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Abstract. In this study, we obtain asymptotic formulas for eigenvalues and eigenfunctions of the
one-dimensional Sturm–Liouville equation with one classical-type Dirichlet boundary condition
and integral-type nonlocal boundary condition. We investigate solutions of special initial value
problem and find asymptotic formulas of arbitrary order. We analyze the characteristic equation
of the boundary value problem for eigenvalues and derive asymptotic formulas of arbitrary order.
We apply the obtained results to the problem with integral-type nonlocal boundary condition.

Keywords: Sturm–Liouville problem, nonlocal integral condition, asymptotics of eigenvalues and
eigenfunctions.

1 Introduction

Consider the following one-dimensional Sturm–Liouville equation:

− u′′(t) + q(t)u(t) = λu(t), t ∈ (0, 1), (1)

where the real-valued function q ∈ C[0, 1]; λ = s2 is a complex spectral parameter, and
s = x+ ıy; x, y ∈ R.

Remark 1. In this article, s ∈ Cs := Rs ∪ C+
s ∪ C−s , where Rs := R−s ∪ R+

s ∪ R0
s,

R−s := {s = x + ıy ∈ C: x = 0, y > 0}, R+
s := {s = x + ıy ∈ C: x > 0, y = 0},

R0
s := {s = 0}, C+

s := {s = x+ ıy ∈ C: x > 0, y > 0} and C−s := {s = x+ ıy ∈ C:
x > 0, y < 0}. Then a map λ = s2 is the bijection between Cs and Cλ := C [21].

In this study, we will investigate nonlocal eigenvalue problems, which consist of
equation (1) on [0, 1] with one classical (local) Boundary Condition (BC)

u(0) = 0, (2)
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another integral-type Nonlocal Boundary Condition (NBC)

u(1) = γ

ξ∫
0

u(t) dt, ξ ∈ (0, 1], (Case 1) (3)

or

u(1) = γ

1∫
ξ

u(t) dt, ξ ∈ [0, 1), (Case 2), (4)

where γ ∈ R. Both these BC we can write as

u(1) = γ

β∫
α

u(t) dt, (5)

where α = 0, β = ξ in Case 1, and α = ξ, β = 1 in Case 2. We note that 0 6 α < β 6 1.
The first work on Boundary Value Problems (BVPs) with nonlocal integral-type BCs

belongs to J.R. Cannon [2]. These kinds of BCs together with a parabolic equation arise,
for example, in the study of the process of heat transmission in a thin heated rod when
the part of the rod adjoining one of its ends [7]. Parabolic equations with NBCs are also
encountered in the study of the heat conduction within linear thermo elasticity [3, 4].

Eigenvalues and eigenfunctions of BVPs with integral-type NBCs and discrete case
have been investigated in [1, 6, 8, 10, 11, 16, 19]. Structure of eigenvalues of multi-point
BVPs were presented in [5,13,14]. The spectrum structure of one-dimensional differential
operator with nonlocal conditions and of the difference operator, corresponding to it, has
been exhaustively investigated in [15]. A more comprehensive list can be found in the
survey article [20].

Spectral asymptotics of eigenvalues and eigenfunctions of SLPs with Bitsadze–
Samarskii-type NBC

u(1) = γu(ξ), ξ ∈ (0, 1), (6)

where γ ∈ R, have been investigated recently [17,18]. In [17], for sufficiently large k and
|γ| < 1, it is derived that the asymptotic expansions

sk = xk +O
(
k−1

)
, uk(t) = − sin(xkt)

xk
+O

(
k−2

)
(7)

are valid for eigenvalues and eigenfunctions, respectively, for the SLP (1)–(2), (6), where
xk, k ∈ N, are the positive roots of sinx − γ sin(ξx) = 0. Under the condition q ∈
C1[0, 1], it is obtained that the asymptotic formulas

sk = xk +Q1(xk)x−1k +O
(
k−2

)
, (8)

uk(t) = − sin(xkt)

xk
+
(
Q(t)− tQ1(xk)

)cos(xkt)

x2k
+O

(
k−3

)
(9)
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are valid for eigenvalues and eigenfunctions, respectively, for the SLP (1)–(2), (6). Here

Q1(s) :=
Q(1) cos s− γQ(ξ) cos(ξs)

cos s− γξ cos(ξs)
, Q(t) =

1

2

t∫
0

q(τ) dτ. (10)

In [18] the authors consider the equation with retarded argument

− u′′(t) + q(t)u
(
t−∆(t)

)
= λu(t), t ∈ (0, 1), (11)

together with the BCs (2), (6), where the real-valued function q(t) ∈ C[0, 1]; the real-
valued function ∆(t) > 0 is continuous on [0, 1], λ = s2 is a complex spectral parameter.
They calculate the asymptotics of eigenvalues and eigenfunctions. To speak more precise,
under the conditions q ∈ C1[0, 1], ∆′′(t) exist and bounded in [0, 1], ∆′(t) 6 1 in [0, 1],
∆(0) = 0 and |γ| < 1 they find the asymptotic formulas

sk = xk +Q1(xk)x−1k +O
(
k−2

)
,

uk(t) = − sin(xkt)

xk
+A(xk, t)

sin(xkt)

xk2
+
(
B(xk, t)− tQ1(xk)

)cos(xkt)

x2k

+O
(
k−3

)
for eigenvalues and eigenfunctions, respectively, for the SLP (11), (2), (6), where

A(s, t) :=
1

2

t∫
0

q(τ) sin
(
s∆(τ)

)
dτ, B(s, t) :=

1

2

t∫
0

q(τ) cos
(
s∆(τ)

)
dτ,

Q1(s) :=
A(s, 1) sin s+B(s, 1) cos s− γA(s, ξ) sin(ξs)− γB(s, ξ) cos(ξs)

cos s− γξ cos(ξs)
.

In both of these studies, it is proven that cosxk−γξ cos(ξxk) 6= 0. Furthermore, in these
articles the authors prove the simplicity and countability of eigenvalues and show that all
eigenvalues are real.

The article is organized as follows. The statement of the problem and a literature
review are given in Section 1. In Sections 1–3, notation and definitions used in the paper
are stated. In Section 2, some results about the case q ≡ 0 are presented. In Section 3, we
write the fundamental solutions of the Initial Value Problem (IVP) and find formulas for
their asymptotics. In Section 4, we analyze the characteristic equation of the BVP (1)–(2),
(5). In Section 5, we investigate the distribution of eigenvalues and obtain asymptotic for-
mulas for eigenvalues and eigenfunctions. Also, we calculate normalized eigenfunctions.

2 Properties of a spectrum in the case q ≡ 0

In the case q(t) ≡ 0 the spectrum of problems (1)–(3) and (1)–(2), (4) have countably
many eigenvalues [11, 16]. A unique negative eigenvalue exists for γ > 2/ξ2 in Case 1

Nonlinear Anal. Model. Control, 26(5):969–991, 2021
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(a) Case 1, ξ = 3/4 (b) Case 1, ξ = 3/4 (c) Case 2, ξ = 1/3

Figure 1. Real Characteristic Functions γ(s) for s = πx, x > 0, and s = ıπy, y > 0. (b) g = πx/
(1− cos(πξx)) – amplitude modulation function.

and γ > 2/(1−ξ2) in Case 2. Also, λ = 0 is eigenvalue if and only if γ = 2/ξ2 in Case 1
and γ = 2/(1− ξ2) in Case 2.

Let us define a Constant Eigenvalue (CE) as the eigenvalue λ, which does not depend
on the parameter γ ∈ R for fixed ξ. In [11] the spectrum and eigenfunctions with BC (2)
and integral-type BCs (3) and (4) were investigated for the case q(t) ≡ 0. Constant
eigenvalues exist only for rational numbers ξ = m/n ∈ [0, 1], and those eigenvalues
λk = π2q2k, k ∈ N, are given by: qk = nk for m ∈ Neven and qk = 2nk for m ∈ Nodd in
Case 1; qk = nk for n −m ∈ Neven and qk = 2nk for n −m ∈ Nodd in Case 2. So, all
CE are positive.

All nonconstant (that depend on the parameter γ ∈ R) eigenvalues λ = s2, s ∈ Cs,
are γ-points of the Characteristic Function γ : Cs → R [21]

γ(s) =
s sin s

2 sin2(ξs/2)
=

s sin s

1− cos(ξs)
(Case 1), (12)

γ(s) =
s sin s

2 sin((1 + ξ)s/2) sin((1− ξ)s/2)
=

s sin s

cos(ξs)− cos s
(Case 2). (13)

So, for fixed γ ∈ R, the roots of this meromorphic function describe nonconstant eigen-
values. The graphs of CF on Rs are presented in Fig. 1(a) in Case 1 and Fig. 1(c) in
Case 2.

In Case 2, all nonconstant eigenvalues are real and simple [11, 12]. All poles of CF
belong to one of the families of the first order poles:

P1
ξ =

{
p1k =

2πk

1 + ξ
, k ∈ N

}
, P2

ξ =

{
p2l :=

2πl

1− ξ
, l ∈ N

}
.

If ξ /∈ Q, then P1
ξ ∩ P2

ξ = ∅.

Lemma 1. (See [11].) If ξ = m/n ∈ Q, then in Case 2, points p12j = c12j = πqj , j ∈ N,
where qj = nj for n−m ∈ Neven or qj = 2nj for n−m ∈ Nodd are the first-order poles
of CF and CE points. A set of these points is intersection of P1

ξ and P2
ξ .
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So, all poles of CF are of the first order. We can enumerate all poles in nondecreasing
order: pk, k ∈ N. If a pole is CE point, then we write it twice pk = pk+1, else pk < pk+1.
Additionaly, we denote p0 = 0. Then in Case 2, we can enumerate positive eigenvalues
λk = x2k, k ∈ N, where xk ∈ (pk−1, pk) for nonconstant eigenvalues, and xk = pk =
pk+1 for CE. Note that xk = πk, k ∈ N, in the case γ = 0 and |xk − πk| < π for all k.

In Case 1, nonconstant eigenvalues can be complex [11, 12]. All poles of CF belong
to the family

P12
ξ =

{
p12k =

2πk

ξ
, k ∈ N

}
.

If ξ /∈ Q, then all poles are of the second order.

Lemma 2. (See [11].) If ξ = m/n ∈ Q, then in Case 1, points p12j = c12j = πqj , j ∈ N,
where qj = mnj for m ∈ Neven or qj = 2mnj for m ∈ Nodd are the first-order poles of
CF and CE points, else we have the second-order poles.

Lemma 3. Let xk, k ∈ N, be eigenvalues of problem (1)–(3) in the case q ≡ 0. Then
exists K ∈ N such that for fixed γ ∈ R, all eigenvalues xk, k > K, are positive, simple
and xk ∈ (πk − π, πk + π), i.e. |xk − πk| < π for all k > K.

Proof. For not simple positive eigenvalues we have

γ cos(ξx) = γ − x sinx, ξγ sin(ξx) = x cosx+ sinx.

From this system we get

ξ2γ2 = ξ2(γ − x sinx)2 + (x cosx+ sinx)2.

Then we estimate

|γ| > |γ| · | sinx|

=
x(1− (ξ−2 − 1) sin2 x)

2
+
ξ−2(sin(2x) + sin2 x

x )

2

>
x

2
− ξ−2.

So, all eigenvalues in the angle |γ| < x/π for x > 8ξ−2 are positive and simple.
CE points are the first-order poles of CF. Eigenvalues corresponding to these points are
positive and simple. Since CF has zeros at points πk, k ∈ N, we have |xk−πk| < π.

3 Solutions of initial value problem and their asymtotics

Let λ = s2, s ∈ Cs, and ωs(t) be a solution of equation (1) satisfying the initial conditions

ωs(0) = 0, ω′s(0) = −1. (14)

According to [9, Chap. I, Thm. 1.1], this IVP determine a unique solution of (1) on
[0, 1]. The function ωs(t) = ω(t, s) is an analytic (holomorphic) function of s. We

Nonlinear Anal. Model. Control, 26(5):969–991, 2021
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will use notation for derivatives ω′s(t) := ∂ω(t, s)/∂t, (ωs)
(l)
s (t, s) := ∂lω(t, s)/∂sl,

(ω′s)
(l)
s (t, s) := ∂l+1ω(t, s)/∂t∂sl.

Lemma 4. (See [17].) Let ωs(t) be a solution of IVP (1), (14). Then the following integral
equation holds:

ωs(t) = −1

s
sin(st) +

1

s

t∫
0

q(τ) sin
(
s(t− τ)

)
ωs(τ) dτ. (15)

We will use notation for integrals (k ∈ N0 := {0} ∪ N):

Iks (t, q, f) =

t∫
0

q(τ)(t− τ)k sin
(
s(t− τ)

)
f(τ) dτ,

Jks (t, q, f) =

t∫
0

q(τ)(t− τ)k cos
(
s(t− τ)

)
f(τ) dτ,

Ĩks (t, q, f) =

t∫
0

q(τ)(t− τ)k sin
(
s(t− τ)

)
e−|y|(t−τ)f(τ) dτ,

J̃ks (t, q, f) =

t∫
0

q(τ)(t− τ)k cos
(
s(t− τ)e

)
e−|y|(t−τ)f(τ) dτ.

We note that Iks (t, q, f) = I0s (t, q(τ)(t − τ)k, f), Jks (t, q, f) = J0
s (t, q(τ)(t − τ)k, f).

Then we rewrite equation (15) as

ωs(t) = − sin(st)s−1 + I0s (t, q, ωs)s
−1. (16)

Taking derivative with respect to t and s in (15), we get

ω′s(t) = − cos(st) + J0
s (t, q, ωs), (17)

(ωs)
′
s(t, s) = −t cos(st)s−1 +

(
I0s
(
t, q, (ωs)

′
s

)
+ J1

s (t, q, ωs)− ωs(t)
)
s−1. (18)

For derivatives of the second order, we get formulas

(ω′s)
′
s(t, s) = t sin(st) + J0

s

(
t, q, (ωs)

′
s

)
− I1s (t, q, ωs), (19)

(ωs)
′′
s (t, s) = t2 sin(st)s−1 +

(
I0s
(
t, q, (ωs)

′′
s

)
+ 2J1

s

(
t, q, (ωs)

′
s

)
− I2s (t, q, ωs)− 2(ωs)

′
s(t)
)
s−1. (20)
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Remark 2. The following formulas

(ωs)
(l)
s (t, s) = −∂

l sin(st)

∂sls−1
− l(ωs)(l−1)s s−1

+ s−1
l∑

j=0

(−1)bj/2c
(
l

j

)
Ijs (t, q, (ωs)

(l−j)
s ),

(ω′s)
(l)
s (t, s) = −∂

l cos(st)

∂sl
+

l∑
j=0

(−1)bj/2+1/2c
(
l

j

)
J js (t, q, (ωs)

(l−j)
s ), l ∈ N,

are valid, where I2k−2s = I2k−2s , I2k−1s = J2k−1
s , J 2k−2

s = J2k−2
s , J 2k−1

s = I2k−1s ,
k ∈ N.

Lemma 5. Let s ∈ Cs. Then there exists q0 > 0 such that for |s| > q0, the asymptotic
formulas

ωs(t) = − sin(st)s−1 +O
(
s−2e|y|t

)
, (21)

(ωs)
′
s(t, s) = −t cos(st)s−1 +O

(
s−2e|y|t

)
, (22)

(ωs)
′′
s (t, s) = t2 sin(st)s−1 +O

(
s−2e|y|t

)
, (23)

ω′s(t) = − cos(st) +O
(
s−1e|y|t

)
, (24)

(ω′s)
′
s(t, s) = t sin(st) +O

(
s−1e|y|t

)
, (25)

are valid. These formulas hold uniformly for 0 6 t 6 1.

Proof. Put ωs(t) = e|y|tFs(t), (ωs)
′
s(t, s) = e|y|tGs(t), (ωs)

′′
s (t, s) = e|y|tHs(t), ω′s(t) =

e|y|tKs(t) and (ω′s)
′
s(t, s) = e|y|tLs(t). Then from (16)–(20) we obtain

Fs(t) = − sin(st)e−|y|ts−1 + Ĩ0s (t, q, Fs)s
−1, (26)

Gs(t) = −t cos(st)e−|y|ts−1 +
(
Ĩ0s (t, q,Gs) + J̃1

s (t, q, Fs)− Fs(t)
)
s−1, (27)

Hs(t) = +t2 sin(st)e−|y|ts−1

+
(
Ĩ0s (t, q,Hs) + 2J̃1

s (t, q,Gs)− Ĩ2s (t, q, Fs)− 2Gs(t)
)
s−1, (28)

Ks(t) = − cos(st)e−|y|t + J̃0
s (t, q, Fs), (29)

Ls(t) = t sin(st)e−|y|t + J̃0
s (t, q,Gs)− Ĩ1s (t, q, Fs). (30)

Let µs = max06t61 |Fs(t)|, νs = max06t61 |Gs(t)|, σs = max06t61 |Hs(t)|, κs =

max06t61 |Ks(t)|, κs = max06t61 |Ls(t)| and q0 := 2
∫ 1

0
|q(τ)|dτ . Since

| sin s| e−|y| 6 1

2

(
ey + e−y

)
e−|y| =

1

2

(
e|y| + e−|y|

)
e−|y| 6 1,

Nonlinear Anal. Model. Control, 26(5):969–991, 2021
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| cos s|e−|y| 6 1 and t 6 1, from (26)–(28) we have

µs 6
|s|−1q0µs

2
+ |s|−1, νs 6

|s|−1q0νs
2

+ |s|−1
(

1 +
q0µs

2
+ µs

)
,

σs 6
|s|−1q0σs

2
+ |s|−1

(
1 + q0νs +

q0µs
2

+ 2νs

)
.

If |s| > q0, then

µs 6 2|s|−1 = O
(
s−1
)
, νs 6 |s|−1(2 + q0µs + 2µs) = O

(
s−1
)
, (31)

σs 6 |s|−1(2 + 2q0νs + q0µs + 4νs) = O
(
s−1
)
. (32)

It follows from (29), (30) that κs 6 1+q0µs/2 = O(1), κs 6 1+q0(µs+νs)/2 = O(1).
So, we prove asymptotic formulas

ωs(t), (ωs)
′
s(t, s), (ωs)

′′
s (t, s) = O

(
s−1e|y|t

)
, ω′s(t), (ω′s)

′
s(t, s) = O

(
e|y|t

)
.

Now, substituting formulas (31)–(32) into the integrals of (26)–(30), we obtain

Fs(t) = − sin(st)s−1e−|y|t +O
(
s−2
)
, Ks(t) = − cos(st)e−|y|t +O

(
s−1
)
,

Gs(t) = −t cos(st)s−1e−|y|t +O
(
s−2
)
, Ls(t) = t sin(st)e−|y|t +O

(
s−1
)
,

Hs(t) = t2 sin(st)s−1e−|y|t +O
(
s−2
)
.

Lemma is proved.

Remark 3. q0 := 2
∫ 1

0
|q(τ)|dτ .

Remark 4. The asymptotic formulas (21)–(24) were proved in [17].

Remark 5. The asymptotic formulas

(ωs)
(l)
s (t, s) = (−1)ltl cos

(
st+

1

2
π(1− l)

)
s−1 +O

(
s−2e|y|t

)
,

(ω′s)
(l)
s (t, s) = (−1)l−1tl cos

(
st− 1

2
πl

)
+O

(
s−1e|y|t

)
are valid for l = 0, 1, . . . . The proof is the same as in Lemma 5.

Corollary 1. Let x ∈ R, δ ∈ R, q ∈ C[0, 1]. If s = x + δ, δ = O(x−1), then we have
the following formulas:

ωs(t) = − sin(xt)x−1 +O
(
x−2

)
, ω′s(t) = − cos(xt) +O

(
x−1

)
. (33)

Proof. We substitute expressions (21)–(23) (y = 0) into formula

ωs(t) = ω(t, x+ δ) = ωx(t) + (ωs)
′
s(t, x)δ + (ωs)

′′
s (t, x+ θδ)

δ2

2
, θ ∈ [0, 1],

https://www.journals.vu.lt/nonlinear-analysis
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and get

ωs(t) = − sin(xt)x−1 +O
(
x−2

)
+
(
−t cos(xt)x−1 +O

(
x−2

))
δ +O

(
δ2
)

= − sin(xt)x−1 +O
(
x−2

)
.

Analogously, we prove the second formula

ω′s(t) = ω′(t, x+ δ) = ω′x(t) +O(δ) = − cos(xt) +O
(
x−1

)
.

Lemma 6. Let f ∈ C1[a, b], t ∈ [a, b] ⊂ [0, 1]. Then the following asymptotic formulas
b∫
a

f(τ)e±ısτ dτ = O
(
s−1e|y|b

)
, (34)

b∫
a

f(τ) cos(sτ) dτ = O
(
s−1e|y|b

)
,

b∫
a

f(τ) sin(sτ) dτ = O
(
s−1e|y|b

)
, (35)

b∫
a

f(τ) cos(2sτ − st) dτ = O
(
s−1e3|y|b

)
,

b∫
a

f(τ) sin(2sτ − st) dτ = O
(
s−1e3|y|b

)
are valid.

Proof. We use integration by parts formula
b∫
a

f(t)e±ıst dt =
f(b)e±ısb − f(a)e±ısa

±ıs
− 1

±ıs

b∫
a

e±ıste−|y|tf ′(t)e|y|t dt

= O
(
s−1e|y|b

)
+O

(
s−1e|y|a

)
+O

(
s−1e|y|b

)
= O

(
s−1e|y|b

)
.

The other four formulas follow from formula (34).

For real s (y = 0, a = 0, b = t ∈ [0, 1]), we can find formulas (35) in [9, 22].
Let f ∈ Cr[0, 1], t ∈ [0, 1], r > 1. Then we generalize the last two asymptotic

formulas in Lemma 6:
t∫

0

f(τ) cos(2sτ − st) dτ = −
r−1∑
i=1

f (i−1)(t)− (−1)if (i−1)(0)

(2s)i
cos

(
st+

πi

2

)
+O

(
s−re3|y|t

)
, (36)

t∫
0

f(τ) sin(2sτ − st) dτ = −
r−1∑
i=1

f (i−1)(t) + (−1)if (i−1)(0)

(2s)i
sin

(
st+

πi

2

)
+O

(
s−re3|y|t

)
. (37)
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For proof, we use integration by parts formula and Lemma 6.
Under the condition that q ∈ Cr[0, 1], r ∈ N, the more exact asymptotic formulas

may be obtained

ωs(t) = −
r+1∑
j=1

pj(t) cos

(
st+

1

2
πj

)
s−j +O

(
s−(r+2)e(r+2)|y|t), (38)

ω′s(t) = −
r∑
j=0

p̄j(t) cos

(
st+

1

2
πj

)
s−j +O

(
s−(r+1)e(r+2)|y|t), (39)

(ωs)
′
s(t) = −

r+1∑
j=1

p1j (t) cos

(
st+

1

2
π(j − 1)

)
s−j +O

(
s−(r+2)e(r+2)|y|t), (40)

where p1(t) = −1, p̄0(t) = 1, p11(t) = t.
Now we derive formulas for pj , j = 2, r + 1. We can use the mathematical induction.

Let us substitute

ωs(t) = −
r∑
j=1

pj(t) cos

(
st+

π

2
j

)
s−j +O

(
s−(r+1)e(r+1)|y|t) (41)

= −
r+1∑
j=2

pj−1(t) sin

(
st+

π

2
j

)
s−j+1 +O

(
s−(r+1)e(r+1)|y|t)

into integral s−1I0s (t, q, ωs) in right-hand side of (16):

r+1∑
j=2

−1

sj

t∫
0

q(τ)pj−1(τ) sin(st− sτ) sin

(
sτ +

π

2
j

)
dτ

+O
(
s−(r+2)e(r+2)|y|t).

Then we rewrite the sum

r+1∑
j=2

1

2

t∫
0

q(τ)pj−1(τ) dτ cos

(
st+

π

2
j

)
s−j

−
r+1∑
j=2

cos(π2 j)

2sj

t∫
0

q(τ)pj−1(τ) cos(2sτ − st) dτ

+

r+1∑
j=2

sin(π2 j)

2sj

t∫
0

q(τ)pj−1(τ) sin(2sτ − st) dτ
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and apply (36)–(37) for pj−1 ∈ Cr−j+2, j = 2, r + 1:

r+1∑
j=2

1

2

t∫
0

q(τ)pj−1(τ) dτ cos

(
st+

π

2
j

)
s−j +O

(
s−(r+2)e(r+2)|y|t)

+

r+1∑
j=2

r−j+1∑
i=1

cos(π2 j)

2sj
· (qpj−1)(i−1)(t)− (−1)i(qpj−1)(i−1)(0)

(2s)i
cos

(
st+

π

2
i

)

−
r+1∑
j=2

r−j+1∑
i=1

sin(π2 j)

2sj
· (qpj−1)(i−1)(t) + (−1)i(qpj−1)(i−1)(0)

(2s)i
sin

(
st+

π

2
i

)
.

We look for terms near s−(r+1), i.e. i+ j = r + 1,

1

2

t∫
0

q(τ)pr(τ) dτ cos

(
st+

π(r+1)

2

)

+

r∑
j=2

(qpj−1)(r−j)(t) + (−1)r−j(qpj−1)(r−j)(0)

2r−j+2
cos

(
st+

π(r−j+1)

2

)
cos

πj

2

−
r∑
j=2

(qpj−1)(r−j)(t)− (−1)r−j(qpj−1)(r−j)(0)

2r−j+2
sin

(
st+

π(r−j+1)

2

)
sin

πj

2

or

1

2

t∫
0

q(τ)pr(τ) dτ cos

(
st+

π(r+1)

2

)
+

r∑
j=2

(qpj−1)(r−j)(t)

2r−j+2
cos

(
st+

π(r+1)

2

)

+

r∑
j=2

(−1)r(qpj−1)(r−j)(0)

2r−j+2
cos

(
st+

π(r+1)

2

)
= −pr+1(t) cos

(
st+

π(r+1)

2

)
.

So, we prove recursive formula

pi+1(t) = −1

2

t∫
0

q(τ)pi(τ) dτ −
i∑

j=2

(qpj−1)(i−j)(t) + (−1)i(qpj−1)(i−j)(0)

2i−j+2
(42)

for i = 1, r and p1(t) = −1. This formula shows that pj ∈ Cr−j+3[0, 1], pj−1q ∈
Cr−j+4[0, 1], j = 2, r + 1. So, the application of formulas (36)–(37) was correct. We
note that pj ∈ C2[0, 1] for all j.

For example, p2(t) = Q(t) :=
∫ t
0
q(τ) dτ/2. It is obvious that the function Q(t) is

bounded for 0 6 t 6 1.
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Let us substitute (41) into integral J0
s (t, q, ωs) in right-hand side of (17). Then we get

formula

p̄i(t) =
1

2

t∫
0

q(τ)pi(τ) dτ −
i∑

j=2

(qpj−1)(i−j)(t)− (−1)i(qpj−1)(i−j)(0)

2i−j+2
(43)

for i = 0, r. If we add (42) and (43), we get

p̄i(t) + pi+1(t) = −
i∑

j=2

(qpj−1)(i−j)(t)

2i−j+1
= p′i(t).

So, more simple formula p̄i(t) = p′i(t) − pi+1(t) may be used for calculation p̄i(t),
i = 1, r (we note that p̄0 = 1). This formula can be proved directly, but formula (43) is
useful independently. We use notation p0j (t) := pj(t), p̄ 0

j−1(t) := p̄j−1(t), j = 1, r + 1,
too.

If we substitute (38) and (40) into integrals I0s (t, q, (ωs)
′
s) and J1

s (t, q, ωs) =
J0
s (t, q(τ)(t− τ), ωs), then from (18) we get recursive formula (p11(t) = t)

p1i+1(t) = −1

2

t∫
0

q(τ)p1i (τ) dτ −
i∑

j=2

(qp1j−1)(i−j)(t)− (−1)i(qp1j−1)(i−j)(0)

2i−j+2

+
1

2

t∫
0

q̃(τ)pi(τ) dτ −
i∑

j=2

(q̃pj−1)(i−j)(t)− (−1)i(q̃pj−1)(i−j)(0)

2i−j+2

− pi(t), i = 1, r, q̃(τ) := q̃(t, τ) = q(τ)(t− τ). (44)

For example, p12(t) = 1 − tQ(t). We see that p12(t) = −p1 − tp2. Using the math-
ematical induction and formulas (44) and (42), we can prove simple formula p1i (t) =
(1− i)pi−1(t)− tpi(t), i = 2, r + 1.

Lemma 7. Let s ∈ Cs and q ∈ Cr[0, 1]. Then for |s| > q0, the asymptotic formulas

(ωs)
(l)
s (t, s) = −

r+1∑
j=1

plj(t) cos

(
st+

π

2
(j − l)

)
s−j +O

(
s−(r+2)e(r+2)|y|t), (45)

(ω′s)
(l)
s (t, s) = −

r∑
j=0

p̄ lj(t) cos

(
st+

π

2
(j − l)

)
s−j +O

(
s−(r+1)e(r+2)|y|t) (46)

are valid for l ∈ N0, where pki (t) = (1 − i)pk−1i−1 (t) − tpk−1i (t), i = 1, r + 1, p̄ k0 (t) =

−tp̄ k−10 (t), p̄ ki (t) = (1−i)p̄ k−1i−1 (t)−tp̄ k−1i (t), i = 1, r, k ∈ N, p̄ 0
i (t) = p0i

′(t)−p0i+1(t),
i = 1, r, p̄ 0

0 (t) = 1, and p0j (t) is calculated by (42).

Proof. We prove (45) formula in the case l = 0, 1 and (46) formula in the case l = 0. The
other cases we can prove by mathematical induction by l.
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For example, pl1(t) = (−1)l+1tl, p̄ l0(t) = (−1)ltl, l ∈ N0 (see Remark 5, too).

Corollary 2. Let x ∈ R, δ ∈ R, q ∈ Cr[0, 1], Qj(x), j = 1, r, are bounded functions. If
s = x+ δ,

δ =

r∑
j=1

Qj(x)x−j +O
(
x−(r+1)

)
, (47)

then we have the following formulas:

ωs(t) =

r+1∑
j=1

Rj(t, x)x−j +O
(
x−(r+2)

)
, ω′s(t) =

r∑
j=0

R̄j(t, x)x−j +O
(
x−(r+1)

)
.

From previous results we have R1(t, x) = − sin(xt), R̄0(t, x) = − cos(xt). Now we
derive general formula for Rj(t, x), j = 1, r + 1. We substitute expressions (45), (47)
into formula

ωs(t) = ω(t, x+ δ)

=

r+1∑
l=0

(ωs)
(l)
s (t, x)

δl

l!
+ (ωs)

(r+2)
s (t, x+ θδ)

δr+2

(r + 2)!
, θ ∈ [0, 1],

and get the following expression for ωs(t):

−
r+1∑
l=0

(
r+1∑
j=1

plj(t) cos

(
xt+

π

2
(j − l)

)
s−j

)
1

l!

(
r∑
i=1

Qi(x)x−i

)l
+O

(
x−(r+2)

)
.

From binomial formula we have (ni > 0, i = 1, r )(
r∑
i=1

Qi(x)x−i

)l
=

∑
n1+···+nr=l

l!

n1! · · ·nr!
Qn1

1 (x) · · ·Qnr
r (x)x−(n1+2n2+···+rnr).

Collecting terms near x−(r+1) (i.e. j + n1 + 2n2 + · · ·+ rnr = r + 1), we get

Rr+1(t, x) = −
∑

n1+···+nr=l, j>0,
j+n1+2n2+···+rnr=r+1

1

n1! · · ·nr!
plj(t) cos

(
xt+

π

2
(j − l)

)
×Qn1

1 (x) · · ·Qnr
r (x). (48)

For R̄(t, x), we get formula

R̄r(t, x) = −
∑

n1+···+nr=l, j>0
j+n1+2n2+···+rnr=r

1

n1! · · ·nr!
p̄ lj(t) cos

(
xt+

π

2
(j − l)

)
×Qn1

1 (x) · · ·Qnr
r (x). (49)

We write explicit formulas in the case q ∈ C1[0, 1]:

p2(t) = p02(t) = Q(t), p̄1(t) = p′1(t)− p2(t) = −Q(t),

pl2(t) = (−t)l−1
(
l − tQ(t)

)
, p̄ l1(t) = −(−t)lQ(t), l ∈ N,
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R2(t, x) = p2(t) cos(xt)− p11(t)Q1(x) cos(xt) =
(
Q(t)− tQ1(x)

)
cos(xt),

R̄1(t, x) = p̄1(t) sin(xt)− p̄ 1
0 (t)Q1(x) sin(xt) = −

(
Q(t)− tQ1(x)

)
sin(xt).

We formulate these results in the next two statements.

Lemma 8. Let s ∈ Cs and q ∈ C1[0, 1]. Then for |s| > q0, the asymptotic formulas

ωs(t) = − sin(st)s−1 +Q(t) cos(st)s−2 +O
(
s−3e3|y|t

)
,

(ωs)
′
s(t, s) = −t cos(st)s−1 +

(
1− tQ(t)

)
sin(st)s−2 +O

(
s−3e3|y|t

)
,

(ωs)
′′
s (t, s) = t2 sin(st)s−1 + t

(
2− tQ(t)

)
cos(st)s−2 +O

(
s−3e3|y|t

)
,

ω′s(t) = − cos(st)−Q(t) sin(st)s−1 +O
(
s−2e3|y|t

)
,

(ω′s)
′
s(t, s) = t sin(st)− tQ(t) cos(st)s−1 +O

(
s−2e3|y|t

)
are valid.

Corollary 3. Let x ∈ R, δ ∈ R, q ∈ C1[0, 1], Q1(x) is bounded function. If s = x + δ,
δ = Q1(x)x−1 +O(x−2), then we have the following formulas:

ωs(t) = − sin(xt)x−1 +
(
Q(t)− tQ1(x)

)
cos(xt)x−2 +O

(
x−3

)
,

ω′s(t) = − cos(xt)−
(
Q(t)− tQ1(x)

)
sin(xt)x−1 +O

(
x−2

)
.

4 Characteristic equation for problem with integral condition

Substituting ωs(t) into (5), we get the characteristic equation

h(s) := ωs(1)− γ
β∫
α

ωs(t) dt = 0. (50)

The set of eigenvalues of the BVP (1), (2), (5) coincides with the set {λ: λ = s2, h(s) =

ωs(1) − γ
∫ β
α
ωs(t) dt = 0}. The function h is analytic function of parameter s ∈ Cs,

and

h(l)(s) := (ωs)
(l)
s (1, s)− γ

β∫
α

(ωs)
(l)
s (t, s) dt, l ∈ N0. (51)

Substituting (45) into (51), we get

h(l)(s) = γ

r∑
j=1

( β∫
α

plj(t) cos

(
st+

π

2
(j − l)

)
dt s−j

)

−
r+1∑
j=1

plj(1) cos

(
s+

π

2
(j − l)

)
s−j +O

(
s−(r+2)e(r+2)|y|),

where plj ∈ Cr−j+3[0, 1].
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Remark 6. In the case r = 0 the last term is O(s−2e|y|).

If f ∈ Cr[0, 1], [a, b] ⊂ [0, 1], c ∈ R, then we use integration by parts formula and
have

b∫
a

f(t) cos(st+ c) dt

=

r∑
i=1

f (i−1)(b) cos(bs+ c− π
2 i)− f

(i−1)(a) cos(as+ c− π
2 i)

(−1)i−1si

+O
(
s−(r+1)e|y|

)
.

So, we derive

h(l)(s) = −
r+1∑
j=1

plj(1) cos

(
s+

π

2
(j − l)

)
s−j +O

(
s−(r+2)e(r+2)|y|)

+ γ

r∑
j=1

r−j+1∑
i=1

plj
(i−1)

(β) cos(βs+ π(j−l−i)
2

)− plj
(i−1)

(α) cos(αs+ π(j−l−i)
2

)

(−1)i−1si+j
.

We look for terms near s−(r+1), i.e. i+ j = r + 1,

hlr+1(s) := −plr+1(1) cos

(
s+

π

2
(r + 1− l)

)
+ γ

r∑
j=1

plj
(r−j)

(β) cos(βs+ π(2j−l−r−1)
2

)− plj
(r−j)

(α) cos(αs+ π(2j−l−r−1)
2

)

(−1)r−j .

Thus, the next lemma immediately follows from results in the above.

Lemma 9. Let s ∈ Cs and q ∈ Cr[0, 1]. Then for |s| > q0, the asymptotic formula

h(l)(s) =

r+1∑
j=1

hlj(s)s
−j +O

(
s−(r+2)e(r+2)|y|), l ∈ N0, (52)

is valid.

Corollary 4. If q ∈ C[0, 1], then we have (see Remark 6, too)

h(l)(s) = hl1(s)s−1 +O
(
s−2e|y|

)
, l ∈ N0, (53)

where

hl1(s) = − cos

(
s+

π

2
(l − 1)

)
.

Corollary 5. If q ∈ C1[0, 1], then we have

h(l)(s) = hl1(s)s−1 + hl2(s)s−2 +O
(
s−3e3|y|

)
, l ∈ N0, (54)

where

hl2(s) =
(
Q(1)− l

)
cos

(
s+

π

2
l

)
− γβl cos

(
βs+

π

2
l

)
+ γαl cos

(
αs+

π

2
l

)
.
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For example, h01(s) = − sin s, h02(s) = Q(1) cos s−γ cos(βs) +γ cos(αs), h11(s) =
− cos s, h11(s) = − cos s.

Analytic functions H(s) := −h(s)s, M(s) := −h(s)s2 have the same nonzero roots
as function h.

Corollary 6. If q ∈ C[0, 1], then we have

H(s) = −h01(s) +O
(
s−1e|y|

)
, (55)

H ′(s) = −h11(s)− h01s−1 +O
(
s−1e|y|

)
= −h11(s) +O

(
s−1e|y|

)
, (56)

M(s) = −h01(s)s+O
(
e|y|
)
, (57)

M ′(s) = −h11(s)s− 2h01(s) +O
(
e|y|
)

= −h11(s)s+O
(
e|y|
)
. (58)

Remark 7. The asymptotic formula (53) for the integral condition (5) are simpler than in
the case Bitsadze–Samarskii NBC (6) (see [17]). For Bitsadze–Samarskii NBC,

h(s) := ωs(1)− γωs(ξ), h(l)(s) = (ωs)
(l)
s (1, s)− γ(ωs)

(l)
s (ξ, s), l ∈ N.

Substituting (45) into these expressions, we get

h(l)(s) = −
r+1∑
j=1

(
plj(1) cos

(
s+

π

2
(j − l)

)
− γplj(ξ) cos

(
ξs+

π

2
(j − l)

))
s−j

+O
(
s−(r+2)e(r+2)|y|).

We look for terms near s−(r+1)

hlr+1(s) := −plr+1(1) cos

(
s+

π

2
(r + 1− l)

)
+ γplr+1(ξ) cos

(
ξs+

π

2
(r + 1− l)

)
.

So, Remark 9 is valid in the case Bitsadze–Samarskii NBC with above defined hlj(s),
j = 1, r + 1, and we get two corollaries.

Corollary 7 [Bitsadze–Samarskii NBC]. If q ∈ C[0, 1], then we have formula (53),
where hl1(s) = − sin(s + πl/2) + γξl sin(ξs + πl/2). For example, h01(x) = − sin s +
γ sin(ξs), h11(x) = − cos s+ γξ cos(ξs).

Corollary 8 [Bitsadze–Samarskii NBC]. If q ∈ C1[0, 1], then we have formula (54),
where hl2(s) = (Q(1) − l) cos(s + πl/2) + γξl−1(l − ξQ(ξ)) cos(ξs + πl/2). For
example, h02(x) = Q(1) cos s− γQ(ξ) cos(ξs).

Let us consider real eigenvalues. In this case, (52) is valid with s = x ∈ R (y = 0),
and functions hlj , j = 1, r + 1, l ∈ N0, are bounded. We investigate equation h(x+ δ) =

0 (or M(x+ δ) = −x2h(x+ δ) = 0), δ ∈ R, with additional condition |h11(x)| > κ > 0.
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Lemma 10. If q ∈ C[0, 1] and δ = o(1), then the following asymptotic formula is valid:

δ = −h01(x)
(
h11(x)

)−1
δ cos δ(sin δ)−1 +O

(
x−1

)
. (59)

Proof. From formula (57) we have

sinx cos δ − cosx sin δ = − sin(x+ δ) = h01(x+ δ) = (x+ δ)−1O(1)

= O
(
x−1

)
.

Since h11(x) = − cosx we have h11(x) sin δ = −h01(x) cos δ+O(x−1). We multiply this
equality by δ(sin δ)−1(h11(x))−1 (using condition |h11(x)| > κ > 0) and get (59).

Corollary 9. If h01(x) = 0, then δ = O(x−1).

Lemma 11. If q ∈ Cr[0, 1] and δ = o(1), h01(x) = 0, then asymptotic formula

δ =

r∑
j=1

Qj(x)x−j +O
(
x−(r+1)

)
(60)

is valid, where Qj(x), j = 1, r, are bounded functions.

Proof. Formula (60) is valid for r = 0. So, δ = O(x−1). If r > 0, then substituting (54)
into equality

0 = h(x+ δ) = h(x) + h′(x)δ + h′′(x)
δ2

2
+O

(
δ3
)
,

we have

−h11(x)x−1δ = h01(x)x−1 + h02(x)x−2 +O
(
x−3

)
= h02(x)x−2 +O

(
x−3

)
,

i.e. δ = Q1(x)x−1 +O(x−2), where

Q1(x) = −h02(x)
(
h11(x)

)−1
. (61)

We derive formulas for Qj , j = 2, r, r > 2. We can use the mathematical induction.
Suppose that δ =

∑r−1
j=1 Qj(x)x−j + O(x−r). Substituting (52) expression in the case

y = 0 into equality

0 = h(x+ δ) = h(x) + δ

r∑
i=0

h(i+1)(x)
δi

(i+ 1)!
+O

(
δr+2

)
,

we get

δx−1
r∑
i=0

r∑
j=0

hi+1
j+1(x)

i+ 1

δi

i!
x−j = −

r+1∑
j=2

h0j (x)x−j +O
(
x−(r+2)

)
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or

Z(x)δ = −
r+1∑
j=1

h0j (x)x−j +O
(
x−(r+2)

)
= h11(x)x−1

(
r∑
j=1

hj(x)x−j +O
(
x−(r+1)

))
,

where hj(x) := −h0j+1(x)(h11(x))−1, 1 6 j 6 r,

Z(x) := x−1
r∑
i=0

r∑
j=0

hi+1
j+1(x)

(
r−1∑
l=1

Ql(x)x−l

)i
x−j

(i+ 1)!

= x−1
r∑

i,j=0

hi+1
j+1(x)

∑
n1+···+nr−1=i

Qn1
1 (x) · · ·Qnr−1

r−1 (x)

(i+ 1)n1! · · ·nr−1!
x−(j+n1+2n2+···+(r−1)nr−1)

= h11(x)x−1

(
1−

r−1∑
k=1

zk(x)x−k +O
(
x−r

))
,

For zk, k = 1, r − 1, we have expressions

zk(x) =
∑

n1+·d+nr−1=i, j>0

j+n1+2n2+···+(r−1)nr−1=k

−hi+1
j+1(x)(h11(x))−1

Qn1
1 (x) · · ·Qnr−1

r−1 (x)

(i+ 1)n1! · · ·nr−1!
. (62)

So,

δ =

r∑
j=1

hj(x)x−j ·

(
1−

r−1∑
k=1

zk(x)x−k +O
(
x−r

))−1
+O

(
x−(r+1)

)
=

r∑
j=1

r∑
l=0

hj(x)x−j

(
r−1∑
k=1

zk(x)x−k

)l
+O

(
x−(r+1)

)
=

r∑
j=1

r∑
l=0

hj(x)
∑

n1+···+nr−1=l

l!

n1! · · ·nr−1!
·

zn1
1 (x) · · · znr−1

r−1 (x)

xj+n1+2n2+...+(r−1)nr−1
+O

(
x−(r+1)

)
.

Collecting terms near x−r (i.e. j + n1 + 2n2 + . . .+ (r − 1)nr−1 = r), we get

Qr(x) =
∑

n1+···+nr−1=l, j>0

j+n1+2n2+···+(r−1)nr−1=r

l!

n1! · · ·nr−1!

−h0j+1(x)

h11(x)
zn1
1 (x) · · · znr−1

r−1 (x). (63)

Lemma is proved.
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Corollary 10. If q ∈ C2[0, 1], then

Q2(x) = −h03(x)
(
h11(x)

)−1 − h02(x)
(
h11(x)

)−1
z1(x), (64)

z1(x) = −h12(x)
(
h11(x)

)−1 − 1

2
h21(x)

(
h11(x)

)−1
Q1(x).

Corollary 11 [Integral NBC]. If q ∈ C1[0, 1], then

Q1(x) = Q(1)− γ cos(βx)− cos(αx)

cosx
. (65)

Corollary 12 [Bitsadze–Samarskii NBC]. If q ∈ C1[0, 1], then

Q1(x) =
Q(1) cosx− γQ(ξ) cos(ξx)

cosx− γξ cos(ξx)
. (66)

Formula (66) was proved in [17].

5 Spectral asymptotics for eigenvalues and eigenfunctions for prob-
lem with integral condition

In this section, we investigate eigenvalues for SLP (1), (2), (5).

Lemma 12. The real eigenvalues of the SLP (1), (2), (5) are bounded from below.

Proof. Set H̃(y) := ı3H(ıy), y > 0. Then

H̃(y) = sinh y +O
(
y−1ey

)
=

ey

2
− e−y

2
+O

(
y−1ey

)
.

It is clear that limy→+∞ H̃(y) = +∞. Then there exists a y0 > 0 such that H̃(y) 6= 0

for y > y0. Therefore, we get H(ıy) = ıH̃(y) 6= 0 for y > y0. Accordingly, −y20 6 λ
for negative λ.

Corollary 13. The number of negative eigenvalues of problem (1), (2), (5) are finite
(maybe zero).

Lemma 13. The function H : R → R has at least one positive root in the interval
((k − 1/2)π, (k + 1/2)π) for large k.

Proof. If s = x, 0 < x ∈ R, then y = 0. In this case, formulas (55) is

H(x) = sinx+O
(
x−1

)
, (67)

We have |O(x−1)| < 1 for large x. The function sinx takes its local maximum points
at Mk = (2k − 3/2)π, k ∈ N, and its local minimum points at mk = (2k − 1/2)π,
k ∈ N. Thus, from Intermediate value theorem at least one root of the function H(x) lies
in each interval ((k− 1/2)π, (k+ 1/2)π), K < k ∈ N, for large K. So, we have infinite
(countable) number positive roots of equation H(x) = 0.
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Corollary 14. The SLPs (1), (2), (5) have infinitely many (countable) positive eigen-
values.

Remark 8. The function sin s has the same property, but only one root is in the interval
((k − 1/2)π, (k + 1/2)π), k ∈ N.

Let us denote domainDk = {s: |x| 6 ak = (k+1/2)π, |y| 6 ak}, Dsk = Cs∩Dk,
k ∈ N, and a contour Γsk = Cs ∩ ∂Dk. Then we have |s| > 3π/2 on Γsk, k ∈ N.

Remark 9. The corresponding contour Γλk in the plane Cλ = C will be the boundary of
the domain Dλk.

Lemma 14. There exists q1 > 0 such that all eigenvalues of problems (1)–(2), (5) in
the domains {s ∈ Cs: |s| > q1} are positive and, more precisely, there exists only one
positive root of function H(s) in each interval ((k − 1/2)π, (k + 1/2)π) for sufficiently
large k.

Proof. On the vertical part of contour s = ak + ıy, y ∈ [−ak, ak], k ∈ N, Re(sin s) =
sin ak cosh y. We estimate

| sin s| >
∣∣Re(sin s)

∣∣ > | sin ak| cosh y = cosh y =
e|y| + e−|y|

2
>

e|y|

4
.

On the remaining part of contour y = ±ak, 0 6 x 6 ak, we estimate

| sin s| =
√

sinh2 y + sin2 x > sinh |y| = e|y| − e−|y|

2
>

e|y|

4
.

So, we have | sin s| > e|y|/4 on Γsk for sufficiently large k.
From formula (55) H(s) = sin s + O(s−1e|y|). Hence, we have |O(s−1e|y|)| 6

c1|s|−1e|y| < e|y|/4 6 | sin s| on the contours Γsk for sufficiently large k. Therefore, by
Rouché theorem it follows that the number of zeros of H(s) = sin s + O(s−1e|y|) and
sin s are the same inside Γsk for sufficiently large k.

In the domain between contours Γs,k−1 and Γsk, there is exactly one positive root
of the function sin s (see Remark 8). The function H has one root in this domain for
sufficiently large k. But interval ((k − 1/2)π, (k + 1/2)π) belongs to this domain. So,
the single root of H in this domain is positive.

This lemma clarifies Lemma 13.

Corollary 15. The functionH : R→ R has one positive root in the interval ((k−1/2)π,
(k + 1/2)π) for large k.

We can enumerate the zeros of H as sk, k ∈ N. The first zeros can be complex num-
bers or not simple. From Corollary 15 we have that sk are positive for sufficiently large k.
Now we will investigate the distribution of these positive eigenvalues of problem (1)–(3),
and we leave out the note about sufficiently large k. Now we consider only real positive
s = x > 0. Since sk ∈ ((k − 1/2)π, (k + 1/2)π), we have sk ∼ xk := πk (as k →∞)
and h01(xk) = 0, h11(xk) = − cos(xk) = (−1)k+1, |h11(xk)| = 1.
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Let us denote δk = sk − xk. The functions H and sin s are analytic. So, from (67)
we have

sk = xk + o(1) or δk = o(1) (as k →∞). (68)

Theorem 1. Let q ∈ C[0, 1]. For eigenvalues λk = s2k and eigenfunctions uk of prob-
lem (1)–(2), (5), the asymptotic formulas

sk = xk +O
(
k−1

)
, uk(t) = − sin(xkt)x

−1
k +O

(
k−2

)
(69)

are valid for sufficiently large k.

Proof. For our problem, h01(s) = − sin s, h11(s) = − cos s and h01(xk) = 0, h11(xk) =
(−1)k+1 = ±1. We have δk = o(1). So, all conditions of Lemma 10 are valid, and from
Corollary 9 it follows δk = O(x−1k ) = O(k−1).

Then we apply Corollary 1 and get

uk = ωsk(t) = − sin(xkt)x
−1
k +O

(
x−2k

)
= − sin(xkt)x

−1
k +O

(
k−2

)
.

Remark 10. Normalized eigenfunctions are

vk(t) =
√

2 sin(xkt) +O
(
k−1

)
.

Theorem 2. Let q ∈ Cr[0, 1]. For eigenvalues λk = s2k and eigenfunctions uk of problem
(1)–(2), (5), the asymptotic formulas

sk = xk +

r∑
j=1

Qj(xk)x−jk +O
(
k−(r+1)

)
, (70)

uk(t) =

r+1∑
j=1

Rj(t, xk)x−jk +O
(
k−(r+2)

)
(71)

are valid for sufficiently large k.

Proof. We have δk = O(k−1) = o(1) (see Theorem 1). So, all conditions of Lemma 11
are valid, and it follows

δk =

r∑
j=1

Qj(xk)x−jk +O
(
k−(r+1)

)
.

Then we apply Corollary 2 and get

uk = ωsk(t) =

r+1∑
j=1

Rj(t, xk)x−jk +O
(
k−(r+2)

)
.

Corollary 16. If q ∈ C1[0, 1], then the asymptotic formulas

sk = xk +Q1(xk)x−1k +O(k−2),

uk(t) = − sin(xkt)x
−1
k +

(
Q(t)− tQ1(xk)

)
cos(xkt)x

−2
k +O

(
k−3

)
are valid for sufficiently large k, where

Q1(x) = Q(1) + (−1)k+1γ cos(βx) + (−1)kγ cos(αx).
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Remark 11. In this case, normalized eigenfunctions are

vk(t) =
√

2 sin(xkt) +
√

2

(
sin(2xk) sin(xkt)

4
−R2(t, xk)

)
x−1k +O

(
k−2

)
.

6 Conclusion

In this paper the spectrum, existence of solutions and spectral properties of eigenfunctions
for a SLP with one integral-type NBC was investigated. The considered problem differs
from the classical (local) one-dimensional SLP with BCs in that it contains a NBC in
two cases. Therefore, it is not obvious how to apply the classical methods of theory to
such type BVPs. Therefore, suggesting own approach and modifying the techniques of
classical Sturm theory, we obtained asymptotic formulas for eigenvalues and normalized
eigenfunctions. The results obtained in this work can be extended to two- or higher-
dimensional SLPs and to higher-order differential equations. Furthermore, asymptotics
of eigenvalues and eigenfunctions of the same differential equation but with different
NBCs such as eigenvalue-parameter dependent NBCs can be also investigated.
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