

To reproduce the full complexity of the empirical data, another ingredient is needed,
namely external noise, which can be understood as an effect of news flow or the distortions
caused by the discrete order flow:

rt = ξ

{
r0 = 1 +

2
w

∣∣∣∣∫ t

t−w
x(u)d u

∣∣∣∣, q = 1 + 2/λ2

}
. (44)

This relation was inspired by the superstatistical approach (discussed in Section 2.6)
and determined by trying to fit the empirical data as best we can. We have empirically
determined that the best fit is obtained when ξ is a process that generates uncorrelated
random variates from a q-Gaussian distribution with q ≈ 1.4 (λ2 ≈ 5) and r0 being one
minute (w ≈ 60 s) moving average filter of the solutions of SDE (43). Using this model,
we were able to reproduce empirical statistical properties of stock from New York (abbr.
NYSE) and Vilnius stock exchanges (abbr. VSE) [36,37].

In Figure 6, we have demonstrated that the stochastic model reproduces empirical data
reasonably well from NYSE and VSE. Some of the noticeable differences can be observed
because we do not take into account the intraday seasonality, and we do not directly take
into account that VSE had relatively low liquidity (many one minute time intervals have
zero returns). Differing liquidity is a likely explanation for the differences seen between
NYSE and VSE, too.
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Figure 6. Comparison of empirical (a) PDFs and (b) PSDs of absolute one minute return as observed in NYSE (red curves)
and VSE (blue curves) stocks. Empirical results are compared against the model, generated by the SDE (43) and exogenous
noise Equation (44), (black curves). Model parameter values: η = 2.5, λ = 3.6, ε = 0.017, xmax = 103, λ2 = 5.

2.8. Variable Step Method for Solving Non-Linear Stochastic Differential Equations

Note that SDEs (8), (42), and (43) are not Lipshitz continuous [68]; thus, they have to
be solved by imposing boundary conditions, which would prevent the explosion of the
solutions. An alternative way to achieve Lipshitz continuity is to include additional terms
for restricting diffusion, which would have no detrimental effects on the PSD and PDF of
the time series. Such is the role of the n0 term in SDE (42) and xmax term in SDE (43).

Lacking Lipshitiz continuity causes another complication in solving the SDEs: the
standard Euler–Maruyama or Milsten methods [68] do not yield good results with reason-
able step sizes. This complication is resolved by using a variable step size. The core idea
is to use a larger step size whenever the anticipated changes would be small and use the
smaller step size whenever significant changes are coming. The mathematical form of the
variable step size is often unique to the SDE being solved, but a good rule of thumb would
be to linearize the drift and the diffusion functions. See [69,70] for more details.

For example, SDE (8) in our works is solved by the following set of difference equations:

xi+1 = xi + κ2
(

η − λ

2

)
xi + κxiεi, (45)

ti+1 = ti + κ2x2−2η . (46)

In the above κ is a small number that acts as an error tolerance parameter. The smaller
it becomes, the better xi reproduces desired statistical properties given by Equation (10),
but at the expense of numerical computation time.

Similarly, this variable step method can be also applied to SDEs with α-stable Lévy
noise. For example, we can solve SDE (16) numerically by using the following set of
difference equations

xk+1 = xk + καγxk +
κ

σ
xkξα

k , (47)

tk+1 = tk +
κα

σα
x−α(η−1)

k , (48)

where ξα
k is a random variable having α-stable Lévy distribution. This set of difference

equations should be solved only with the reflective boundaries at x = xmin and x = xmax
using the projection method [108]. In nutshell, if the variable xk+1 acquires the value outside
of the interval [xmin, xmax] then the value of the nearest reflective boundary is assigned to
xk+1. Iterative equations for SDEs (42) and (43) are a bit more complicated [36,106], but
they still remain qualitatively the same.
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Note that the introduction of the variable time step into the numerical solution of an
SDE is equivalent to introducing the subordination scheme directly into the SDE, when
internal time and physical time are related by a non-linear transformation [98].

3. Agent-Based Model of the Long-Range Memory in the Financial Markets

In the previous section, we have discussed how our group has started from the physi-
cally motivated point process model and arrived at the general class of SDEs reproducing
long-range memory phenomenon; however, this generality has its drawback: microscopic
mechanisms of the modeled systems are ignored. We then tried to investigate some existing
financial ABMs for the possibility to derive SDE of a similar form to SDE (8). We have
failed to do so with some prominent yet complicated ABMs, such as the ones proposed
in [109,110] (for more prominent ABMs of the time, which include some other candidates
we have tried, see [111]); however, we have found success with Kirman’s herding model,
initially proposed in [112] and later analyzed in financial market context by [113,114].

3.1. Kirman’s Herding Model

Kirman’s herding model can be defined via two one-step transition probabilities in a
system with two possible states:

p(X → X + 1) = (N − X)[σ1 + hX]∆t, (49)

p(X → X− 1) = X[σ2 + h(N − X)]∆t. (50)

In the above, X is the number of agents in state 1 and N is the total number of agents
within the system. Total number of agents is conserved, so the number of agents in state 2 is
trivially given by N− X. Here, ∆t is a short time window during which only one transition
should be likely. Transitions may occur either due to independent behavior (governed
by parameters σi), or due to recruitment (governed by parameter h). Using birth–death
process formalism [115] it is easy to find SDE corresponding to Kirman’s herding model
with x = X/N:

d x = [(1− x)σ1 − xσ2]d t +
√

2hx(1− x)d W. (51)

3.2. Kirman’s Herding Model for the Financial Markets

Evidently, SDE (51) is not of the same form as SDE (8), but we have not yet discussed
the meaning of states 1 and 2. In many financial ABMs of the time, it was a common choice
to assume that agents represent chartist and fundamentalist traders [111]. Assuming that
chartist traders trade based on the wide variety of technical trading tools, which often
produce conflicting predictions, their excess demand (difference between the supply and
demand generated by the group as a whole) is given by:

Dc = r0Xc(t)ξ(t), (52)

where Xc(t) is the number of chartist traders and ξ(t) is their average mood (describing
average sentiment to buy or sell). The relative impact of the chartists’ traders in comparison
to fundamentalist traders is given by r0. Fundamentalist traders on the other hand are
often assumed to trade based on the quantity known as a fundamental price, Pf , with the
expectation that the price, P(t), in the long run, will converge towards the fundamental
price. Under this assumption, their excess demand is given by:

D f = X f (t) ln
Pf

P(t)
. (53)

Using the excess demand functions of the both groups, we can use Walras law [116] to
obtain the expression for the price[40,113]:
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P(t) = Pf exp

[
r0

Xc(t)
X f (t)

ξ(t)

]
. (54)

The log–return of the price is evidently given by:

rw(t) = ln P(t)− ln P(t− w) = r0
xc(t)
x f (t)

ζw(t). (55)

In the above, ζw(t) is the mood change function over time window w. As the mood
changes on a very short time scale and we are interested in the long-term dynamics, we
can simply assume that ζw(t) is some kind of uncorrelated noise and consider only a
more slowly varying ratio between fractions of chartists and fundamentalists. As the total
number of agents is fixed, we can define long-term component of return, modulating
return, as:

y(t) =
x(t)

1− x(t)
. (56)

SDE for the modulating return is given by:

d y = [σ1 + (2− σ2)y](1 + y)d t +
√

2hy(1 + y)d W, (57)

which is roughly similar to the SDE (8) with η = 3/2 and λ = σ2
h + 1.

This SDE can be generalized by introducing variable event rate τ(y) = y−α. This
addition can be explained by the fact that it is well known that returns and trading volume
correlate and the best correlation is achieved between squared returns and volume [16–18,117],
hence suggesting that α = 2 is a likely candidate. With this extension and when considering
only the highest powers of y (as the large y tend to influence the PSD), we obtain [40]:

d y = h(2− σ2)y2+α d t +
√

2hy3+α d W. (58)

Now this SDE is completely equivalent to the SDE (8) with η = 3+α
2 and λ = σ2

h + α+ 1.
Consequently PSD of y will have a frequency range in which:

Sy( f ) ∼ 1/ f β, β = 1 +
σ2
h + α− 2

1 + α
. (59)

In the later papers, we modified this herding ABM until it was able to reproduce
the absolute return PDF and PSD close to the empirical absolute return PDFs and PSDs.
In [118], we have shown that considering mood dynamics can help in reproducing fractured
PSD. In [41], we have reliably introduced the exogenous noise, much similar to what was
achieved with the SDE driven model in [36], into this ABM, thus producing a consentaneous
model. In [119,120], we have explored the opportunities to control the fluctuations in
the artificial financial markets driven by the herding ABM, showing that the random
trading, control strategy suggested in [121], may also destabilize the market. In [42], we
have removed the assumption about the exogenous noise and replaced it with order book
dynamics, thus presenting another possible explanation for fracture in the PSD: it also arises
due to market price lagging behind the changes in the equilibrium price, Equation (54).
Notably, the order book version of the model was able to reproduce both trading activity
and absolute return statistical properties at the same time.

In Figure 7, we have reproduced one of the figures from [41] to show how well
the ABM can reproduce the empirical data from New York, Vilnius, and Warsaw stock
exchanges (abbr. WSE). Here, we have shown that the model was able to reproduce 10 min
absolute return PDFs and PSDs from the different stock exchanges, but in the original
article, more intraday time scales are covered, and seasonality was also taken into account.
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Figure 7. Comparison of empirical (a) PDFs and (b) PSDs of absolute ten minute return as observed in NYSE (red curves),
VSE (blue curves), and WSE (green curves) stocks. Empirical results are compared against the consentaneous model, defined
in [41]. Model parameter values are the same as in Figure 2 of [41].

3.3. Kirman’s Herding Model, Voter Model, and the Opinion Dynamics Context

Attentive reader with a background in opinion dynamics will likely notice that Kir-
man’s model is remarkably similar to the well-known voter model [47–49]. They are
identical, which has prompted us to question whether the voter model is truly a model
for voters, which Fernandez–Garcia et al. in [122] also raised. This has lead us to explore
and model statistical properties of spatially heterogeneous electoral data [43]. As we have
noticed segregation effects in the electoral data, we have continued our investigation by
considering the migratory nature of census and electoral data [44]. Similar approaches were
taken by others as well. Sano and Mori [123] have looked into spatiotemporal Japanese
election data in their model, assuming a noticeable fraction of stubborn voters who do not
allow for the party’s popularity to drop below a certain threshold. Braha et al. [124] have
considered spatiotemporal US election data and have also emphasized the role of opinion
leaders and spatial variability of external influences. Fenner et al. [125,126] have started
from a generative model inspired by survival analysis, but in later works transition to
the SDE framework [127,128]. Michaud and Szilva [129] have fixed issues with the model
originally proposed by Fernandez–Garcia et al. [122], mainly, they have redefined how
the noise term is handled so that the model would be more mathematically well-posed.
Marmani et al. [130] have provided a similar empirical analysis of Italian electoral data
and provided an additional perspective from the point of view of Shannon entropy.

As is common in opinion dynamics [47–49], we have also explored the influence of
network topologies on the statistical properties of Kirman’s herding model. Namely, we
have demonstrated [131] a continuous transition from extensive case, characterized by
localized interactions, Gaussian distributions, and Boltzmann entropy, to a non-extensive
case, characterized by global interactions, q-Gaussian distribution, and Tsallis entropy.
Similar results were demonstrated earlier by Alfarano and Milakovic [132], who have
explored how Kirman’s herding model works on random, Barabasi–Albert, and small-
world network topologies. Similar observations were also made in [133], but Carro et
al. have used the so-called annealed approximation, which takes into account network
structures better than the usual mean-field approximation.

Recently, we have also used the noisy voter model to model parliamentary pres-
ence [45]. A paper by Vieira et al. [134] has inspired us to look into the Lithuanian
parliamentary presence data. Unlike Vieira et al., we have observed not a ballistic diffusion
regime but superdiffusive behavior; however, both of these regimes can be obtained from
the noisy voter model with imperfectly acting agents. Namely, agents can internally intend
to attend the parliamentary session or skip, but the action itself may be random despite
being conditioned on the intended action. As Vieira et al. have used fractional diffusion
equation as a model, this result implies that it may be possible to fake long-range memory
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encoded in the fractional diffusion equation by using Markov models employing non-linear
transformations of the voter model [101].

The classical voter model incorporates only a recruitment mechanism, despite other re-
sponses to social interaction being possible. For example, diamond model [135] posits that
independence and anti-conformity mechanism may be important to understanding human
social behaviors. Similarly, Latane social impact theory [136] predicts the importance of sup-
portive interactions—namely, individuals strengthening the conviction of their like-minded
peers. While this theory was recently studied in the opinion dynamics context [137,138],
it has not been combined with the voter model. One could also consider majority-vote
models [139–141] and q-voter models [142,143] as implementing some kind of support by
the like-minded agents. In majority-vote models, recruitment is only possible if a majority
of agents have opposing opinions (therefore, the majority becomes harder to convince,
but the minority remains as susceptible to change). In most q-voter models, a group of q
agents must share an opinion to convince a single agent. We have implemented supportive
interactions by decreasing the transitions rates of the agents by an amount proportional to
the number of like-minded agents. In some cases, these modifications cause the transition
rates go to zero, which freezes the system state. Similar qualitative behavior is observed in
works, which consider non-Markovian mechanisms, such as implicit opinion freezing or
aging [144–147]. This serves as another example that highly non-linear Markovian models
can lead to similar dynamics as the dynamics generated by the non-Markovian models.

4. Searching for the True Long-Range Memory Test

We have reviewed our experience of modeling long-range memory phenomena using
Markovian models in the earlier sections. We have shown numerous examples of non-
linearity causing behaviors and dynamics reminiscent of the models with true long-range
memory (such as delayed feedback, aging, freezing, and fractional dynamics). In this
section, we present our latest endeavor to find a statistical test, which would distinguish
whether the real-life systems possess true or spurious long-range memory. We proposed
a test earlier, based on the specific first-passage times, which we refer to as the burst and
interburst duration analysis (abbr. BDA) [148–151].

Investigating empirical PDF of burst and interburst duration compared with the model
properties, we have interpreted the observed long-range memory in the financial markets by
ordinary non-linear SDEs representing multifractal stochastic processes with non-stationary
increments [152,153]. One has to take into account the interplay of endogenous and
exogenous fluctuations in the financial markets to build a comprehensive model of this
complex system [154]. Non-linear SDEs might be applicable in the modeling of other
social systems, where models of opinion or population dynamics lead to the macroscopic
description by these equations [148–151]. The description by SDEs is an alternative to
the modeling incorporating fractional dynamics, if power–law statistical properties are
observed in the empirical data.

The BDA employs the dependence of first-passage time PDF on Hurst exponent H for
the fractional Brownian motion [56,152,153,155].

FBM, FLSM, and ARFIMA [156–158] form the theoretical background of long-range
memory and self-similar processes. These processes, first of all, served for the modeling of
systems with anomalous diffusion and expected fractional dynamics [159]. We can consider
fractional models possessing true long-range memory as they have correlated increments.
Self-similar processes with non-Gaussian stable increments are essential for the modeling
of social systems as well. In the financial markets, power–law distributions of noise often
interplay with autocorrelations [160–162]. In [163], we implemented BDA for the order
disbalance time series seeking to confirm or reject the long-range memory in the order flow.
Further, we analyzed the same LOBSTER data of order flow in the financial markets [164]
from the perspective of FLSM and ARFIMA models seeking to identify the impact of
increment distributions and correlations on estimated parameters of self-similarity [165].
The revealed peculiarities of non-Gaussian fractional dynamics in this financial system
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raise new questions about whether used sample estimators are reliable. In this section, we
test various long-range memory estimators such as mean squared displacement, absolute
value estimator, Higuchi’s method, and BDA on discrete fractional Lèvy stable motion
represented by the ARFIMA sample series.

4.1. Fractional Processes with Non-Gaussian Noise

FBM serves as a model of the correlated time series with stationary Gaussian incre-
ments and generalizes the classical Brownian motion [1]. One can define FBM, BH(t), of
the index H (Hurst parameter) in the interval 0 < H < 1 as the Itô integration over classical
Brownian motion B

BH(t) =
∫ ∞

−∞

(
(t− u)d

+ − (−u)d
+

)
d B(u), (60)

where d = H− 1/2, (x)+ = max(x, 0). The parameter H in FBM quantifies fractal behavior,
long-range memory, and anomalous diffusion. This is not the case for the other more
general stochastic processes. Thus, in this contribution the Hurst parameter H is responsible
only for the fractal properties of the trajectories. We will consider fractional Lèvy stable
motion as more general process with non-Gaussian distribution Lα

H(t) representing an
integrated process of independent and stable stationary increments d Lα(u) [156]

Lα
H(t) =

∫ ∞

−∞

(
(t− u)d

+ − (−u)d
+

)
d Lα(u), (61)

where parameter d depends on H and parameter of stable distribution α, d = H − 1/α.
The parameter α characterizes special class of stable, invariant under summation, distri-
butions [166], useful in the modeling both super and sub-diffusion [159]. Here, we are
interested in the symmetric zero mean, stable distribution defined by the stability index in
the region 0 < α < 2. This new parameter is responsible for the power–law tails of the new
PDF P(x) ∼ |x|−1−α.

FBM and FLSM exhibit identical self-similar scaling behavior in statistical sense,

BH(ct) ∼ cH BH(t), Lα
H(ct) ∼ cH Lα

H(t), (62)

where x ∼ y means that x and y have identical distributions. One can establish the relation
with the fractal dimension of trajectories D = 2− H [167]. In analogy to the notions used
in fractal geometry, these types of processes can be considered self-similar.

Mean squared displacement (abbr. MSD) is another important statistical property of
various complex systems. Mathematically it was introduced as an ensemble average of the
possible microscopic trajectories x(t) [159]

〈(x(t)− x(0))2〉 ∼ tλ, λ = 2d + 1. (63)

Note that Equation (63) is valid for the FBM, while the ensemble average of FLSM
diverges [156]. For the FBM d = H − 1/2, while for the FLSM λ is not defined. When
d < 0, one observes dynamics as sub-diffusion and for d > 0 as super-diffusion.

In experimental or empirical data analysis, one usually deals with discrete-time sample
data series {Xi}. It is challenging to decide which model to apply in the description of
empirical data when diffusion is anomalous d 6= 0, as observed dynamics in the sample
data can originate from the long-range memory or power–law of the noise. We will use the
sample MSD defined as

MN(k) =
1

N − k + 1

N−k

∑
i=o

(Xi+k − Xk)
2. (64)

Let us also introduce increment process {Yi = Xi − Xi−1}, which is extracted from
the sample data series. In the case of the FBM increment process, it is called fractional
Gaussian noise (abbr. FGN), and in the case of FLSM, it is called fractional Lèvy stable
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noise (abbr. FLSN). The authors in [156] provide evidence of FLSM non-ergodicity and that
MN(k) ∼ kλ, where λ = 2d + 1, for large N, k, and N/k. Thus, the MSD sample analysis
of time series with FLSM assumption becomes very important providing estimation of the
memory parameter d. The long-range memory usually is defined through the divergence
of autocovariance ρ(k), ∑∞

k=1 ρ(k) = ∞, [11]

ρ(k) =
1

N − k + 1

N−k+1

∑
i=1

YiYi+k = 2−1{(k + 1)2H − 2k2H + |k− 1|2H} (65)

∼ H(2H − 1)k−γ, k→ ∞.

For the FGN, the exponent of autocorrelation is defined by the Hurst parameter
γ = 2− 2H. We see that FBM is an essential long-range memory process with various
statistical properties defined by the Hurst parameter. Thus, researchers use an extensive
choice of statistical estimators to determine H and evaluate memory effects even when
investigated time series deviate from the Gaussian distribution.

Accepting a more general FLSM approach, one has to reevaluate previously used esti-
mators [163], as we now have more independent parameters. The stability index 0 < α < 2
and the memory parameter d both contribute to the observed sample properties. Since in
the Lèvy stable case, the second moment is infinite the measure of noise autocorrelation,
e.g., the co-difference [166,168], is used instead of covariance

τ(k) =∼ k−(α−αH). (66)

Note that the parameter γ = α− αH = α− αd− 1, has a strong dependency on α,
when for the Gaussian processes, it was considered just as the indicator of long-range
memory. Consequently, the previously used sample power spectral density analysis, the
rescaled range analysis [169–171], or multifractal detrended fluctuation analysis [172,173]
has to be reevaluated from the perspective of FLSM [163,165].

Earlier, we have introduced the burst and interburst duration analysis (BDA) as one more
method to quantify the long-range memory through the evaluation of H [149,152,153,163].
For the one dimensional bounded sample time series, any threshold divides these series into a
sequence of burst Tb

j and interburst Ti
j duration, j = 1, ..Nb. The notion of burst and interburst

duration follows from the threshold first-passage problem initiated at the nearest vicinity
of the threshold. The burst duration is the first-passage time from above and interburst
from below the threshold, see [149,152,153,163] for more details. The empirical (sample) PDF
(histogram) of Tj gives us the information about H, as the power–law part of this PDF should
be T2−H [56]. We have to revise the method of BDA from the more general perspective of
FLSM [165], as the question of which properties can be recovered using this method is open
and has to be investigated.

The method of absolute value estimator (abbr. AVE) works correctly even for the
time series with infinite variance [11,167,168,174]. The method is based on mean value
δn calculated from sample series Yi and evaluating its scaling with length of sub-series n.
Divide the increment series Yi into blocks of size n, so that m · n = N, and average within
each block to obtain the aggregated series Y(n)

j = 1
n ∑

jn
i=(j−1)n+1 Yi. Calculate δn

δn =
1
m

m

∑
j=1
|Y(n)

j − 〈Y〉|, (67)

where 〈X〉 is the overall series mean. Then the absolute value scaling parameter HAV can
be evaluated from the scaling relation

δn ∼ nHAV−1. (68)
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One more almost equivalent estimator of scaling properties regarding the FLSM is
Higuchi’s method [11,175]. It relies on finding fractional dimension D of the length of the
path. The normalized path length Ln in this method is defined as follows

Ln =
N − 1

n3

n

∑
i=1

1
m− 1

m−1

∑
j=1
|Xi+jn − Xi+(j−1)n|, (69)

and Ln ∼ n−D, where D = 2− H.
We investigate four methods: AVE, Higuchi’s, MSD, and BDA for the analysis of

ARFIMA time series as a test sample of FLSM.

4.2. Numerical Exploration of the Accumulated ARFIMA(0,d,0) Time Series

Let us consider the discrete process {Xi} defined as a cumulative sum,

Xi+1 = Xi + Yi, (70)

of correlated increments {Yi}. Let the increments be generated by the ARFIMA(0,d,0)
process [158,176]:

Yi =
∞

∑
j=0

Γ(j + d)
Γ(d)Γ(j + 1)

Zi−j, (71)

with random Zi−j from the domain of attraction of an α-stable law with 0 < α ≤ 2. One
can calculate the sum in Equation (71) using the fast Fourier transform algorithm. The
approximate relation between FLSM and ARFIMA can be derived using Riemann-sum
approximation, see [176] for details.

Seeking to generate comparable time series with that analyzed in [165], the order
disbalance time series of the financial markets we choose is N = 7× 106, nine values of
d = {−0.4,−0.3,−0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4} and four values of α = {2, 1.5, 1.25, 1.0}. The
sample time series for any set of parameters have been evaluated using four estimators
described above: MSD, AVE, Higuchi’s estimator, and BDA. We evaluate H as described
in the previous subsection. First of all, we partition time series Yi in subsets with 5× 105

time steps and accumulate them to obtain 14 subseries Xi. Then, the exponent λ or the
Hurst parameter are evaluated for each subseries using MSD, AVE, and Higuchi’s sample
estimators. Finally, we calculate the mean and standard deviation of defined 14 λ and H
sets. Estimated d we calculate using d = H − 1/α or d = (λ− 1)/2 in MSD case. The
graphs in Figure 8 of estimated d versus used ARFIMA model d serve as a good test of
used estimators.

Figure 8. Comparison of the MSD (a), AVE (b), and Higuchi (c) estimator performance when estimating d from the
accumulated ARFIMA(0,d,0) series in the unbounded case, {Xi} generated by Equation (70). Different curves correspond
to the different values of the noise distribution stability parameter: α = 2 (red triangles), 1.5 (green diamonds), 1.25 (blue
squares), and 1 (black circles).

Our numerical result given in subfigure (a) confirms the theoretical prediction for
the sample MSD MN(k) ∼ k2d+1 [156] as estimated d using this relation almost coincides
with model d for all values of α. It is accepted that two estimators, absolute value and
Higuchi’s, are almost equivalent and should be applicable for the analysis of fractional
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processes with stable distribution [11,167,168,174]. Indeed, the results of our numerical
investigation, see (b) and (c) subfigures in Figure 8b,c, confirm the equivalence of these
estimators. Nevertheless, the estimated values of memory parameter d deviate considerably
from its model value, when α→ 1, and these deviations are much more prominent for the
super-diffusion case d > 0. These deviations do not arise as a computational effect, as the
estimated relative standard deviation decreases from 0.15 to 0.02 for the evaluated H in the
investigated interval of d. Fortunately, this result does not contradict the study [165], where
we used these estimators to evaluate d in empirical order disbalance time series exhibiting
sub-diffusion.

It is important to note that the estimators, MSD, AVE, and Higuchi’s should work
well only for the unbounded time series when the most physical systems and processes are
of finite size and duration. In all such cases, boundary effects might become important,
and one must choose or propose more reliable estimators [167]. The BDA considered in
our previous work [149,152,153,163], probably, can serve as an alternative approach. This
method works better for the bounded time series, where more intersections of series with
the threshold can be expected. Thus, in this contribution for the BDA, we restrict the
diffusion of Xi to the interval [−Xmax, Xmax] (in our analysis we use Xmax = (105)2d+1).
This restriction is implemented as a soft boundary condition:

Xi+1 = max(min(Xi + Yi, Xmax),−Xmax). (72)

This iterative relation replaces Equation (70) in the {Xi} series generation algorithm.
We define the PDF of the burst and interburst duration Tj for the whole set of time steps
N = 7× 106 and the series threshold equal to zero mean. Note that only in this symmetric
case PDF’s of burst and interbust duration coincide. Seeking to understand how the
diffusion restriction mechanism impacts the results of other estimators, we use the same
restriction mechanism for the 14 subseries obtained after the partition procedure. We
present the results of this analysis in Figure 9.

Figure 9. Comparison of the MSD (a), AVE (b), Higuchi (c), and BDA (d) estimator performance
when estimating d from the accumulated ARFIMA(0,d,0) series in the bounded case, {Xi} generated
by Equation (72). Different curves correspond to the different values of the noise distribution stability
parameter: α = 2 (red triangles), 1.5 (green diamonds), 1.25 (blue squares), and 1 (black circles).

Though the used diffusion restriction is relatively soft and changes the direction of
movement in the limited number of trajectories points, the results of MSD, AVE, and
Higuchi’s estimators changed very considerably—compare subfigures (a–c) with the corre-
sponding results in Figure 9. Contrary, the results obtained using H defined by BDA, see
subfigure (d), resembles AVE (b) and Higuchi’s estimator (c) subfigures from unbounded
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series Figure 9. Further investigation is needed to define the best methods and sample
estimators for evaluating parameters of fractional time series impacted by various diffusion
restrictions. The vast amount of data available from the financial markets can serve as
empirical time series considered from the perspective of FLSM.

5. Future Considerations

Here, we have reviewed our approaches to modeling the long-range memory phe-
nomenon and power–law statistics in a variety of complex systems. Our approach differs
from the usual approach taken by mathematicians in that we have used Markovian models
instead of the non-Markovian alternatives. We were able to reproduce similar behaviors
due to our models being driven by various non-linear dependencies. In the case of SDEs,
non-linearity may cause the increments of the stochastic process to be non-stationary and,
by consequence, cause spurious long-range memory [177,178]. The many models we have
built over the years are not models of true long-range memory; however, the critical ques-
tion is whether our models capture the memory as observed in the financial markets and
possibly other socioeconomic complex systems. Section 4, which describes our most recent
endeavor, hints at three components that are needed to provide an answer.

The first component is a statistical test, which should distinguish between spurious
and true long-range memory. Currently, we are considering the BDA method [148–151],
which performs reasonably well in comparison to the alternatives. The core idea of the
method is that for any one-dimensional Markovian random walk first-passage time PDF
should be a power–law with exponent −3/2 at least for some of the duration. Deviations
from this law could indicate the presence of true long-range memory. Though the method
may fail when the stochastic process is not one-dimensional, the study of what happens in
the multidimensional case, e.g., as in [99], is pending. Other challenges may also arise, as
discussed in Section 4.

The second component would be a selection of models exhibiting both spurious
and true long-range memory. Our prior research has introduced a variety of models of
spurious long-range memory; hence, the next steps would be formulating comparable
alternative models and studying properties of the existing long-range memory models.
Here, we have focused on estimating long-range memory in the fractional Lévy stable
motion (modeled using ARFIMA(0,d,0) discrete process), which is a generalization of the
fractional Brownian motion; however, in general, other models could also be considered, for
example, the multiplicative point process (see Section 2) could be generalized by replacing
uncorrelated Gaussian noise with fractional Gaussian noise. Other correlation structures
or variable pulse duration could also be considered as an extension [179]. Other notable
alternatives and extensions include continuous-time random walk [180] and complex
contagion frameworks [181,182].

The third component would be a variety of data from socioeconomic complex systems.
Many of our earlier approaches relied on high-frequency absolute return and trading
activity time series, but in our most recent works, we have shifted our attention to the order
book data obtained from LOBSTER [164]. Order book data seem to invite a more general
approach by understanding the data within FLSM or ARFIMA mindset for a broad class of
anomalous diffusion processes [157,167,168]. The vast data in social and financial systems
have to be investigated to identify and validate the fractional dynamics and long-range
memory. Our first results in this direction [163,165] question the interpretation of long-
range memory in the order flow data of financial markets. First of all, a prudent choice of
estimators based on FLSM and ARFIMA assumptions are needed. After extensive analysis
from this perspective, it would be possible to decide whether the investigated social system
exhibits true long-range memory or observed power–law statistical properties are just the
outcome of strong non-linear effects.

Research effort combining all these three components could yield a better understand-
ing of the long-range memory phenomenon as it is observed in the variety of complex
systems. The comprehensive interpretation of long-range memory observed in the financial
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and other social systems should considerably contribute to developing advanced analytical
tools for applications in financial markets. Thus, we have focused on the description and
explanation of the long-range memory phenomenon. Notably, a few more recent works
refer to or use some of our results and are more application-minded. In [73] a non-linear
SDE was derived, providing both physical and economic arguments, to study the per-
formance of EUR/CHF exchange rate. The derived SDE belongs to the class described
by (8). The author of [183] has considered the relationship between aging and long-range
memory phenomena in a couple of physics experiments: blinking-quantum-dots, single-file
diffusion, and Brownian motion in a logarithmic potential. The author of [184] has shown
that SDE (8) applies to the modeling of the dynamics on microblogging networks. The
author of [185] has considered the effects of perturbations on the stability of power–law
distributions in general with an application to wealth distributions. The author of [186]
tested the applicability of simple stochastic models to the modeling of non-stationary
behavior of intraday tick-by-tick returns. The author of [187] has tested forecast robustness
of non-linear GARCH model when time series exhibit high positive autocorrelation. Mean
reversion phenomenon was studied in Karachi Stock Exchange data from the perspective
of GARCH models in [188]. The authro of [189] has compared the performance of non-
linear SDE models against Black and Scholes model, which is one of the models used by
the practitioners. Various modifications of Heston model, another model favored by the
practitioners, are also reminiscent of SDE (8) [190]. We hope to inspire and maybe take up
more application–minded endeavors.
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The following abbreviations are used in this manuscript:

ABM agent-based model
APFA Applications of Physics in Financial Analysis
ARCH autoregressive conditional heteroscedasticity
ARFIMA autoregressive fractionally integrated moving average
AVE absolute value estimator
BDA burst and interburst duration analysis
COST European Cooperation in Science and Technology
FBM fractional Brownian motion
FGN fractional Gaussian noise
FIGARCH fractionally integrated GARCH
FLSM fractional Lèvy stable motion
FLSN fractional Lèvy stable noise
GARCH generalized ARCH
MSD mean squared displacement
NYSE New York stock exchange
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PDF probability density function
PSD power spectral density
SDE stochastic differential equation
VSE Vilnius stock exchange
WSE Warsaw stock exchange
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