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Summary

The main research topic of this thesis is numerical methods for systems
of nonlinear partial differential equations with nonlocal boundary conditions
and nonlocal conditions. Systems of reaction-diffusion, convection-reaction-
diffusion and convection-reaction equations are considered. This research
presents a distinct application of nonlocal boundary conditions in process mon-
itoring and control. Nonlocal conditions are defined as the PID (proportional-
integral-derivative controller) control algorithm or a subset of its terms (PI,
I).

Mathematical modeling of bioreactor control has been applied in the fields
of drug delivery and water denitrification. The distinct feature of the model is
the nonlocal boundary condition that combines two different components of the
solution containing a double integral in space and time.

The stability of a difference scheme for a reaction-diffusion equation system
was analyzed. Eigenvalue spectrum analysis for control and equation system
parameters was carried out. Sufficient conditions for numerical algorithm
difference scheme stability were obtained.
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Santrauka

Pagrindinė šios disertacijos tema yra skaitiniai metodai, skirti spęsti neties-
ines diferencialinių lygčių sistemas dalinėmis išvestinėmis su nelokaliosiomis
kraštinėmis sąlygomis ir nelokaliosiomis sąlygomis. Nagrinėjamos reakcijos-
difuzijos, konvekcijos-reakcijos-difuzijos ir konvekcijos-reakcijos lygčių sis-
temos. Darbe pateikiamas išskirtinis nelokalių kraštinių sąlygų taikymas –
procesų valdymas. Nelokaliosios sąlygos aprašytos kaip PID (proporcinis-
integralinis-išvestinis valdiklis) valdymo algoritmas ar jo komponentų poaibis
(PI, I).

Bioreaktorių valdymo matematinis modeliavimas buvo taikomas vaistų
įvedimo ir vandens denitrifikacijos srityse. Išskirtinė modelio savybė yra
nelokalioji kraštinė sąlyga, kuri sujungia dvi skirtingas sprendinio komponentes
su dvilypiu integralu pagal erdvę ir laiką.

Išanalizuotas reakcijos-difuzijos lygčių sistemos skirtuminės schemos stabi-
lumas. Atlikta valdymo ir lygčių sistemos parametrų tikrinių reikšmių spektro
analizė. Buvo gautos pakankamos sąlygos skaitinio algoritmo skirtuminės
schemos stabilumui.
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Introduction

Research context and motivation

Mathematical modeling combined with numerical methods allows scientists
to design and evaluate approximate models representing real-world objects
without the need of building one. In many cases real-world objects have a
variety of parameters. Determination and precise tuning of parameters are the
daily tasks of engineers.

Computational or numerical experiments can be much more cheaper com-
pared to the prototype builds. Engineers and computer scientists can model
a variety of objects with a wide spectrum of parameters without the need of
building one. Resources, time and money can be saved if model parameters are
adjusted and evaluated on the computer screen without physical object creation.

Many aspects of chemical, biochemical and other processes around us
require some kind of control. In general, the most popular and widely adop-
ted controls are the feedback loop control mechanisms, where processes are
controlled by measuring the output parameters while adjusting the input.

In present thesis, mathematical models are constructed using reaction-
diffusion, convection-reaction and convection-reaction-diffusion equation sys-
tems with Michaelis-Menten kinetics and inhibition. Chemical and biochemical
reaction process modeling is subjected to a PID control.

The PID (proportional-integral-derivative) algorithm has been around since
the 1930s. It remains the foundation of almost all basic control applications [48].
The PID controller is a simple implementation of feedback. It has the ability
to eliminate steady-state offsets through integral action, and it can anticipate
the future through derivative action. PID controllers, or even PI controllers,
are sufficient for many control problems, particularly when process dynamics
are benign and the performance requirements are modest. PID controllers are
found in large numbers in all industries. The PID controller is an important
ingredient of distributed systems for process control. The controllers are also
embedded in many special-purpose control systems. In process control, more
than 95 percent of the control loops are of the PID type; most loops are actually
PI control. [4]
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Research area

Mathematical models in this thesis belong to an intensely studied class of
problems, namely differential equations subject to nonlocal boundary conditions
and nonlocal conditions.

The studied mathematical models belong to a partial differential equations
class and they are commonly used to study a wide variety of aspects w.r.t
bioreactor and biosensor applications. A distinctive research area of this work
is nonlocal conditions and nonlocal boundary conditions. The present research
covers both condition types with the main subject of PID control and its term
subset (PI, I).

Historically, the oldest mathematical works on the nonlocal conditions seem
to be the book [86] and the article [71]. Here, these conditions are known as
the “more general boundary conditions” [92]. These works, however, have not
attracted much attention. As far as the author knows, the first mathematical
models with nonlocal conditions describing real physical processes appeared
in scientific journals in the 1960s [11, 45]. These works, although not immedi-
ately, have attracted more consideration in scientific publications, especially in
mathematical journals.

Authors in related fields are studying mathematical models with nonlocal
conditions or nonlocal boundary conditions which are defined for a single
second-order differential equation. One of the first mathematical models pro-
posed for a system of two differential equations subject to nonlocal conditions
was published in the monograph [83]. Other authors have proposed a system of
diffusion-reaction equations describing the action of the non-steady state bio-
sensor at mixed enzyme kinetics, external and internal diffusion limitation with
substrate inhibition [35, 36]. A relatively large number of mathematical models
with nonlocal conditions describing real processes in a number of applications
have been created over the last few decades. Among notable applications,
there are heat conduction, thermoelasticity, hydrodynamics, semiconductor
devices, ecology, geophysical flows, population dynamics, electrochemistry,
and biotechnology (see [13, 14, 24, 25, 44, 47, 62, 85] and the references
therein).

Purpose and objectives of the thesis

The main purpose is to provide mathematical models suitable for the monit-
oring and control of bioreactor processes (incl. parameters). The control system
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is used to adjust the outflow of the bioreactor through manipulation of its input
parameters.

The objectives of this thesis are to develop, model and investigate the
monitoring and control mechanism for bioreactors, based on nonlocal boundary
conditions and nonlocal conditions, and propose original mathematical models
and computational methods.

The author studies a system of two nonlinear partial differential equations
(PDE) subject to a nonlocal and nonlocal boundary condition. Systems of
nonlinear PDEs are widely used for mathematical modeling of bioreactors and
biosensors in wide variety of aspects and applications [6].

In order to achieve these objectives, the following research tasks need to be
performed:

1. Investigate and develop mathematical models with nonlocal boundary
conditions for monitoring and control.

2. Propose a mathematical model and a numerical method for a bioreactor
with application in drug delivery.

3. Propose a mathematical model and a numerical method for a denitrifica-
tion bioreactor.

4. Investigate the stability of a difference scheme for mathematical models.

Research methods and tools

The described control system is based on four mechanisms: the given
control function (set-point function), the monitoring signal (integral value,
measured process variable), the control signal (computed by the controller), and
a mechanical device providing the boundary value.

A numerical modeling was performed using a computer program developed
by the author in Python programming language with NumPy, SciPy and Mat-
plotlib libraries. The program implements an explicit finite difference scheme
using a forward difference at time and a second-order central difference for the
space derivative. The integrals were computed by the Simpson’s rule.
Computer science methods used for problem solution in this thesis:

1. Numerical solution methods for differential equations.

2. Optimization methods for inverse problem solution.
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3. Statistical methods and outlier analysis for experimental datasets.

To meet the high need of computing resources for large-scale problems, the
supercomputer of Vilnius University was used.

Scientific novelty of the results

The models presented in this work not only provide a set of PDEs, but also
describe the underlying physical process together with its possible applications.

The proposed mathematical models and their variations are applied to the
numerical modeling of drug delivery and drainage runoff water denitrification
processes both subject to monitoring and control.

The main peculiarity of the present research is a sufficiently detailed ex-
planation of the physical principles that were the basis of the nonlocal and
nonlocal boundary condition, which reflects the control (regulation) principle.
Both conditions (nonlocal and nonlocal boundary) were defined as the PID
controller or its term subset (PI, I).

The collection of published manuscripts and given talks is the result of a
continuous scientific research.

1. The mathematical model is distinguished by a nonlocal boundary condi-
tion with integral expression binding both derivatives with regard to time
and space for a real physical problem (drug delivery).

2. The convection–diffusion–reaction model combined with PID control
was applied to monitor drug delivery in an enzyme-containing flow-
through bioreactor. The control was performed by adjusting the flow rate
based on the drug outflow measurements.

3. The PID controller allows to reduce the impact of fluctuations of pumping,
diffusion slowdown and reduction of drug production rate on the drug
outflow rate.

4. A mathematical model for flow rate selection for denitrification bioreactor
is presented. The peculiar feature is the nonlocal condition representing
the control mechanism which is defined as a PI controller.

5. The stability of the difference scheme for reaction-diffusion equation
system is analyzed. The obtained results allow to choose the proper
coefficients for the numerical algorithm with respect to the difference
scheme stability as well as the physical properties.
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Statements promoted to defend

1. Proposed reaction–diffusion mathematical model with a nonlocal bound-
ary condition subject to PID control for bioreactor modeling in drug
delivery field. A constructed numerical algorithm and a developed com-
puter program were used for modeling.

2. A convection–reaction–diffusion system of PDEs with a nonlocal condi-
tion is applied to drug delivery mathematical modeling using a developed
computer program for the flow-through pressure controlled bioreactor.

3. Proposed mathematical model containing a system of convection–reaction
PDEs with a nonlocal condition alongside with a computer program is
applied to the nitrate removal in a woodchip denitrification bioreactor
with water flow rate monitoring.

4. Sufficient conditions for numerical algorithm stability of difference
scheme for the system of reaction-diffusion equations with a nonlocal
boundary condition are obtained by using eigenvalue spectrum analysis
for control and equation system parameters using a developed computer
program.

Approbation of the results

While preparing this thesis, an article titled Reaction–diffusion equation
with nonlocal boundary condition subject to PID-controlled bioreactor was
published in the journal "Nonlinear Analysis: Modelling and Control". This
article describes the modeling of a bioreactor with PID control. A mathematical
model with the PID controller constructed as a nonlocal boundary condition was
introduced. The author contributed to this work by participating in the math-
ematical model and numerical algorithm formulation process, programming
of the numerical algorithm, performing numerical experiments, and making a
contribution to charts and manuscript text.

The second article titled Drug delivery mathematical modeling for pressure
controlled bioreactor was published in the Journal of Mathematical Chemistry.
This article describes the modeling of a bioreactor with PID control. The con-
structed mathematical model introduces the nonlocal condition with the PID
controller. The author contributed to this work by participating in the mathem-
atical model and numerical algorithm formulation process, programming of the
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numerical algorithm, performing numerical experiments, making a contribution
to charts and manuscript text.

The third article titled Nitrate removal in Woodchip Denitrification Biore-
actor - an approach combining mathematical modelling and PI control was
accepted by the Journal of Environmental Engineering and Landscape Man-
agement. This article describes the modeling of a flow-through bioreactor
with PI control. The constructed mathematical model introduces the nonlocal
condition with PI controller. The author contributed to this work by participat-
ing in the mathematical model and numerical algorithm formulation process,
programming of the numerical algorithms, performing numerical experiments,
and making a contribution to charts and manuscript text.

In October 25-27, 2017, the author attended a conference "NSCM 30: the
30th Nordic seminar on computational mechanics" in Denmark and presented
a report "PID-controlled flow-through bioreactor". The author prepared and
made an oral presentation of the work in the conference.

In January 22-25, 2018, the author attended a conference (symposium) "3rd
NESUS Winter School and PhD Symposium 2018" in Croatia and read a report
"PID-controlled drug delivery system subject to flow-through bioreactor". The
author prepared and made an oral presentation of the work in the conference.

In 2017 and 2020, the author attended a "Conference of Young Scientists"
hosted by The Lithuanian Academy of Sciences in Vilnius and presented reports
on bioreactor mathematical modeling subject to nonlocal and nonlocal boundary
conditions. Both reports were evaluated by the committee and awarded. The
author prepared and made an oral presentation of the work in the conference.

Structure of the thesis

The thesis is divided into five chapters, followed by a bibliography. The first
chapter is an introduction and four subsequent chapters present the research.
The summaries of four chapters are provided below.

Chapter 1

The study of a system of two parabolic nonlinear reaction–diffusion equa-
tions subject to a nonlocal boundary condition is explained. This system of
nonlinear equations is used for mathematical modeling of biosensors and biore-
actors. The integral type nonlocal boundary condition links the solution on the
system boundary to the integral of the solution within the system inner range.
This integral plays an important role in the nonlocal boundary condition and
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in the general formulation of the boundary value problem. The solution at
boundary points is calculated using the integral combined with the proportional-
integral-derivative controller algorithm. The mathematical model was applied
for the modeling and control of drug delivery systems when a prodrug is con-
verted into an active form in the enzyme containing bioreactor before delivering
into the body. The linear, exponential, and stepwise protocols of drug delivery
were investigated, and the corresponding mathematical models for the prodrug
delivery were created.

Chapter 2

A mathematical model for drug delivery monitoring subject to flow-through
bioreactor is analyzed. The convection–diffusion–reaction model combined
with PID control is used. The enzyme-containing bioreactor converts a prod-
rug into an active drug. This approach connects two aspects of drug delivery,
mechanical pumps and prodrugs. Drug delivery monitoring is performed by
adjusting the prodrug inflow pressure. Several dynamic treatment regimes are
modeled. A combined algorithm of treatment regimes can be used for person-
alized treatment. A control-aided system allows us to reduce the impact of
pumping fluctuations, diffusion slowdown, and drug production rate reduction.

Chapter 3

A mathematical model of nitrate removal in a woodchip denitrification
bioreactor based on the field experiments is proposed. The inverse problem for
the nonlinear system of differential convection-reaction equations is applied
to optimize the efficiency of nitrate removal when changing the length of the
bioreactor and flow rate. A mathematical algorithm containing a nonlocal
condition represents a PI controller to monitor a flow rate when the nitrate
concentration in the inflow water varies over time. Linear regression formulas
are obtained for the average nitrate removal rate and the average oxygen decline
rate, as well as for the rates of chemical reactions of the denitrification process
with respect to temperature and pH.

Chapter 4

The stability of difference scheme for reaction-diffusion equation system
was analyzed. Eigenvalue spectrum analysis for control and equation system
parameters was carried out. Sufficient conditions for numerical algorithm
difference scheme stability were obtained. Integral control ("I" component from
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the PID controller) was introduced as a part of the nonlocal boundary condition.
The essential feature of this problem is that a nonlocal boundary condition is
formulated for a system of equations. The mathematical model is distinguished
by a nonlocal boundary condition binding both derivatives with regard to time
and space.
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1. Reaction–diffusion equation with
nonlocal boundary condition subject to

PID-controlled bioreactor

Introduction

This chapter is based on the article [41]. This mathematical model belongs
to an intensely studied class of problems, namely differential equations subject
to nonlocal boundary conditions. Nonlocal boundary conditions are commonly
referred to as the boundary conditions describing the relationship between the
desired solution values on multiple points. Unlike classical boundary conditions,
nonlocal conditions do not describe the values of the solution or its derivative in
a particular range of the single boundary point. The expressions describing the
nonlocal boundary conditions may contain integral expressions of the desired
solution, as is the case with our model. This is commonly called a problem with
nonlocal integral conditions.

Historically, the oldest mathematical works on the nonlocal conditions ap-
pear to be the book [86] and the article [71]. Here these conditions are known
as the more general boundary conditions [92]. These works, however, have not
attracted much attention. As far as the author knows, the first mathematical
models with nonlocal conditions describing real physical processes appeared
in scientific journals in the 1960s [11, 45]. These works, although not immedi-
ately, have attracted more consideration in scientific publications, especially in
mathematical journals.

A relatively large number of mathematical models with nonlocal conditions
describing real processes in a number of applications have been created over
the last few decades. Among notable applications, there are heat conduction,
thermoelasticity, hydrodynamics, semiconductor devices, ecology, geophysical
flows, population dynamics, electrochemistry, and biotechnology (see [14, 24,
25, 44, 62, 85] and the references therein).
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The main peculiarity of the present work is a sufficiently detailed explan-
ation of the physical principles that were the basis of the nonlocal boundary
condition, which reflects the control (regulation) principle. The described con-
trol system is based on four mechanisms: the given control function (set-point
function), the monitoring signal (integral value, measured process variable),
the control signal (computed by the PID controller), and a mechanical device
providing the boundary value.

In this chapter, a system of two parabolic nonlinear reaction–diffusion
equations subject to a nonlocal boundary condition is studied. Such system
of nonlinear equations is used for mathematical modeling of biosensors and
bioreactors [6].

The main purpose of this chapter is to provide a mathematical model suitable
for the monitoring of the product molar flow into the body. To this end, a control
system is used to monitor the outflow of a bioreactor through manipulation of
its input parameters.

This model not only provides a set of diffusion–reaction equations, but also
describes the underlying physical process together with its possible applications.

Today about 5–10% of newly introduced drugs are prodrugs [74, 93]. They
are more stable and sometimes possess special parameters necessary for the
treatment [93]. In the body, or even in the cell, they are converted into an
active form. Very often, enzymatic conversion of a prodrug to an active form is
applied. For these purposes, enzymatic capacity of the body is explored [93].

However, this approach has some limitations. There is a limited number
of suitable enzymatic systems in the body and/or too low enzymatic activity.
Also, there is a problem with side products of the enzymatic conversion of the
prodrug into an active form. Sometimes, side products are toxic or causing
undesirable effects in the body.

In some cases, before delivering the drug into the body, a prodrug outside
the body should be activated. Immobilized enzyme-containing flow-through
reactors can be used in this case, the prodrug on the inlet of the reactor and an
active form on the outlet.

Such construction has numerous advantages. Any enzymatic system pos-
sessing suitable specificity and necessary activity can be organized inside the
reactor. A polyenzymatic system capable of consuming the side products and
converting them into safe products, or simply locking them within the reactor
can be organized. However, enzyme-containing reactors are not very stable due
to inactivation of an immobilized enzyme. Enzyme-containing reactors possess
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different activities due to the variability of the conditions of the production
technology. Each reactor must be calibrated before the installation and should
be controlled during the whole cycle of operation. The performance of such
bioreactors can be monitored by controlling the concentration of the active
drug at the output of the reactor. Based on these data, the concentration of
the prodrug can be monitored to achieve the necessary level of the active drug
on the exit or necessary dynamics of the drug to be delivered into the body.
However, this is not always possible. Sometimes, the active drug at the output
cannot be detected by suitable instruments because the drug is immediately
consumed or diffused. In some cases, it is possible to control the enzymatic
process inside the bioreactor. For example, the hydrolysis process is led by the
production of ions. This means that the conductivity of such media is increasing.
Sometimes, side products of hydrolysis (or oxidation) are electrochemically
active and can be easily detected. For this purpose, it is necessary to construct
an analytic system inside the biochemical reactor.

The chapter is divided into sections. In Section 1.2, the model with PID
control is described, and an introspection into related models is provided in
Section 1.3. In Section 1.4, the process in the bioreactor is described. Section
1.5 contains the numerical results illustrated by charts and descriptions.

Mathematical model

The mathematical model consists of a system of two differential equations
widely used in mathematical modeling [6]. The key feature of this model is the
nonlocal boundary condition that combines two different components of the
solution.

The boundary value problem is considered for the system of two nonlinear
diffusion–reaction equations

∂S
∂ t

= DS
∂ 2S
∂x2 −

VmaxS
KM +S

,

∂P
∂ t

= DP
∂ 2P
∂x2 +

VmaxS
KM +S

,

(1.1)

(x, t) ∈ D = {0 < x < d,0 < t ≤ T}, (1.2)
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with initial conditions

S(x,0) =

{
0, 0≤ x < d,
S0, x = d,

P(x,0) = 0, 0≤ x≤ d, (1.3)

and boundary conditions

P(0, t) = 0, 0 < t ≤ T ;
∂P
∂x

∣∣∣
x=d

= 0, 0 < t ≤ T ;

∂S
∂x

∣∣∣
x=0

= 0, 0 < t ≤ T.
(1.4)

The last nonlocal boundary condition represents the PID control algorithm

S(d, t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

, 0 < t ≤ T. (1.5)

The control system has two major components, the process and the con-
troller. The process has one input, the manipulated variable (MV), also called
the control variable [4]. It is denoted by S(d, t). The control variable in-
fluences the process via the change of substrate concentration on the input
boundary. The process output is called the process variable (PV) and is denoted
by 2Dp

m2−n2

∫ m
n P(x, t)dx. This variable is measured by a sensor. The desired value

of the process variable is called the set-point (SP) or the reference value [4]. It
is denoted by Q(t). The control error e(t) is the difference between the set-point
and the process variable [4].

The error function e(t) defines the difference between the required product
molar flow Q(t) and the measured flow

e(t) = Q(t)− 2Dp

m2−n2

∫ m

n
P(x, t)dx, 0 < m,n < d, (1.6)

Q(t) is a given function (set-point), and Kp, Ki, and Kd are non-negative
coefficients for the proportional, integral, and derivative terms.

If the feedback works well, the error will be small, and, ideally, it will be
zero. When the error is small, the process variable is also close to the set-point
irrespective of the properties of the process. To realize feedback, it is necessary
to have appropriate sensors and actuators and a mechanism that performs the
control actions [4].

The nonlocal boundary condition (1.5) links the value of S(x, t) on the
boundary where x = d to the integral value of P(x, t) in the inner range [n,m].
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The main peculiarity of the boundary condition (1.5) is its nonlocality due to the
integration not only in the space domain [n,m], but also in the time domain [0, t].
The PID controller continuously evaluates the error value e(t) and attempts to
minimize the error over time by adjusting the control variable S(d, t) to a new
value determined by (1.5).

The problem of maintaining the molar outflow of a drug (product), which
may vary over time, is analyzed. It is worth noting that the properties of the
physical process prohibit direct measurements at the boundary of the bioreactor;
therefore, the viable options are to regulate either the concentration or the flow
of the substrate (or both). In the present work, the substrate concentration is
regulated.

Numerical scheme

The numerical scheme is based on the finite difference method on a uni-
form mesh. The space (x) is divided into equal intervals h. The time domain
is divided into equal intervals τ with strict convergence condition by Cour-
ant–Friedrichs–Lewy constraint. In this particular case, max(DS,DP)τ

h2 < 1
6 and

Vmax
KM

< 1
2 were applied, due to the nonlinear equations.

Si−Si

τ
= DS

Si−1−2Si +Si+1

h2 − VmaxSi

KM +Si
, 0 < i < N,

Pi−Pi

τ
= DP

Pi−1−2Pi +Pi+1

h2 +
VmaxPi

KM +Pi
, 0 < i < N.

Initial conditions (t = 0):

Si =

{
0, 0≤ i < N;
S̃0, i = N;

Pi = 0, 0≤ i≤ N.

Boundary conditions:

S0 =
4S1−S2

3
, P0 = 0, PN =

4PN−1−PN−2

3
.

The Simpson’s rule uses a quadratic polynomial on each sub-interval of the
range [n,m] to approximate the function P(x, t) and to compute the definite
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integral. A left Riemann sum is used to compute the definite integral from time
0 to the current time step at t of a function e(t).

e(t) = Q(t)− 2Dp

m2−n2

[
∆x
3

M/2

∑
j=1

(
P(x2 j−2, t)+4P(x2 j−1, t)+P(x2 j, t)

)]
;

SN = Kpe(t)+Ki

[
τ

R

∑
k=0

e(kτ)

]
+Kd

(
e(t)− e(t− τ)

τ

)
.

Here M is an even number of sub-intervals of [n,m], ∆x = (m−n)/M and
x j = n+ j∆x. R is the number of intervals of [0, t] with constant time increment
τ , current time t = T τ .

Analysis of mathematical models with nonlocal boundary
conditions

In this section, a number of important properties of the mathematical model
(1.2)–(1.5) are provided. A comprehensive examination of how the nonlocal
condition (1.5) differs from those of other authors is provided. Also, analysis
and numerical solution methods for the boundary value problems with nonlocal
conditions are briefly pointed out.

First of all, notice that in the boundary value problem, the value of S(d, t)
is not given; instead, the condition (1.5) is stated.

Several other mathematical models subject to nonlocal conditions link the
solution within the range boundaries to the integral across the entire range. A
typical example is given in [24], where the author describes the quasi-static
flexure of a thermoelastic rod. In this case, the entropy η(x, t) satisfies the
equation (

C+θ0
B2

A

)
∂η

∂ t
= k

∂ 2η

∂x2

and two nonlocal boundary integral conditions

η(−l, t) =
θ0B2

2cAl2

∫ l

−l
(l−3x)η(x, t)dx,

η(l, t) =
θ0B2

2cAl2

∫ l

−l
(l +3x)η(x, t)dx
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In many articles [14, 32, 44], the authors study mathematical models subject
to nonlocal conditions that include the solution or its derivative values only over
the boundary points. In the one-dimensional case, there are only two points, the
endpoints of the interval. Various nonlocal conditions based only on the values
of the solution at the endpoints are rather widely analyzed in numerical analysis,
peculiarly w.r.t. the stability of difference schemes (see [32] and references
therein).

All the previously discussed mathematical models with nonlocal conditions
are defined by a single second-order differential equation. The mathematical
model (1.2)–(1.5) is defined as a system of two differential equations with
a nonlocal condition (1.5), which links the solutions of the equations S(d, t)
and P(x, t). One of the first mathematical models that considers a system of
two differential equations subject to nonlocal conditions was published in the
monograph [83], where the mathematical models that describe the processes
occurring in bioreactors are studied. Bioengineers widely use the mathematical
model of an ideal reactor, the purpose of which is prediction of changes in the
considered system.

The processes occurring in the bioreactors are defined as a system of two
differential equations (1.2), which are similar to the equations considered in the
present study but are subject to a different kind of nonlocal conditions (1.5).
The conditions stated in [83] are defined only at the boundary points.

Let’s point out another peculiarity of the model (1.2)–(1.5). It is worth
noting that the goal is not to simply solve the problem (1.2)–(1.5) once with
given parameter values. Instead, the focus is to pick the boundary substrate
concentration S(d, t) in such a way that the product value P(x, t) would possess
a specific property defined beforehand. In the simplest case, the aim is to obtain
the value of S(d, t) that minimizes the absolute value of e(t).

In this sense, the mathematical model (1.2)–(1.5) is similar to (but does
not fully match) the inverse problem with the overdetermination (observation)
condition.

The class of inverse problems is closely related to the issue of control.
Namely, the nonlocal (typically, integral) condition is used together with, and
not instead of, the boundary or initial conditions. This extra condition is usually
termed as the overdetermination (or observation) condition. The reasoning
behind the use of such condition is the necessity of finding not only the solution
itself, but also an unknown function of the equation, typically interpreted as a
characteristic of the energy source. An example of this can be found in [46].
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Another example [91] concerns the situation where the overdetermination
condition is not a boundary condition, but instead is the value of the final
solution. In this case, it is required to solve a second-order parabolic equation
with the usual boundary conditions and, in addition, the final overdetermination
condition. This additional condition means that the value of the solution at time
T must coincide with the given function, and hence the equation contains this
unknown function (a characteristic of the source). The physical interpretation
of this problem is related to the issue of the environmental safeguard in densely
populated cities [91]. For comparison purposes, it is worth noting that in
this case the overdetermination condition takes a more complicated form and
requires a particularly fine minimization of e(t).

Yet another trait of the model (1.2)–(1.5) is that the nonlocality in clause
(1.5) in the general case is twofold: first, w.r.t. the spatial variable x and, second,
w.r.t. the time t. These two types of nonlocality are different, and, as far as the
author knows, both have not been jointly addressed in the references.

The spectrum of the differential operator plays an important role in the
stability of the numerical solutions of simpler mathematical models with non-
local conditions [32, 39, 40, 43, 44, 77]. Note that the parameter values of the
nonlocal condition can significantly change the structure of the spectrum. There-
fore, the theoretical study of the considered mathematical model (1.2)–(1.5)
subject to the double integral is an important task and poses new challenges for
numerical experiments.

As a final remark, the mathematical models with nonlocal conditions de-
scribing real physical processes have been strongly encouraging the theoretical
studies of differential equations and numerical methods.

Many authors who considered the problems subject to nonlocal conditions
emphasized that the nonlocal boundary value problems have certainly been
one of the most rapidly growing areas in various application fields. Hence, the
development of numerical methods for solving the nonlocal boundary value
problems has also been an important research area. The author agrees with these
statements, but also prefers to rephrase them. The progress made in the study
of numerical methods subject to nonlocal boundary value problems is indeed
significant. However, there is still not enough feedback from the numerical
methods studies toward practical applications. Too few works are devoted to
the study of the new effects in application areas subject to nonlocal boundary
value problems. Such effects cannot be identified using the normal classical
conditions. Therefore, by the present chapter the author tries to strengthen the
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feedback effect of the mathematical models with nonlocal conditions.

Physical model

The enzymatic reaction is considered

S
Enzyme−−−−→ P ,

where S is a substrate of the enzyme considered as a prodrug, and P is one
of the products of the enzymatic reaction to be controlled and considered as
the active drug (or the side product). The expected concentration of the side
product correlates with the concentration of the active drug. Therefore, P is
considered as the concentration of the active drug, which can be monitored by
an independent method (usually, electrochemical and sometimes optical). The
enzymatic conversion of the substrate can be derived as the Michaelis–Menten
process:

VP =
VmaxS

KM +S
,

where VP is the product generation rate at a particular point within the bioreactor.

Table 1.1: Model constants and properties

S mol · m−3 moment substrate concentration at the
same particular point of the bioreactor

P mol · m−3 moment product concentration at the
same particular point of the bioreactor

S0 0 mol ·m−3 initial substrate concentration

Vmax 1.1×10−3 mol ·m−3 · s−1 maximum reaction speed (maximal
activity of the enzyme)

KM 2×10−1 mol ·m−3 Michaelis constant typical for such sub-
strate and such enzyme

DS 5×10−6 m2 · s−1 diffusion coefficient of substrate
DP 5×10−6 m2 · s−1 diffusion coefficient of product
d 1×10−3 m bioreactor thickness
[n;m] [1;2]×10−4 m measuring range
t s time
T s reaction duration

Suppose that an enzyme is immobilized in a drug delivery system named
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as a bioreactor (Fig. 1.1). The enzyme is uniformly distributed in the biore-
actor. The bioreactor containing the immobilized enzyme is permeable for the
substrate, which means that the substrate S can diffuse in the bioreactor with
diffusion coefficient DS. When substrate molecules reach the active center of
the immobilized enzyme, the substrate is converted into the product P at the rate
Vp. The product P diffuses inside the bioreactor with diffusion coefficient DP.
The initial (t = 0) concentration of the product P at the inlet (d) boundary of the
bioreactor is set to zero (P(d,0) = 0). Inside the bioreactor, an electrode wire
net (electrode) is deposited in order to perform the electrochemical monitoring
of the enzymatic reaction. On the outer surface of the bioreactor, a reservoir
with adjustable concentration of the substrate is deposited. Let’s consider that
the concentration of the substrate S can be monitored depending on the response
of the electrochemical electrode.

SPP
0

S
0

Controller

1 "

Controlled
substrate
supply
system

Body

Electrodes

n d

Bioreactor

m0

Measuring
range

Measuring
device

Figure 1.1: Principal structure of bioreactor

The given bioreactor can be represented as an active transdermal patch. The
transdermal patch is applied to the patient’s skin; one side of the transdermal
patch delivers the drug (product) to the patient, whereas the other side is
equipped with a controlled substrate (prodrug) supply system, which is designed
to alter the substrate concentration or its flow. The transdermal patch is equipped
with two electrodes that measure the electrochemical characteristics of the
specific drug. In this way, it controls the concentration of the drug in the inner
range of the transdermal patch.

The treatment process requires the drug to be transferred to a patient in
accordance with the therapeutic protocol. This can be either a constant flow or
a function of the time, for example, in the early treatment stage the drug flow
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must start at a high value and then gradually decline as the treatment progresses,
or the drug dose must continually rise until reaching a prescribed value.

Results

Depending on the disease and the patient’s medical condition, a specific
treatment protocol should be applied. During the treatment process, the patient
must receive a strictly prescribed drug dose. Three treatment protocols are
provided: linear, exponential, and stepwise.

A numerical modeling was performed using a computer program developed
by the author. It implements an explicit finite difference scheme using a forward
difference at time and a second-order central difference for the space derivative.
The integral was computed by the Simpson’s rule. The computed values of
a substrate were used as an input for the product value computation at the
next step. The model properties are defined in Table 1.1, and all the additional
properties are presented later in the text.

The control algorithm was applied to three treatment protocols, which
are presented by different functions Q(t). The results of the linear treatment
protocol modeling are shown in Fig. 1.2, where Q(t) is a linear function.

In Fig. 1.2, it is shown how the PID controller performs over the set-point
function Q(t), which was set to the linear treatment protocol mode. In the
beginning of the process, the substrate concentration in the reactor is zero,
and the value of the error function is high; therefore, the observed substrate
concentration from the beginning up to half a second is relatively high, whereas
the flow of the product is rising until it reaches the set-point. Also, a little
product flow overshoot and a slight drop until it reaches the required level set by
the set-point function is shown. Later, while the product flow value is close to
the set-point, the monotonous decrease in substrate concentration is observed.

The second treatment protocol uses the exponential function Q(t). Basically,
the exponential treatment protocol (Fig. 1.3) differs from the linear one only in
the derivative of the set-point function, which is changing over time. Initially,
the absolute value of the derivative is larger, but over time it decreases. From
the beginning of the process, an overshoot of the product flow is observed,
which is reduced later on. The smaller the absolute value of the derivative of
the set-point function, the quicker the stabilization of the control mechanism.
Accordingly, for this short (3 seconds) treatment process, it is more difficult to

32



Figure 1.2: Linear treatment protocol. Substrate (S) concentration S(d, t), mol ·m−3, left
axis. Product (P) molar flow rate Dp

∂P
∂x

∣∣∣
x=0

and set-point function Q(t), mol ·m−2 ·s−1,
right axis. Parameters Kp = 2000,Ki = 25000,Kd = 80000.

stabilize in the beginning.
The third protocol uses the stepwise function Q(t). The peculiarity of this

protocol is that the drug flow over time decreases in steps and the required drug
flow value is a piecewise constant function.

The stepwise treatment protocol (Fig. 1.4) is different from both the linear
and exponential ones. In this case, the set-point function Q(t) is discontinu-
ous. The PID control algorithm with experimentally selected values of the
parameters (Kp, Ki, Kd) is able to control the process of this kind. As long
as the product flow has not reached the set-point value, the control process is
similar to the linear or exponential ones. Later on, the controller adjusts the
substrate concentration, which in turn stabilizes the product flow. When the
set-point function value changes, the substrate concentration should be adjusted
accordingly. Starting from the 2nd second, a rapid decrease of the substrate
concentration is seen, which then increases again until stabilization.

In this case, a short-time treatment process (only 3 seconds) is modeled,
whereas the real treatment process requires considerably more time.

These examples visually demonstrate the control mechanism and its ability
to satisfy the requirements for a variety of treatment protocols (represented as
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Figure 1.3: Exponential treatment protocol. Substrate (S) concentration S(d, t), mol ·
m−3, left axis. Product (P) molar flow rate Dp

∂P
∂x

∣∣∣
x=0

and set-point function Q(t),

mol ·m−2 · s−1, right axis. Parameters Kp = 2000,Ki = 25000,Kd = 80000.

different set-point functions Q(t)). During this short modeling time, the control
mechanism is able to stabilize and maintain a complex process. A numerical
study revealed that long running treatment processes can apply the existing
model, as the critical actions were maintained at the short periods of time (see
Fig. 1.4, time 0–0.5 s and 2–2.5 s).

Conclusions

In this chapter, a new type of nonlocal boundary condition for the para-
bolic reaction–diffusion equation system applied to the bioreactor modeling is
proposed. The condition is nonlocal w.r.t. the time and space domains.

The double integral of this type in the nonlocal condition poses new chal-
lenges for numerical experiments related to this mathematical model. The
spectrum of the differential operator plays an important role in the stability of
the numerical solutions of simpler mathematical models with nonlocal condi-
tions. The parameter values of the nonlocal condition can significantly change
the structure of the spectrum. Therefore, the theoretical study of the considered
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Figure 1.4: Stepwise treatment protocol. Substrate (S) concentration S(d, t), mol ·m−3,
left axis. Product (P) molar flow rate Dp

∂P
∂x

∣∣∣
x=0

and set-point function Q(t), mol ·m−2 ·
s−1, right axis. Parameters Kp = 2000,Ki = 25000,Kd = 80000.

mathematical model is an important task.
The mathematical model was applied to the modeling operation and control

of drug delivery systems when the prodrug is converted into an active form in
the enzyme-containing bioreactor before being delivered into the body. The
linear, exponential, and stepwise protocols of drug delivery were investigated,
and the corresponding mathematical models for the prodrug delivery were
created.
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2. Drug delivery mathematical modeling
for pressure controlled bioreactor

Introduction

This chapter is based on the article [54]. Controlled drug delivery systems
has been a hot topic of the pharmacy and pharmacokinetics for several decades.
In general, drug delivery systems can be divided into two main directions:
mechanical pumps and prodrugs. A number of programmed drug delivery
pumps (like insulin pumps) were designed and implemented.

Drug delivery systems can have a wide variety of parameters to be tuned.
Having the requirements set for a particular system, a mathematical model can
be used to fine-tune these parameters and provide only the matching ones. Great
attention was paid to the mathematical modeling of the drug delivery systems
and control of their action. Various drug delivery aspects were discussed and
reviewed [68, 70, 84].

A lot of prodrugs exist in nature and can be extracted from plants, microor-
ganisms, animal and marine sources [52]. A number of modifying agents can be
used in prodrugs. Some of them are suitable transporters [1, 64]. An amino acid
transporter usually facilitates penetration of the prodrug through skin [27, 66].
There are a number of other transporters: bile acid, carnitine, glucose, peptide,
vitamin C, multivitamin, etc.

Some drugs are not stable. For instance, to improve the stability and
solubility of bufalin, a number of chemical modifiers were applied [61]. The
majority of prodrugs are converted into an active form inside the body. In this
case, the body enzymatic systems are used. Hence, this approach has some
limitations. In the body there are limited number of suitable enzymatic systems.
Also, there is a problem with side products: they can be toxic or may cause
undesirable effects.

This chapter describes theoretical considerations of the prodrug conversion
into the active form directly before injection of the drug. The control aided sys-
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tem subject to the convection–diffusion–reaction bioreactor for the conversion
of the prodrug to the active form, i.e. drug, is considered. Released stabilizing
chemical groups of the prodrug should be locked inside the reactor, thus only
the active form of the drug will be injected into the body.

Such bioreactor is a part of the drug delivery system. The particular ap-
proach binds both aspects of drug delivery: mechanical pumps and prodrugs.

However, the biocatalytic activity of a column (bioreactor) is varying, for
example, due to inactivation of immobilized enzyme, inhibition or gluing and
etc. A sensing system is installed in the column to monitor prodrug conversion
level and rate. This device can be designed to measure the outflow of the drug
to control the drug supply system.

A controlled injection of the drug will allow to implement different regimes
of the drug delivery. The present model was used to simulate the control of
three different therapeutic drug delivery regimes.

The given model can be applied in precision medicine (personalized medi-
cine). Monitored treatment systems can reduce human error and allow to design
them to be more reliable and effective.

Physical model

Let’s consider an unstable drug attached to the stabilizing agent (block).
Such derivative (drug-block) is pumped through the bioreactor (column) with
the immobilized enzyme, where the block is being removed and the drug is
being released.

DRUG−BLOCK ENZY ME−−−−−→ DRUG+BLOCK

A number of enzymes can catalyze the conversion of a prodrug into an
active drug. Let’s consider the activation of the drug by hydrolysis of the
prodrug. The block should be trapped inside the bioreactor. Thus, only the
active drug will be delivered into the body. Another approach is the bioreactor
with the immobilized enzyme and additionally attached trapping filter to capture
the block.

In both cases, some conditions should be applied. Firstly, the prodrug
should be fully converted into an active form. Secondly, the block should be
completely trapped inside the column. Only in some cases, when the block
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is not toxic, trapping of the side products of the enzymatic reaction is not
necessary (for example, glycosylated form of the drug).

For clarity, the prodrug (drug-block) will be denoted as S (substrate for the
enzyme), and the active form of the drug - P (product of enzymatic reaction).

Pump

Prodrug

B
ioreactorM

easuring
device

0

d

m

n

O
utput

PID
controller

Input

Figure 2.1: Principal structure of bioreactor

The enzyme is uniformly distributed inside the bioreactor. The column
containing the immobilized enzyme is permeable to the substrate S. It can
diffuse within the bioreactor with diffusion coefficient DS. When the additional
inflow pressure is applied, the flow of the substrate and product consists of
diffusion and pressure-based (convection) flows.

When substrate molecules reach the active center of the immobilized en-
zyme, the substrate is converted into the product P at the rate Vp. The product
P diffuses inside the bioreactor with diffusion coefficient DP.

The concentration of the product P on the boundary of the bioreactor is
given by P0. Inside the bioreactor, an electrode wire net (electrode) is placed
in order to perform the electrochemical monitoring of the enzymatic reaction.
Optical sensors as well as biosensors [53] can be applied. A sensor signal is
used as a measured process variable for the PID controller.

On the outer surface of the bioreactor, a reservoir with the substrate is
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located. Let’s consider that the flow rate of the substrate S can be adjusted by
the pressure relying on the PID control [42].

The treatment process requires the drug to be transferred to a patient in
accordance with the therapeutic regime. This can be either a constant flow or
a time function (e.g. in the early treatment stage the drug flow must start at a
high value and then gradually decline as the treatment progresses, or the drug
dose must continually rise until reaching a prescribed value) [42].

Table 2.1: Model constants and properties

S mol · m−3
moment substrate concentration
at the same particular point of the
bioreactor

P mol · m−3
moment product concentration at
the same particular point of the
bioreactor

S0 2.5 mol · m−3 initial substrate concentration

Vmax 4×10−3 mol · m−3 · s−1 maximum reaction speed (max-
imal activity of the enzyme)

KM 2×10−1 mol ·m−3 Michaelis constant typical for
such substrate and such enzyme

DS 5×10−8 m2 · s−1 diffusion coefficient of substrate
DP 5×10−8 m2 · s−1 diffusion coefficient of product
d 5×10−2 m bioreactor thickness
[n;m] [1;2]×10−3 m measuring range
t s time
T s reaction duration

Mathematical model

In the previous chapter, the diffusion–reaction bioreactor subject to PID
control was analyzed. This chapter extends a previously discussed mathematical
model.

The model is defined as two convection–diffusion–reaction differential
equations. The convection term represents a controlled pressure mechanism.
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∂S
∂ t

= DS(t)
∂ 2S
∂x2 +α(t)

∂S
∂x
− Vmax(t)S

KM +S
,

∂P
∂ t

= DP(t)
∂ 2P
∂x2 +α(t)

∂P
∂x

+
Vmax(t)S
KM +S

,

(2.1)

(x, t) ∈ D = {0 < x < d,0 < t ≤ T}. (2.2)

The starting empty state of the bioreactor is defined as initial conditions

S(x,0) =

{
0, 0≤ x < d,
S0, x = d,

P(x,0) = 0, 0≤ x≤ d, (2.3)

and the boundary conditions (input and output boundaries) that allow to
outflow both the drug (P) and the prodrug (S) with constant prodrug (S) con-
centration on the input edge

P(0, t) = 0, 0 < t ≤ T,

P(d, t) = 0, 0 < t ≤ T,

S(0, t) = 0, 0 < t ≤ T,

S(d, t) = S0, 0 < t ≤ T.

(2.4)

Drug outflow is controlled via the pressure on the input edge. The pressure
control system adopts a PID control loop feedback mechanism. The system
monitors the drug outflow and adjusts the pressure. The key nonlocal condition
defining the control system is

α(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

, 0 < t ≤ T. (2.5)

An error function e(t) at each moment of time evaluates the difference
between the required drug outflow and the actual measured one. The required
drug outflow is set by Q(t), a given set-point function.

e(t) = Q(t)− 2Dp

m2−n2

∫ m

n
P(x, t)dx, 0 < m,n < d. (2.6)

The PID controller continuously evaluates an error value e(t) and attempts
to minimize it over time by adjusting the control variable (pressure) α to a new
value determined by (2.5).
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Kp, Ki, and Kd are non-negative coefficients for the proportional, integral,
and derivative terms in a PID scheme. They are used to set a regime of the con-
troller, and by tuning these coefficients the controller function can be changed
to respond quicker or slower, with more or less overshoot.

Numerical scheme

A numerical scheme is based on the finite difference method on a uni-
form mesh. The space (x) is divided into equal intervals h. The time do-
main is divided into equal intervals τ with strict convergence condition by
Courant–Friedrichs–Lewy constraint. In this particular case, max(DS,DP)τ

h2 < 1
6 ,

Vmax
KM

< 1
2 and α(t)

h < 1
4 were applied.

Si−Si

τ
= DS(t)

Si−1−2Si +Si+1

h2 +α(t)
Si+1−Si−1

2h
− VmaxSi

KM +Si
;

Pi−Pi

τ
= DP(t)

Pi−1−2Pi +Pi+1

h2 +α(t)
Pi+1−Pi−1

2h
+

VmaxPi

KM +Pi
.

Initial conditions (t = 0):

Si =

{
0, 0≤ i < N;
S̃0, i = N;

Pi = 0, 0≤ i≤ N.

Boundary conditions:

S0 = 0, SN = S̃0, P0 = 0, PN = 0.

The Simpson’s rule uses a quadratic polynomial on each sub-interval of the
range [n,m] to approximate the function P(x, t) and to compute the definite
integral. A left Riemann sum is used to compute the definite integral from time
0 to the current time step at t of a function e(t).
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e(t) = Q(t)− 2Dp

m2−n2

[
∆x
3

M/2

∑
j=1

(
P(x2 j−2, t)+4P(x2 j−1, t)+P(x2 j, t)

)]
,

α(t) = Kpe(t)+Ki

[
τ

R

∑
k=0

e(kτ)

]
+Kd

(
e(t)− e(t− τ)

τ

)
.

Here, M is an even number of sub-intervals of [n,m], ∆x = (m−n)/M and
x j = n+ j∆x. R is the number of intervals of [0, t] with constant time increment
τ , current time t = T τ .

Numerical simulation results

A long-time treatment process (12 hours) is modeled, since the real treat-
ment process requires approximately the same or even longer period of time.
During the drug infusion action, a number of parameters can change (e.g. DS,
DS, Vmax). This chapter describes 3 major impact factors for the drug deliv-
ery system. The first one is the diffusion slowdown, the second – the drug
production speed and the third is the pump impact.

Control of diffusion slowdown

During the treatment process, the diffusion of a prodrug and drug itself can
be impacted by various reasons (gluing of the column with side product of the
enzymatic conversion of the prodrug (BLOCK), aging of the matrix, etc.). The
diffusion rate can change over time. This variating impact property is defined
as diffusion functions DS(t) and DP(t).

The slowdown of the diffusion process was analyzed. The modeled PID
controlled bioreactor is able to handle the DS(t) and DP(t) reduction by 19%
showing the total delivered drug amount difference of 0.1%.

Vmax variation impact

All enzyme-containing bioreactor’s activity decreases in time due to the
enzyme inactivation or degradation, or other reasons [88]. Therefore, the drug
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outflow rate declines.
The reaction rate defined by the function Vmax(t). 10% decrease of Vmax(t)

for the treatment period is modeled.
While the enzymatic reaction is slowing down, the drug production rate

declines. The bioreactor outputs both the drug and the prodrug. If the reaction
speed is in the range of normal operation mode, the prodrug concentration in
the mixture is very low (less 1/104 parts). If the prodrug outflow concentration
increases, this could harm the patient. The bioreactor monitoring system will
stop the process straight away, after the threshold value is reached. By modeling
such an event before trials, the reliability of the system can be improved.

Within the parameters of the present bioreactor, it can handle a reduction of
Vmax by 16% giving the total delivered drug amount difference of 0.1%.

Pumping stability

Peristaltic pumps have an extensive range of uses, they are reliable and
simple to maintain. However, their flow is pulsed. The pump is receiving
commands to set the pressure value. Due to the recalibration or damage of a
pump, it will set value with an error and the actual set value can mismatch.

In such case, the PID controller is designed to have tolerance for this kind of
scenario. If the value set by the feedback mechanism fails to reach the required
value, the PID controller will readjust the value, and the set-point function will
be reached, no matter if the pump will set the value with an error.

A peristaltic pump with 2 s rotation period was analyzed. Within the given
parameters from Table 2.1 and Kp = 2, Ki = 10, the bioreactor control system
handles fluctuation of the pump with amplitude of 25% giving the discrepancy
for delivered drug amount of 0.01%.

Treatment regimes

The dynamic treatment regime was modeled. It is a set of rules for choosing
effective treatments for individual patients [56]) with several different stages.

Three different stages were combined. From the start, the step-wise regime
was applied to reach the constant drug flow, the next transition (250 min.)
represents the linear and the final (533 min.) represents the exponential regimes
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accordingly. This configuration of treatment was chosen to test the control
system with a close-to-real example.

The treatment process modeled with a set of parameters from Table 2.1 is
presented in Fig. 2.2. Mathematical modeling allows to take into account the
impacting factors: permeability, activity and unstable pumping.

Figure 2.2: Full treatment process (12 hours). Substrate (S) input speed (m/s), right
axis. Product (P) molar outflow rate Dp

∂P
∂x

∣∣∣
x=0

and set-point function (Q) Q(t) (mol ·
m−2 · s−1), left axis. Parameters Kp and Ki present in chart subtitle, Kd = 105.

To set the treatment regime, there was a need to construct a set-point
function Q(t). The drug outflow control will adjust the pressure to follow the
required value of Q(t).

A set-point function Q(t) is created as follows. From the beginning, it
constantly increases (0 – 16 min.) the dosage of a drug to reach the prescribed
maximum and following this constant rate (16 – 250 min.). The treatment
process finalization is combined of two steps: the linear decreasing stage (250
– 533 min.), followed by the exponentially declining (from 533 min.) drug
dosage.

Step-wise treatment regime

In Fig. 2.3, an example of the PID control with two different sets of control
equation parameters is presented. One set is representing a slightly aggressive
(dynamic) mode (bottom chart) with quicker warm-up and stabilization period,
while the other one (top chart) is milder and settles over an extended period of
time.

From the beginning, the bioreactor is empty, no drug is being produced yet
(Fig. 2.3, where P is equal to zero). After the process starts, an initial lag-period
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Figure 2.3: Step-wise treatment regime. Substrate (S) input speed (m/s), right axis.
Product (P) molar outflow rate Dp

∂P
∂x

∣∣∣
x=0

and set-point function (Q) Q(t) (mol ·m−2 ·
s−1), left axis. Parameters Kp and Ki present in separate chart subtitles, Kd = 105.
Time axes are aligned.

is observed before the outflow of the drug begins (Fig. 2.3 where P rises from
zero, 12 min. (top chart) 7 min. (bottom chart)).

To reduce the initial lag period (Fig. 2.3 bottom chart), one can rise the
pumping rate. In this case, a sharp peak-type excess of the drug outflow will
arise (Fig. 2.3, 8 min., bottom chart). If this overdose is critical for a patient,
the bioreactor control can be modified to operate in a less aggressive mode (Fig.
2.3, top chart). Different control constants (Kp, Ki, Kd) are used. In this case,
it will have longer warm-up and stabilization periods.

In cases when the drug outflow should strictly follow the set-point function
(Q(t)) and omit overshoot or spikes, the treatment can be started after the
warm-up has ended.

Linear and exponential treatment regimes

The linear treatment regime presents the constantly declining set-point
function Q(t), while the rate of change declines over time in the exponential
treatment regime example. The difference from the linear is the changing rate
of decline. Both cases are presented in Fig. 2.4.
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Figure 2.4: Treatment regimes. Substrate (S) input speed (m/s), right axis. Product
(P) molar outflow rate Dp

∂P
∂x

∣∣∣
x=0

and set-point function (Q) Q(t) (mol ·m−2 · s−1), left

axis. Parameters Kp and Ki present in chart subtitles, Kd = 105.

Two parts from a full treatment process from Fig. 2.2 were extracted. The
example charts (Fig. 2.4) show the action of control for two different (Kp = 2,
Ki = 10) and (Kp = 20, Ki = 50) sets of parameters.

In both regime cases (linear and exponential), the individual divergence
from the set-point function Q(t) of the curves is observed. The resulting drug
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outflow in the linear part of the regime diverges from Q(t) by: a. 0.23%, b.
0.05%, and in the exponential example by: c. 1.01% and d. 0.20%.

Given a continuous set-point function Q(t), an adequately controlled system
is obtained. The results of the numerical modeling demonstrate an ability to
control complicated systems. The tuning of the PID controller parameters (Kp,
Ki and Kd) allows to adjust the operational mode of the bioreactor according
to specific treatment process requirements.

Conclusions

The convection–diffusion–reaction model combined with PID control to
monitor the drug delivery was applied. The modeled flow-through bioreactor
was used to convert a prodrug into an active drug form. The control was
performed by adjusting the flow rate based on the drug outflow measurements.

The PID controller allows to reduce the impact of fluctuations of pumping,
diffusion slowdown and reduction of drug production rate. The ranges for
reliable drug production were computed. It gives an ability to intercept the
drug delivery at any moment if a malfunction is detected. Several dynamic
treatment regimes were modeled and they showed the potential correct and
reliable results.

The given numerical results are obtained by using a chosen set of parameters.
However, the model itself allows to perform modeling with a wide spectrum
of parameters and gives engineers an ability to validate their ideas numerically.
Such modeling allows to optimize systems for specific requirements.
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3. Mathematical modeling of nitrate
removal in woodchip denitrification

bioreactor

This chapter is based on the manuscript which is the result of original
research submitted on June 15, 2020 and accepted on March 23, 2021 by The
Journal of Environmental Engineering and Landscape Management.

Introduction

Release of nitrate (NO−3 ) from agricultural sources is a significant surface
water quality problem occurring in many areas around the world. This problem
is particularly severe in humid climates where subsurface (tile) drainage sys-
tems have been installed. The spread of fertilizers combined with agricultural
drainage practices accelerates nutrient losses from the soil with subsequent
development of eutrophication in receiving waters.

As a new technology, woodchip denitrification bioreactors for tile drainage
are being investigated for practical edge-of-field NO−3 removal. This technology
is based on routing tile drainage water through woodchip bioreactors where
nitrate is used by bacteria to oxidize carbon while reducing NO−3 to nitrogen gas
or other volatile nitrogen compounds. Microbial denitrification is recognized
as a crucial mechanism governing the nitrate removal in bioreactors. Various
studies have suggested that bioreactors promoting heterotrophic denitrification
are low cost techniques for NO−3 removal [18, 30, 36]. The first attempts to
apply such biotechnologies in tile drainage systems were performed in Canada
and the USA [7, 23, 89]. Subsequently, various later studies [7, 10, 15, 17] have
suggested that application of these “nature-driven” measures can substantially
reduce NO−3 in drainage water.

Research-based knowledge is a prerequisite for a successful design of
bioreactors. Therefore, the design of woodchip denitrification bioreactors has
been studied at the laboratory on both pilot and field scales [2, 17, 31, 37, 58, 73].
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Subsequently, various design approaches have been proposed. For instance,
[16] suggested a bioreactor design method which is based on 10-20% peak
drainage flow and hydraulic retention time of 6-7 hours. This approach has
received much attention in practical applications in the Midwest of the United
States. Another design concept correlated bioreactor surface area and treatment
area allowing easier estimation of bioreactor volume [90].

The design approach based on nitrogen mass removal concept was proposed
in [82]. There has been little discussion in the literature about the effect of biore-
actor length-to-width ratio and cross-sectional shape on bioreactor performance.
According to [16, 18], the highest bioreactor efficiency could be achieved when
the ratio is around 10. The nitrate removal between trapezoidal and rectangu-
lar cross-sections does not show any significant differences. Overall, to date
there is no consensus regarding the optimal drainage bioreactor design method
and optimal bioreactor parameters [18]. Various methods result in different
bioreactor sizes and efficiencies [18].

Although the number of investigations on denitrification process in wood-
chip bioreactors has significantly increased, a great interest to elaborate mathem-
atical nitrate removal approach still remains relevant. Mathematical modelling
can often be used for better assessment of chemical transport, optimization,
estimation and design of pollutants removal operations [19]. Over the past
decades, researchers have developed a number of mathematical models to sim-
ulate chemical transport of nitrates, oxygen and products of the reactions in
the reactors. The majority of them were simplified to enzymatic conversion of
nitrate in anaerobic media and kinetic rate (zero and first order) expressions.

The main purpose of this chapter is to present a mathematical model for
the processes within the woodchip denitrification bioreactor applicable not
only to simulate chemical transport of nitrates and oxygen, but also to control
and optimize the nitrate conversion efficiency. The primary task of the model
containing the control mechanism is to maintain the variable water flow for a
required (set-point) output NO−3 concentration. The model could serve as a tool
for better bioreactor design.

The main goal of this approach was the creation of the mathematical model
suitable to monitor the denitrification process in time. A pilot-scale cube-
shape plastic denitrification bioreactor was used for the real experiments. The
experiments were carried out under in turn flowing-through and non-flowing
water conditions. Due to two types of experiments two mathematical models
of denitrification process (for the non-flowing and for the flowing-through

49



conditions) were proposed and analyzed.
Models belong to a class of problems, namely differential equations subject

to nonlocal conditions [85]. Nonlocal conditions describe the relationship
between the solution values and the equation system parameters. The real
experiments of the denitrification process were mathematically described as
a systems of two convection–reaction equations, without regard to auxiliary
conditions (turbulent flow, etc).

Systems of convection–reaction and convection–reaction–diffusion equa-
tions are usually used for the denitrification process modeling as well as for
wastewater treatment and simulations of reactive settling of activated sludge
[8]. A similar model with the added source of carbon was proposed in [55] to
predict bacterial nitrate removal in groundwater. The suggested kinetic model
combines Monod kinetics and a constant denitrification rate.

The experiment with non-flowing water conditions was analyzed first. Ni-
trate and dissolved oxygen concentrations were found through experiments.
The constructed mathematical model allowed to calculate rate constants for the
analyzed chemical reactions.

Afterwards, the system of differential equations was supplemented with a
convection term. This improvement of the existing model with a non-flowing
water condition along with the experimental data enabled to predict and calcu-
late the treatment of flowing-through water, even without real experimentation.

Nonlocal conditions with convection represent the control mechanism. The
process control has been analyzed in [41] using a PID (proportional–integral–
derivative) controller [3]. A similar model was created using a PI (proportional–
integral) controller. The controller in this model adjusts the water flow-through
rate in order to satisfy the set-point outflow concentration. Application of PI
control in the mathematical model enables the design of the intelligent treatment
systems with variable inflow NO−3 concentrations.

Materials, methods and processes

Field experiment

A pilot-scale cube-shaped plastic denitrification bioreactor (1.0 m3 volume)
was placed below the ground by the excavation of a 1.2 m trench constructed at
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the Drainage Laboratory of Vytautas Magnus University, Lithuania (Fig. 3.1).
The bioreactor’s container was fed by water from two interconnected plastic
water tanks (1.0 m3 volume each). The container was filled with mixed wood-
chips made from local raw materials. Alder (Alnus glutinosa) and pine (Pinus
sylvestris) tree scraps dominated in the woodchips with prevailing (at 65% of
the cumulative distribution) particle diameter varying from 1.1 to 3.0 cm (bulk
density of 260 kg/m3). The bioreactor was filled with woodchips to a depth
of 1.0 m, and a saturation level of 0.90 m was maintained. A polyethylene
liner was also folded over the top of the bioreactor to seal it from the soil and a
mound with a 20 cm thickness was formed and sown with grass. The woodchip
porosity was determined using a standard porosity determination procedure
described by [15]. The analysis revealed that woodchip porosity was 56%.

Figure 3.1: Schematic of the pilot-scale woodchip bioreactor [72]
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The experiment was carried out under in turn flowing-through (average
retention time = 3.10 hours calculated as the ratio between the bioreactor’s pore
volume and flow rate) and non-flowing water conditions. The NO−3 removal
efficiency (determined as the difference between the inlet and outlet NO−3
concentrations divided by the inlet concentration) tests in the bioreactor started
on July 20, 2017 and the results cover the period until June 10, 2018. The water
from the tanks was supplied to the bioreactor by gravity. The flow rate was
determined by the difference in hydraulic head (max 3.6 m) between the water
levels in the tanks and in the bioreactor. The inflow and outflow rates were
adjusted manually using valves. The bioreactor was fed with nitrate (via the
addition of NaNO3 to the water tanks) at concentrations ranging from 28.0 to
132.0 mg ·L−1 with an average value of 66.1 mg ·L−1. These concentrations are
typical (83% of the cumulative frequency) of the range of NO−3 values observed
in drainage water under field conditions. The outflow concentrations ranged
from 16.0 to 98.0 mg ·L−1 (average of 42.4 mg ·L−1). Therefore, the NO−3
removal efficiency changed from 17.5% to 70.8% (average of 37.1%).

During the study period, the water temperature at the inlet and outlet ranged
from 13.9°C to 19.4°C. The pH values in the inflow ranged from 5.2 to 8.6, and
those of the outflow from 5.0 to 8.3. The dissolved oxygen concentrations at
the inlet and outlet ranged from 3.2 to 4.4 mg ·L−1 and from 0.0 to 1.2 mg ·L−1

respectively.
The measurements were performed at various irregular time intervals vary-

ing from 16.43 to 183.3 hours by applying the same sampling procedures. In
total, 41 experiments were carried out, the results of which were used in this
chapter. Sampled at the outlet, nitrate and oxygen concentrations were measured
at the beginning and at the end of the experiments. The presence of NO−3 was de-
termined via the spectrometric method using a Photometer MD600/MaxDirect
(accuracy ± 0.5 mg ·L−1) system with powder reagents. The dissolved oxygen
content (accuracy ± 1.5%) and the water temperatures (accuracy ± 0.2 ◦C)
were measured with a portable HI-9142 (Hanna® Instruments Ltd.) multimeter,
and the pH values were registered by a HI-98136 meter (accuracy ± 0.1 pH).

Physical model

The model is constructed on the base of chemical processes in the bioreactor
described in typical kinetics and competition equations [87].
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Cellulose degrading microorganisms grow on woodchips and produce ex-
tracellular enzyme cellulase. This enzyme catalyzes the hydrolysis of cellulose,
which produces soluble monosaccharides (usually glucose) and a variety of
oligosaccharides of different lengths.

1. Cellulose + H2O Cellulase−−−−−−−−−→ glucose + oligosaccharides.

2. Glucose, oligosaccharides + O2 k2−−−−→ 6CO2 + 6H2O.

3. Glucose, oligosaccharides + NO−3 k1−−−−→ N2 + Volatile N compounds +

nH+ + mCO2 + H2O.

Cellulase producing microorganisms grow in aerobic media. When oxygen
is consumed, production of the enzyme stops. However, previously produced
cellulase still works. Anaerobic cellulase producing microorganisms also exist.
They consist of about 5-10% of aerobic cellulase producing microorganisms
[59]. They produce extracellular huge protein complexes that adsorb on cel-
lulose surface. They catalyse hydrolysis of cellulose, and, probably, further
destruction of soluble sugars to acetic acid, or lactic acid. Complexes are
strongly inhibited by glucose. Thus, the number and variety of soluble carbon
sources depend on oxygen concentration.

Under anaerobic conditions some microorganisms can switch from oxygen
to nitrate. A different number and variety of volatile nitrogen oxide products
will be produced (the third path). This process will continue until the previously
produced cellulase inactivates and no more soluble sugars will be produced.
When nitrate has been consumed, some microorganisms can switch to sulph-
ates. However, sulphates can only be consumed at very high concentration of
sulphates. It means that the process of carbon consumption is complicated and
the rate of carbon consumption cannot be expressed by one equation.

Due to the decrease of oxygen concentration, the production of soluble
sugars will also decrease. Thus, for the optimal nitrate removal process a
sufficient oxygen concentration is necessary.

The nitrate removal rate can be regulated by the change of flow rate through
the bioreactor. At a very low flow rate all oxygen will be consumed at the inlet
of the bioreactor, and the efficiency of the reactor will be low. By increasing the
flow rate we will involve more of the bioreactor’s content into the process, thus
increasing the rate of nitrate consumption. At a high flow rate in the bioreactor
the aerobic conditions will dominate and the rate of nitrate removal will be
low. For the precise regulation of the nitrate removal, the concentration of the
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nitrates and concentration of oxygen should be controlled at the outlet of the
bioreactor. It will be used as an essential information for the effective regulation
of the reactor using a PI controller.

Mathematical model

A mathematical model of the nitrate removal in the woodchip denitrification
bioreactor that guarantees the required water purity was composed. The model
is based on differential equations which were used for the analysis of the water
treatment experimental results and the water treatment processes. The inverse
problem for the system of convection–reaction equations was solved for the
analysis of denitrification processes.

Since the process of water treatment involves complex chemical reactions,
in this chapter the variation of nitrate and oxygen concentrations during water
treatment was analyzed. Regression analysis was used to analyze the experi-
mental results. The dependence of the parameters characterizing water treatment
on temperature and pH was estimated. Water flow rates which allow to reduce
the NO−3 concentration to the desired level were presented.

The main chemical assumptions are: the oxygen concentration decreases
exponentially and the NO−3 concentration decreases nonlinearly during the
water treatment process. Since the real experiments were conducted on non-
flowing water conditions and woodchip porosity was 56%, an assumption was
made that the medium can be considered to be homogeneous and it is sufficient
to analyze the changes over time.

Non-flowing water model

First, the data from the non-flowing water experiments were analyzed.
Every experiment was taken as a single observation in a given dataset. The
variables and dimensions for each experiment are described in Table 3.1.

The non-flowing water experiments were used to analyze and compute
the rate constants for the model, as well for the statistical analysis of the
experiments. The inverse problem was solved for the system of two differential
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equations supplementing the initial and boundary conditions:

dCNO3

dt
=−k1CNO3

(
1− CO2

CNO3

α

)
, (3.1a)

dCO2

dt
=−k2CO2 , 0 < t ≤ T, (3.1b)

where k1 - nitrate and k2 – oxygen removal reaction rates (h−1); α - oxygen
domination proportion. Such system of nonlinear kinetic equations is often
used to describe chemical reactions or interactions between substances [87].

The additional conditions for the inverse differential problem are formulated
using concentrations at the beginning (t = 0) and at the end (t = T ) of the
experiment:

CNO3 |t=0 = b1,CO2 |t=0 = d1, (3.2a)

CNO3 |t=T = b2,CO2 |t=T = d2. (3.2b)

The system should be solved for the rate constants k1, k2. Nitrates are
consumed relatively to the oxygen concentration decline:

α =
CNO3 |t=0

CO2 |t=0
. (3.3)

To start with the solution for each experiment, the value of k2 was determ-
ined from the inverse problem (3.1b) with the initial conditions (3.2a) and the

Table 3.1: The parameters of experiments

T experiment duration (h)
CNO3 |t=0 NO−3 concentration when experiment starts (mg ·L−1)
CNO3 |t=T NO−3 concentration when experiment ends (mg ·L−1)
CO2 |t=0 O2 concentration when experiment starts (mg ·L−1)
CO2 |t=T O2 concentration when experiment ends (mg ·L−1)
temp average temperature (°C)
pH water acidity (pH) when experiment ends
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boundary conditions (3.2b):

k2 =
ln d1

d2

T
. (3.4)

k1 was obtained from the optimization problem of differential equations
(3.1a, 3.1b) with the initial conditions (3.2a) and the boundary conditions (3.2b).
The initial guess of k∗1 was used for the optimization algorithm:

k∗1 =
ln b1

b2

T
. (3.5)

Flowing-through water model

An additional parameter (water flow) was added to the model described in
the previous chapter. The case when the water passes at a constant rate through
the bioreactor is studied. The modeled bioreactor structure was assumed to be
homogeneous with evenly distributed woodchips, laminar flow and unchanged
inner distribution of microorganisms due to the flow.

The idea was to look for the water flow rates which would guarantee the
required NO−3 removal. The mathematical model based on the system of two
convection–reaction equations (3.6) was applied.

The flow-through denitrification bioreactor mathematical model is defined
as a system of two first order convection-reaction nonlinear differential equa-
tions:

∂CNO3

∂ t
=V

∂CNO3

∂x
− k1CNO3

(
1− CO2

CNO3

α

)
,

∂CO2

∂ t
=V

∂CO2

∂x
− k2CO2 ,

(x, t) ∈ D = {0 < x < a,0 < t ≤ T},

(3.6)

where CNO3(t,x) – NO−3 concentration (mg ·L−1); CO2(t,x) – dissolved oxygen
concentration (mg · L−1); k1, k2 – reaction rate constants (h−1); α - oxygen
domination proportion; t – time (h); V – water flow rate (m ·h−1); a – length of
denitrification bioreactor (m); T – reaction duration (h).

The initial conditions specify the concentration distribution inside the biore-
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actor at the initial time moment (t = 0):

CNO3(t,x)|t=0 = c1, CO2(t,x)|t=0 = c2, 0≤ x≤ a, (3.7)

where c1, c2 – initial nitrate and dissolved oxygen concentrations (mg ·L−1).
The boundary conditions define the nitrate and dissolved oxygen concentra-

tions at the points of inlet during the reaction (0 < t ≤ T ):

CNO3(t,a) =Cn = const, CO2(t,a) =Co = const, 0 < t ≤ T. (3.8)

A set-point for the required NO−3 concentration h at the point of outlet was
determined:

CNO3(t,0) = h, 0 < t ≤ T. (3.9)

To find the solution of the system of differential equations with the initial
and boundary conditions, the finite difference (explicit forward difference
at time) methods [6, 76] and the Newton-Raphson (or secant) method for
optimization [49] were used.

Flowing-through water model with monitoring

This mathematical model allows to compute the optimal water flow rate
based on the nitrate inflow concentration.

The refined model allows for the variable inflow concentration control with
a given set-point outflow concentration as an objective.

The mathematical model is very similar to the previous one. The differential
equations are the same as (3.6), but the nonlocal condition representing the
control mechanism is defined as a PI controller and the water flow rate V is a
function of time t:

V (t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ, 0 < t ≤ T. (3.10)

The controller adjusts the water flow-through rate V (t) in this model to
satisfy the set-point outflow concentration. Kp, Ki are non-negative coefficients
for a proportional and integral terms in a PI scheme. The error function e(t) is
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the difference between the required NO−3 concentration and the measured one

e(t) = h−CNO3(t,0), 0 < t ≤ T. (3.11)

The PI controller continuously evaluates the error value e(t) and attempts
to minimize it over time by adjusting the control variable V (t) to a new value
defined by (3.10). If e(t)< 0, the V (t) = 0 was accepted.

The principal scheme of the computational experiment is shown in Fig. 3.2.

Denitrification bioreactor Water

Control
System

Water tank

Nitrate
concentration
measurement

sensor

InflowOutflow

0 a

Figure 3.2: Principal scheme of the denitrification process under PI controller.

Results and discussion

The results obtained from the mathematical models and statistical analysis
are presented in this section. The nitrate removal average rates are discussed as
well. Experiments were performed under different water temperature, acidity
(pH) and duration values.
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Average nitrate removal rates

The nitrate and oxygen average removal rates are very important character-
istics of the denitrification process. It is defined as

SNO3 =
CNO3 |t=T −CNO3 |t=0

T
,

SO2 =
CO2 |t=T −CO2 |t=0

T
.

The experiment data was analyzed by statistical methods. The main statist-
ical indicators are presented in Table 3.2. The minimal values of the experiment
data are given in the first table column (T – experiment duration, CNO3 |t=0

– NO−3 concentration at the beginning of the experiment, CNO3 |t=T – NO−3
concentration at the end of the experiment, etc.).

Table 3.2: Experiment data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

T 16.43 20.08 45.42 51.90 76.33 183.3
CNO3 |t=0 28.00 50.00 55.00 63.66 70.00 132.0
CNO3 |t=T 16.00 26.00 32.00 38.00 42.00 98.00
CO2 |t=0 3.400 3.540 3.640 3.668 3.760 4.200
CO2 |t=T 0.050 0.050 0.100 0.293 0.150 1.180

SNO3 0.212 0.335 0.645 0.730 1.054 1.877
SO2 0.020 0.048 0.084 0.098 0.139 0.217

The multiple linear regression for nitrate removal average rate SNO3 and
oxygen decline average rate SO2 with respect to temperature and pH using the
laboratory experiment data were computed. The linear model was used due to
the narrow range of the parameters temp and pH. The analysis is based on the
data of 41 experiments.

A computed linear-fit model revealed weak dependence for SNO3 and SO2 on
temp and pH. Multiple R2 for SNO3 is 0.182, for SO2 is 0.0722. This indicates
there was no strong inter-dependency between the nitrate removal rate and
fluctuations in temperature and pH. A previous investigation [73] shows that
the nature of the woodchips does not have impact on the overall rate of nitrate
removal. Therefore, it is proposed to use a control mechanism to ensure the
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required nitrate concentration at the outflow.

Flow rate selection for the required nitrate outflow concentration

It is important to maximize the efficiency of the bioreactor. This can be
achieved by monitoring the water flow rate. This section presents numerical
results for the flow rate control. The computed flow rate ensures the required
purity of the outflow water providing supreme flow rate.

In the experiments the nitrate inflow concentration CNO3(t,a) was in the 28
– 132 mg ·L−1 range. Having the upper and lower inflow concentration bounds,
the corresponding flowthrough rate for the bioreactor with the outflow NO−3
concentration was computed and set to 2.22 mg ·L−1.

The choice of a set-point parameter was based on the fact of sulphate
presence which can compete and act as an alternative electron acceptor when
more reducing conditions develop. Consequently, a sulphate reduction normally
occurs when NO−3 - concentrations have been substantially depleted (below
2.22 mg/L) [82].
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Figure 3.3: Computed inflow concentration dependency on the computed flowthrough
rate. Each line corresponds to a single experiment. Each experiment is labeled with a
number. The experimental data is presented in Table 3.3.
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Table 3.3: Experiment data for Fig. 3.3

Experiment number k1, h−1 k2, h−1 α

3 0.03606 0.2243 14.40
11 0.04492 0.2056 14.18
12 0.03520 0.1455 15.49
18 0.01160 0.1368 11.84
19 0.01980 0.0992 17.82

Fig. 3.3 shows the computed results of the mathematical model for five
randomly picked experiments. For a given range of the NO−3 concentration in
the drainage water there can be found a flowthrough rate which allows to reach
a safe outflow NO−3 concentration (2.22 mg ·L−1). Each experiment had its own
set of parameters (Table 3.3).

From the results it follows that under a higher inflow NO−3 concentration
the flowthrough rate should be reduced. As an example the experiment number
12 was analyzed. Under a 40 mg ·L−1 inflow concentration the flow rate cannot
exceed 5.42× 10−3 m3 · h−1, but when the NO−3 concentration exceeds 120
mg ·L−1 the flowthrough rate should be limited to 4.29×10−3 m3 ·h−1.

Bioreactor length selection

For the purposes of water treatment, it is important to ensure that the water
purity requirements are met while the outflow volume is maximized. In case
the desired rate of outflow is fixed, this objective can be achieved by adjusting
the length of the bioreactor.

The mathematical model can be used to calculate the length of the bioreactor
which ensures the required outflow rate and 2.22 mg ·L−1 nitrate concentration.
For this purpose, the inverse problem for a system of differential equations (3.6)
was solved at a given flow rate V .

The results of the numerical experiments showed linear dependence between
the length of the bioreactor needed to maintain the "safe" NO−3 concentration
and the flowthrough rate.

The linear regression formula for a given dataset is (3.12) measured in m:

L = 72.5×V, L≥ 1. (3.12)
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For example, if the reaction rates are k1 = 0.00970 and k2 = 0.05809,
then the required flow rate of 1.38×10−2m/s is sufficient for the 1 m length
bioreactor. Whereas for the 10 m length bioreactor, the maximum flow rate
should not exceed 1.38×10−1m/s. The width and length of the bioreactor are
equal to 1 meter each.

Flow rate control for variable inflow concentration

The water treatment optimization is more difficult when the inflow water has
a varying nitrate concentration. This section presents the results of calculations
for a case where the input water nitrate concentration varies as a sinusoidal
function. The results are presented in Fig. 3.4 and Fig. 3.5. In this particular
case the inflow NO−3 concentration varies between 55-82 mg ·L−1. The outflow
concentration is set to be maintained by the PI controller, the set-point is 2.22
mg ·L−1.

Figure 3.4: Computed flowthrough rate (V (t), left axis). NO−3 inflow and outflow
concentrations (right axis). Obtained by using PI control for a periodically changing
inflow concentration of NO−3 .

The Fig. 3.5. shows the PI control result for a given parameter set. We
can observe the outflow rate and NO−3 concentration to be approximately the
same function but shifted in time. It is due to a lag in the control signal and its
propagation in NO−3 concentration change. In this example the set-point and
the actual measured concentration have a spread within 20%.
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Figure 3.5: Time range from a Fig. 3.4 where the process control is within the "flat"
range.

Conclusions

A series of field experiments for cube-shape plastic denitrification bioreactor
were performed. The mathematical model of nitrate removal in a woodchip
denitrification bioreactor based on the field experiments was proposed in this
study. The variation of nitrate and oxygen concentrations during water treat-
ment was analyzed in this chapter. The nitrate removal processes in a bioreactor
were modeled under non-flowing and through-flowing conditions. The mathem-
atical approach for denitrification process is a system of nonlinear differential
equations describing the kinetic and convection processes.

The average nitrate removal rate SNO3 and the oxygen decline average rate
SO2 were calculated for each field experiment. The chemical reaction rates
(k1 and k2) of denitrification process were calculated by solving the inverse
problem for the differential system for each field experiment.

The linear regression formulae for the nitrate removal average rate SNO3

and the oxygen decline average rate SO2 as well as for the chemical reaction
rates (k1 and k2) of denitrification process with respect to temperature and pH
were obtained.

Two methods have been proposed to maximize the efficiency of a bioreactor
by monitoring the water flow rate.

A mathematical formula for bioreactor length selection is presented when
the NO−3 concentration of the inflow and the flow rate are known. The computed
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length ensures the required purity of the outflow water.
A sophisticated mathematical algorithm for flow rate selection is presented.

The NO−3 concentration at inlet varies over time. The distinctive feature of this
model is the nonlocal condition representing the control mechanism which is
defined as a PI controller. The water flow rate is a function of time.
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4. Study of difference scheme for a
system of nonlinear reaction-diffusion

equations with control

This chapter is based on the manuscript which is the result of original
research submitted to the journal Applied Mathematics and Computation.

Introduction and problem statement

Many physical phenomena have been formulated as mathematical models
with nonlocal boundary conditions of various types. In the last few decades, the
development of numerical methods for the solutions of nonlocal boundary value
problems has been an important research area in many branches of applied
science. A short overview of these models is presented in many papers (see for
example [21, 25, 62, 85] and references therein).

For example, one of such mathematical models with nonlocal conditions is
the reaction-diffusion equation in connection with its applications in chemical
diffusion, electrochemistry, dynamics of various bioreactors, mathematical
biology, some inverse problems and other applications [20, 41, 63, 65, 67, 83].

One of the first mathematical models with a nonlocal condition has been
published in [11]. In this chapter, a nonlocal condition instead of one bound-
ary value condition u(0, t) = µ(t) has been formulated for the heat condition
equation

∂U
∂ t

=
∂ 2U
∂x2 , 0 < x < 1, 0 < t ≤ T . (4.1)

∫ x(t)

0
u(x, t) = E(t), (4.2)

where x(t) and E(t) are given functions. There is an obvious interpretation
of this nonlocal condition. For example, if u(x, t) denotes temperature in a
heat conduction problem, then E(t) represents an internal energy content of the
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region 0 < x < x(t) at time t. Likewise, if u(x, t) denotes the concentration of
a chemical substance for a diffusion process, then E(t) represents the mass of
this substance that is present in the region 0 < x < x(t) at time t.

The nonlocal conditions arise usually when it is impossible to determine
the boundary values of the solution at some boundary points. These conditions
are typical for some inverse and control problems.

In the present chapter, a one-dimensional mathematical model [51] to simu-
late the dynamics of a bioreactor is considered. The system of two parabolic
nonlinear reaction-diffusion equations with a diffusion and enzymatic reaction
is presented:

∂S
∂ t

= DS
∂ 2S
∂x2 −

VmaxS
KM +S+S2/Yu

, 0 < x < d (4.3)

∂P
∂ t

= DP
∂ 2P
∂x2 +

VmaxS
KM +S+S2/Yu

, 0 < t ≤ T, (4.4)

where x stands for space, t stands for time, S(x, t), P(x, t) are the concen-
tration of the substrate and reaction product respectively, d is the thickness of
bioreactor, Vmax is the maximal enzymatic rate. KM and Yu are the Mechaelis-
Menten and the inhibition constants respectively, DS and DP are the diffusion
coefficients of the substrate and the reaction product respectively.

The initial condition represents an empty bioreactor, where neither a product
nor a substrate is present. It means that

P(x,0) = 0, S(x,0) = 0, x ∈ [0,d]. (4.5)

In order to define a full mathematical model, three boundary conditions can
be rewritten

P(0, t) = 0,
∂P(d, t)

∂x
= 0,

∂S(0, t)
∂x

= 0, 0 < t ≤ T. (4.6)

The first condition means that product outflow is allowed. The next two
conditions mean that the product P at x = d and the substrate S at x = 0 cannot
flow respectively. The last condition specifies the flux of P at the boundary
x = 0:

DP
∂P(0, t)

∂x
= Q(t), 0 < t ≤ T, (4.7)

where Q(t) defines the flux of the drug prescribed by a doctor in accordance
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with the therapeutic protocol (the objective function of the optimization task).
It is clear that such combination of boundary conditions (4.6), (4.7) is

not typical for the classical well-posed boundary value problem. In order to
use such bioreactors in real life applications, it was proposed [41] to find the
equivalent boundary condition for the substrate function S(d, t) = S0(t).

For this purpose, the error function is defined

e(t) = Q(t)−DP
∂P(0, t)

∂x
, 0 < t ≤ T, (4.8)

which defines the difference between the required product outflow Q(t) and the
real product outflow. In order to minimize the value of |e(t)| the "I" control is
used [28],

S(d, t) = Kc

∫ t

o
e(τ)dτ, 0 < t ≤ T. (4.9)

To solve the problem (4.3)-(4.7) the condition (4.7) with the nonlocal
boundary condition is changed

S(d, t) = Kc

∫ t

o

(
Q(t)−DP

∂P(0, t)
∂x

)
dt, 0 < t ≤ T. (4.10)

The system of diffusion-reaction equations (4.3), (4.4) belongs to the class
of partial differential equations which are used widely for investigation of
different types of bioreactors and biosensors. The system of diffusion-reaction
equations (4.3), (4.4) describes the action of the non-steady state biosensor at
mixed enzyme kinetics, external and internal diffusion limitation with substrate
inhibition [35, 50]

The system of nonlinear differential equations (4.3), (4.4) with initial condi-
tions (4.5) and boundary conditions (4.6), (4.10) is considered.

From the mathematical point of view, the author’s objective in this chapter
is to solve the system of nonlinear differential equations (4.3), (4.4) subject to
nonlocal conditions (4.10) by applying the finite difference method. Moreover,
the main goal is to consider the stability of the difference scheme. To this end,
the structure of spectrum of the difference operator is considered. Such method
of investigation of the stability of the difference problem in the case of nonlocal
conditions has been used in many papers [9, 33, 34, 38, 77, 79].

Please note that the structure of spectrum of difference operators can be
rather complicated even in the case of a simple nonlocal condition. Furthermore,
this structure strongly depends not only on the type of the nonlocal condition
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but also on the values of function parameters in the nonlocal conditions [34,
69, 78–81, 85]. The structure of the spectrum of difference operators with
nonlocal conditions is closely related to the stability of the difference schemes
for parabolic equations.

In the nonlocal condition (4.10) the value S(d, t) of the solution S(x, t)
is expressed by the derivative of the solution P(x, t) with respect to x in the
whole range [0, t]. As far as the author knows, nonlocal conditions of this form
have not been previously studied. The spectrum of a difference operator with
such a nonlocal condition of this form has not been studied so far. Therefore,
the theoretical stability study with the results of a numerical experiment is
supplemented.

It was also noticed that problems with nonlocal conditions quite often fail
to investigate the stability of difference schemes in the usual norms C or L2.
Therefore, special energy norms are used [33, 77].

In this chapter, the existence of the solution of the difference problem is
studied as well as the issues of uniqueness and stability assuming that the
solution of the differential problem exists, is unique and quite smooth.

Difference scheme

The differential problem (4.3)-(4.6),(4.10) is approximated by the forward
Euler finite difference scheme. It is started by dividing the intervals x ∈ [0,d]
and t ∈ [0,T ] into an N×M mesh with step sizes h = d /N and τ = T /M.
Let’s denote Sn

i = S(ih,nτ) and Pn
i = P(ih,nτ) as the solutions of the difference

problem.
From now, the differential problem with the following difference scheme is

approximated:

Sn+1
i −Sn

i

τ
= DS

Sn
i−1−2Sn

i +Sn
i+1

h2 − VmaxSn
i

KM +Sn
i +(Sn

i )
2/Yu

, (4.11)

i = 1, ...,N−1; n = 0,1, ...,M−1; (4.12)

Pn+1
i −Pn

i

τ
= DP

Pn
i−1−2Pn

i +Pn
i+1

h2 − VmaxSn
i

KM +Sn
i +(Sn

i )
2/Yu

, (4.13)

i = 1, ...,N−1; n = 0,1, ...,M−1; (4.14)
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Pn+1
0 = 0, n = 0,1, ...,M−1. (4.15a)

Pn+1
N −Pn+1

N−1

τ
= 0, or Pn+1

N = Pn+1
N−1, n = 0,1, ...,M−1, (4.15b)

Sn+1
1 −Sn+1

0
τ

= 0, or Sn+1
0 = Sn+1

1 , n = 0,1, ...,M−1. (4.15c)

P0
i = 0, i = 0,1, ...,N; (4.16a)

S0
i = 0, i = 0,1, ...,N−1; (4.16b)

S0
N = S̃, (4.16c)

where S̃ is the initial substrate concentration,

Sn+1
N = Kcτ

n

∑
j=0

(
Q j−DP

P j
1 −P j

0
h

)
, n = 0,1, · · · ,M−1. (4.17)

The formulas (4.12), (4.14) correspond to the classical forward Euler
scheme. The formula (4.17) can be interpreted as a left-hand rectangle rule
of numerical integration in the interval t ∈ [0, tn+1]. This form of approximate
integration was chosen to keep the explicit forward Euler scheme for the case
of the nonlocal condition (4.10).

At each time step t = tn+1, the solutions Sn+1
i and Pn+1

i at all mesh points
i = 0,1, ...,N are given by explicit formulas. That means, given Sn

i and Pn
i the

equations (4.12)-(4.14) can be used to compute Sn+1
i and Pn+1

i , i= 1,2, ...,N−1.
Then, from the formulas (4.15a)-(4.15c) the values Pn+1

0 , Pn+1
N and Sn+1

0 are
received. The final step is to calculate Sn+1

N from the nonlocal condition (4.17).
An important conclusion follows from this numerical algorithm.

Corollary 4.2.1. The differential scheme (4.12)-(4.17) always defines a unique
solution Sn

i ,P
n
i , i = 0,1, · · · ,N,n = 0,1, · · · ,M.
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Stability of the difference scheme

The stability of a differential scheme is one of the most important aspects
of the numerical method from both practical and theoretical points of view.
Stability is a necessary condition for the convergence of the difference scheme.

The stability of difference schemes for one-dimensional linear parabolic
equation with nonlocal conditions has been studied for a long time. Various
research methods are described in articles [9, 12, 26, 38]. As already mentioned
in Section 4.1, special energy vector norms are used to study the stability of
difference schemes with nonlocal conditions. Let’s write the standard two-layer
difference scheme in the form:

un+1 = G un + f n, (4.18)

where un is an N-dimensional vector, G is a matrix of order N, usually nonsy-
metric. Let’s introduce the matrix

M = 〈µ1µ2 · · ·µN〉,

where columns are the eigenvectors and the associated vectors of the matrix G .
A symmetric positive definite matrix D is defined:

D = (MM∗)−1,

where M∗ as usual is the conjugate matrix.
The stability of a difference scheme with nonlocal conditions can be proven

in a vector norm

‖u‖D = (Du,u)
1
2 , (4.19)

which is called the energy norm generated by the positive definite matrix D

[33].
The meaning of the norm ‖u‖D will be explained. Suppose, for simpli-

city, that G is a matrix of simple structure i.e. it has N linearly independent
eigenvectors. Now, the norm of any matrix A can be defined in this way [22]

‖A‖∗ = ‖M−1AM‖2,
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where ‖A‖2 =
(

max
1≤i≤N

λi(AA∗)
)1/2 is the classical matrix norm.

This definition of the norm gives a simple expression of the norms of the
matrix G

‖G ‖∗ = ‖M−1G M‖= ‖J‖2 = ρ(G ), (4.20)

where J = diag(λ1,λ2, . . . ,λN), λi are the eigenvalues of the matrix G , ρ(G ) is
the spectral radius of G , i.e.

ρ(G ) = max
1≤i≤N

|λi(G )|.

The compatible vector norm is defined by the formula [22]:

‖u‖∗ = (M−1u,M−1u)
1
2 . (4.21)

Please note that in case when G is a matrix of simple structure the norm
(4.19) coincides with the definition of the norm (4.21). Indeed,

‖u‖∗ = (M−1u,M−1u)
1
2 =

(
(M−1)∗M−1u,u

)
=
(
(MM∗)−1u,u

) 1
2 = ‖u‖D .

Thus, the matrix norm (4.20) can be used to study the stability of the
difference scheme (4.18), regardless of whether the matrix G is symmetric or
not. From this it follows that the study of the spectrum structure of the difference
operator with nonlocal conditions has become one of the major methods for the
study of stability of difference schemes. For various one-dimensional linear
parabolic equations the stability conditions of the difference schemes were
investigated by this method. These results can be summarized in the following
conclusion.

Corollary 4.3.1. The backward Euler difference scheme with nonlocal condi-
tions

un+1−un

τ
= Aun+1 + f n

is unconditionally stable if Reλ (A)> 0 (it means that ρ
(
(I− τA)−1

)
< 1). For

details, see for example [34, 57, 79, 80].

The important property of the matrix norm (4.20) is that in case ρ(S)> 1
the difference scheme is not stable in any vector norm [9, 34].
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Remark 4.3.2. Please note that it is possible to define the matrix norm with the
property ‖G ‖= ρ(G ) under the condition that G is a matrix of simple structure.
In general, it is possible to define the matrix norm with the property ‖G ‖< 1
if and only if ρ(G ) < 1 [5]. In this case, the compatible norm of the vector
is defined in a more complicated way (see e.g., [5], Ch. 7.3 or [75] Ch II.2,
par. 3.4). In any case, the sufficient condition of the stability of the difference
scheme (4.18) in the norm ‖u‖∗ is ρ(G )< 1. �

Recall that Corollary 4.3.1 is correct when the parabolic equation is linear.
There are only a few articles in which the stability of difference schemes
is theoretically investigated for nonlinear parabolic equations with nonlocal
conditions [21, 29, 60, 67]. In [21], the stability is studied based on the spectrum
structure of the differential operator.

The stability of the difference scheme (4.12)-(4.17) is analyzed based
on the spectrum structure of the difference operator under the assumption
S << KM,S2 << Yu (Corollary 4.3.1).

In this case, the differential equations (4.3), (4.4) are transformed into

∂S
∂ t

= DS
∂ 2S
∂x2 −

Vmax

KM
S, (4.22)

∂P
∂ t

= DP
∂ 2P
∂x2 +

Vmax

KM
S. (4.23)

Instead of the difference equations (4.12), (4.14) we obtain

Sn+1
i −Sn

i

τ
= DS

Sn
i−1−2Sn

i +Sn
i+1

h2 − Vmax

KM
Sn

i , (4.24)

i = 1, ...,N−1; n = 1, ...,M−1; (4.25)

Pn+1
i −Pn

i

τ
= DP

Pn
i−1−2Pn

i +Pn
i+1

h2 +
Vmax

KM
Sn

i , (4.26)

i = 1, ...,N−1; n = 1, ...,M−1; (4.27)

A two level difference scheme (4.25), (4.27), (4.15a)-(4.17) will be defined
in matrix form. To that end, let’s first list all the equations of this system of
difference equations in the following order
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Sn+1
i = Sn

i + τ

(
DS

Sn
i−1−2Sn

i +Sn
i+1

h2 − Vmax

KM
Sn

i

)
, (4.28)

i = 1, ...,N−1; n = 1, ...,M−1; (4.29)

where Sn
0 = Sn

1;

Sn+1
N = Kcτ

n

∑
j=0

(
Q j−DP

P j
1 −P j

0
h

)
, n = 0,1, · · · ,M−1, (4.30)

where Pn
0 = 0;

Pn+1
i = Pn

i + τ

(
DP

Pn
i−1−2Pn

i +Pn
i+1

h2 +
Vmax

KM
Sn

i

)
, (4.31)

i = 1, ...,N−1; n = 1, ...,M−1; (4.32)

where Pn
0 = 0, Pn

N = Pn
N−1.

The equation (4.30) is rewritten into the equivalent form which follows
from (4.30) by subtraction Sn+1

N −Sn
N .

Sn+1
N = Sn

N + τ

(
−DPKc

Pn
1 −Pn

0
h

)
+ τKcQn.

Let’s define the following vectors and matrices: an N-dimensional vector
Sn and an (N−1)-dimensional vector Pn

Sn = {Sn
1,S

n
2, · · · ,Sn

N−1,S
n
N},

Pn = {Pn
1 ,P

n
2 , · · · ,Pn

N−1},

a square tridiagonal matrix Λ1 of the order N
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Λ1 =



a1 +b1 −a1

−a1 2a1 +b1 −a1

−a1 2a1 +b1 −a1
. . . . . . . . .

−a1 2a1 +b1 −a1

0 0 · · · 0 0 0


,

where a1 =
DS

h2 , b1 =
Vmax

KM
; a square tridiagonal matrix Λ2 of the order N−1

Λ2 =


2a2 −a2

−a2 2a2 −a2

−a2 2a2 −a2
. . . . . . . . .

−a2 2a2 −a2

 ,

where a2 =
DP

h2 ; a rectangular matrix D1 of the order N× (N−1)

D1 =


0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
. . . . . . . . .

...
...

0 0 0 · · · 0 0 0
b2 0 0 · · · 0 0 0

 ,

where b2 =
Vmax

KM
and a rectangular matrix D2 of the order (N−1)×N

D2 =



−b1 0 0 · · · 0 0 0
0 −b1 0 · · · 0 0 0
0 0 −b1 · · · 0 0 0
...

...
. . . . . . . . .

...
...

0 0 0 · · · −b1 0 0
0 0 0 · · · 0 −b1 0


.

The system of difference equations (4.29)-(4.32) can now be written in the
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form (4.33) (
Sn+1

Pn+1

)
=

(
Sn

Pn

)
− τ

(
Λ1 D1

D2 Λ2

)(
Sn

Pn

)
+ τ

(
F1

F2

)
, (4.33)

where the N-dimensional vector F1 and the (N−1)-dimensional vector F2 are

F1 = (0,0, · · · ,0,b1)
T , F2 = (0,0, · · · ,0)T .

Finally, the difference scheme (4.25), (4.27) with conditions (4.15a)-(4.17)
is written in the following form

un+1 = (I− τA)un + τ f , (4.34)

where I is an identity matrix,

un =

(
Sn

Pn

)
, A =

(
Λ1 D1

D2 Λ2

)
, f =

(
F1

F2

)
.

The stability of this difference scheme will be investigated by proving a
statement analogous to Corollary 4.3.1.

Theorem 4.3.3. If Reλ (A) > 0 and |Imλ (A)| ≤ |Reλ (A)| ≤ C/h2, then the
difference scheme (4.34) is conditionally stable in the norm ‖u‖∗, under the
condition τ ≤ h2

C .

Proof. According to Remark 1, the stability condition ρ(I− τA) < 1 of the
difference scheme (4.34) will be used. When this condition is satisfied, it will
be investigated. Let’s denote λ (A) = Reλ (A)+ i · Imλ (A). The evaluation of
|λ (I− τA)|:

|λ (I− τA)|= |1− τλ (A)|= |1− τReλ (A)− iτImλ (A)|=((
1− τReλ (A)

)2
+
(
τImλ (A)

)2
)1/2

=(
1−2τReλ (A)+ τ

2
((

Reλ (A)
)2

+
(
Imλ (A)

)2
))1/2

.

This expression will be less than one if
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−1 <−2τReλ (A)+ τ
2
((

Reλ (A)
)2

+
(
Imλ (A)

)2
)
< 0.

The left-hand inequality is satisfied for all τ > 0. It follows from the
right-hand inequality that

τ <
2Reλ (A)(

Reλ (A)
)2

+
(
Imλ (A)

)2 . (4.35)

According to the assumptions of the Theorem |Imλ (A)| ≤ |Reλ (A)|, hence
the condition (4.35) will be true if

τ ≤ 2Reλ (A)

2
(
Reλ (A)

)2 =
1

Reλ (A)
.

Again, according to the assumptions of the theorem, the last inequality will
be satisfied if

τ

h2 ≤
1
C
.

Now, from inequality |λ (I−τA)|< 1 it follows that ρ(I−τA)< 1. �

Remark 4.3.4. The condition |Imλ (A)| ≤ |Reλ (A)| is only sufficient but not
necessary for the stability of the difference scheme (4.34). In fact, it is only
needed to ensure the conditional stability through the inequality τ/h2 ≤ 1/C.
But Reλ > 0 is the necessary condition of stability. When Reλ (A) ≤ 0 and
Imλ (A) 6= 0, then ρ(I− τA)> 1 for all values of τ . When Reλ (A)> 0, then
the differential scheme (4.34) is conditionally stable for any value of Imλ (A),
under the condition (4.35) �

Remark 4.3.5. The assumptions |Imλ (A)| ≤C/h2 and Reλ (A)≤C/h2 follow

from the inequality |λ (A)| ≤ ‖A‖∞ = max
1≤i≤n

n

∑
j=1
|ai j|. In each particular case,

only the constant C can change. �
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Numerical results

To demonstrate and supplement the theoretical results, numerical experi-
ments were performed. The numerical experiment was carried out to demon-
strate the dependence of minReλ (λ ) on Kc and Vmax. The "I" control numerical
solution analysis for the control parameter Kc was performed.

A numerical modeling was performed using a computer program developed
by the author. It implements an explicit finite difference scheme using a forward
difference in time and a second-order central difference for the space derivative.

The system parameters are: DS = 5×10−6 m2 ·s−1, DP = 5×10−6 m2 ·s−1,
Vmax = 1.1×10−3 mol ·m−3, KM = 0.2 mol ·m−3, d = 5×10−3 m.

Eigenvalue analysis

The numerical experiments related to the study of the stability of the dif-
ference scheme was performed. For this purpose, for a fixed value of h, all the
eigenvalues of the matrix A were calculated. In other words, by changing the
coefficients Kc, Vmax values, it was observed that the property Reλ (A)> 0 was
retained.

Fig. 4.1 and Fig. 4.2 provide the charts showing the dependence of
minReλ (A) on Kc and Vmax.

In the first chart (Fig. 4.1), the dependence of the control parameter Kc

and the minimal value of the real parts of complex eigenvalues is presented.
The most important region of this chart is the zero crossing area. At this point
and to the right the stability of numerical algorithm for a given model with
corresponding parameters cannot be guaranteed.

The second chart (Fig. 4.2) presents the results of the numerical experiment
for the dependency of a Vmax (the maximal enzymatic rate) and the minimal
value of the real parts of complex eigenvalues. The same conclusion as the one
in the result from Fig. 4.1 can be made, namely that in the zero crossing region
and the part where the line is entering negative values the stability of numerical
algorithm cannot be guaranteed.

From these numerical results it can be concluded that the difference scheme
is stable (Reλ (A)> 0) in a sufficiently wide range of coefficients Kc and Vmax.
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Figure 4.1: The dependency of a Kc and the minRe(λ ). Stability region of the difference
scheme is within the range of positive values of minRe(λ ).
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Figure 4.2: The dependency of a Vmax and the minRe(λ ). Stability region of difference
scheme is within the range of positive values of minRe(λ ).

Result of I control

In this part, the I (PID control partial case) control numerical solutions
analysis for the control parameter Kc was performed. It was found that an
interval of control parameter values (0, Kc1), where the model behavior is
correct, Kc1 depends on model parameters (Vmax, KM , Q, etc.). The model with
control parameter Kc outside the interval (0, Kc1) can yield unpredictable results.
For example, the concentration of a substrate or product at some point in time
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can go negative which cannot be seen in the real world.
In all present stability studies, it was observed that the interval of control

parameter Kc guaranteeing the numerical method stability (Reλ (A) > 0) is
wider than the interval (0, Kc1).

Here two examples are presented where the control parameter Kc is within
the interval (0, Kc1) and outside of it. The nonlinear system solution with
control parameter Kc from the interval (0, Kc1) is presented in Fig. 4.3. Here the
substrate concentration is rising slowly with a slight overshot starting from the
18th second, which in this case is negligibly small and acceptable. Settlement
is observable from the 35th second and the following constant rate matching of
the set-point is the goal of this particular control system.
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Figure 4.3: Control with adequate coefficients.

The second example here is the result displayed in the Fig. 4.4 which
shows the influence of parameter Kc outside of the interval (0, Kc1) while all
other parameters are the same as in the previous example (Fig 4.3). In this
particular case, such selection of parameters yields unpredictable solutions as
negative substrate concentrations in several points in time is observed. Another
observable misbehavior are the periodic oscillations with an amplitude growth,
thus the control target is not met. In this case, the control algorithm is not
changed and should work as desired, but the chosen coefficient Kc gives this
unpredictable result.
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Figure 4.4: Control example with parameter Kc outside the interval (0, Kc1). Inflow
substrate concentration is below zero at some point in time as well as the outflow rate.

Conclusions

The stability of the difference scheme for reaction-diffusion equation system
has been analyzed. The essential feature of this problem is that a nonlocal
boundary condition is formulated for a system of equations (for the first time,
as far as the author is aware). The mathematical model is distinguished by
the nonlocal boundary condition (4.10) which binds both derivatives w.r.t time
∂S(d,t)/∂ t and space ∂P/∂x.

An eigenvalue spectrum analysis for control and equation system parameters
was carried out. The obtained results allow to choose the proper coefficients for
the numerical algorithm with respect to difference scheme stability as well as
the physical properties.

The computational results demonstrate the applicability of the integral
control mechanism in bioreactor design. An integral control mechanism ("I"
component from the PID controller) can be applied for a particular bioreactor
design with monitoring.

The mathematical model could be applied for the treatment process mod-
eling, where the patient needs to receive a strictly prescribed dose of the drug
[41].
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Conclusions

1. Proposed reaction–diffusion, convection–reaction–diffusion and convection–
reaction mathematical models with nonlocal boundary and nonlocal con-
ditions subject to PID control (or a subset of terms, PI, I) for bioreactor
modeling have the potential to be applied in bioreactor modeling with a
requirement for monitoring and control.

2. The reaction–diffusion mathematical model with a nonlocal boundary
condition representing a PID controller has the potential to be applied in
bioreactor modeling in drug delivery field.

3. The convection–reaction–diffusion system of PDEs with a control mech-
anism described using the nonlocal condition can be used for drug de-
livery mathematical modeling applied to the flow-through pressure con-
trolled bioreactor.

4. The convection–reaction system of PDEs with a nonlocal condition for
monitoring and control can be applied to the nitrate removal in a wood-
chip denitrification bioreactor with water flow rate monitoring.

5. A numerical algorithm was constructed and a computer program was
developed. Sufficient conditions for numerical algorithm stability of
difference scheme for the system of reaction–diffusion equations with the
nonlocal boundary condition were obtained by using eigenvalue spectrum
analysis for control and equation system parameters.
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[20] R. Čiegis, O. Suboč, and R. Čiegis. Numerical simulation of nonlocal
delayed feedback controller for simple bioreactors. Informatica, 29(2):
233–249, 2018.
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[A3] A. Nečiporenko, F. Ivanauskas, V. Laurinavičius, M. Sapagovas. PID-
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