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A B S T R A C T   

ZnO materials have been at the centre of many studies for decades. Doping of ZnO by lithium atoms is a pro-
spective approach for compensation of n-type conductivity in the unintentionally doped ZnO aimed at obtaining 
p-type semiconductor. In this study, we have synthesized ZnO rod-like powders doped with lithium ions (0–0.65 
atom%) by the new microwave-assisted solvothermal method in order to obtain greater photoluminescence 
intensity of ZnO emissions in the UV region. The obtained powders contain nanoparticles from 20 nm up to 250 
nm depending on Li content. X-ray diffractometry and Raman spectroscopy were employed to characterise the 
structure of ZnO powders, scanning electron microscopy was used to determine the morphology, and most 
importantly the photoluminescence technique was used to investigate the optical properties of the obtained 
materials. As a result, the photoluminescence intensity has been increased up to an order of magnitude with the 
Li content in the ZnO crystals. The increase of the excitation laser power has led to an increased carrier lifetime 
and photoluminescence response intensity that is observed for all the samples.   

1. Introduction 

Zinc oxide (ZnO) is naturally n-type metal oxide semiconductor with 
a wide direct band gap of 3.37 eV (at 300 K) and high exciton binding 
energy of 60 mV, thus the excitons can be observed even at room tem-
perature [1,2]. Combining unique electronic and optical properties with 
an abundance in the earth’s crust, non-toxicity, and high thermal and 
chemical stability makes ZnO materials suitable for a wide range of 
applications like gas sensors [3], radiation detectors [4], optoelectronic 
devices [5], smart windows [6], light-emitting diodes (LEDs) [7], 
transparent electrodes [8], solar cells [9], etc. More importantly, ZnO 
application is determined by particle size, shape, aspect ratio, specific 
surface area, and surface chemistry [10]. Many modification methods 
have been explored to optimize ZnO material properties and expand its 
applications [11]. Some of these methods include shape and size control 

by varying preparation techniques [12,13] and structural modification 
by doping with different elements [14]. ZnO is well suited for the 
incorporation of a large variety of dopants due to its crystal lattice [1]. A 
few of the most popular dopants for ZnO include trivalent ions like Ga, 
Al, In Ref. [15] and monovalent ions like Na, Li, K [14]. Some of the 
most frequently used ZnO powder preparation techniques include 
sol-gel method [16], microwave-assisted solvothermal synthesis [17], 
solvothermal synthesis [15], co-precipitation method [18] etc. Although 
solvothermal and microwave assisted solvothermal synthesis methods 
exhibit a similar particle obtaining approach, the microwave assisted 
solvothermal synthesis method has some considerable advantages 
compared to the solvothermal method that include sample heating with 
microwaves instead of conventional methods. Most notable microwave 
heating advantages include the short time duration of synthesis, heating 
uniformity with low thermal gradients, the heated material has no direct 
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contact with the heat source, there are no “wall effects” and it offers 
precise electronic control of the heating process with minimised heat 
losses [19]. 

ZnO exhibits a hexagonal wurtzite crystal unit cell structure, and its 
photoelectrical properties are closely linked with characteristic point 
defects. ZnO photoluminescence (PL) spectrum consists of two emission 
bands, one in the UV region from 350 to 400 nm corresponding to 
exciton near band edge luminescence (NBL), and the other in the visible 
region from 400 to 800 nm corresponding to defect-related emissions. 
Although lots of studies have investigated the optical properties in order 
to determine defect effects, the origin of the visible emission defects is 
not yet well understood [20]. 

Undoped ZnO is an n-type semiconductor due to crystal points de-
fects. To overcome this there are two possible variations to obtain p-type 
conductivity. One variation employs substitution of group-I elements 
(Li, Na, K) on the Zn-site and other – group-V elements (N, P, Sb) on the 
O-site [21]. According to Sa΄aedi et al. [22], lithium shows the best 
results from I-group elements. This is due to its small ionic radius of 0.68 
Å that is very close to the ionic radius of Zn (0.74 Å) [23]. Lithium can be 
incorporated in ZnO crystalline lattice in two sites by substituting for 
Zn2+ ion further inducing a hole or by embedding into interstitial sites to 
form Li+ and contributing free electron [24]. Furthermore Lee and Leem 
[25] suggest that the hole produced by Zn ion substitution with Li ion 
can compensate the free electron carriers. 

In this work, we investigate the structural and optical properties of 
ZnO powders prepared by the microwave-assisted solvothermal method 
depending on Li doping ratios. The aim of this work is to obtain greater 
photoluminescence (PL) intensity of ZnO emissions in the near UV re-
gion. ZnO NBL in near UV region is linked with exciton emissions and 
their decay time is measurable in nanoseconds. Moreover, other studies 
[26] have shown that Li doped ZnO is a prospective material for 
obtaining transparent ceramics which can be successfully exploited in 
various optoelectronic devices. 

2. Experimental 

Undoped and Li doped ZnO powders were prepared by the 

microwave-assisted solvothermal synthesis method (MWST). The MWST 
reaction was performed in a Milestone synthWAVE T660 (Milestone Srl) 
microwave reactor in an inert atmosphere (N2, 99,999%). The system 
was operated at 2.45 GHz frequency with power ranging from 0 to 100% 
of full power (1.5 kW). 

The synthesis started by preparing two solutions (solution A and 
solution B). Solution A was prepared by dissolving 2 mmol salts in 15 mL 
absolute ethanol. In this preparation zinc acetate dihydrate (Zn 
(Ac)2∙2H2O, purity ≥ 99.5%, Alfa Aesar) and lithium nitrate (LiNO3) 
were used as salts. The added Li ratios against Zn in the solutions were 0, 
0.5, 1, 3, and 5 atom%. Solution B was prepared by dissolving 0.6 g 
NaOH (purity ≥ 98%, Sigma Aldrich) in 30 mL absolute ethanol in a 
round-bottom flask under reflux condenser whilst vigorously stirring 
with a magnetic stirrer and heated up to the boiling point of ethanol. 
When the NaOH and salts were dissolved solution A was added to so-
lution B in a controlled manner. The resulting solution was poured in 70 
mL PTFE vial, which was then placed in a Milestone synthWAVE reactor 
vessel. The exploited heating programme is shown in Fig. 1, where T1 is 
reaction temperature, T2 – upper-temperature limit for the reactor vessel 
(50 ◦C), and P1 – upper-pressure limit for the MWST reaction (150 bar). 
After heating the obtained particle and solution mixture was cooled 
down to room temperature. Afterwards, the obtained particles were 
separated from the solution by centrifugation and washed with meth-
anol for five times and white powders were obtained. 

Quantitative determination of Li and Zn in Li-doped ZnO samples 
was performed by means of inductively coupled plasma optical emission 
spectrometry (ICP-OES) using a PerkinElmer Optima 7000DV spec-
trometer. The samples prior to analysis were dissolved in nitric acid 
(HNO3, Rotipuran® Supra 69%, Roth) and diluted with deionised water. 
Calibration solutions were prepared by an appropriate dilution of the 
standard stock solutions (single-element ICP standards 1000 mg/L, 
Roth). 

Composition of the layers was characterised by X-ray diffraction 
(XRD), employing a Rigaku SmartLab diffractometer Cu Kα radiation 
from 9 kW X-ray tube with the rotating anode. The patterns were 
collected working in Bragg-Brentano focusing geometry using a D/tex 
Ultra 1D detector in the 2θ range from 30◦ to 80◦. 

Fig. 1. Microwave-assisted solvothermal synthesis parameters profile for undoped and Li-doped ZnO nanoparticles preparation. T1 is reaction temperature, T2 – 
upper-temperature limit for the reactor vessel (50 ◦C), and P1 – upper-pressure limit for the MWST reaction (150 bar). 

P. Ščajev et al.                                                                                                                                                                                                                                   



Materials Science in Semiconductor Processing 135 (2021) 106069

3

Raman analysis was carried out at room temperature using Raman 
spectrometer Renishaw In-ViaV727 in backscattering geometry. The 
phonon excitation was performed by green (Ar+, λ = 514.5 nm, grating 
– 1200 mm− 1) laser. 

Scanning electron microscope (SEM) images of the samples were 
obtained using Thermo Fisher Scientific Helios 5 UX operated at 2.00 
kV. 

ZnO powder luminescence measurements were carried out by pow-
der excitation via a Pharos femtosecond pulsed laser with an Orpheus 
parametric generator at 10 kHz repetition rate. Excitation conditions 
were: wavelength 315 nm, spot diameter ~100 μm, maximum excitation 
power 360 μW. 

3. Results and discussion 

Powder samples with different Li content were obtained by 
employing the microwave-assisted solvothermal method. Results of the 
elemental analysis of the samples performed by ICP-OES are shown in 
Table 1. It is observed that Li contents in the powders are about three 
times lower for low Li doping, and up to 8 times lower for 5% solution. 
That indicates saturation of Li contents in the ZnO lattice. The highest 
doping efficiencies of 30.0 and 31.0% are obtained for the lowest 
nominal doping concentrations, 0.5 and 1 atom% Li, respectively. By 

increasing the nominal doping concentration, the doping efficiency 
decreases. Similar results are presented by Zhu et al. [27] where 
Al-doped ZnO thin films were obtained by the sol-gel method and the 
obtained doping efficiencies for the thin films were between 40 and 
15%, decreasing with the increase of the nominal doping concentration. 

Obtained SEM images of undoped and Li doped ZnO samples are 
shown in Fig. 2 (on the right side). As seen in the SEM images, the ob-
tained ZnO powders consist of rod-like and rounded structures. Equiv-
alent diameter distributions obtained from the SEM images are shown in 
Fig. 2 (on the left side). Basically, particles can be grouped into two 
groups based on their sizes, larger and smaller particles respectively. The 
average diameter of the smaller particles varies between 20 and 100 nm, 
but the larger particles have diameters between 100 and 250 nm. 
Comparing the undoped sample with Li doped samples, it can be 
acknowledged that the Li ion doping reduces the size of the obtained 
ZnO powders. This is in agreement with various published studies [28, 
29]. 

Raman scattering measurements are shown in Fig. 3. Obtained re-
sults reveal fundamental vibrational modes of wurtzite structure ZnO 
rods, that are located at 99 cm− 1, 379 cm− 1, and 582 cm− 1 corre-
sponding to E2 (low), A1 (TO), E2 (high) and E1 (LO) phonon modes 
respectively [30]. Additional multiphonon process modes are observed 
at 332 cm− 1 and 1150 cm− 1 (not shown in spectra). According to Kirste 
et al. [31], the Raman components of the surface lithium in the LiO2 
form should be located at 735 cm− 1 and 1090 cm− 1, corresponding to 
Li–O and O–O vibrations. In our case these vibrational modes were not 
present, indicating Li is incorporated in the ZnO lattice. Moreover, the 
intensity of E1 (LO) phonon mode at 582 cm− 1 increases with Li content 
in ZnO. This mode in ZnO is related to the defects such as VO or Zni or 
their complexes [32,33] and usually the intensity of E1 (LO) mode in Li 
doped ZnO is much higher than that of undoped ZnO [34]. Raman peak 
asymmetric broadening can be related to surface bond contraction 
and/or the quantum confinement [35]. 

Table 1 
Results of the elemental analysis of the samples, performed by ICP-OES.  

Li content in solution 
(atom%) 

Li content in powder 
(atom%) 

Ratio Doping efficiency, 
% 

0 0 – – 
0.5 0.15 3.3 30.0 
1 0.31 3.2 31.0 
3 0.54 5.5 18.0 
5 0.65 7.7 13.0  

Fig. 2. Equivalent diameter distribution (on the left side), which were obtained from SEM images (on the right side) of ZnO powders undoped and doped with 0.15, 
0.31, 0.54, and 0.65 atom% Li. 
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X-ray diffraction measurements of different amount Li doped ZnO 
crystals are shown in Fig. 4. The obtained samples show a hexagonal 
(wurtzite) ZnO crystal structure (space group P63mc) [36]. No other 
crystalline phase diffraction peaks are present. From the diffraction 
peaks the broadening crystallite size of ZnO was calculated (Fig. 4). XRD 
results show the same crystallite size tendency as obtained by SEM 
investigation, but the measured crystallite size values are systematically 
smaller. XRD broadening is also affected by crystalline defects, and 
provide the sizes of defect-free crystallites, which are smaller than the 
actual crystallites. XRD data confirms that doping with Li reduces 
crystallite size for all investigated doping concentration, but this effect 
becomes smaller when the Li concentration increases. Doping with Li 
does not significantly change peak positions of ZnO (as seen in the 
insertion of Fig. 4a) as the Li concentration is rather small. With 0.5 
atom% Li doping, the strain decreases indicating reduced density of 
crystalline defects as proposed in Ref. [37] where undoped and Li doped 
(0, 0.003 and 0.3 wt%) thin films were investigated. But as the Li doping 
levels increase, so does the strain, indicating higher amounts of Li lattice 
distortion [23]. Strain calculations in our samples were done by the 
Williamson-Hall method. We detected <0.1% peak position shift to 
larger values with increasing Li content, verifying the small Li doping. A 
similar situation was observed in Ref. [23]. 

From photoluminescence decay measurements shown in Fig. 5, we 
can observe that the photoluminescence intensity increases by an order 

of magnitude with Li content in ZnO crystals. Increasing the power of the 
laser increases the carrier lifetime and the obtained photoluminescence 
response intensity for all the samples. The latter can be attributed to 
saturation of defects. The Li ion amount increase slows down the decay 
time of emission, resulting in an additional 0.2–0.4 ns delay compared to 
pure ZnO powder. The excitation peak is more pronounced with higher 
Li ion content located at 380 nm, and similar findings were produced in 
Ref. [38] where the ZnO thin film was obtained by the sol-gel spin--
coating technique. The PL peak in the near UV region intensity increased 
with Li doping up to nominal 4 aomt%. Li doping reveals an improve-
ment of recombination properties, due to Li-caused defects. Li doped 
ZnO is found to be dominated by both Lii and LiZn defects where LiZn 
complexes with donor defects (LiZnOHO)× and (LiZnLii)×, forming less 
active defects and reducing n-type conductivity [39,40]. Also, Lii shifts 
the Fermi level to mid-gap thus reducing VZn density [39], which is 
detrimental to the carrier lifetime [41]. Moreover, most likely Lii could 
form a complex with detrimental Vo, similarly as Zni-Vo complexes form 
[42]. PL lifetimes in the studied samples approach that determined in 
Li-doped hydrothermal ZnO monocrystal, 200 ps [43]. 

Slow decays in Fig. 6 are superimposed from fast shallow near- 
bandgap defects and slow deep defect PL emissions. At increased exci-
tation deep defects are saturated leading to faster decay. The defects can 
be related to the donor-acceptor states. 

As shown in Fig. 7a, the decay time of emission at 360–400 nm range 
increases up to 2 times by increasing Li doping concentration. From 
Fig. 7b we can observe that the luminescence obtained in the range from 
350 nm to 450 nm consists of two components with peaks at 380 nm and 
425 nm. The peak at 380 nm could be associated with near band edge 
luminescence due to the decay of excitons, but the second peak at 425 
nm could be assigned to isolated shallow VZn acceptors induced by Li 
doping according to findings in Ref. [44]. As the doping concentration 
increases, the intensity of the 380 nm peak increases, as a result of which 
the second peak at 425 nm is no longer resolvable for samples with the 
highest Li concentrations. Also, a much larger PL intensity peak value is 
obtained at Li > 0.15 atom%. 

In Fig. 8a PL intensity dependences on excitation power for undoped 
and Li doped samples are shown. From this data we can observe that the 
function consists of 2 components. By applying Li doping, the intensity 
increase profile changes depending on the excitation energy. In samples 
containing Li ions the 1-st component intensity is decreased, but the 2nd 
component intensity increases with Li ion content increase. This may 
indicate a few times reduction of background doping n0 as at low exci-
tations PL ~ Bn0ΔN, while at high excitations PL ~ BΔN2, where B is the 
bimolecular radiative recombination coefficient and ΔN is the excited 
carrier density. Larger peak PL intensity at Li > 0.5 atom% indicates a 
plausible improvement of the B coefficient by suppression of carrier 
capture by defects, supported by a reduced sub-bandgap emission 
(Fig. 7b). That sub-bandgap emission can be related to donor-acceptor 

Fig. 3. Raman spectra of undoped and Li doped ZnO with different Li content.  

Fig. 4. (a) XRD 2-theta scans for undoped and Li doped ZnO. Peaks indicated correspond to Zincite syngony of ZnO (PDF card 04-008-8197). (b) Crystallite size and 
strain dependences on Li doping, determined by XRD. 
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recombination [43]. In Fig. 8b, a slight redshift of emission peak was 
observed due to lithium incorporation, which is typical for Li doped ZnO 
[23]. 

Data portrayed in Fig. 8c reveals that at low excitation energies, 
FWHM does not correlate with the doping concentration due to defect 
band admixing, whereas with increasing excitation energy, FWHM 
converges to one value for all samples of ZnO, regardless of the degree of 
doping, indicating the weak impact of Li doping on the ZnO lattice 
structure and hence electronic band structure. On the other hand, the 
sol-gel method provides a reduction of the bandgap emission and an 
increase of defect emission with Li doping [45,46], revealing the ad-
vantages of our method for high quality ZnO powder preparation. 

4. Conclusions 

We produced Li doped ZnO powder samples with the new 

microwave-assisted solvothermal method. The particle size of the ob-
tained powders varies between 20 nm and 250 nm and the size is 
decreased for samples with Li doping. As a result, the photo-
luminescence intensity is increased with Li content in ZnO crystals (by 
an order of magnitude). Increasing the power of the laser increases the 
carrier lifetime and the obtained photoluminescence response intensity 
that is observed for all the samples. This elucidates the advance of our 
method with respect to sol-gel, where the reduction of bandgap emission 
is observed with Li doping. Our advantage can be explained by the 
reduction of detrimental to carrier recombination VZn and VO defect 
concentrations by Fermi level shift to the bandgap centre by Li doping, 
and the formation of LiZn complexes with VO. 
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