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In the systems of spin 1
2 fermions with resonant S-wave interactions supporting only weakly bound 

dimers the antisymmetry forbids recombination of three (or more) fermions at zero energy. However, 
the fermion-fermion-dimer recombination is only partially suppressed. It is studied in the framework 
of momentum-space integral equations for the four-particle transition operators. In the vicinity of the 
unitary limit the fermion-fermion-dimer recombination rate, rescaled to build dimensionless quantity, is 
found to be linear in the effective range parameter, enabling a simple and accurate parametrization as 
well as evaluation of finite-range effects for any potential model. This feature makes the present results 
very useful in benchmarking different methods for three-cluster breakup and recombination calculations 
in four-particle systems. The interplay of the three-fermion and fermion-fermion-dimer recombination 
processes and their consequences for ultracold mixtures of fermions and dimers is discussed.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Universality in few-body systems with resonant S-wave in-
teractions, characterized by a large scattering length, has been 
investigated in numerous works, where the considered systems 
range from cold atoms and molecules to nuclear and particle 
physics [1–5]. The qualitative behavior of those physical systems 
depends critically on the permutation symmetry they obey, i.e., the 
bosonic/fermionic nature. While bosons (or distinguishable parti-
cles) exhibit a rich spectrum of few-body bound states, the most 
famous example being the three-body Efimov effect [6], identical 
spin 1

2 fermions (unpolarized, i.e., in both spin states) can form 
only one shallow bound state, a 1 S0 dimer with the binding en-
ergy bd ≈ h̄2/ma2, where m is the fermion mass and a is the 
two-fermion scattering length. Although there are no three- and 
four-fermion bound states,1 the three- and four-body physics is 
important for the properties of cold dilute atomic and molecular 
gases that are determined by the parameters of low-energy col-
lisions [7–10]. For example, the fermionic dimer-dimer scattering 
at low energy, well below the breakup threshold, has been inves-
tigated in a number of works [7–9,11–13,15], achieving a good 
agreement between the different methods for the dimer-dimer 
scattering length and for the effective range, except for the lat-
tice effective field theory approach [13] for the latter observable. 
The present work focuses on a different aspect of the four-fermion 
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1 This work assumes the absence of non universal deeply bound two-body states, 

implying also the absence of the associated many-body states.
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SCOAP3.
system near unitarity, namely, the production of fermionic dimers 
in few-body collisions. In terms of initial state complexity, the 
most straightforward path is the collision of two fermions in dif-
ferent spin states; however, the formation of a dimer necessitates 
an additional interaction with an external field, e.g., with the elec-
tromagnetic field where a photon is radiated thereby ensuring the 
energy and momentum conservation. If this interaction is sup-
pressed for some reason and the only forces retained are those 
acting between the particles themselves, the creation of a dimer 
may proceed via recombination process involving at least three 
colliding particles or clusters. However, the antisymmetry require-
ment suppresses the recombination of three spin 1

2 fermions in 
the ultracold limit since the zero kinetic energy state of three (or 
more) fermions can not be fully antisymmetric; the dominant re-
combination channel has total orbital momentum L = 1 where the 
recombination rate vanishes at the threshold since it scales with 
the energy [14]. The above antisymmetry restrictions do not ap-
ply and zero-energy recombination is possible in the collision of 
two fermions with a third distinct particle. However, such a system 
loses its fermionic character becoming effectively a system of three 
distinguishable particles; it is therefore out of the interest for the 
present study, except for a very special choice of the third parti-
cle, namely a dimer consisting of the same kind of fermions as the 
first two. This choice preserves the purely fermionic character of 
the system but implies right away a four-body problem. The zero 
kinetic energy state in the two-fermion plus dimer system is not 
precluded such that the recombination rate does not vanish in the 
ultracold limit. However, one may expect partial suppression due 
to the antisymmetry of the system, since the wave function must 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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be antisymmetric also under the exchange of the free fermions 
with those building the dimer, a condition that puts restrictions on 
the three-cluster system as well. It is therefore interesting to study 
the fermion-fermion-dimer recombination as a four-fermion prob-
lem, to evaluate its importance relative to other possible channels 
and consequences to ultracold mixtures of fermionic atoms and 
diatomic molecules. Furthermore, the results in the unitary limit 
are expected to be universal, i.e., independent of the short-range 
interaction details, and therefore perfectly suitable for the future 
benchmark calculations of the three-cluster recombination or its 
time-reverse dimer-dimer breakup reaction in the four-fermion 
system.

Section 2 outlines essential details of the four-fermion collision 
calculations, and Sec. 3 presents the obtained results for the re-
combination process. The summary is given in Sec. 4.

2. Theory

Elastic scattering of two fermionic dimers was considered in 
Ref. [15] providing most accurate results for the dimer-dimer ef-
fective range and phase shifts at finite energy below the breakup 
threshold. That work employed rigorous Faddeev-Yakubovsky the-
ory [16] for the four-particle scattering in the integral form 
proposed by Alt, Grassberger, and Sandhas (AGS) [17]. The AGS 
framework describes the four-particle scattering problem in terms 
of subsystem transition operators, namely, the two-particle, i.e., 
2+1+1, transition matrix

t = v + vG0t, (1)

the three-particle, i.e., 3+1 with α = 1, and two-pair, i.e., 2+2 with 
α = 2, transition operators

Uα = PαG−1
0 + PαtG0Uα. (2)

The resulting four-particle transition operators obey the sym-
metrized AGS equations; the subset relevant for the present con-
sideration of reactions involving two dimers reads

U12 = (G0tG0)
−1 − P34U1G0tG0U12 + U2G0tG0U22, (3a)

U22 = (1 − P34)U1G0tG0U12. (3b)

In the above equations the subscripts α = 1 (2) label the clustering 
of the 3+1 (2+2) type, G0 = (E + i0 − H0)

−1 is the free four-particle 
resolvent with the energy E and the kinetic energy operator H0, 
both in the center-of-mass (c.m.) frame, v is the two-particle po-
tential, Pab is the permutation operator of particles a and b, while 
Pα are combinations of permutation operators [15] that, together 
with a proper choice of basis states, ensure the desired antisym-
metry of the four-fermion system as explained in Ref. [15] and 
references therein.

The most efficient way to solve the AGS equations (3) with 
short-range forces is by employing the partial-wave decompo-
sition in the momentum-space, leading to a system of integral 
equations with three continuous variables. Those are the mag-
nitudes of the Jacobi momenta kx , ky , and kz describing the 
relative motion between particles and/or clusters [18]. The cor-
responding orbital angular momenta lx , l y , and lz and fermion 
spins si = 1

2 are coupled to build eigenstates of the total an-
gular momentum J and its projection M. Different coupling 
schemes are used for the 3+1 and 2+2 clustering, |kx ky kz〉1 ⊗
|{lz[(l y{[lx(s1s2)sx] jx s3}S y) J y s4]Sz} JM〉1 and |kx ky kz〉2 ⊗ |(lz ×
{[lx(s1s2)sx] jx [l y(s3s4)sy] j y}Sz)JM〉2, respectively, where the re-
maining quantum numbers such as jx etc. are angular momenta 
2

of the intermediate subsystems as explained in Ref. [15]. The anti-
symmetry condition restricts lx + sx (and l y + sy for the 2 + 2 con-
figuration) to even values; lx = sx = jx = 0 for the S-wave dimer 
considered in the present work.

An important aspect of the solution is the treatment of inte-
grable kernel singularities in Eqs. (3) arising in t and U2 due to the 
one- and two-dimer poles, respectively. Their treatment using the 
complex-energy method with special integration weights is taken 
over from Ref. [19].

The amplitude for the elastic dimer-dimer scattering, its rela-
tion to the phase shift, and effective-range expansion parameters 
can be found in Ref. [15]. The amplitude for the fermion-fermion-
dimer recombination into two dimers equals to the three-cluster 
breakup amplitude

〈�3|T32|�2〉 = 2〈�3|[(1 − P34)U1G0 t G0 U12

+ U2G0 t G0 U22]|φ2〉,
(4)

where |�3〉 abbreviates the three-cluster channel state and |�2〉
the two-dimer channel state whose Faddeev component is |φ2〉 =
G0 v|�2〉 obeying also the Faddeev equation |φ2〉 = G0t P2|φ2〉.

The amplitude (4) determines the three-cluster breakup and re-
combination observables. The definition of the recombination rate 
K4 follows from the number of recombination events K4ρdρ+ρ−
per volume and time, where ρd , ρ+ , and ρ− are densities of 
dimers and of fermions in spin-up and spin-down states, respec-
tively. Of special interest is the fermion-fermion-dimer recombi-
nation rate K 0

4 at the threshold, i.e., at vanishing three-cluster 
kinetic energy E3 = E + bd → 0. This implies ky = kz = 0 and 
only l y = lz = 0 states contribute to this particular channel state 
|�0

3〉. Furthermore, all the discrete quantum numbers take their 
minimum possible values of 0 or 1

2 , i.e., the angular momentum 
part of this state in the 2+2 basis reduces to a single component 
|�0

J=0〉 = |(0{[0( 1
2

1
2 )0]0 [0( 1

2
1
2 )0]0}0)00〉2. Since J is conserved 

and the dimer has zero spin, the final two-dimer state |�0
2〉 is re-

stricted to have exactly the same angular momentum part |�0
J=0〉, 

while the relative momentum between the dimers is kz = p0
dd =√

2mbd . Under these conditions the zero-energy fermion-fermion-
dimer recombination rate is given by a single amplitude of the 
breakup operator in the partial-wave representation, i.e.,

K 0
4 = 4π5mp0

dd|〈�0
3|T32|�0

2〉|2. (5)

It is important to note that, despite angular momentum limita-
tions in the initial and final channel states, the solution of the AGS 
equations (3) and the calculation of the amplitude (4) necessitates 
the inclusion of higher partial waves to achieve the convergence. 
In fact, l y, lz > 0 waves contribute about 25% to K 0

4 results in the 
next section. A good convergence is achieved by including states 
with l y, lz < 4; it was found that those with l y, lz = 3 contribute 
about 0.2%, implying that higher waves are negligible.

At finite E3 a continuum of states contributes to the recombina-
tion, they have to be integrated over either explicitly or implicitly, 
via the optical theorem. Below the four-particle threshold the same 
integral determines also the dimer-dimer breakup cross section σb , 
one of the standard observables in the scattering processes. It is 
thus convenient to express the fermion-fermion-dimer recombina-
tion rate as

K4 = 8
√

2π p2
dd

m3 E2
3

σb. (6)

The expressions (5) and (6) take into account the identity of two 
fermions (dimers) in the initial (final) states as well as the weight 
factors related to the spin averaging.
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Fig. 1. Fermion-fermion-dimer recombination rate at zero energy in dimensionless 
form as a function of the finite-range parameter re/a. The symbols are the results 
of the calculation with the enhanced CD Bonn potential, the solid curve represents 
Eq. (7), while the dashed-dotted curve is a linear approximation.

3. Results

A fermionic system with large scattering length is realized by 
neutrons, but a ≈ −19 fm is negative and therefore no bound 
dineutron exists. Nevertheless, for the present investigation I take a 
fictitious four-neutron system with slightly enhanced two-neutron 
force that supports a bound two-particle state. Starting from the 
realistic CD Bonn potential [20] and fermion mass m = 938.9 MeV, 
enhancement factors from 1.35 to 1.105 lead to scattering length 
a from 9.1 to 176.1 fm, while the two-particle effective range re

stays between 2.14 and 2.56 fm. Thus, within this relatively narrow 
variation of the potential strength one can explore rather broad 
range of the scattering length as well as of the ratio re/a that 
quantifies the importance of finite-range effects. Since the present 
study is devoted to the S-wave interacting four-fermion univer-
sality, for the computational efficiency the potential in all higher 
two-fermion partial waves with lx > 0 is assumed to be zero.

The results of the above-described calculations for the fermion-
fermion-dimer recombination rate K 0

4 at the threshold are pre-
sented in Fig. 1. Since the three-cluster recombination rate scales 
as a4, a dimensionless quantity K 0

4m/h̄a4 is build in order to 
demonstrate the universal behavior of this observable. To a good 
accuracy, better than 1% below re/a = 0.1, it appears to be linear 
in the finite-range correction parameter re/a, but the data points
beyond this limit slightly violate this linear dependence. Never-
theless, all data points are well described including finite-range 
corrections of a higher order, quadratic in re/a, resulting in an ac-
curate analytical representation

K 0
4 ≈

[
10.20 − 18.27

re

a
+ 3.47

( re

a

)2
]

h̄a4

m
. (7)

Obviously, in the considered regime the (re/a)2 term yields only a 
minor correction. Note that also the dimer-dimer scattering length 
and the effective range parameter show a linear dependence on 
re/a near the unitary limit, independently of the short-range de-
tails of the employed potential [15]. A tentative calculation using 
the separable interaction model from Ref. [15] indicates this kind 
of independence also for K 0

4m/h̄a4. Thus, the relation (7) yields not 
only an accurate value for the ultracold fermion-fermion-dimer re-
combination rate in the unitary limit but also reliably evaluates the 
importance of the finite-range effects.

Another question to be addressed is the energy dependence of 
the fermion-fermion-dimer recombination rate. It is shown as a 
solid curve in Fig. 2 for re/a = 0.0456, since the shape of the en-
ergy dependence is quite insensitive to the re/a value provided it is 
below 0.1. The recombination rate depends weakly on the energy, 
indicating the absence of resonances as well as rather insignificant 
contribution of l y, lz > 0 waves in the initial three-cluster channel.
3

Fig. 2. Three-cluster recombination rates in three- and four-fermion systems, dis-
played by the dashed-dotted and solid curves, respectively, as functions of the 
relative three-cluster kinetic energy. All quantities are shown in the dimensionless 
form and correspond to the finite-range parameter re/a = 0.0456.

It is interesting to compare the three-cluster recombination 
rates K N in three- and four-fermion systems. In the N = 3 case the 
recombination rate K3 vanishes at threshold as discussed in Sec. 1, 
but the process is dominated by the total orbital momentum L = 1
state and therefore K3 increases with energy as shown by the 
dashed-dotted curve in Fig. 2. At very low energy the increase of 
K3 is linear as predicted in Ref. [14] by analytical considerations, 
but starts to slow down for E3 > 0.05 bd . Only the L = 1 com-
ponent is included in these results, since other components are 
suppressed even more strongly, at least as E2

3 [14], and were veri-
fied numerically to be negligible in the low-energy regime. Never-
theless, near E3 = 0.2 bd the three-fermion recombination rate K3
already exceeds K4. Note that the fermion-fermion-dimer recombi-
nation in the L = 1 (equivalent to J = 1) state is forbidden, since 
the final two-dimer state must be symmetric under the exchange 
of dimers, which for zero-spin dimers is only possible for even L
and J values.

The fact that the L = 1 process, quantified by K3, already at 
relatively low energy exceeds the L = 0 dominated process, quan-
tified by K4, may appear surprising, but has its explanation in the 
partial suppression of the fermion-fermion-dimer recombination 
due to the four-fermion antisymmetry. Although no antisymme-
try restrictions apply to the dimer directly, the wave function must 
be antisymmetric under the exchange of free fermions with those 
inside the dimer, thereby putting the restrictions on the dimer in-
directly. This is well reflected in the partial cancellation, up to 90%, 
of the 3+1 and 2+2 configuration contributions to the breakup or 
recombination amplitude (4). This cancellation constitutes also a 
challenge in numerical calculations, that require more dense mo-
mentum grids and smaller values for the imaginary part of the en-
ergy as compared to the elastic scattering. Another consequence of 
the antisymmetry restriction is that the fermion-fermion-dimer re-
combination rate significantly smaller than typical values in other 
three-cluster systems [1].

Finally, there are important implications of the three-cluster re-
combination for the ultracold mixtures of spin 1

2 fermions and 
dimers. Let’s consider an idealized system at zero temperature. 
If the system consists of unbound fermions, recombination pro-
cesses are suppressed and the system remains stable. However, 
even if very few dimers are added to this system, they initi-
ate fermion-fermion-dimer recombination process producing more 
dimers, thereby increasing density of dimers and further enhancing 
dimer production. Apart from this, the energy bd released in each 
recombination event is initially taken by the two outgoing dimers, 
but after a series of elastic collisions with fermions is transfered 
to fermions, that acquire small but finite energy as well. This im-
plies that also the three-fermion recombination becomes possible, 
contributing to further creation of dimers. Which of these mecha-
nisms is more important, depends on the initial fermion and dimer 
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densities. If they are of a comparable size, the four-particle pro-
cess will dominate, since K4 >> K3 for vanishing energy. On the 
contrary, if the starting point is an ultracold fermionic gas with 
a very small admixture of dimers ρ0

d , the fermion-fermion-dimer 
recombination would “ignite” the dimerization process, however, 
the three-fermion recombination takes over once the fermions ab-
sorb the released energy. A simple estimation is as follows: At the 
time point when ρd exceeds ρ0

d significantly, the released energy 
is roughly bdρd per unit volume, thus, once dissipated between 
all particles through elastic two-cluster collisions, it amounts to 
the kinetic energy per particle of roughly bdρd/(ρ+ + ρ−). This 
leads to the number of three-fermion recombination events per 
volume and time K3ρ+ρ−(ρ+ +ρ−) ≈ (∂ K3/∂ E)|E=0 bdρ+ρ−ρd . It 
is evident from Fig. 2 that (∂ K3/∂ E)|E=0 bd exceeds K4, thereby in-
dicating the superiority of the three-fermion recombination under 
these conditions.

4. Summary

The fermion-fermion-dimer recombination was studied using 
exact scattering equations for the four-particle transition operators. 
They were solved numerically in the momentum-space partial-
wave representation, employing the complex-energy method with 
special integration weights for the treatment of kernel singulari-
ties.

In the systems of spin 1
2 fermions with resonant S-wave in-

teractions (and no dimers in other waves) the recombination of 
three (or more) fermions at zero energy is forbidden by the an-
tisymmetry requirement. However, the fermion-fermion-dimer re-
combination is only partially suppressed, having finite rate at the 
threshold. In the present work it was calculated for a rather broad 
range of the two-fermion scattering length and to a good accuracy 
found to be linear in the effective range parameter re/a. This al-
lowed for a reliable extrapolation to the unitary limit as well as 
the evaluation of finite-range effects. The energy-dependence of 
the fermion-fermion-dimer recombination rate was shown to be 
weak, in contrast to the three-fermion recombination. Their inter-
play was demonstrated to be important for the dimer production 
in ultracold mixtures of fermions and dimers.

One of the achievements of the present work, namely, obtained 
universal result for the zero energy fermion-fermion-dimer recom-
bination rate, has important impact for the microscopic scattering 
description in general. Being independent of the short-range in-
teraction details, it is well suitable for benchmarking three-cluster 
breakup and recombination calculations in four-particle systems 
using different methods, that often have their preferred type of 
the potential.
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