Title |
Floquet chiral hinge modes and their interplay with Weyl physics in a three-dimensional lattice / |
Authors |
Huang, Biao ; Novičenko, Viktor ; Eckardt, André ; Juzeliūnas, Gediminas |
DOI |
10.1103/PhysRevB.104.104312 |
Full Text |
|
Is Part of |
Physical review B.. College Park, MD : American Physical Society. 2021, vol.104, art. no. 104312, p. [1-17].. ISSN 2469-9950. eISSN 1550-235X |
Keywords [eng] |
optical lattice ; Floquet enginering ; Weyl physics |
Abstract [eng] |
We demonstrate that a three-dimensional time-periodically driven (Floquet) lattice can exhibit chiral hinge states and describe their interplay with Weyl physics. A peculiar type of the hinge states is enforced by the repeated boundary reflections with lateral Goos-Hänchen–type shifts occurring at the second-order boundaries of our system. Such chiral hinge modes coexist in a wide range of parameter regimes with Fermi-arc surface states connecting a pair of Weyl points in a two-band model. We find numerically that these modes still preserve their locality along the hinge and their chiral nature in the presence of local defects and other parameter changes. We trace the robustness of such chiral hinge modes to special band structure unique in a Floquet system allowing all the eigenstates to be localized in quasi-one-dimensional regions parallel to each other when open hinge boundaries are introduced. The implementation of a model featuring both the second-order Floquet skin effect and the Weyl physics is straightforward with ultracold atoms in optical superlattices. |
Published |
College Park, MD : American Physical Society |
Type |
Journal article |
Language |
English |
Publication date |
2021 |
CC license |
|