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Short Commentary
Over the past 10 years, the number of publications characterizing 

Mesenchymal Stem Cells (MSCs) has increased more than 10 fold 
(Figure 1) [1]. This is due to the realization of MSCs ability to home to 
sites of disease and tissue injury, as well as to modulate the actions of 
the immune system [2-16]. The plasticity of these cells and their ability 
to exhibit either a type 1 or type 2 response [17-19] has made them the 
focus of intense research for clinical purposes. Even with the increased 
interest in these cells, debate exists as to the fate of exogenously 
administered MSCs, including their mode of action and persistence in 
vivo [20,21]. Additional factors that complicate these determinations 
include the use of mouse [11,14,20] vs. human MSCs (hMSCs) 
[2,3,13,21], as well as the use of immunodeficient [2,3,12,13,16] vs. 
immunocompetent [9,15,21] mouse models when studying hMSCs. All 
of these caveats have led to reports of MSCs persisting in vivo for various 
durations from days [9,20] to weeks [15] after I.V. administration. 
Additionally, it has been shown that phagocytic granulocytes, 
composed largely of the monocyte/macrophage lineage, can take up 
and transport pieces of I.V. administered MSCs in immunocompetent 
mice [21]. Therefore it is possible that immunomodulatory effects 
seen upon MSC administration may be secondary to the effects of 
the MSCs on other host cells, which then home to sites of injury or 
disease [20]. The use of low resolution imaging modalities, including 
bioluminescence (BLI), PET and MRI, provides distribution data for 
administered MSCs in a global sense [8,9,15,22,23]. However, these 
inherently low-resolution imaging modalities do not address the 
dynamic intercellular interplay between MSCs and host immune cells, 
even in studies involving commonly employed immunocompromised 
mouse models that still contain abundant innate immune cells such as 
granulocytes which could be involved in the mechanism of action by 
MSCs in vivo [24-27]. Even as the number of MSC studies continues to 
grow exponentially, high-resolution in vivo imaging studies, especially 
dynamic intravital two-photon imaging studies, which are capable of 
addressing some of these questions in vivo, are lacking (Figure 1). It is 
therefore particularly important to devise a system to better determine 
the fate of these cells, their mode of action, and the role of other cells 
affected by MSCs. In order to address this issue, we’ve employed a 
fully immunocompetent mouse model developed by Thomas Graf 

[28]. In this mouse model, granulocytes are labeled by insertion of the 
Green Fluorescent Protein (GFP) into the Lysozyme M (LysM) locus. 
Additionally, it was shown that the differential expression levels of 
LysM by neutrophils (LysMhi) and monocytes (LysMlo) allow for the 
differentiation of these cells by their corresponding GFP expression. 
The administration of fluorescently labeled MSCs into these mice, in 
conjunction with high-resolution intravital multiphoton microscopy, 
now provides a platform for the direct determination of MSC’s homing 
potential to tissues such as the bone marrow. Furthermore, this 
imaging technique allows the differentiation between intact MSCs and 
granulocytes that have taken up cellular debris from the injected MSCs 
(Figure 2) [21]. Long-term tracking (minutes to hours) of the dynamic, 
individual interactions of these cells with any other cell type can provide 
cellular data that are far more relevant than in vitro tissue culture 
approaches or static imaging approaches via low-resolution imaging or 
high-definition histologic examination. For example, advances in the 
intravital multiphoton approach would allow scientists to determine if 
the accumulation of MSC signal seen in the tumor microenvironment 
is due to the direct homing of exogenously applied MSCs or to tissue 
macrophages which have taken up the MSC debris, and, in the process, 
may have been polarized functionally by the MSC to adopt a type 1 or 
type 2 immune response. Lastly, it should be possible to utilize high-
resolution intravital microscopy in conjunction with transgenic MSC 
cell lines expressing fluorescent proteins under the control of tissue-
specific promoters, such as MyoD or Osterix for example, to determine 
the ultimate fate of these cells in vivo. These biological insights at the 
tissue level hold the key in further refining how MSCs can be used more 
effectively and efficiently in clinical applications.

Abstract
The clinical application of Mesenchymal Stem Cells (MSCs) for the treatment of a variety of diseases is the 

focus of intense research. Despite large research efforts many questions regarding MSC biology in vivo remain 
unanswered. For instance, we do not know for certain whether MSCs exert their therapeutic effects directly within 
the target tissue or indirectly by influencing the polarization of other cell types, such as macrophages, which can 
then home to the target tissue microenvironment. To help address this issue, the application of intravital multiphoton 
microscopy allows for the determination of the dynamic action of intact MSCs versus endogenous host cells at the 
target tissue site in real time.
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Figure 1: Number of MSC related publications by year. Graph of the number of PubMed publications referencing “mesenchymal stem cell”, “mesenchymal stem cell 
imaging”, and “mesenchymal stem cell two-photon” by year from 1990 through 2013. The numbers at the end of each trend line represents the number of publications 
returned for 2013.
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Figure 2: Two-photon imaging of fluorescently labeled MSCs in the bone marrow of a LysM+/GFP mouse.  Real-time imaging of Cell Tracker Orange (CTO) labeled 
hMSCs in the bone marrow of a LysM+/GFP mouse 1 day after I.V. administration allows for the determination of intact MSCs (red arrows) versus MSCs phagocytosed 
by GFP+ granulocytes (yellow arrows). The paths of individual cells are tracked (white line). A. Combined GFP and CTO channels with representative pictures over a 
10-min period. B. GFP-only channel. C. CTO only channel.  D. CTO channel after subtraction of phagocytosed CTO signal.  Note: Scale bars=20 µm.
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