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Introduction

We write s = σ + it. In the first half of the 18th century Euler analyzed the series
∞∑
n=1

1
ns

for real values of s. He managed to evaluate the series when s is a positive even

integer, thus solving the Basel problem in 1734 (the problem was posed in 1650).

That is he showed that
∞∑
n=1

1
n2 = π2

6 .

Additionally, in 1737, Euler proved the identity
∞∑
n=1

1
ns

=
∏

p prime

1
1− p−s ,

when s > 1. Expressions like the one in the right hand side of the above equation

are called Eurler’s products.

Definition 1. Suppose f(s) is an analytic function defined on a non-empty open

subset U ∈ C. If F (s) is an analytic function defined on an open connected subset

V ∈ C, U ⊂ V and F (s) = f(s), for all s ∈ U then F (s) is called an analytic

continuation of f(s). Analytic continuations are unique.

In 1859, Riemann [9] analyzed the series
∞∑
n=1

1
ns

in the complex plane. He managed to find an analytic continuation of the above

equation to the whole of C except at s = 1 where it has a simple pole. This

analytic continuation is called the Riemann zeta function and is denoted by ζ(s).

Additionally, in his paper Riemann showed that the following functional equation

holds for ζ(s):

ζ(s) = 2sπs−1 sin
(
πs

2

)
Γ(1− s)ζ(1− s),
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where Γ(s) is the gamma function (for definition and properties see [13, Chapter

1.86]), for all s ∈ C.

From the functional equation it is easy to see that ζ(s) is equal to zero when s is

a negative even number, these zeros are called trivial. Riemann showed that all

non-trivial zeros of ζ(s) lie in the strip 0 ≤ σ ≤ 1, this strip is called the critical

strip. He also conjectured that all non-trivial zeros of ζ(s) lie on the line σ = 1/2,

which is called the critical line. This conjecture is called the Riemann’s hypothesis

(RH) and it is yet to be proven or disproven. RH is an important statement to

mathematics, especially number theory, since it has implications on the distribution

of primes.

In [11], Selberg introduced the class of functions S that have similar properties to

ζ(s):

Definition 2. F (s) belongs to the Selberg class S if:

(I) For σ > 1, F(s) is an absolutely convergent Dirichlet series

F (s) =
∞∑
n=1

an
ns
.

(II) There exists k ∈ N such that (s− 1)kF (s) is an entire function of finite order.

(III) F (s) satisfies the functional equation:

Φ(s) = ωΦ(1− s),

where Φ(s) = F (s)Qs∏r
j=1 Γ(λjs+ µj), with Q, λj,<(µj) ≥ 0 and |ω| = 1.

(IV) For every ε > 0, |an| < nε.

(V) For σ sufficiently large F (s) has an Euler product, that is

logF (s) =
∞∑
n=1

bn
ns
,

where bn = 0 unless n is a positive power of a prime and |bn| < nθ for some

θ < 1/2.

Let F (s) ∈ S, we say that a zero of F (s) is trivial if it arises from the poles

of the gamma function factors in the functional equation. If all non-trivial zeros of

F (s) are on the critical line we say that F (s) satisfies RH.

In [11], Selberg conjectured that all functions from S satisfy RH. By relaxing the

conditions (IV )− (V ) in Definition 2 we get a class of zeta functions that definitely

contains functions that do not satisfy RH:
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Definition 3. A non-identically vanishing function F (s) belongs to the extended

Selberg class S# if it satisfies (I)− (III) in Definition 2.

In this work we study functions from S# that satisfy a simpler functional equa-

tion:

QsF (s) = ωQ1−sF (1− s).

A function from S# satisfies this functional equation when the quantity dF =

2∑r
j=1 λj is equal to zero. dF is an invariant and is called the degree of F (s).

Denote S#
d the subclass of S# of functions with degree d. It turns out that S0 = {1}

(see Conrey and Ghosh [2]), however S#
0 6= {1}.

The full characterization of functions from S#
0 is given by Kaczorowski and Perelli

in [5]. For functions from S#
0 the quantity Q is an invariant. Additionally, Q2 = q

is a positive integer and is called the conductor of F (s), we denote it by qF . Also

these functions take the form of Dirichlet polynomials

F (s) =
∑
n|qF

an
ns

and the functional equation can be equivalently rewritten as a condition for coeffi-

cients of F (s):

an = ω
naqF /n√

qF
, n | qF .

The main goal of this work is to give sufficient conditions under which a function from

S#
0 satisfies RH. A well know equivalent condition for the Riemann zeta function

to satisfy RH is given by Speiser in [12]. He showed that RH is equivalent to the

derivative of the Riemann zeta function having no zeros left of the critical line.

Definition 4. Let f, g : R → R. We say that f(x) = O(g(x)), if there exists

constants C > 0 and x0 ∈ R, such that |f(x)| < C|g(x)|, when x > x0.

Let F (s) ∈ S#
0 and qF ≥ 2. Let N(T ) and N1(T ) respectively denote the number

of zeros of F (s) and F ′(s) in the region 0 ≤ t < T , σ < 1/2. In [3], Garunkštis

and Šimėnas prove that N(T ) = N1(T ) + O(1). In this work we show that there

exists arbitrarily large values of T > 0, such that N(T ) = N1(T ). This implies that

a function from S#
0 satisfies RH if and only if its derivative does not have zeros left

of the critical line. Thus we see that Speiser’s result for the Riemann zeta function

holds for functions from S#
0 as well.

Additionally, we show that there exists a connection between functions from S#
0 and

self-inversive polynomials.
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Definition 5. A polynomial

p(z) =
n∑
j=0

ajz
j

is called self-inversive if

p(z) = ωp∗(z),

where ω is fixed, |ω| = 1 and

p∗(z) =
n∑
j=0

an−jz
j,

for all z ∈ C.

Equivalently, p(z) is self-inversive if pj = ωpn−j for j = 0, ..., n.

Self-inversive polynomials have interesting properties. For example, roots of

a self-inversive polynomial are symmetric with respect to the unit circle, that is

if r is a root of a self-inversive polynomial then 1/r is also a root of the same

polynomial. Additionally, if all zeros of a polynomial are on the unit circle then

it is necessarily self-inversive (see [8]). An important result about self-inversive

polynomials is Cohn’s theorem (proved by Cohn in [1]):

Theorem 1. Let p(z) = ∑n
j=1 ajz

j be a self-inversive polynomial. Then p(z) and

q(z) = ∑n−1
j=0 (n− j)an−jzj have the same number of roots in |z| < 1.

Schinzel in [10] and Lakatos and Losonczi in [8] proved sufficient conditions for

a self-inversive polynomial to have all roots on the unit circle:

Theorem 2. Let p(z) = ∑n
j=1 Ajz

j be a self-inversive polynomial. If either of

|An| ≥ inf
c,d∈C
|d|=1

n∑
j=0
|cAj − dm−jAn|,

|An| ≥
1
2

n−1∑
j=1
|Aj|

are satisfied then all zeros of p(z) are on the unit circle.

The main result of this work is that if equivalent inequalities are satisfied for

coefficients of a function from S#
0 then the function satisfies RH.
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Chapter 1

Statement of results

Definition 6. We denote two subsets of S#
0 :

S#
0 [a, q] := {F (s) ∈ S#

0 : max
n|qF

|an| ≤ a, qF = q, |a1| = 1},

and

S#
0 [a, q, T0, η] := {F (s) ∈ S#

0 [a, q] : min{ min
σ∈(−∞,1/2)

|F (σ+iT0)|, min
σ∈(−∞,1/2)

|F ′(σ+iT0)|} ≥ η}.

Firstly, we improved the result of Garunkštis and Šimėnas [3, Theorem 3] by

giving a bound uniform in a and q.

Theorem 3. Let F (s) ∈ S#
0 [a, q], q ≥ 2 and a ≥ √q. Let N(T ) and N1(T )

respectively denote the number of zeros of F (s) and F ′(s) in the region 0 ≤ t < T ,

σ < 1/2. Then

|N(T )−N1(T )| = O(log a+ log q + log q log 2aq).

Next, we showed that a function from S#
0 satisfies RH if and only if its derivative

does not have zeros left of the critical line.

Theorem 4. Let N(T, T0) and N1(T, T0) respectively denote the number of zeros of

F (s) and F ′(s) in the region T0 < t < T , σ < 1/2. For any T0 ∈ R, a, η > 0, q ≥ 2

there exists a monotonic sequence {Tj}, Tj →∞, such that

N(Tj, T0) = N1(Tj, T0), ∀ j ∈ N,

if F (s) ∈ S#
0 [a, q, T0, η].

Corollary 5. RH is true for F (s) ∈ S#
0 if and only if F ′(s) has no zeros in σ < 1/2.
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In the general theory of zeta functions it is expected that an Euler product and

RH are closely related to each other. However, this is not true for a function from

S#
0 , as Corollary 5 lets us produce an example of a function from S#

0 that does not

have an Euler product but satisfies RH:

F (s) = 1 + 1
2s + 6/

√
12

6s +
√

12
12s .

F (s) satisfies RH due to the fact that following inequality holds:∣∣∣∣∣ log(12)
√

12
12s

∣∣∣∣∣ >
∣∣∣∣∣ log(2)

2s

∣∣∣∣∣+
∣∣∣∣∣6 log(6)/

√
12

6s

∣∣∣∣∣
when <(s) ≤ 1/2.

Using a similar idea as in the proof of Theorem 4 we were able to show that the

formula for the number of zeros of a function from S#
0 , proved by Kaczorowski and

Perelli in [6], is exact for certain values of T > 0.

Proposition 6. Let F (s) ∈ S#
0 , qF ≥ 2. Let N(T ) be the number of zeros of F (s)

in the region 0 ≤ t < T (counting with multiplicities). There exists a monotonic

sequence {Tj} (dependent on F (s)), Tj →∞, such that

N(Tj) = log qF
2π Tj, ∀ j ∈ N.

Next, we proved conditions for the coefficients of a function from S#
0 that are

sufficient for the function to satisfy RH.

Theorem 7. Let F (s) ∈ S#
0 , qF ≥ 2. Let An = an/

√
n if n ≤ √qF and An = ωAqF /n

for n | qF . If either of

|AqF
| ≥ inf

c,d∈C
|d|=1

∑
n|qF

|cAn − d qF /nAqF
| (1.1)

|AqF
| ≥ 1

2
∑
n|qF
n 6=1,qF

|An| (1.2)

are satisfied then F (s) satisfies RH.

We illustrate Theorem 7 with the following examples. Firstly, take the example

function used previously

F1(s) = 1 + 1
2s + 6/

√
12

6s +
√

12
12s .
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For this function A1 = A12 = 1 and A2 = A6 =
√

2/2. Thus, since the coefficients of

F1(s) satisfy both (1.1) (take c, d = 1) and (1.2) it satisfies RH as shown previously.

As a next example take

F2(s) = 1 + 2
2s +

√
12

6s +
√

12
12s .

For this function A1 = A12 = 1 and A2 = A6 =
√

2. We see that the coefficients

do not satisfy (1.2), however they satisfy (1.1) (take c, d = 1). Thus, F2(s) satisfies

RH. Next take

F3(s) = 1 + 3
2s + 18/

√
12

6s +
√

12
12s .

For this function A1 = A12 = 1 and A2 = A6 = 3
√

2/2. The coefficients do not satisfy

(1.2). They also do not satisfy (1.1) because F3(s) has a zero at 1.7376 + 4.7700i.

Definition 7. Let F (s) ∈ S#
0 , qF ≥ 2. Define

µF = inf
ρ1 6=ρ2

|ρ1 − ρ2|,

where ρ1 and ρ2 run through all the zeros of F (s) (if F (s) has non-simple zeros µF
can still be strictly bigger than 0).

Lastly, we showed that given µF > 0 it is enough to check a finite region of C to

determine if a function from S#
0 satisfies RH. The condition µF > 0 is non-trivial

as we were not able to show that there does not exist a function from S#
0 and a

sequence of disks with radii shrinking to 0 such that all the disks in the sequence

contain atleast two distinct zeros of the function.

Proposition 8. Let F (s) ∈ S#
0 , qF ≥ 2. Assume µF > 0. Let 0 < δ < µF/2. Let

Nδ(s) be the number of zeros of F (s) in the set {z : |s − z| < δ} (counting with

multiplicities). Then for any zero ρ of F (s) there exists a monotonic sequence {Tj}

(independent of ρ), Tj →∞, such that Nδ(ρ+ iTj) = Nδ(ρ) ∀ j ∈ N.

Corollary 9. Let F (s) ∈ S#
0 , qF ≥ 2. Assume µF > 0. Let T1 be the first member

of the sequence defined in Propositon 8 (taking δ = µF/4). Then F (s) satisfies RH

if its zeros lie on the line σ = 1/2 for 0 ≤ t < T1 + µF/4.
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Chapter 2

Proofs

Lemma 10. Let F (s) ∈ S#
0 [a, q], q ≥ 2. Then, for σ > log(2aq)/ log 2,∣∣∣∣∣F ′F (s)

∣∣∣∣∣ < log q.

Proof. We see that ∣∣∣∣∣∣∣
∑
n|q

n 6=1

an
ns

∣∣∣∣∣∣∣ <
1
2 ,

when σ > log(2aq)/ log 2. Suppose σ > log(2aq)/ log 2, then |F (s)| > 1/2 and by

solving the inequality ∣∣∣∣∣F ′(s)F (s)

∣∣∣∣∣ < log q

we obtain that σ > log(2aq)/ log 2, which proves the lemma.

Proof of Theorem 3. By taking the logarithmic derivative in the functional equation

we derive that
F ′

F
(s) = − log q − F ′

F
(1− s). (2.1)

Let R be a rectangle with vertices 1/2− δ, 1/2− δ + iT , −σ0 + iT , −σ0, where

δ > 0 is sufficiently small and it will be chosen later, also σ0 = log(2aq)/ log 2 + 1.

Suppose F (s) = 0 or F ′(s) = 0 when t = 0, then it is obvious that we can find a

rectangle R′ with a bottom side slightly lower than 0 such, that R and R′ would

contain exactly the same zeros of F (s) and F ′(s). We argue analogously for the

top side of R and thus we can assume that F (s) 6= 0 and F ′(s) 6= 0 on the top

and bottom sides of the rectangle R. We can also pick δ such that F (s) 6= 0 and

F ′(s) 6= 0 on the right side of R.

We see that |F (s)| > 1/2 when σ ≥ σ0 and because zeros of F (s) are symmetric

across the critical strip due to the functional equation, we have that F (s) 6= 0 when
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σ ≤ −σ0. By formula (2.1) and Lemma 10, it is easy to see that

<F
′

F
(σ + it) < 0, (2.2)

when σ ≤ −σ0, thus F ′(s) 6= 0 when σ ≤ −σ0. Hence to prove the theorem it is

enough to show that the change of argF ′/F (s) along the rectangle R is O(log a +

log q + log q log 2aq) as T →∞.

By formula (2.2) the argument change of F ′/F (s) along the left side of R is less

than π.

We consider the right-hand side 1/2− δ + it, 0 ≤ t ≤ T of R. By equality (2.1),

we see that

<F
′

F

(1
2 + it

)
= − log q

2
if 1/2 + it is not a zero of F (s). We claim that there is a sufficiently small δ = δ(T )

such that, for 0 ≤ t ≤ T ,

<F
′

F

(1
2 − δ + it

)
≤ − log q

4 . (2.3)

To prove this inequality, it is enough to consider the case when 1/2− δ+ it is in the

neighborhood of a zero ρ = 1/2 + iγ. We have

F ′

F
(s) = m

s− ρ
+m′ +O(|s− ρ|),

where m is the multiplicity of ρ. Hence taking s = 1/2− δ + it, we see that

<F
′

F
(s) = − mδ

|s− ρ|2
+ <(m′) +O(|s− ρ|).

Thus <m′ = − log(q)/2. This proves the inequality (2.3). Therefore, the argument

change along the right side of the contour is less than π.

Define G(s) = (F (s + iT ) + F (s+ iT ))/2, then G(σ) = <F (σ + iT ). Let b =

−σ0/2 + 1/4 and K = σ0/2 + 1/4 then, by the argument principle, the argument

change of F(s) along the top side of R is less or equal to 2πn(K), where n(K) is the

number of zeros of G(s) in |s− b| < K. We have
∫ 2K

0

n(k)
k

dk ≥ n(K)
∫ 2K

K

1
k
dk = n(K) log 2.

Thus, by Jensen’s formula

n(K) ≤ 1
2π log 2

∫ 2π

0
log |G(a+ 2Keiθ)|dθ − log |G(a)|

log 2 ≤ 2
log 2 max

|s−b|≤2K
log |G(s)|.

(2.4)
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Also

max
|s−b|≤2K

|G(s)| ≤ aq1−b+2K . (2.5)

By combining (2.4), (2.5) we get that the argument change of F (s) along the top

side of R is O(log a+ log q + log q log 2aq).

For the argument change of F ′(s) along the top side of R we can apply the same

reasoning as we did for F (s). The only thing that changes is that the inequality

(2.5) changes to

max
|s−b|≤2K

|G(s)| ≤ aq1−b+2K max{1, log q}.

We see that the bound stays the same as for F (s). Thus the combined argument

change of F ′/F (s) is O(log a+ log q + log q log 2aq).

We evaluate the argument change along the bottom side of R the same way we

evaluated the top side and get an analogous bound.

Lemma 11. Let σ0 ∈ R. Let F (s) ∈ S#
0 [a, q], where a > 0, q ≥ 2, and let T0 ∈ R.

Then ∀ ε > 0 there exists a monotonic sequence {Tj} (dependent only on ε, a, q

and σ0), Tj →∞, such that

max
j∈N
{|F (s+iT0)−F (s+iTj)|, |F ′(s+iT0)−F ′(s+iTj)|, |F ′′(s+iT0)−F ′′(s+iTj)|} < ε,

when σ ≥ σ0.

Proof. First we note that we can assume without loss of generality that T0 = 0 due
to the following inequality:

max
j∈N
{|F (s+ iT0)− F (s+ iTj)|, |F ′(s+ iT0)− F ′(s+ iTj)|, |F ′′(s+ iT0)− F ′′(s+ iTj)|}

≤ amax{1, log2 q}max
j∈N

∑
n|q

∣∣∣∣ 1
ns+iT0

− 1
ns+iTj

∣∣∣∣ .
Dirichlet’s approximation theorem states that, for any δ > 0 there exists k ∈ N

such, that

max
n|q

∣∣∣∣∣
⌊
k

log(n)
log(q)

⌉
− k log(n)

log(q)

∣∣∣∣∣ ≤ δ, (2.6)

where bxe is the closest integer to x ∈ R rounding up in case of half values (see [7]

for a discussion of bounds for k). Then

∑
n|q

∣∣∣∣ 1
ns
− 1
ns+i2kπ/ log(q)

∣∣∣∣ ≤ qmax{1, e− log(q)σ0}|1− eiδ|. (2.7)

Fix any δ > 0, for each j ∈ N take one k ∈ N that satisfies (2.6) with δ/j instead

of δ. Denote this k by kj. We can assume without loss of generality that {kj} is a
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non-decreasing sequence. If the sequence {kj} is bounded then F (s) is periodic in

the direction of the imaginary axis and the existence of {Tj} is obvious. Otherwise

we can take Tj = 2kjπ/ log(q) and the sequence satisfies the lemma’s condition for

some ε > 0 due to inequality (2.7). By taking δ → 0 we can find a sequence for all

ε > 0.

Proof of Theorem 4. Take any F (s) ∈ S#
0 [a, q, T0, η] and let δ > 0 be defined as

in proof of Theorem 3. Let σ0 < 1/2 − δ be such that the argument change of

F ′/F (s) along any vertical strip σ = σ0 be less than π/2, existence of σ0 can be

easily deduced from (2.1). For ε > 0 sufficiently small let {Tj} be the sequence

defined in Lemma 11.

For each j ∈ N define a rectangle Rj with vertices 1/2−δ+iT0, 1/2−δ+iT0+iTj,

σ0 + iT0 + iTj, σ0 + iT0.

Let

H = sup
F (s)∈S#

0 [a,q],σ≥σ0

|F (s)|+ sup
F (s)∈S#

0 [a,q],σ≥σ0

|F ′(s)|.

For ε < η/2, F (s) and F ′(s) 6= 0 on the top side of Rj. Rewrite F (s+iT0+iTj) =
F (s+ iT0) + θ(s+ iT0;Tj), then |θ(s+ iT0;Tj)| < ε. The combined argument change
of F (s) along the top and bottom sides of Rj can be made sufficiently small, as
shown by the inequality:∣∣∣∣∣

∫ 1/2−δ

σ0

F ′(z + iT0) + θ′(z + iT0;Tj)
F (z + iT0) + θ(z + iT0;Tj)

− F ′(z + iT0)
F (z + iT0)

dz

∣∣∣∣∣ =

∫ 1/2−δ

σ0

∣∣∣∣F (F ′ + θ′)− F ′(F + θ)
F (F + θ)

∣∣∣∣ dz ≤ ∫ 1/2−δ

σ0

∣∣∣∣2Fθ′ − F ′θη2

∣∣∣∣ dz ≤
(1/2− δ − σ0)4Hε

η2 .

In the same way we can prove that combined argument change of F ′(s) along the

top and bottom sides of Rj can be made sufficiently small.

The argument change of F ′/F (s) along the right side of Rj does not exceed π as

shown in the proof of Theorem 3. Thus, the argument change of F ′/F (s) along the

right and left sides of Rj does not exceed 3π/2 which implies that the argument

change of F ′/F (s) along Rj is equal to zero.

Proof of Proposition 6. We can assume without loss of generality that F (s) 6= 0,

when t = 0. For ε > 0 sufficiently small let {Tj} be the sequence defined in Lemma

11 (taking σ0 = 1/2). There exists a constant K > 0 such that F (s) 6= 0, when
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σ ≥ K or σ ≤ 1−K. Then

N(T ) = 1
2πi

K∫
1−K

+
K+iT∫
K

+
1−K+iT∫
K+iT

+
1−K∫

1−K+iT

F ′(z)
F (z) dz. (2.8)

Using formula (2.1) we get
1−K∫

1−K+iT

F ′(z)
F (z) dz = iT log qF −

K+iT∫
K

F ′(z)
F (z) dz,

then K+iT∫
K

+
1−K∫

1−K+iT

 F ′(z)
F (z)

dz = iT log qF+
K+iT∫
K

F ′(z)
F (z)

−F
′(z)

F (z)
dz = iT log qF+2i

K+iT∫
K

=F
′(z)

F (z)
dz.

(2.9)

Note that

lim
K→∞

∣∣∣∣∣∣2i
K+iT∫
K

=F
′(z)

F (z) dz

∣∣∣∣∣∣ = 0

for every fixed T ∈ R. Also applying the functional equation (2.1) we get K∫
1−K

+
1−K+iT∫
K+iT

 F ′(z)
F (z) dz = 2i

 K∫
1/2

+
1/2+iT∫
K+iT

=F ′(z)
F (z) dz. (2.10)

Fix ε > 0 sufficiently small. Let k > 0, T ∈ R and A = maxn|qF
|an|. For k

sufficiently big we have |F (s)| > 1/2 and

lim
K→∞

∣∣∣∣∣∣∣2i
K∫
k

+
k+iT∫

K+iT

=F
′(z)

F (z) dz

∣∣∣∣∣∣∣ ≤ lim
K→∞

2
K∫
k

+
K+iT∫
k+iT

2 |F ′(z)| dz

≤ lim
K→∞

8A
K∫
k

1
2σ dσ < ε.

(2.11)

Let {Tj} be the sequence defined in Lemma 11 (taking ε/k instead of ε and σ0 =

1/2). Similarly as in proof of Theorem 4 there exists a constant C (not dependent

on j ∈ N), such that∣∣∣∣∣∣∣2i
k∫

1/2

+
1/2+iTj∫
k+iTj

=F
′(z)

F (z) dz

∣∣∣∣∣∣∣ < Cε(k − 1/2)/k < Cε (2.12)

Combining formulas (2.9), (2.10) and inequalities (2.11), (2.12) we get

N(Tj) = lim
K→∞

1
2π

∣∣∣∣∣∣∣Tj log qF + 2
K+iTj∫
K

+
k∫

1/2

+
1/2+iTj∫
k+iTj

+
K∫
k

+
k+iT∫

K+iT

=F
′(z)

F (z)
dz

∣∣∣∣∣∣∣ ≤
log qF

2π
Tj + (C + 1)

2π
ε.

By construction of {Tj} we see that (log(qF )/2π)Tj ∈ N for all j ∈ N.
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Proof of Theorem 7. Suppose F (s) does not satisfy RH, then there exists a zero ρ

of F (s), such that <ρ > 1/2. Let D be a disc around ρ, such that D would not

contain any other zeros of F (s) and the line σ = 1/2 would not pass through D.

Let ε > 0 be sufficiently small and let {Tj} be a sequence defined in Lemma 11. By

construction of {Tj} there exists a k ∈ N, such that Tj = 2kπ/ log(qF ). Note that

by construction of {Tj}

max
n|qF

∣∣∣∣∣
⌊
k

log(n)
log(qF )

⌉
− k log(n)

log(qF )

∣∣∣∣∣ ≤ ε,

where bxe is the closest integer to x ∈ R rounding up in case of half values.
Define G(s) = ∑

n|qF
Anq

((1/2−s)/k)bk log(n)/ log(qF )e
F . Then G(s) is a self-inversive poly-

nomial in terms of q(1/2−s)/k
F . Let s0 be any zero of G(s). Then by Theorem 2∣∣∣q(1/2−s0)/k

F

∣∣∣ = 1 because (1.1) or (1.2) is satisfied. Thus, <s0 = 1/2. We can simi-
larly rewrite F (s) = ∑

n|qF
Anq

((1/2−s)/k)(k log(n)/ log(qF ))
F .

Let η = mins∈D |F (s)| and A = maxn|qF
|An|. Then

max
s∈D
|F (s)−G(s)| = max

s∈D

∣∣∣∣∣∣
∑
n|qF

An
(
q

((1/2−s)/k)(k log(n)/ log(qF ))
F − q((1/2−s)/k)bk log(n)/ log(qF )e

F

)∣∣∣∣∣∣
≤ max

s∈D
A
∣∣∣1− q((1/2−s)/k)ε

F

∣∣∣ ∑
n|qF

∣∣∣q((1/2−s)/k)(k log(n)/ log(qF ))
F

∣∣∣ ≤ max
s∈D

AqF
∣∣∣1− q((1/2−s)/k)ε

F

∣∣∣ < η

when ε sufficiently small. Thus by Rouche’s theorem (see [13, Section 3.42.])

Theorem 12. Let K ⊂ G ⊂ C be a bounded region with continuous boundary ∂K.

Let f(s), g(s) be two holomorphic functions in G such that |g(s)| < |f(s)| holds

when s ∈ ∂K. Then f(s) and f(s) + g(s) have the same number of zeros (counting

with multiplicities) in K.

F (s) and G(s) have the same number of zeros in D (taking f(s) = F (s) and

g(s) = G(s)− F (s)) which is a contradiction.

Lemma 13. Let F (s) ∈ S#
0 , qF ≥ 2. Let σ0 ∈ R and <s ≥ σ0. Suppose F (s) 6= 0

and d is the distance from s to the nearest zero of F (s). Then

1
|F (s)| < e−C1 log d+C2 ,

where C1, C2 are positive constants that depend on σ0 and F (s).

Proof. We use the following lemma proved in [4]:
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Lemma 14. If f(s) is regular and ∣∣∣∣∣ f(s)
f(s0)

∣∣∣∣∣ < eM (2.13)

in {s : |s− s0| ≤ r} with M > 1, then∣∣∣∣∣f(s0)
f(s)

∏
ρ

s− ρ
s0 − ρ

∣∣∣∣∣ < eCM

for |s− s0| ≤ (3/8)r, where C is some constant and ρ runs through the zeros of f(s)

such that |ρ− s0| ≤ (1/2)r.

By Lemma 10, there exist σ1 > σ0 such that |F (s)| > 1/2, when <s = σ1.

Let r = (8/3)|σ0−σ1| and s0 = σ1 + it. Then (2.13) is satisfied, because |F (s)| ≤ H

in the region <(s) ≥ σ1 − r for some H > 0.

Let D be a circle of radius r in the complex plane and N(D) the number of zeros of

|F (s)| in D (counting with multiplicities). From Proposition 6 we see that N(D) is

bounded, that is there exists N ∈ N such that N(D) < N for any circle in C with

a fixed radius. Then

1
2

∣∣∣∣∣ 1
F (s)

∣∣∣∣∣
(
d

r

)N
<

∣∣∣∣∣F (s0)
F (s)

∣∣∣∣∣
(
d

r

)N
<

∣∣∣∣∣F (s0)
F (s)

∏
ρ

s− ρ
s0 − ρ

∣∣∣∣∣
which implies ∣∣∣∣∣ 1

F (s)

∣∣∣∣∣ < 2
(
r

d

)N
ec < e−C1 log d+C2 .

Proof of Proposition 8. Let ε > 0 be sufficiently small and let {Tj} be a sequence

defined in Lemma 11. Denote D = {s : |ρ − s| = δ}. By Lemma 13 there exists

η > 0 such that |F (s)| > η, when s ∈ D for any ρ. When ε < η/2 we have

max
s∈D
|F (s)− F (s+ iTj)| < η < min

s∈D
|F (s)|,

for any j ∈ N. Thus by Rouche’s theorem Nδ(ρ) = Nδ(ρ+ iTj) for all j ∈ N.

Proof of Corollary 9. Suppose F (s) does not satisfy RH and let ρ be the zero of

F (s) that is not on the critical line and that has the smallest positive imaginary

part. Suppose =ρ > T1 + µF/4. By Proposition 8 F (s) has a zero with imaginary

part between =ρ− T1 − µF/4 and =ρ− T1 + µF/4, which is a contradiction to the

minimality of =ρ. We note that this second zero cannot be on the critical line since

|<ρ− 1/2| > µF/2 due to zeros of F (s) being symmetric across the critical line.

Thus, we have shown that if F (s) does not satisfy RH it must have a zero in the

region 0 ≤ t < T1 + µF/4 that is not on the critical line, which proves the corollary.
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