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Abstract: The increase in flying time of unmanned aerial vehicles (UAV) is a relevant and difficult
task for UAV designers. It is especially important in such tasks as monitoring, mapping, or signal
retranslation. While the majority of research is concentrated on increasing the battery capacity, it is
also important to utilize natural renewable energy sources, such as solar energy, thermals, etc. This
article proposed a method for the automatic recognition of cumuliform clouds. Practical application
of this method allows diverting of an unmanned aerial vehicle towards the identified cumuliform
cloud and improving its probability of flying into a thermal flow, thus increasing the flight time of
the UAV, as is performed by glider and paraglider pilots. The proposed method is based on the
application of Hough transform and Canny edge detector methods, which have not been used for
such a task before. For testing the proposed method a dataset of different clouds was generated and
marked by experts. The achieved average accuracy of 87% on the unbalanced dataset demonstrates
the practical applicability of the proposed method for detecting thermals related to cumuliform
clouds. The article also provides the concept of VilniusTech developed UAV, implementing the
proposed method.

Keywords: thermals; cumuliform clouds; detection; UAV; soaring; Hough transform; Canny
edge detection

1. Introduction

This century has shown a significant improvement in autonomous aircraft control
systems, bringing forth numerous studies on the design and application of autonomous
aircraft in various scientific fields [1]. The ability to fly without using its own energy
resources is important for gliders, paragliders, and autonomous aircraft. Renewable energy
resources, such as solar power and meteorological phenomena, such as thermals, permit
to remain aloft longer, improving the efficiency as a result. The use of thermal flows with
regard to autonomous aircraft flights is investigated already [2,3]. The main difficulty
when forecasting thermals is the fact that they are invisible to the naked eye and other
visual recognition equipment. Therefore, to forecast thermals, it is necessary to consider
either the reason for their occurrence or the result of the occurrence of thermals. The reason
for the meteorological condition is favorable for thermal flows and heat convection, as
well as uneven heating of the Earth’s surface. Meanwhile, the result of the thermals is
cumuliform convective clouds. Currently, autonomous aircraft flight in thermals occurs
only incidentally as an aircraft inadvertently flies into a thermal flow [4]. The recognition
and analysis of cumuliform clouds as they are growing is a reliable way to identify thermals.
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Based on the location of clouds, it is possible to predict the places where a thermal is
likely. Cumuliform clouds are formed by convection and rising air flows [5]. The active
surface is heated by the sun. Hotter and lighter air volumes form over areas that are heated
more. Affected by the principles of floatation, they move upwards. Gradually, separate
volumes rise and converge into one, and a powerful rising airflow forms. Simultaneously,
a myriad of smaller compensating downdrafts form in the periphery of the main flow.
As a result, thermal convection occurs. The intensity of convection depends both on the
non-uniformity of the surface and the degree of instability of atmospheric layers. Due
to adiabatic cooling, convective (cumuliform) clouds form in the rising flows. The lower
base of the clouds almost coincides with the level of condensation, whereas the top–with
the level of convection [6]. Cumuliform clouds have the most active turbulence [7]. The
turbulent zones in this environment can be identified visually [8]. We can presume that
turbulence occurs in cumuliform clouds due to convection. As follows, cumuliform clouds,
due to their visual shape, can be distinguished from other clouds in the sky by using image
recognition methodologies.

The article aims to analyze the possibility of detecting cumuliform clouds and thermals
below them by using methods of visual detection. The hypothesis is that it is possible
to detect a growing cumuliform cloud by using image recognition algorithms without
supervised cloud image-based learning. The proposed classifier could be used to divert an
autonomous aircraft towards detected cumuliform clouds, thus increasing the possibility
of flying into a thermal.

In Section 2, existing research papers were analyzed to get know what the solutions
and results to the cloud classification problem are. While most existing cloud classifiers on
ground-based camera images are based on supervised learning, the proposed approach
will apply Hough transform and Canny edge detector methods. The models used are
presented in Section 3, while the proposed method architecture is described in Section 4.
The proposed solution does not require a cloud image dataset for model training while is
able to achieve the same accuracy as existing supervised learning solutions. The results of
the proposed method’s performance are presented in Section 5. As well, the paper presents
an idea to use the proposed cumuliform cloud automated detection as a support system
for UAV path planning in real-time, for flight time increase. The design of such a solution
is presented in Section 6 and will be fully implemented in the future.

2. Related Work

The tasks of cloud recognition, classification, and tracking are important in meteorol-
ogy, aviation, energetics, cartography, and reconnaissance [9]. Zhenzhou Peng suggests
classifying clouds using images, obtained from an unmanned aerial vehicle (UAV), using
thermals [10]. The UAV first must find and recognize the clouds in the sky, reject the images
of objects on the ground, and classify the cloud as cumuliform.

Globally, several research studies, concerning cloud recognition and tracking, have
been conducted. Cloud tracking technologies are important objectives in meteorology as
well as for generating solar power. Currently, the two most popular methods for cloud
tracking are used–the block comparison method and the variable optical flow method [10].
Satellite images or material from ground-based sky imaging devices can serve as a good
source of cloud images [10]. When tracking clouds from several different points, it is also
possible to determine their base above ground level [11].

Some studies [12] analyze automatic cloud classification based on images. The typical
devices used for ground-based cloud classification are whole sky imager (WSI), total sky
imager (TSI), and infrared cloud imager (ICI).

Local Binary Classifier (LBT) algorithms are employed for the classification. There are
several subcategories of these algorithms, and each category has its advantages and disad-
vantages for image classification and recognition [12]. In ground-based cloud recognition
analysis [13], authors use several different methods for cloud type classification: autocor-
relation, co-occurrence matrix, edge frequencies, and length of primitives. The K-nearest
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neighbor and Artificial Neural Network algorithms were used for cloud type recognition
too [13]. There are some research studies where image recognition algorithms are applied
to satellite imaging to distinguish clouds from snowfields or mountain tops [10].

Long [14] analyzed automatic cloud recognition algorithms using images obtained
from devices automatically photographing the sky. He suggested recognizing clouds based
on the ratio of red and blue color in RGB channels of the pixels in the analyzed image.
If this ratio is greater than 0.6, the pixel could be classified as one belonging to a cloud,
otherwise, the pixel was attributed to the clear sky [14].

Another work [15] used optical as well as infrared ranges for cloud classification. The
KNN classifier was employed for cloud classification. The accuracy of cloud classification
in the work analyzed is at least 75 percent. The following cloud types were distinguished
in the study: Cumulonimbus, Small cumulus, Clear sky, High cloud, Mixed clouds, Others,
Overcast, Towering cumulus. The classified cloud image is transformed into a feature
matrix using different transformations and filters: grey-level co-occurrence matrix (GLCM)
statistics, Fourier Transform (FFT) power spectrum properties, and energy outputs from
Laws and Gabor digital filter banks. The feature matrix is transferred to the KNN classifier.

The main papers on image-based cloud classification are summarized in Table 1. The
summary illustrates different types of data sources used-satellite, ground-based total sky
imager, infrared, digital camera images. At the same time, the used image dataset varies.
There is no one standard, therefore even for the same data source, no unified, globally used
dataset exists. This is partially related to the lack of a very wide dataset with separate
portions of data for model training, validation, and testing. The absence of a publicly
available ground-truth dataset complicates the comparison of different solutions. Therefore,
most of the analyzed solutions rely on obtained result comparison with published results
in other papers.

Table 1. Summary of image-based cloud classification solutions and their results.

Authors Aim Data Source Used Method Dataset Accuracy

Z. Peng et al. [10] Cloud movement
identification ground based TSI

Support Vector
Machine for cloud
area identification

Custom dataset, 8 TSI
images for validation

Mean absolute error
(MAE): 3.3–22.5

S. Liu and Z. Zhang [12] Classification of
7 sky/cloud types ground based TSI Wireless

sensor network
Kiel and

IapCAS-E datasets

Accuracy (ACC) with
different datasets:

83.21 and 78.94

Z. Zhang [16] Classification of
7 sky/cloud types ground based TSI Convolutional neural

network (CNN)
MOC_e, IAP_e, and

CAMS_e datasets

Accuracy (ACC) with
different methods: from

72% to 79%

S. Liu [17] Classification of
7 sky/cloud types ground based TSI Convolutional neural

network (CNN)
Custom dataset with

3711 records

Accuracy (ACC) for
different methods: from

75% to 93%

J. Drönner et al. [18] Classification of
5 cloud/land classes Satellite images Convolutional neural

network (CNN)

Visible and Infrared
Imager (SEVIRI)

on satellites

Accuracy (ACC) for
different cases: from

89% to 94%

E. Rumi et al. [15] Classification of
8 sky/cloud types

ground-based camera
and infrared

camera images

k-nearest
neighbor classifier

Custom dataset of
13,197 records

Accuracy (ACC) for a
different month: from

67% to 90%

M. Singh
and M. Glennen [13]

Classification of
5 cloud types

ground-based
camera images

k-nearest neighbor and
neural

network classifiers

Custom dataset of
3167 images

Accuracy (ACC) with
different folds: from

20% to 70%

M. Xia et al. [19] Classification of
4 sky/cloud types ground-based camera

k-nearest neighbor and
extreme
learning

machine classifiers

Custom dataset with
840 records

Accuracy (ACC) for
different sky types:
from 77% to 100%

Y. Wang et al. [20] Classification of
5 sky/cloud types ground-based camera Different

neural networks SWIMCAT dataset
Accuracy (ACC) for
different methods:

71% and 85%

L. Ye et al. [21] Classification of
6/9 sky/cloud types ground-based camera Convolutional neural

network (CNN)
ImageNet dataset
with 1000 records

Accuracy (ACC) for
different methods:

72% and 98%

Y. Xiao, et al. [22] Classification of
6/9 sky/cloud types ground-based camera support

vector machine HUST dataset
Accuracy (ACC) for

different clouds: from
60% to 96%

M. P. Souza-Echer et al. [23] Cloud
existence estimation ground-based camera Classification of each

pixel in IHS Custom dataset Accuracy (ACC) up
to 94%

B. Nouri et al. [24] Weather classification ground-based camera Convolutional neural
network (CNN)

MWI and
Cityscapes datasets

Accuracy (ACC) for
different datasets: from

90% to 95%
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Other variations are the aim of the classification as well as the number of classes in
the classifier. As there are no papers oriented to UAV flight time improvement, no analysis
on specifically cumulative and non-cumulative cloud/sky identification was observed.

It is worth mentioning, the accuracy of ground-based camera cloud classification
reaches up to 100% accuracy for some types of clouds, however, those solutions are based
on supervised learning. Mostly k-nearest neighbor and convolutional neural networks are
used for ground-based camera sky image classification. However, analyzing the average
metrics (for all classes, not one only), the cloud classification accuracy from ground-based
camera images mostly does not exceed 90%—the maximum values are mostly achieved by
identifying clear sky only.

3. Research Methods
3.1. Canny Edge Detector Algorithm

The Canny algorithm can detect the edges of objects in images. This algorithm can also
detect the edge of a cloud. The Canny operator was developed in 1986 by John F. Canny and
uses a multi-stage wide spectrum algorithm for edge detection in images. John F. Canny
studied and solved the mathematical problem of a filter, which is the most optimal based
on the detection criteria, such as localization of minimums and obtaining several responses
for a single edge. The algorithm consists of five stages: (1) blur; (2) finding the intensity
gradients; (3) non-maximum suppression; (4) double threshold filtering; (5) hysteresis
thresholding. The Canny detector reacts to the real edges of the image, and is resistant
to false edges, by accurately detecting the edge curves of the elements, and also reacts to
these curves only once, thus eliminating the impact of wide brightness change areas on the
edges [25].

The Canny algorithm is susceptible to noise. One of the ways to diminish the effect of
noise on the image is to use the Gaussian blur. This is a technique for image blurring, using
a Gauss cell (3 × 3, 5 × 5, 7 × 7, etc.). The dimensions of the cell depend on the necessary
level of image blurring. The smaller the dimensions of the cell, the less visible the effect of
blur [26].

3.2. Hough Transform

Hough transform is a method for detecting lines and curves in a grayscale or color
image. This method allows setting specific parameters for the subgroups of curves and
ensures the detection of the pre-set subgroup of curves in the image. Various types of
curves can be detected, such as straight lines, arcs, circles. It also allows for detection based
on a pre-set template. The Hough transform algorithm uses an accumulator space, the
number of dimensions of which corresponds to the number of unknown parameters in the
equation to detect the curve subset. For example, when detecting the curve y = m*x + b,
the values for the parameters of m and b for each line must be found. In this case, the
values are accumulated in the element array A [M, B], and show the probability of the
existence of lines corresponding to the equation y = m*x + b in the analyzed image, where
M and B are the discrete values of m and b. The Hough transform is used in the areas
of meteorology and hydrology [27,28]. However, it has not been used in the context of
detecting cumuliform clouds.

3.3. The Kalman Filter

The Kalman filter estimates a joint probability distribution over the variables of an
object under analysis, using a series of measurements observed over time. This allows
minimizing the impact of noise on the parameter under analysis and obtaining smaller
errors of measurement of the parameter in the past, present, and future. The Kalman filter
is a recursive filter that, according to the obtained measurements, carries out an optimal
assessment of a momentary state of a linear dynamic system, which is affected by Gaussian
noise with a normal distribution. The Kalman filter is mainly used for the assessment of the
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process state x ∈ R, where the process is expressed in linear differential equations (vector
and matrix forms) [29].

3.4. Detection of Clouds and Ground Surface Based on the Color Balance

By employing an analysis of the ratio between the red and blue channels, it is possible
to make a distinction between pixels that belong to the clouds or to the sky itself [14]
According to Long et al. [14], not only do clouds have their distinct ratio of color balance.
A comparison of the average values of the colors allows distinguishing clouds from the
surface of the Earth [14]. Zafarifar and Weda study [30] also note that the horizon can be
detected by analyzing the colors of the image pixels. Complex horizon detection algorithms,
analyzed in the study by [31], could be used. However, it is stated that these algorithms
require from 0.3 to 61.1 s for operating on 1024 × 768 resolution pixel images. This horizon
detection speed is very slow, especially, since it is not necessary to detect the horizon
very accurately when the computation resources can be used better for the detection of
cumuliform clouds. A premise can be set forth that the comparison of other color ratios
allows detecting the horizon faster than within 0.3 s or eliminating the horizon by simply
disregarding the lower part of the image.

4. Description of the Suggested Hough Transform and Canny Edge Detector Based
Cumuliform Cloud Detection Method

As previously mentioned, due to the shape of cumuliform clouds affected by convec-
tion, in theory, the use of the Hough transform would allow identifying the places with
cumuliform clouds in the images. To employ the Hough transform, the image has to be
manipulated in a way that only the edges of the objects are left. The Canny algorithm
was used for this purpose. The OpenCV package [32] was used in the experiment. In
essence, the cloud detection algorithm consists of the processing of the image using the
Canny algorithm, followed by the application of the Hough transform for calculating the
separately detected lines and circles. During the experiment, the frame was converted
into a 4 × 4 square matrix, with a total of 16 quadrants. The computation of lines and
squares is not carried out for the full frame, but separately for each quadrant of the frame.
Since the number of lines and circles is different in different quadrants, the Kalman filter
was applied individually to each quadrant, by smoothing the number of detected lines
and circles. In the final stage, a threshold function was applied, to determine whether the
number of detected lines and circles in a quadrant exceeds a certain limit. If the threshold
function returns a positive result, the quadrant is attributed as belonging to a cumuliform
cloud. It is also possible to determine how close a cloud is. If the camera is lower than
the cloud base, closer clouds will be found at the top of the image, whereas clouds further
away will be found in the lower part of the image. The top quadrants, in this case, will
have closer clouds, and the lower quadrants next to the horizon will hold clouds further
away. This way, the UAV may choose closer prospective cumuliform clouds to use the
thermals below them for autonomous soaring. Using these premises, an algorithm was
formulated, the aim of which is to detect cumuliform clouds against a background of the
sky or other clouds. The diagram of the algorithm is illustrated in Figure 1.
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Figure 1. Diagram of the proposed algorithm. Figure 1. Diagram of the proposed algorithm.

All images used in the model, irrespective of the source of the image, must be made
similar in resolution since the dimensions of the detected objects must fit into certain pre-set
boundaries. The resolution of the images was set to 1024 pixels horizontally. The resolution
in pixels vertically was calculated according to Equation (1).

NewHeight =
OldHeight ·NewWidth

OldWidht
=

OldHeight · 1024px
OldWidht

(1)

The second stage is the application of the Canny algorithm to detect the edges of
the image. The quality of the operation of the whole algorithm depends on the quality
of this stage. Only the edges of the clouds necessary for this step are identified in this
stage, rejecting noise and other small details present in the image. With the application
of the Canny algorithm, the image of the cloud will appear as a combination of curves
and straight lines against a black background. This generated image can be used for
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detection by applying the Hough transform to search for curves and circles in the image.
The parameters of the Canny algorithm, used for the experiment, are listed in Table 2.
These are the standard parameters of the Canny algorithm while values were selected
experimentally, taking into account the collected dataset and using its statistical data [33].
This is not an optimal method to estimate the lower and upper thresholds, but it is enough
for basic functionality, while will be optimized in the future.

Table 2. Parameters, used in the second stage of the algorithm for Canny edge detection.

Parameter Value Parameter Explanation

Lower 150 The lower boundary on the gradient values.
Upper 300 The upper boundary on the gradient values.

The minimum and maximum dimensions of the detected primitives are set in the
Hough transform algorithm. If, for example, the resolution in one instance is 400 × 400
pixels, whereas in another instance 4000 × 4000, the difference between the dimensions of
the objects suitable for detection will be 10 times greater. Therefore, a possibility for a false
positive or a false negative result of an object detection occurs.

The circle and line shapes have different characteristics, therefore suggested Hough
transform algorithm parameters were set to circle detector (see Table 3) and line detector
(see Table 4). The following parameters provide the dimensions of the detected objects.
It was selected taking into account the size of the image and possible distance from the
camera to the taken clouds (for example the variation of cloud size varies in the image,
based on image size, therefore the circle radius ranges can be set based on it). To adjust the
parameters, grid-based parameter optimization could be executed, however, it is time and
resource-consuming. Therefore, in this research intuitive parameter values were selected.

Table 3. Parameters, used for circle detection with Hough transform.

Parameter Value Parameter Explanation

Dp 7 The inverse ratio of the accumulator resolution to the image resolution.
MinDist 12 The minimum distance between the centers of the detected circles.
Param1 10 First method-specific parameter.
Param2 20 Second method-specific parameter.

minRadius 5 Minimum circle radius.
maxRadius 20 Maximum circle radius.

Table 4. Parameters, used for line detection with Hough transform.

Parameter Value

rho 100 Distance resolution of the accumulator in pixels
theta π/2 Angle resolution of the accumulator in radians.

threshold 10 Accumulator threshold parameter.
minLineLength 10 Minimum line length.

maxLineGap 15 Maximum allowed the gap between points on the same line to
link them.

It is not necessary to detect objects below the edge of the horizon. As a result, the edge
of the horizon was eliminated by separating the image into 16 quadrants, with the bottom
four quadrants, where the horizon lies, not analyzed by the algorithm (Figure 2).
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Figure 2. Visual illustration of the output of the proposed algorithm, where image segmented to
16 elements and the bottom four elements are eliminated from the analysis.

The next stage is eliminating the lines and circles that do not belong to the pixels of
a cloud. Cloud pixels are identified using the method previously described in [14]. The
cloud detection algorithm operates using the following method. First, the primitives (lines
and circles) are detected using the Hough transform. The primitives have their central
coordinates, x, y accordingly. A pixel within the coordinates of the detected primitive (line
or circle) is chosen, and the three color channels of this pixel are extracted—red (r), green (g)
and blue (b). Each channel is coded by a number from 0 to 255, where 0 represents the lack
of color, whereas 255 represents the greatest possible value of the color. Then, it is assessed
whether all three channels have values that are greater than 120—which stands for the
empirically derived threshold. This threshold ensures that the algorithm discards dark
pixels. Then, based on the research by Long [14], the ratio between the values of the red
and blue channels is assessed, comparing it to a 0.6 threshold. The pixel is attributed to a
cloud if all four criteria are met: red channel value is greater than 120, green channel value
is greater than 120, blue channel value is greater than 120, and the ratio between the red
and blue channel values is greater than 0.6. Otherwise, the pixel is attributed to a clear sky.

The cloud position has to be identified in a certain area identified by coordinates.
Image fragmentation into numbered quadrants was used in the experiment, and the
detected cloud position was attributed to the quadrants. Since the algorithm can be used
for video feed as well as images, the number of primitives in each frame, detected using
the Hough transform, will differ. To smooth the number of primitives detected in each
quadrant, smoothing filters are used for each quadrant separately. The Kalman filter is
applied for this purpose to each quadrant separately to separately smoothing the number
of lines and circles.

After the straight lines and circles in the quadrant are detected and calculated, it must
be determined whether there is an image of a cumuliform cloud in this quadrant or not.
This is carried out by using a threshold function. The sum of all the lines and circles in
a quadrant is fed into the function. If the sum is higher than the preset 7-unit value, the
algorithm identifies the quadrant as containing a cumuliform cloud.

Figure 2 illustrates the image, divided into 16 quadrants. The lowest four quadrants are
not analyzed, as they contain the horizon line. Meanwhile, the other twelve quadrants are
analyzed to identify circles and straight lines in them. Identified circles (presented in light
blue color) and straight lines (presented in red color) are presented just for visualization.
The classification result is executed based on the number of these primitives in each
quadrant. Therefore, for visualization, each analyzed quadrant has two decimal numbers,
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presented in the left top corner of each analyzed quadrant. The upper number represents
the number of lines, while the lower one–number of circles. The numbers are not integers, as
the whole image is analyzed and the quadrant might contain just some portion of identified
primitive, not the whole one. If the quadrant is classified as containing cumuliform clouds–
these two numbers are presented in green and yellow. In other cases–the numbers are
presented in red and pink. Therefore, in the example of Figure 2, only six quadrants are
classified as containing cumuliform clouds, six quadrants are classified as not containing
cumuliform clouds (clear sky or contain other types of clouds).

It must be noted that the 7-unit threshold is an empirical value, that must be set based
on the following:

1. Parameters of the Canny algorithm.
2. Parameters of the Hough transform for lines detector.
3. Parameters of the Hough transform for circles detector.

It is necessary to adjust the cloud detection threshold for the different parameter
settings mentioned above. It is also likely that the threshold has to be adjusted concerning
the time of day, meteorological conditions, and the characteristics of the camera.

5. Results and Discussion
5.1. Description of the Dataset

To approve the suggested method, an experiment for the automatic detection of
cumuliform clouds was set up. A dataset of 6456 images of different types of clouds
was collected. The images were generated from a video feed provided by a drone. When
collecting the data, the drone was flown at 120 m, under different meteorological conditions,
and at different times of day, to collect a varied array of cloud images. During data
collection, the drone performed a 360-degree rotation along the vertical axis, thus scanning
the sky around itself. The same drone was used for the collection of images in the dataset
without changing the main parameters of the camera, or the resolution. However, the
videos were made in three different locations during a period of 15 days. The dataset
was composed of situations, when autonomous soaring is possible (the worm period on
daylight), as the method is dedicated to detecting cumuliform clouds during gliding.

The data from the drone were converted into 1024 × 576 px size images, which
were then segmented into 16 images of 256 × 144 px (four lines and four columns). The
detection of cumuliform clouds was carried out simultaneously with the segmentation of
the image by using the described computer vision method. As a result, the images for the
dataset were obtained together with the numbers of circles and lines, detected by the cloud
detection algorithm. Thus, the detection of contrasting lines and circles was carried out in
real-time together with the collection of the images for experimental analysis. The lower
line consisting of four images was eliminated from the dataset, as most of it was attributed
to the horizon (Figure 2).

To approve the accuracy of the algorithm, the images were classified into cumuliform
and other types of clouds using expert analysis. Experts were trained by using collected
training material. The most prominent features of cumuliform clouds, as well as the
differences from other types of clouds, were described in the training material. Examples
of the training material, the developed code, and the dataset can be found at github: https:
//github.com/ivansuzdalev/clouds_reco_canny_hough (accessed on 25 August 2021).
After the experts were acquainted with the training material, the data were classified. The
classification was carried out by three trained experts. A logic “1” was attributed to the
images with a cumuliform cloud or its part. Values of images classified by experts:

• Expert no1: classified 1737 as a cumuliform cloud image of 6457 images.
• Expert no2: classified 1851 as a cumuliform cloud image of 6457 images.
• Expert no3: classified 1725 as a cumuliform cloud image of 6457 images.

The results of the three experts were averaged. In the next step, the collected visual
data were fed into the cloud detection algorithm. As mentioned previously, the images of

https://github.com/ivansuzdalev/clouds_reco_canny_hough
https://github.com/ivansuzdalev/clouds_reco_canny_hough
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cumuliform clouds are characterized by contrastive curves. Therefore, an image within
which a certain threshold number of detected primitives (lines and circles) is detected
may be classified as an image of a cumuliform cloud. The threshold number of simple
primitives is set using a threshold function. In the experiment, the threshold of seven
detected primitives (circles and/or lines) was set for the classification of an image as
containing a cumuliform cloud. The results of the algorithm were collected into a database
side by side with the fragments of the images for experimental analysis.

5.2. Assessment of Cumuliform Clouds Detection Results

The initial dataset was split into several subsets to assess the accuracy of the algorithm.
Such a splitting allows method stability estimation as accuracy metrics can be analyzed
in different sets of images. This illustrates more realistic, rather than synthetic conditions
(when the number of each class is the same). The splitting of the initial dataset gave us
the possibility to calculate the accuracy error rate. The splitting of the dataset into smaller
subsets, provided in Table 5.

Table 5. Initial dataset and its subsets.

Subset Number Image From Image to

1 1 6457
2 1 1420
3 1000 2500
4 2000 3500
5 3000 4500
6 4000 5500
7 4500 6457

The following metrics were calculated:

• True positive (TP)—the number of cumuliform cloud images accurately detected by
the algorithm.

• True negative (TN)—the number of images without cumuliform clouds detected
accurately by the algorithm.

• False positive (FP)—the number of images that the algorithm inaccurately identified
as cumuliform cloud images.

• False negative (FN)—the number of images that the algorithm inaccurately identified
as not being cumuliform cloud images.

The results of this stage are provided in Table 6.

Table 6. Confusion matrix, obtained by applying the proposed algorithm with initial dataset and all
its subsets.

Subset Number TP TN FP FN

1 1438 4209 451 358
2 38 1341 18 22
3 33 1231 167 70
4 382 747 208 164
5 441 875 109 76
6 773 506 132 90
7 804 868 152 134

Based on the confusion matrix, the following metrics of the operation of the algorithm
were calculated:

• Sensitivity or true positive rate (TPR) measures the proportion between correctly
identified cumuliform cloud images (TP) and all cumuliform cloud images (P), which
are equal to the sum of true positive and false negative (2).
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TPR =
TP
P

=
TP

TP + FN
(2)

• Specificity or true negative rate (TNR) measures the proportion between correctly iden-
tified non-cumuliform cloud images (TN) and all non-cumuliform cloud images (N),
which are equal to the sum of true negative and false positive [34] (3).

TNR =
TN
N

=
TN

TN + FP
(3)

• The positive predictive value (PPV) (4) and negative predictive value (NPV) (5)
present the proportion between correctly identified cumuliform (positive, TP)/non-
cumuliform (negative, TN) cloud images and the total number of positive/negative
records [35].

PPV =
TP

TP + FP
(4)

NPV =
TN

TN + FN
(5)

• Accuracy (ACC) denotes the proportion between correctly classified records (TP and
TN) and all cloud mages (6). Therefore, high accuracy is associated with both high
precision and high trueness [36].

ACC =
TP + TN

P + N
=

TP + TN
TP + TN + FP + FN

(6)

• Balanced accuracy (BA) is basically an average between true positive rate (TPR) and
true negative rate (TNR) (7). It is used to evaluate how good a binary classifier is. Its
biggest usage area is with imbalanced classes when one class has a bigger number of
records in comparison to the second one [37].

BA =
TPR + TNR

2
(7)

• F1 Score (F1) in binary classification measures the test’s accuracy. It is calculated as a
double proportion between the production of positive predicted value (PPV) and true
positive rate (TPR) and the sum of those two [38] (8).

F1 = 2× PPV × TPR
PPV + TPR

=
2TP

2TP + FP + FN
(8)

All these metrics were used to reflect different parameters of the obtained results. The
results of all these metrics are presented in Table 7.

Table 7. Summary of classification metrics results, for different dataset subsets.

Subset Number TPR TNR PPV NPV ACC BA F1-Score

1 0.801 0.903 0.761 0.922 0.875 0.852 0.781
2 0.633 0.987 0.679 0.984 0.972 0.810 0.655
3 0.320 0.881 0.165 0.946 0.842 0.601 0.218
4 0.700 0.782 0.648 0.820 0.752 0.741 0.673
5 0.853 0.889 0.802 0.920 0.877 0.871 0.827
6 0.896 0.793 0.854 0.849 0.852 0.844 0.874
7 0.857 0.851 0.841 0.866 0.854 0.854 0.849
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5.3. Discussion on Cumulus Cloud Detection in Dedicated Dataset

In the analyzed datasets, the worst accuracy (ACC) result of the suggested algorithm
was 0.75 or 75 percent. In one of the samples, the accuracy reached 0.97 or 97 percent. In
the whole data sample, the accuracy reached 0.87 or 87 percent. The fluctuation of the
accuracy across samples shows that the dataset was not well balanced. This conclusion
is also supported by the Balanced Accuracy data. In the data samples from 1000 to 2500
and 2000 to 3500, the BA reaches 0.6 and 0.74. These data samples contained images of
clouds that were not likely to generate thermals. Thus, it can be stated that the algorithm
has greater accuracy when the cloud images have clear edges.

TPR values variance also suggest that the dataset was not well balanced. In the subset
with clouds not suitable to generate thermals, the TPR is only 32 percent, whereas in the
subsets with cumuliform clouds, the TPR was higher than 80 percent. This is supported
by the PPV data, in the sample from 1000 to 2500 images, the PPV only reaches 0.16 or
16 percent.

Meanwhile, TNR variations are not as high and gain 0.90 value for the whole dataset.
The TNR values for different subsets of the dataset vary from 78 to 99%. This shows the
proposed method is suitable to eliminate non-cumuliform clouds.

Taking into account the TPR, PPV, F1-Score values drop drastically for some sub-
sets, while TNR and NPV values have smaller variations it could be said the achieved
classification accuracy can be increased by adjusting the detected primitive’s threshold
for a specific dataset. However, the lowest achieved accuracy of 75 percent obtained in
the experiment is similar to the accuracy of the algorithm provided in the study by Emal
Rumi [15], Min Xia et al. [19], Lyan Ye [21], Yang Xiao et al. [22], and other similar works.
This illustrates non-cloud image supervised learning solutions can achieve analog results
as those, trained with labeled cloud image datasets. As well, the obtained overall 87%
accuracy demonstrates the practical applicability of the proposed method. It could be even
increased if additional dataset and method tuning would be applied.

Talking about the limitations of the method–the method was tested with the dataset,
representing different situations, oriented to conditions, suitable for UAV soaring and
thermal existence. It was carried out intentionally, as the application of the method is
planned for thermal search. Therefore, no photos were included to present sky images at
night, in winter, or in other nonstandard conditions. For such nonstandard conditions,
the method parameters should be adjusted to take into account the image color palettes
at night or other specific requirements. Additionally, the camera location on the UAV has
to be placed stable and pointing straight. This is important as the method at its current
state searches for the horizon line on the lower quarter of the photo. If the horizon will be
above the 1/4 line, it will be analyzed as the sky, therefore some buildings or other objects
can be treated as cumuliform clouds. In cases, where camera location is strictly pointed
down, the proposed method parameters should be adjusted to define the possible ranges
of the horizon.

Summarizing–the method uses some parameters, which can be adjusted for better
performance. As the method is not based on supervised learning, the parameters should
be estimated experimentally or by using some optimization methods. Using the same
parameter values in different situations, the proposed method may not demonstrate suit-
able results in other situations. Therefore, before using the method for cumuliform cloud
classification with images of different cloud/sky conditions, some sample images should
be used for testing–to estimate the parameter suitability. This might require some adjust-
ment for nonstandard conditions, but at the same time, it adds method adaptability, when
adjusting the parameters, the method can be adapted for some very specific situations.

It should also be taken into account that the method is dedicated to the classification of
cumuliform clouds from other clouds or clear sky for UAV flight path planning. It may be
difficult to generalize it easily in other scenarios such as different cloud type classification,
or in conditions unsuitable for UAV flight (night, low altitude flights, etc.).
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5.4. Method Testing with Other Cloud Datasets

The existing and publicly available cloud datasets are poorly labeled for cumuliform
clouds (it is related to different cloud classification categories as well as dataset purposes).
Therefore, it is difficult to evaluate the proposed method on other existing datasets. One
of the most used ground-based camera cloud image dataset is SWIMCAT [39]. It has six
cloud classes: Clear sky; Patterned clouds; Thin white clouds; Thick white clouds; Thick
dark clouds; Veil clouds. Clear sky and veil clouds have a clear difference from cumuliform
clouds. These two classes can be assumed as non-cumuliform cloud/sky examples. The
other four classes have both cumuliform and non-cumuliform cloud samples. Therefore, it
requires relabeling to present cumuliform and non-cumuliform cloud samples.

By applying the proposed method, the extended SWIMCAT cloud dataset images were
processed and classified with the proposed method to cumuliform and non-cumuliform (see
Table 8). This comparison does not allow method accuracy estimation but provides some
guidelines on whether the method is sensitive to sky geographical area and photo source.

Table 8. Summary of SWIMCAT-extended dataset image classification to cumulus and non-cumulus
for each class.

Clear Sky Patterned
Clouds

Thin
White
Clouds

Thick
White
Clouds

Thick
Dark

Clouds

Veil
Clouds

Cumuliform 0 85 150 153 3 0
Non cumuliform 350 265 200 197 347 350

The results illustrate that all the images from the two clearly non-cumuliform cloud
classes (clear sky and veil clouds) are classified as non-cumuliform. This proves that
the proposed method is 100% accurate in eliminating clear sky and veil clouds from
cumuliform clouds. Meanwhile, the results of the other four classes are hard to evaluate,
as those SWIMCAT dataset classes contain both cumuliform as well as non-cumuliform
cloud samples.

6. Application Concept and Practical Implementation

The proposed cumulative cloud detection method achieved good accuracy for visual
sky classification to suitable areas for UAV path. Therefore this section describes the
concept and idea of practical implementation in UAV. The UAV and integration principles
of the proposed cumulative cloud recognition method are provided. Meanwhile, real path
planning solution implementation and experiments for flight time increase are planned in
near future.

6.1. UAV Preparation for Usage of the Proposed Cumulative Cloud Detection

The cloud detection flights should be performed following the suitable for them
synoptic situations: no frontal cloud systems-only thermal convection available, warm half
of the year and midday and/or afternoon hours; the predictions of widely used instability
indices (threshold values) for the flight sites should be used: Convective available potential
energy (CAPE), 10–500 J/kg and K index, 15–25 K. There are cases where the thermal
activity is high, but there are no cumuliform clouds. In this case, predicting thermal flows
based on visual data is impossible, and in such cases, the use of this algorithm is pointless.

A UAV designed by VilniusTech and powered by renewable energy will be used for
concept implementation. This UAV can stay aloft for a long time and can use thermals due
to its high aerodynamic efficiency (Figure 3).
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Figure 3. UAV, designed in VilniusTech university for autonomous soaring.

The specifications of the UAV which will be used for the experiment are presented
in Table 9. However, the search for thermals is not automated yet, therefore the proposed
method takes place and will be integrated in the future.

Table 9. The specifications of the UAV which will be used for the experiment.

Parameter Value

Wingspan 4.6 m
Weight 4.3 kg

Power source C60 Solar cells, 17,000 mAh li-ion battery
Autopilot Pixhawk Cube Orange

Companion computer Raspberry Pi 3 Model B
Payload Kurakesu C1 micro camera, Gopro hero8 (for terrain mapping)

Flight Time 3–6 h (depends on weather conditions)

Operation range 5 km with standard 2.4 GHz telemetry/Unlimited with
LTE telemetry

The UAV uses the open-source ArduSoar algorithm for thermal centering to climb
when accidentally flying into a thermal [4]. All stages of ArduSoar algorithm are provided
in Figure 4. UAV starts autonomous soaring during an autonomous mission then the
ArduSoar algorithm is enabled (stage 1). UAV turns off his engine and starts gliding. If
during descent, no thermal is detected and the lowest altitude SOAR_ALT_MIN is reached,
UAV turns on its engine and starts climbing until it reaches SOAR_ALT_CUTOFF altitude
(stage 2), and starts gliding again (stage 3). If during gliding, the thermal is detected,
UAV triggers loiter mode to center the thermal and climb in it with no engine (stage 4).
If SOAR_ALT_MAX altitude is reached, UAV stops loitering and starts to glide to the
next waypoint. To improve the probability of flying into a thermal, the course of the
UAV towards a prospective, the growing cumuliform cloud can be changed by the cloud
detection algorithm during stages 1–4. The same technique to divert gliders to the nearest
cloud is also used by glider and paraglider pilots for remaining aloft longer. Additionally,
during these stages, any useful missions, such as surface monitoring can be performed. For
the steady flight at the same altitude for such missions as mapping, autonomous soaring
algorithms can be paused at any time. Virtual geo-fences can be used to keep the aircraft in
the desired area and prevent it from flying out. Meanwhile, for tasks to get from point A to
point B, the idea of path planning should be modified to take into account both the target
as well as possible paths to it.
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To benefit from the proposed cumuliform cloud classification solution, a camera,
which collects the images ahead of the UAV in real-time, is to be mounted on the front
of the UAV. Image processing according to the proposed method is to take place in a
companion computer connected to the autopilot and magnetometer. Knowing the UAV
heading from the magnetometer data as well as the angle of the camera, it is possible
to attribute a specific heading for each image column that would lead towards a cloud.
Figure 5. illustrates the prototype implementation of the concept for cloud detection and
diverting of the UAV towards it. The image from the UAV covers a 60-degree area in front
of it. Therefore, a wider range camera, multiple cameras, or UAV direction correction is
needed to cover a wider area of cumulative cloud search. Additionally, Figure 5 illustrates
the camera orientation met with proposed method settings, where the lowest quarter of
the photo presents the horizontal line, therefore can be eliminated from the search.

The heading to the cloud can be prioritized based on the number of simple primitives
found in a certain quadrant. Lower images closer to the horizon will have a lower priority
since the clouds detected in them will be further away from the UAV, a higher priority will
be attributed to the clouds closer to the UAV. Once the cloud was detected and a heading
towards it was determined, the companion computer will send the autopilot a command
to continue on this heading until the UAV flies into a thermal.

6.2. Simulation of UAV Flight Time

The applied ArduSoar thermalling controller for resource-constrained autopilots [4] is
able to take advantage of thermals. If the UAV detects a thermal while gliding down, it
takes advantage of it and goes into the loitering stage. During this stage, it continuously
estimates the thermal center and follows it by spinning circles around it. Loitering increases
the altitude of the UAV. The loitering stage is switched off to the gliding down stage when
the maximum altitude is reached (SOAR_ALT_MAX) or the thermal effect is not detected
anymore. This helps the UAV to gain altitude and increase the potential energy to glide
down further.
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A pilot with remote control and thermal identification skills executes the search and
UAV pointing to possible thermals. Meanwhile, automated solutions rely on random hits
of thermals in their gliding path. To identify the possible effect of visual cloud detection on
UAV flight time, multiple simulations were executed.

To simplify the task, UAV missions with the engine off are analyzed only (gliding
down or loitering stages only). The task for the UAV is simplified to fly from point S
towards point F as long as it is able. The distance between S and F is 1000 m. The
initial data for the simulations generated based on multiple experiments (log of example
experiment are provided in https://ayvri.com/scene/ykxw3l4759/ckmdbe8rl00043a6
h7u847ynk (accessed on 25 August 2021)), with Pixhawk autopilot and ArduSoar code
equipped UAV:

• The cutoff altitude (SOAR_ALT_CUTOFF) of the UAV is 185 m.
• The maximum reached altitude (SOAR_ALT_MAX) is set at 1000 m.
• The minimum altitude before the engine will be turned off (SOAR_ALT_MIN) is set

to 100 m.
• The average UAV speed is 13.6 m per second (standard deviation 4.204).
• The average altitude reduction while gliding down without thermal is 0.367 m per

second (standard deviation 0.0048).
• The average altitude gain (climb rate) while loitering in type 1 (not powerful, reaching

300 m high only) thermal is 0.293 m per second (standard deviation 0.0102).
• The average altitude gain while loitering in type 2 (powerful, reaching 800 m and

higher) thermal is 0.739 m per second (standard deviation 0.0172).

For simulation purposes, the thermal center is fixed (wind influence is eliminated as
the wind can be of different directions as well as speed). Camera analysis is a 30-degree
angle to both sides of its view. Both flight time and distance to the finish point are estimated.

The comparison of cumuliform cloud detection-based thermal search (green lines) and
direct flight with a hope to hit thermals (red line) is presented in different situations. The
situations were generated to present a variety of possible outcomes (see Figure 6). Example
(a) illustrates a very basic situation, when type 1 thermal is in the UAV view range and

https://ayvri.com/scene/ykxw3l4759/ckmdbe8rl00043a6h7u847ynk
https://ayvri.com/scene/ykxw3l4759/ckmdbe8rl00043a6h7u847ynk
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within UAV possible gliding distance (1320 m in ~25-degree angle). The thermal allows the
UAV to increase the altitude to 300 m from 150, which is almost enough to reach the finish
point. The total UAV flight time increases from 232 s to 1156 s, where 514 s were dedicated
to gain altitude in the thermal (see Table 10).
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Figure 6. Example situations for simulation, where (a) illustrates type 1 thermal within 1320 m from
the start in the range of UAV view angle; (b) illustrates type 2 thermal within 3200 m from the start in
the range of UAV view angle and type thermal out of UAV view range; (c) illustrates type 2 thermal
in the opposite direction of the finish when UAV analyses 360-degree view.

Situation (b) illustrates the direction to possible thermal, without taking into account
the distance to the thermal. It might increase the distance to the finish–the UAV floats
to the right of the straight line to the F but is not able to reach the thermal and finishes
its flight without reaching the F. It also illustrates that the UAV should view the whole
360 degrees to find other possible thermals closer to it, not to be limited to the 60 degrees
only, as shown in Figure 5. Therefore, situation (c) illustrates the first 2.5 s are dedicated
to overview the sky and choose the closest thermal in opposite direction to the F. As it is
a type 2 thermal, the UAV gains 800 m altitude, which is enough to reach the finish and
even go back to the S. The need to rotate for an overview of the whole sky is not needed,
as the UAV flies in circles during the loitering stage, therefore the whole sky view can be
constructed at the time.

The several simulated situations reveal the identification of possible thermal within
the reachable distance might drastically increase the flight time and flight distance. At
the same time, it revealed the need for a 360-degree view for the identification of suitable
thermals. Taking into account the real-world situation is more complex because of cloud
and thermal movement, the cumulus cloud detection should be implemented to work in
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real-time. This would present the current situation, as well the movement could be taken
into account for distance to cloud calculation.

Table 10. The summary of simulation data and results.

Situation Segment Altitude at the
Beginning, m

Climb
Rate, m/s

Duration,
s

Distance,
m

Altitude at
the End, m

Total Flight
Time, s

Distance
to the F, m

Direct flight From S towards F 185 −0.367 231.61 3150 100 232 6850

(a)
From S to Thermal 185 −0.367 97.06 1320 149

1156 250Thermal 149 0.293 514.06 0 300
From thermal to F 300 −0.367 544.93 7411 100

(b) From S to Thermal 185 −0.367 231.63 3150 100 232 7070

(c)

Rotation in S 185 −0.367 2.50 0 184

1998 * 0
From S to Thermal 184 −0.367 183.82 2500 116

Thermal 116 0.739 924.49 0 800
From thermal to F 800 −0.367 889.71 12,100 473

* The finish was reached, while the UAV could continue the gliding and reach the 3015 s flight time, adding additional 13,830 m (enough to
go back to S).

As well it is worth mentioning the thermal search-oriented solution is not suitable for
UAV tasks, where some objects must be tracked–the direction to detected thermal might
eliminate the detected object out of wight. Therefore, it is more suitable for non-time
constrained tasks, where some points must be reached or the area within a given territory
must be overviewed.

7. Conclusions

The performed literature analysis has revealed the possible applicability of Hough
transform and Canny edge detector methods for detecting cumuliform cloud, which is in
many cases related to thermals, that can be used for extending the flying range of UAVs if a
detection mechanism is deployed onboard. It was also noted that the noted methods have
not been used for the task before and other methods currently used for cumuliform cloud
detection do not guarantee a high detection rate or require rather high calculation time.

The dataset, composed of 6457 images, containing and not containing cumuliform
clouds collected by UAV, was created and data pre-processing was performed. All the
images in the dataset were marked by three independent experts.

The Hough transform and Canny edge detector-based cumuliform cloud detection
methods were proposed, as well as threshold parameters, which were defined to automati-
cally decide on the presence or absence of cumuliform clouds in an image. The method
was used against the prepared dataset and the method results were compared with experts’
evaluation. The average detection accuracy has reached 87%, which is rather promising,
especially taking into consideration that the dataset is not yet well balanced, and further
improvement of the dataset and method parameters could increase the accuracy. Still, even
current results show an accuracy increase compared to the previously used methods.

The concept of the practical method implementation on the VilniusTech developed
UAV is also briefly described, which includes the use of the front camera for making sky
pictures, companion computer for cloud recognition, and its connection to the autopilot
and magnetometer, thus directing the UAV to the most possible thermal positions.
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