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Definitions

* DPI - Deep Packet Inspection - a network packet inspection method that includes packet
payload information in the analysis.

* TCP - Transmission Control Protocol - connection-oriented transport layer protocol with
reliability features.

* UDP - User Datagram Protocol - connectionless transport layer protocol.

* QUIC - transport protocol that is based around UDP with TCP-like features, and is usually
implemented in application layer, unlike TCP. Name is not an acronym.

 HTTP - HyperText Transfer Protocol - application-layer protocol designed for hypermedia
information systems.

* HTTPS - Hyperlext Transfer Protocol Secure - a secure variant of HTTP protocol that pro-
vides confidentiality, integrity, authenticity guarantees.

e HTTP/1.x - in this paper this refers to first major HTTP version and its sub-versions HTTP/1.1
and HTTP/1.1.

e HTTP/2 - HTTP protocol major version 2, published as IETF RFC in 2015, binary protocol
unlike HTTP/1.x, and more feature-rich.

* HTTP/3 - HTTP protocol major version 3, not yet finalized. Evolution of HTTP/2, uses
QUIC protocol as transport.

* FSM - Finite State Machine - computational model of state machine with fixed number of
states.

* DFA - Deterministic Finite State Automaton - A class of FSM where there is only one pos-
sible transition between states for given input.

* NFA - Non-deterministic Finite State Automaton - a class of FSM where multiple transitions
to the next state are possible for given input.

* DNS - Domain Name System - a protocol for translating human-readable resource names into
IP addresses.

* TLS - Transport Layer Security - a protocol for allowing secure communications. Commonly
used with HTTP protocols.

* DoH - DNS over HTTPS - a protocol for performing DNS queries over HTTPS.

* VPN - Virtual Private Network - a technology for extending and connecting to a private
network over internet.

* ALPN - Application Layer Protocol Negotiation - TLS extension that allows applications to
negotiate which protocol they will use for communication.

* packet - in this paper the term refers both to TCP segments and UDP datagrams.



Abstract

Deep packet inspection is a technology that can be used for reasons varying from local network
protection and monitoring to internet censorship. The algorithms that can be applied are actively
researched, and mostly are focused on the improvement of the data structures that can be employed.
As the percentage of encrypted internet traffic increases, and some algorithms become less usable.
There is a need for other methods of packet analysis that do not disrupt encryption.

One of the methods is web traffic fingerprinting. It allows websites and mobile apps to be
identified from their traffic patterns. This idea has been experimented with various protocols,
including HTTP/1.1 and HTTP/2. This work tries web traffic fingerprinting with HTTP/3, newest
HTTP protocol which is yet to be finalized.

In result, it was shown that HTTP/3 web traffic can be fingerprinted with similar accuracy as
traffic of other HTTP protocols, when considering some aspects of the protocol. It was found that
it must be taken into consideration that HTTP/3 traffic is more encrypted and some things as ac-
knowledgement packets must be detected statistically in order to increase accuracy of fingerprinting
methods.



Santrauka
Giluminio pakety tikrinimo algoritmai ir juy taikymas

Giluminis pakety tikrinimas yra technologija kurig galima naudoti jviariais tikslais, pradedant
nuo vietinio tinklo apsaugos ir steb¢jimo, iki interneto cenzuros. Tiems tikslams naudojami al-
goritmai yra aktyviai tiriami, ieSkant kaip juos paspartinti, ar optimizuoti atminties naudojima.
Dél didéjancio uzsifruoty interneto komunikacijy procento kai kurie naudojami algoritmai tampa
maziau panaudojami. Atsiranda poreikis analizuoti tinklo paketus kitais budais, nenutraukiant
Sifravimo.

Vienas i§ metody yra tinklo srauto atspaudavimas. Tai leidZzia identifikuoti mobliasias pro-
graméles ir internetinius puslapius i$ ju sukuriamy tinklo srauto $ablony. Si ideja buvo i¥méginta
su jvairiais protokolais, jskaitant HTTP/1.1 ir HTTP/2. Siame darbe tinklo srauto atspadavimas
1Sbandomas su HTTP/3 protokolu, naujausiu HTTP protokolu, kuris dar néra uzbaigtas.

Rezultatai parode, kad HTTP/3 puslapiy tinklo srautas gali buti atspauduojamas panasiu tik-
slumu kaip ir kity HTTP protokoly srautas, atsizvelgiant j kai kuriuos protokolo aspektus. Buvo
rasta, kad reikia atsizvelgti, jog HTTP/3 protokolu didesné srauto dalis yra uzsifruota, ir kai kurie
dalykai, tokie kaip patvirtinimo paketai turi buti aptikti statistiSkai, tam kad padidinti atspaudavimo
metody tiksluma.



Introduction

Deep packet inspection has many different applications, ranging from intrusion detection systems
parental controls, quality-of-service control, and even internet censorship. Deep packet inspection
technologies evolve with the underlying network technology - protocols, hardware and user de-
mands. Ideally the technology should be able to inspect all traffic and make decisions in real time.
This leads to developing new algorithms and optimizing existing ones to match ever-increasing
network bandwidth.

One particular problems that faces DPI is the spread of encryption. HTTPS, while providing
confidentiality, integrity and authenticity, in most cases makes it impossible to perform deep packet
inspection. Although breaking end-to-end connection sometimes can be possible without causing
too many issues to the user, it could be argued that the method defeats the whole purpose of
HTTPS.

There are relatively recent protocols, such as BlindBox[18] and PrivDPI[16], that provide a
way to perform deep packet inspection over encrypted data. While providing privacy guarantees
to the user, and allowing other parties to do deep packet inspection, they have not spread in any
real-world applications. Moreover, they have other problems, such as more complicated setup
requirements than HTTPS, and lower throughput due to additional bandwidth and computational
requirements. Considering the advantages, the mentioned downsides are not critical and are likely
to be reduced with more research that would come with more widespread usage of protocols. There
are no implementations of BlindBox or PrivDPI that are widely used. At the moment they are a
topic of academic research and not of a real-world applications.

Another way to analyze encrypted web traffic is to analyze packet metadata, such as timings,
packets sizes, and other derivable values. This approach does not reveal actual data sent but can
provide useful data to system administrators. Examples of this type of data would be mobile appli-
cations, or websites being browsed. This is especially useful when keeping in mind advancements
in technologies such as DNS-over-HTTPS[10] and encrypted server name identification[17].

It has been shown by multiple papers that it is possible to analyze encrypted web traffic and
with high degree of confidence fingerprint what website has been visited by a user. One particular
aspect that must be kept in mind, is that there are multiple protocols used on the web, specifically
multiple versions of HTTP protocols (HTTP/1.x, HTTP/2, upcoming HTTP/3). Due to differences
between protocols and different features supported by them, network traffic patterns created by
each protocol are expected to differ at least to some degree. Currently there are research papers for
HTTP/1.x and HTTP/2. Since there is HTTP/3 protocol, although still not yet completed, it is worth
looking into it, and checking if there are any obstacles that might reduce success of fingerprinting
websites from their traffic.

The main goal of this paper is to check whether usage of HT'TP/3 protocol causes worse results
in website fingerprinting, and if it does, check for possible improvements. This paper will research
all three major HTTP protocol version results, with HTTP/1.1 and HTTP/2 providing baseline
results that can be verified by comparing results form other papers, and use them to compare
against HTTP/3. Since HTTP/3 is not finalized yet, it is expected that there will be minor changes
to the protocol but it is unlikely that they will be significant enough to alter results of this paper in
a major way.

In result this paper will complement existing research by giving comparison on how different
HTTP versions affect difficulty of fingerprinting.

Small part of this paper is taken from last semester’s work. This is mainly literature overview



of overall subjects and algorithms in deep packet inspection. Additionally, some descriptions of
last semester’s work is included, and a few drawing are taken; all other research and writing has
been done this semester.

The paper consists of three main sections. First section is an overview of deep packet inspec-
tion. Second section consists of more detailed overview of web traffic fingerprinting at different
network stack layers. Main focus are HTTP protocols, including their features and fingerprinting
methods. Third section describes practical work. This includes experimental setup, data collection,
and initial results followed by adjustments.



1 Topic Overview

1.1 Packet inspection methods

Network packet inspection can be grouped depending on how much of the data is inspected from
the data stream. For example, shallow, or stateless, packet inspection deals only with packet head-
ers, and is limited to information such as IP addresses, ports, and monitoring unusual traffic flows.
A simplest form of packet inspection can be an access control list in a firewall or other type of
network equipment that defines rules whether a packet can be allowed through firewall. Parameters
include but are not limited to source and destination IP addresses, ports, transport layer protocol,
application protocols. The advantage of such approach is that it requires very little computational
power. As as a consequence of that, it is fast, as the data fields that need to be validated usually are
strictly defined in packet headers and are usually small. Port numbers, IP addresses usually fit in
one machine word each. However, this method of packet inspection has limited capabilities. There
is a need for more thorough packet inspection.

Deep packet inspection (DPI) techniques inspect not only packet headers but also packet pay-
load. For example, deep packet inspection software can inspect HTML content for malicious
scripts, or scan file transfers for malware, detect content type even though it is not being trans-
ferred on an expected port. Deep packet inspection goes beyond data of single packets and can use
accumulated information in order to make decisions about the network traffic and how it should
be dealt with. This analysis can encompass the whole network communications. Some of the
examples where deep packet inspection is used are:

Intrusion detection systems which monitor network traffic for any malicious payloads.

Protocol analysis. Known protocols can be monitored for any deviance from the norm, which
could indicate some sort of attack.

Network analysis.

Throttling network speeds for specific content types.

1.2 Common Algorithms

Two important aspects in the DPI research are speed and complexity. Since DPI deals with packet
payloads, it has to be able to identify and process many different payload types and process data
quickly, especially if it must be done in real time. It should be noted that real-time is not a require-
ment for DPI as there might be applications where data is collected first and analyzed later.

A relatively simple deep packet inspection method is pattern matching. It can be a simple string
matching but usually regular expressions are used for their capabilities. Regular expressions can
be implemented, or rather compiled to, a finite state machine (FSM). In short packet contents are
fed into a FSM equivalent of a regular expression, and if the FSM stops in the accepting state,
then the pattern is matched. Depending on computational and memory constraints, a deterministic
finite state automata (DFA) or non-deterministic finite state automate (NFA) can be used. As an
example, non-deterministic finite state automata (NFA) is has greater computational complexity
because every path it can take must be computed. In DFA, there is only path for state transitions
but the DFA usually has more states and transitions more states than equivalent NFA.



Since both types of finite state automata have some drawbacks, there are research efforts in
their optimization. For instance, in [14] Kumar et al. created a method for reducing complexity of
the FSM by reducing the number of states, and gives basis for a hardware-based implementation.
The proposed method reduces number of states in given FSM by introducing a default states, that
is, a states that are transitioned to when there are no other valid stat transitions for given input.
The authors show that they were able to reduce number of state transitions by more than 95% for
given data sets. [19] shows that NFAs parallelization can be optimized for a specific hardware
architecture, while [14] [22] shows algorithms for optimizing regular expressions, targeting patters
that commonly appear in deep packet inspection applications, and providing rules for rewriting
regular expressions to be less computationally expensive.

There are other methods besides regular expressions. For instance, use of probabilistic data
structures, such as bloom filters. Bloom filters are efficient data structures that are able to check
whether an element is a set, with the property that adding an element to the set does not increase
the size of the data structure. Checking whether an element exists in the bloom filter can result in
false positives but never in false negatives. Another important property of bloom filters is that the
time needed to add or check whether an element in a set is constant. Desired false positives rate
can set during initialization of the data structure.

Dharmapurikar et al.[6] propose a method of using parallel bloom filters combined with a
deterministic algorithm. First, a bloom filters are used to find possible matches, and if match
found, the match is further analyzed in order to prevent false positives. Also, bloom filters can
have very efficient hardware implementations because application-specific integrated circuits for
hashing functions exist, and operations required to check whether an element is likely in the set,
can be parallelized. Boom filters are not the only probabilistic data structure used and researched
for DPI, [4] shows that quotient filter can be faster between 30% and 75% than a bloom filter.
Cuckoo filter can also be better performing than a bloom filter[5]. The problem with bloom filters
is that they cannot be used to tell which element has been detected but for some purposes it might
be sufficient. Also, once an element is added, it cannot be removed except by rebuilding the data
structure. This can be solved by using a counting bloom filter.

As for practical implementations of deep packet inspection, although the algorithms can be run
on a general purpose computer hardware, many authors in their papers include hardware-based
implementations. It is often noted that they are less flexible than pure software implementations,
when implemented correctly they offer greater speeds. It should be noted that graphics processor
units are in many cases well suited for DPI tasks due to parallelization. In other cases, special
hardware can be used, for example, ternary content addressable memory for implementing regular
expressions.

1.3 Problems With Encryption

One of the main challenges deep packet inspection faces is ever-increasing encryption. Accord-
ing some sources ! about 82 percent of web traffic is encrypted. The percentage has no reason
to decrease and it is understandable because with unencrypted traffic all components of CIA triad
(Confidentiality, Integrity, Availability) can be breached. HTTPS offers integrity, authenticity, and
confidentiality, depending on the implementation. However, deep packet inspection is either not
possible or has to compromise security to some degree in order to fully analyze network traffic.

Thttps://blogs.cisco.com/security/threats-in-encrypted- traffic
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For example, one of the methods for analyzing HTTPS traffic is to break end-to-end connection
between client and desired server. This method can be applied in corporate networks, for example,
by pre-installing a root certificate of the company on the employees computers. "Mitmproxy"[1]
is an example of proxy software that does exactly that. It generates a certificate which can be
installed on user’s computer and then "Mitmproxy" can intercept HTTPS requests. Improper han-
dling and usage of such tools, however, heavily compromises security, as it happened with Lenovo’s
"Superfish"[2] adware, which came pre-installed in users’ laptops. The ethics of adware are out-
of-scope but the relevant part is that it even contained certificate’s private key that in hands of the
attacker could be used to generate fake certificates and execute man-in-the-middle attacks.

Even though that percentage of encrypted traffic is increasing but not all newly-encrypted pro-
tocols are considered without problems. DNS, originally being a plaintext protocol, has multiple
extensions which provide various levels of security. The most recent protocol is called DNS-over-
HTTPS (DoH). It allows performing DNS queries over HTTPS protocol, which makes it very hard
to detect that DNS query is even happening. Another problem that has been criticized is that there
is a small number of trusted DoH servers, which might be used to collect users data.

It is also a problem for law enforcement, and there have been attempts to weaken encryption,
even before widespread use of encryption internet technologies, such as clipper chips that were
supposed to allow government organizations to intercept voice or text messages by leaving a back-
door.

There are two different approaches for performing DPI over encrypted traffic. First, analysis of
metadata (parameters of TCP/IP stack, duration, timings, payload sizes) and development of new
protocols that allow performing deep packet inspection while providing privacy guarantees.

1.4 BlindBox and Related Protocols

BlindBox by Sherry et al.[18] is a proposed first of its kind network protocol that allows to perform
data inspection over encrypted traffic. This is achieved by having a secondary stream created from
encrypted plaintext tokens that can be analysed by network middlebox without decrypting them.

Rule Rule
generator generation

—Encrypted token:

Create HTTPS connection

Detect Validate

Traffic Traffic»

. tokens
Encrypted traffic | Decrypt '—'
J e

Sender Middlebox Receiver

Figure 1. Protocol schema based on BlindBox and PrivDPI papers.

The protocol schema is shown in fig. 1. It can be considered an extension of HTTPS or
TLS protocol, as the connection is established without breaking HTTPS end-to-end encryption,
and then establishing a secondary connection which encrypts the same traffic sent via HTTPS
connection, but in a form that allows middlebox to scan the data without decrypting it. This is
achieved by splitting payload into fixed size tokens, encrypting them and sending to the middlebox.
Middlebox also splits IDS rules it wants to check into fixed size tokens and encrypts them. Having
payload and IDS rules encrypted with the same key allows comparing them. The protocol provides
algorithms for encrypting payload and IDS rules with the same key without revealing IDS rules to
the sender/receiver and without revealing the encryption key to the middlebox. Middlebox without
knowing the encryption key cannot decrypt payload and only compare it to IDS rule tokens. At the
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same time sender/receiver does not know IDS rules, which it might try avoid, or that they might be
a commercial secret.

As noted in paper titled PrivDPI[16], which builds on BlindBox, this protocol would allow eas-
ier compliance with data protection laws, as GDPR (General Data Protection Regulation) because
it could be configured to avoid examining personal data. Although the protocol can also work
in "probable cause privacy" mode, which allows full decryption of the data if the encrypted data
contains a suspicious string. Unlike traditional man-in-the-middle solutions which try to be trans-
parent between the client and the server, Blindbox and PrivDPI require both parties to be aware
of the network middlebox. It should be noted that BlindBox is the first protocol of its kind, for
practical applications protocol outlined in PrivDPI[16] is more suitable.

The protocol is not without its drawbacks. The first problem with the proposed protocol is that
it requires all parties to support the protocol - client, server, and the middlebox that performs the
packet analysis, so it cannot be easily integrated into existing infrastructure. Having two connec-
tions for each request also makes implementation more complicated. Another drawback is traffic
overhead caused by the encrypted tokens stream, which based on the original protocol requires 5
times the original payload. This means that 1Mb transfer via HTTPS is 6Mb via PRivDPI (5x
overhead plus HTTPS payload).

The first issue might be partially solved by making it optional and switching to it via application
layer protocol negotiation (ALPN). It might be possible to avoid having two separate connections
by combining them under one protocol. An example idea for this could be using QUIC protocol
and designing a stream that is readable by a middlebox. Substituting middlebox with a proxy, it
should be possible to design a system that employs a single connection.

Even with discussed drawbacks, both BlindBox and PrivDPI are more suited for real-world use
than other encryption schemes, such as homomorphic encryption.

1.5 Metadata-based Deep Packet Inspection

Encrypted communications still leak some metadata that can be used to determine some informa-
tion about encrypted traffic. One source of metadata is flow data, such as packet sizes, timings,
which can be used for making content type predictions based on statistics. TLS handshake infor-
mation also provides valuable information which can be used to determine information about client
and server software, which in turn can be combined into a fingerprint, for example, JA3 hash?. This
data can be used to detect encrypted malware communications as outlined in in paper by Anderson
et al.[11], or for other use cases such as detection of bots due to TLS differences between browsers
and software libraries, such as curl. Handshake message sequences can be analysed to guess the
target web page being requested, as shown in paper "Markov Chain Fingerprinting to Classify En-
crypted Traffic" by Korczynski et al[13]. Although their method only analysed a small subset of
of websites Even TCP stack parameters can be used to identify information about hosts, such as
operating system. This is not limited just to operating system or browser fingerprinting. Observ-
ing encrypted connection metadata can be used to predict websites being browsed, or in case of
smartphones, mobile apps being used, as demonstrated by Hintz[9] and Tylor et al.[20] This is an
actively researched topic due to the reason that it is more practical than new protocols that provide
deep packet inspection capabilities and privacy protections.

In some specific cases encrypted communications are not safe from inspection. One such case

Zhttps://ja3er.com/
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has been shown in a paper "Uncovering spoken phrases in encrypted VoIP conversations"[21].
Researchers exploited the fact that VoIP codec produces different packet lengths for different
phonemes and were able to recover from 50% to 90% of phrases. This, however, should not be
considered a weakness of encryption itself but rather implementation detail and the issue was fixed
by padding the data packets.
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2 Metadada-based Traffic Analysis

2.1 Motivation

Normally, in order to inspect HTTPS traffic, a network middlebox would perform what is know
as "HTTPS inspection” (fig. 2, 3). The network middlebox acts as a man-in-the-middle, breaking
end-to end connection from the client to the server. This action should cause the connection to
be aborted by any sensible web browser or any library that supports HTTPS. In order to prevent
that, the network administrator would pre-install root certificate of the middlebox on the users’
machines.

The HTTPS inspection might not be desirable, since it breaks end-to-end encryption and de-
feats the whole purpose of the HTTPS. Depending on the jurisdiction the organization which per-
forms HTTPS inspection might have difficulties implementing it due to data protection laws. For
instance, users might be sending personal or other sensitive information such as credit card num-
bers of bank account credentials.

Y

=
N _

Client Server

Figure 2. Normal HTTP/HTTPS communication.

h ‘;(ﬂ—j I
PEEE——
N _
Client Middlebox Server

Figure 3. Connection with HTTPS inspection. End-to-end connection is broken in the middlebox.

There are new protocols which provide a balance between security and privacy, as mentioned
in previous section, but this paper will focus on HTTPS, and each individual HTTP version
(HTTP/1.1, HTTP/2, and HTTP/3). Since deep packet inspection is impossible over encrypted
traffic, we can still collect metadata and use information from unencrypted packets. Based on
collected data, it is possible to guess operating system, browser or other type of application that
made the requests. This is possible due to the fact that different systems can have different default
values of protocol fields, have different capabilities, or respond differently to various sequences of
packets. Following sections will focus on transport and application layers of TCP/IP stack but it
should be noted that other layers can be exploited, as far as physical layer, allowing to determine
device that is sending data by signal analysis[7].

2.2 Threat Model

In our threat model an attacker develops fingerprints of a set of web pages that use HTTPS protocol,
and wants to be able to identify them in a web traffic of targeted users. An attacker is able to
capture web traffic in a network, and subsequently transport layer of TCP/IP model, which means
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that information about source and destination IP addresses can be collected, and information from
transport layer protocols, focusing on TCP and UDP. An example of where this kind of network
traffic capture is possible would be a public WiFi spot controlled by an attacker, or even a hijacked
ethernet cable. An assumption about targeted users is made that they do not use technologies such
as virtual private networks, or anonymity services like TOR. Exact IP addresses will not be used
in creating fingerprints of web pages because they have two problems. The first one is that a single
web server might server multiple of websites, and second, there is no guarantee that a web page
will be hosted on the same web page. Load balancing is also a factor. Also we do not rely nor try
to use communications with DNS servers. DNS traffic is not expected to be always available due
to caching, and with spread of usage of DoH protocol it becomes unavailable since it is encrypted.
Lastly, even though we assume that we can observe individual destination addresses due to lack of
VPN or TOR, avoiding usage of IP addresses makes it easier to apply gathered knowledge to cases
when those protocols are used.

The goal of the attacker is to with a high degree of confidence find what websites have been
visited by a user.

2.3 TCP Fingerprinting

0 1 2 3
01234567890123456789012345678901
i et s S L S e S i e e il A ST S A S A S i e e e h s

Source Port | Destination Port
e et e e i S el A ST S A S A S S e S i
| Sequence Number |
e et s T e e i e e el ST I S AT S A e S S T S
| Acknowledgment Number |
e et e T S ksl Ao sk I S AT S AR e SR S T S
Data U|A|P|R|S|F
Offset RIC[S[S|Y]|I
G|K|H|T|N[N
e st s I L S e i e e A sl S ST AT S SR S S S T S

| Checksum | Urgent Pointer
e et e T e e i e et A TR S e S e e e at
Options | Padding |
s et e T e e tl s ST I S AT S A e S S N S
| data |
e e T e e n s ST I e S S A e i e e O mant

Reserved Window

Figure 4. TCP packet structure. Source: https://tools.ietf.org/html/rfc793 section 3.1

Given a TCP packet structure (fig. 4) some fields are no use for fingerprinting, as they are specific
connection parameters (eg. source, destination ports), or take predetermined values not influenced
by the host configuration (checksum). What we are interested in are variables, such as window
size, flags, options. Note that TCP packet size can vary depending on the options specified, so
even packet size itself is a value that can be used for classification. It is possible to create a 67-bit
fingerprint for a packet[3]. Tools like pOf usually focus on specific values and/or relations between
values instead of using fingerprints.

Overall, TCP fingerprinting is best suited for operating system detection because with network
stack usually being part of OS kernel, applications have limited influence over this layer. TCP is
relatively stable which limits possible new ways to fingerprint it.
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2.4 TLS Fingerprinting

Protocols which are used in application level and less hardware-dependent are more prone to
change, thus increasing their footprint of fingerprinting possibilities. TLS is a good example in
this category because it has multiple versions, multiple extensions, and other unencrypted infor-
mation.

TLS (Transport Layer Security) protocol is a protocol which provides confidentiality and in-
tegrity for transport layer communications (TLS for TCP, DTLS for UDP), with optional authen-
ticity. Authenticity is optional and usually is one-way, that is, client authenticates server but the
server does not authenticate client. Communication over TLS protocol can be divided int two
stages - protocol negotiation (handshake) and application data transmission. Application data is
encrypted, and does not provided much information besides its size but protocol negotiation is
unencrypted and provides valuable data that can be used to determine information about applica-
tion and operating system. An example where this information can be applied is detection of web
scrapers. By collecting fingerprints of popular browsers versus software tools such as curl, or other
programming language-specific libraries, a network observer or a website owner can apply coun-
termeasures to prevent activity of web crawlers. Most easily identified data in TLS fingerprinting
are TLS version, cipher suites, extensions (eg. ALPN).

In the end, both TLS fingerprinting may provide information about software of the communi-
cating parties but information about what is actually being requested is limited. And although it
is possible to find host name in TLS server name identification extension, it will be less possible
if encrypted server name identification feature will become widespread. That is likely because it
provides additional confidentiality, leaving TLS handshake information less valuable.

2.5 Fingerprinting over Encrypted Data

In this section we focus on assume that TLS protocols have no vulnerabilities that might reveal
encrypted data, nor we attempt to perform man-in-the-middle attack. What else is left? Information
extracted from TLS handshake, and encrypted packet metadata such as packet sizes and timings
between packets. Now let us connect this data with what happens in a browser when user visits
a website. For example visiting https://mif.vu.lt in chrome browser, one can open network tab
in developer tools, and see that there are more than 60 requests made. Visiting the same page
multiple times reveals that the order of requests stays the same, with little variation between sizes
of equivalent requests.

If we think of those requests as fingerprint of a page, then we can try to guess the website being
visited by observing packet metadata, such as timings, sizes, even if the traffic itself is encrypted.
This has already been suggested and done with various methods by Hintz[9], Taylor et al.[20], and
others.

Some technical details of protocols are usually skipped but are important, as they might affect
overall data set we are trying collect for analysis, and the effectiveness of classification. Moreover
HTTP protocols constantly evolve which also affects fingerprinting, as shown by Lin et al. with
HTTP/2 protocol, who demonstrated that a "Server push" feature decreased fingerprinting accuracy
from 80% to 74% in their benchmarks[15].
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2.5.1 Variables That Affect Fingerprinting

Exact website fingerprint may vary depending on the HTTP protocol version, protocol features
used, or HTTP headers. Currently there are three main HTTP protocol versions: HTTP/1.x,
HTTP/2 and soon-to-be-finished HTTP/3.

HTTP/1.0 and HTTP/1.1 do not differ much from the point of encrypted traffic. One significant
difference is that in HTTP/1.1 connections remain open by default (fig. 5, while in HTTP/1.0 it is
not the default behaviour (fig. 6). In both versions of protocol this can be controlled with Connec-
tion header. This is important because if connection is closed after each request, then it is trivial
to identify sizes of individual requests. If connection is not closed between requests then multiple
requests are made within the same TCP connection, and data flow must be taken into considera-
tion. Analyzing how packets move back and forth between client and server may allow to identify
sizes of individual requests. Next important HTTP header that affects observed response sizes is
Compression. Different browsers might support different compression algorithms which will
affect response size. Chosen compression algorithm depends on client and server, as client informs
server compression algorithms it supports via Accept-Encoding header.

) Send request to Get response from
4’[ Open connection Hser\terfﬂr resource server

i A
Client

Are there
more resources to
request?

Figure 5. Multiple HTTP requests per connection, default for HTTP/1.1

i " Send request to Get response from }
—»[ Open connection H server for resaurce server Close connection
A

Client

Are there
more resources to
request?

No—)i/ \I
-

Figure 6. Single request per connection (HTTP/1.0 default, or HTTP/1.1 with Connection:
close)

HTTP/2 differs significantly from HTTP1/1. First, it is a binary protocol, and it supports fea-
tures that were not possible with older HTTP standards. For our analysis most important features
are "server push" and multiplexing. Server push allows server to send data before it is requested by
the browser (fug 7, stream 1). For example, if browser requests /index.html from server, and
the server knows that browser is likely to requests /style.css because it is needed to properly
render the page, the server can send that resource without the browser requesting it. The client in-
dicates whether it supports this feature or not. If it is supported by both client and server, it makes
harder to identify individual resource requests.

Next new feature is that requests can be multiplexed. In HTTP/1.1 multiple requests can be
performed over a single connection but must be done sequentially. In HTTP/2 client can request
multiple resources in parallel over a single connection. Each parallel request is called a stream,
and sending requests over multiple streams is what allows multiplexing. This further complicates
observation of individual resources being requested and sent.
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Figure 7. HTTP/2, streams, server push.

HTTP/3 shares many features with HTTP/2 with some differences. The major difference is
that HTTP/3 does not use TCP as an underlying transport. Instead, it uses QUIC protocol, which
in turn uses UDP. QUIC provides some functions that are available in TCP but not in UDP, such
as congestion control and mechanisms dealing with packet loss. One of reasons to prefer QUIC
with HTTP/3 over HTTP/2 and HTTP/1.1, is that QUIC solves head-of-line blocking problem. In
HTTP/1.1 head-of-line blocking problem arises from the fact that requests over a single connection
have to be performed sequentially. In HTTP/2 head-of-line blocking occurs because TCP layer
is unaware of streams. For example, during a transmission of two streams a packet may be lost,
and and that loss may block both streams until a packet is re-transmitted even though enough
information has been transmitted for processing one stream. In HTTP/3 this is not an issue, as long
as data for multiple streams is not in the same packet (QUIC IETF draft[12] section 13). Another
feature of QUIC that arises due UDPs lack of concept of connections. If a connection is lost for
example due to change of network (as in switch from WiFi to mobile network), there is no need to
reestablish a connection. Each QUIC communication simply has an identifier that is used by client-
server communication. This is in contrast to TCP, where connection would be lost and handshake
process would be started again.

Second, there is no unencrypted version of HTTP/3, although it should be noted that HTTP/2
is very rarely used without encryption too. Other major HTTP/2 features are present, except for
stream prioritization. Although HTTP/3 has limited support at the writing of this article, it must be
taken into consideration, as otherwise a system trying to do fingerprinting might completely miss
some traffic due its usage of UDP protocol.

Overall, the mentioned features of HTTP protocols make fingerprinting harder, even though
there is no reason to believe this ever was the intention, as those features are mostly designed
for performance improvements. Also it should be noted that advantages in ease of fingerprinting
of HTTP/1.1 and HTTP/1.0 disappear if the traffic observed is going over VPN, as individual
connections are not visible.

Lastly, web resources caching by browser has some limited affect on how the final website
fingerprint will look like. If a user visits website for the first time, there will be more web traffic
generated than for subsequent visits. This means that a website fingerprint will be more accurate if
we generate fingerprint with browser caching.

2.5.2 Available Information

To fingerprint a website by its traffic we need to be able to identify and extract information from
packet flow. We can distinct these main types of metadata available:

¢ Destination addresses.
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Packet flow direction.

* Timing.

Amount of data transferred.

Protocol (focusing transport layer).

Individual connections, if supported by protocol.

Destination addresses are available as defined in threat model section. If all users connections
are tunneled via VPN protocol, then we still have one destination address that of a VPN server.

Packet flow direction information is self-explanatory - any packet capture will have indication
whether the packet is outgoing or incoming. Details that matter here are if the packet contains
application data. Packets such as TCP ACK most likely should be ignored.

Timing information can be used for grouping series of packets by time intervals between them.
This allows grouping of packets into bursts, which will be discussed later in this section.

Amount of data transferred will be used as the main data point. It is dependent on the infor-
mation extraction methods but all information extraction methods will contains amount of data
transferred, whether it is during a packet burst, or total data transferred to and from a destination
address.

Transport layer protocol might have been irrelevant before QUIC and HTTP/3 protocols be-
cause earlier HTTP protocols work over TCP connections. HTTP/1.x is theoretically possible
over UDP but not used. With HTTP/3 we must consider UDP, or otherwise web traffic that uses
HTTP/3 will not be detected. This also brings observability of individual connections. Concept of
connections does not apply to UDP since UDP is connection-less protocol.

Given these concepts we can define data tuples to be extracted from traffic capture. If we
assume that we can observe individual connections at transport layer with only considering source
and destination addresses, and packet direction, then the information of a single TCP connection
C, results in tuple 2.1. Same can be applied to total information transferred between destination IP,
disregarding individual connections to it.

C=(d,s,r) 2.1)
where:

* d - destination IP address. We assume that we observe a single source (client), so we can
discard source IP address for further analysis. Destination IP can be used for counting how
many connections are made per IP, including their order. TCP port information is also dis-
carded for further processing, as for web traffic we are generally interested in port 443.

* s - bytes sent. For example, based on the amount of bytes sent we can classify if the con-
nection was used for making a file upload, or other type of request, such as HTTP GET. The
assumption here is that file upload will generate significantly more bytes sent than a simple
request.

* r - bytes received. Signifies an approximate downloaded resource size.
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The information above is sufficient in an ideal case, where HTTP version below 2 is used,
and connection is closed between requests. As a starting example let us consider HTTP/1.0 and
HTTP/1.1 with connection not being closed between requests to the same IP. Information in the
form of tuple (2.1 will not distinct individual resources. For this case we can analyze data flow,
which is rather simple, since HTTP/1.0 and HTTP/1.1 do not support multiplexing requests between
connections. In that case when a client sends data to server, we can treat it as beginning of a request,
which will be followed by server’s response. After that, if client sends data to server, we can treat
it as a beginning of a new request-response cycle. Each cycle of data transmission and reception
can be called a flow (2.2). Resulting connection information is a tuple of destination IP address
followed by flows (2.3). Flowchart of how flows are processed can be seen in fig. 8

F=(s,r) (2.2)

C = (d, Fy, Fy,..F) (2.3)

% *

Get packet from
packet capture file

Fy

Are there any
unprocessed
packets

Did packet flow
hange direction?.

Ve Save last flow data
and start new flow

Mo

{ |

| Add packet payload size to
total bytes sent or received

I in this flow J

Figure 8. Extracting flow information from packet capture. This is done for each destination 1P

separately

Above tuples are also valid if we ignore connections and instead monitor overall traffic between
destination and source IP addresses.

We can use timing information to analyze packet capture. Burst is a group of packets that are
related by the fact that they occur in a a timing sequence where time between each packet is less
than burst threshold (fig. 9). The idea of burst is taken from Appscanner by Taylor et. al.[20]. In
that paper burst are split into flows, where each burst consists of one or multiple flows. Flow is
defined as a sequence starting with outgoing packet, followed by incoming packets, and terminated
by a following sequence of outgoing packets. We can devise four types of bursts, depending on
whether they are destination-aware and if they include flows:

1. Destination address-aware burst without flow information.
2. Destination address-unaware burst without flow information.
3. Destination address-aware burst with flow information.

4. Destination address-unaware burst with flow information.
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Outgoing packets
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Incoming packets

Burst 1 time >=threshold Burst 2

Figure 9. Packet burst example. New burst starts when there is inactivity longer than the burst
threshold.

Unlike in Appscanner, in this paper we will not split bursts into flows and flows will be used
independently of bursts as shown in fig. 10. Destination-aware means that burst will be calculated
per each destination (server) IP address, while destination unaware burst is calculated form overall
traffic that matches criteria, e.g TCP protocol port 443. Burst types set minimal number of bursts
that can be extracted from a packet capture of a web page. For destination-unaware bursts, the least
number of bursts per website can be 1, which would encompass all packets required to load a web
page. For destination aware bursts, the number of bursts is no less than the number of IP addresses
required to load web page, since a single web page might need resources from different servers.

»

Outgoing packets

'I'|rr:e

Incoming packets

| | | |

Flow 1 Flow 2

Figure 10. Packet flows example. Each flow is a cycle of packets sent and received.

Flows are defined by the same tuple as in previous paragraph (2.2, and bursts by tuple 2.4.
Burst has additional variable - threshold ¢ which defines maximum delay between packets. Delay

between packets is greater than ¢ marks a beginning of a new burst.
This paper will use two type of bursts - destination-aware and destination-unaware, both types

without flows. Destination-aware bursts will be extracted per connection.

B = (t,S,’I") C= (d, BQ,Bl, Bz) (24)

Amount of available information that can be extracted about network traffic flow depends both
on the application layer protocol, and lower level transport. For example, source and target IP
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information of individual connections becomes unavailable when traffic is encapsulated in a VPN
protocol, such as OpenVPN.

2.6 Fingerprinting Process

Fingerprinting usually refers to a process of mapping arbitrary length input into fixed size output.
In our case we are trying to map traffic generated by a web page into a smaller size sequence of
data points that can be later classified. Data points will be information extracted with a method
selected from previous section. The information will be number of bytes sent and received.

Since it is not expected that all traffic captures will be identical, due to network conditions,
and due to dynamic nature of websites, it is very likely that each capture will produce slightly
different fingerprint. To deal with this issue, we can feed fingerprints with corresponding labels
(website names) into a classification algorithm, and use it to predict to which website a specific
traffic pattern belongs to.

There are two issues we must deal with. First is that number of websites we want to fingerprint
is very small compared with number of all websites. This means that is use visits website which we
did not fingerprint, our classification algorithm will still attempt to assign unknown fingerprint to
one of the trained classes. To deal with this problem, a classifier can be modified so that it reports
results only if prediction has some confidence score higher that selected threshold.

Another problem is that classification algorithms we want to use (eg. random forest) might
require fixed size input. Since number of data points generated by different websites will differ,
those data points cannot be directly used for classification. To solve this issue we can train many
separate classifiers that for a range of different input sizes. Alternatively we can encode extracted
features into fixed-length inputs for classification, for example, we can use statistical features of
data points, and by calculating N statistical features we will get /V features to feed into classification
algorithm. In some scenarios it is valid to find label with largest number of features, and zero-pad
shorter ones. In this case it will not be used. Multiple captures of the same website can produce
fingerprints of different length, so it is assumed that statistical features would be less sensitive to
such changes. Those features then can be used to train a classifier so that new fingerprints can be
recognized. Some examples of statistical features are mean, standard deviation, maximum value.
So the process can be divided into following steps, for each website to be fingerprinted:

1. Collect sample packet captures of a website.

2. Extract website traffic fingerprint from the packet capture (using flow information, bursts
etc).

3. Normalize the data for classification algorithm.
4. Train the classifier.
5. Use trained classifier to predict which website’s traffic matches traffic fingerprint.

This paper will target website fingerprinting by classification of fingerprints with random forest
classifier, with single classifier being able to perform multi-class classification. This partially is
a subset of research as done in paper by Taylor et al.[20] but focusing mainly on HTTP/3, with
other methods and protocols provided as comparisons. Also, diverging from the paper, bursts
and flows will be used as a separate entities, and burst will not be split into flows. Other papers
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were considered as basis for this paper, such as k-fingerprinting[8]. Appscanner is simpler while
still providing reasonable fingerprinting accuracy. Moreover, techniques from Appscanner can be
applied to k-fingerprinting as algorithm in k-fingerprinting also uses random forest classifier. In
case of k-fingepritning, random forest classifier does not yield final result but its properties are used
for further processing.

2.7 Evaluation Metrics

Classification algorithms have multiple metrics which are derived from four possible outcomes of
classification. The following outcomes are possible is we have we want to classify input as true or
false:

* True positive (TP). True positive is classification result, where classifier identified input is
true, and it is actually true.

True negative (TN) - classifier identified input as false and it is actually false.

False positive (FP) - classifier identified input as true while actually it is false.

False negative (FN) - classifier identified input as not false but it is actually true.

This basic logic can be extended to multiple classes, not just to binary classification.
The following metrics will be found in experimental part:

* Accuracy.

¢ Precision.

Recall.
¢ F1 score.

They are calculated from four possible outcomes of classification: Number of true positives
TP, true negatives T'N, false positives F'P and false negatives F' V.
Formula for accuracy is

B TP+ TN
~ TP+TN+FP+FN
Accuracy represents represents ratio of correctly predicted results out of all results. Accuracy will

not be used as main metric as results may be unreliable when having imbalanced classes.
Precision gives a ratio of true positives out of all positives:

TP
P=_———.
TP+ FP

(2.5)

(2.6)

Recall similarly gives a ratio of predicted true positives out of all actual positives, and is defined
as shown below

TP
R=—7-— 2.7
TP+ FN 27
Metric to be most used will be F1 score, which is derived from precision and recall:
PxR
F1=2 2.8
*PTR 28)
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These basic principles apply to multi-class classification. Experimental part of this paper will
use macro averaging, as it is suitable for balanced classes. Classes will be balanced singe each
website will be fingerprinted the same number of times, providing equal number of samples for
each website.
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3 Evaluation

3.1 Experimental Setup

Experimental setup starts with collection of website domains that support HTTP/3. According to
the Web Technology Surveys® only about 3 percent of all websites use HTTP/3. Low percent-
age complicates collecting those domains for further analysis, as taking top 500 or similar lists
would not result enough domains with HTTP/3 support. To find sizeable sample of domains of
at least 100 that meet requirements, list of top 1 million domains was used* with small fraction
of additional domains from Web Technology Surveys. Each domain was scanned by a custom
script, which checked if domain supports h3-28 draft of HTTP/3. Although initial list of domains
is large, but impact, while scanning, on each domain is minimal, as only main page of each do-
main was requested. A list of different domain name servers used to prevent inadequate load on
default domain name servers. This resulted in a data set of nearly 600 domain names, which was
further reduced by removing some domains, such as Google search domains names of different
countries. Additional filtering was done to remove domain names that point to the same website,
eg. ampproject.net and ampproject.net redirect to the same website. It was difficult to
collect better data set, primarily due to low usage of HTTP/3 and the fact that most domain names
supporting HTTP/3 are owned by Google. Google search domains google . TLD (TLD stands for
top level domain), are identical from the content perspective, because Google localizes search page
content by approximate user’s location (eg. by IP address, locale settings).

To extract fingerprints from collected domains, development of data processing pipeline fol-
lowed. It allows extracting information from packet captures generated by particular websites (fig.
11). Pipeline here is defined as a sequence of data inputs processed by applications that produce
output for the next application.

pcapgen.py pcap files extract.py extracted
information
URLs pcap files
]
]
Headless

Figure 11. Information extraction pipeline.

Starting from left to right, the steps are as follows:
1. URLSs database - list of collected domain names that support HTTP/3.

2. pcapgen.py - a script which takes a list of URLs and calls Headless service (step 3) to
generate packet capture (.pcap) files. Also provides additional parameters to Headless,
such as whether to keep connection open for HTTP/1.1, or whether to use another HTTP
version.

3https://w3techs.com/technologies/details/ce-http3
“https://majestic.com/reports/majestic-million
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']"Icpflnw“: [
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Figure 12. Generating data set for classification.

3. Headless - a service which runs in a docker container and captures network activity for given
website. This is done by pyppeteer browser automation framework, with additional code
for controlling other required parameters. Multiple instances are run at once for paralelizing
packet capture process.

4. extract.py - extracts information from packet capture file. Multiple modes of operation
are used, which allow extracting information from TCP connections, UDP connections for
HTTP/3, burst, flows etc. This step finishes information extraction pipeline, as other tools
will be used with visualization, and analysis. Information is outputted as a . json file.

URLSs database contains 109 URLs, all of which have HTTP/3 support (at least draft h3-28).
Packet capture using headless browser service was organized into runs, in each run each URL was
accessed via headless browser four times (twice for HTTP/1.1, once for HTTP/2 and HTTP/3).
There were 40 runs, which means that 40 packet captures were made for each URL per HTTP
protocol. Extracted information files are structured as JSON, generated individually for each packet
capture file. An excerpt of ‘https://abx.xyz*‘ for HTTP/2 protocol is below:

{

"tcpconn": [
{
"start_timestamp": 1607279944,
"client_dip": "172.22.0.2",
"server_ip": "216.58.215.78",
"bytes_sent": 3367,
"bytes_received": 202031
}

1y

"tcpflow": [
{
"start_timestamp": 1607279944,
"client_dip": "172.22.0.2",
"server_ip": "216.58.215.78",
"bytes_sent": 1476,
"bytes_received": 8550
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TCP connection | TCP Flow | Packet Burst (100ms)
HTTP/1.1 w/o keepalive | 17 83 15
HTTP/1.1 7 49 13
HTTP/2 7 42 13
HTTP/3 7 32 14

Table 1. Average number of data points per protocol extracted by with different methods.

by

The idea behind information files is that they can be used for generating files to be used as
input into chosen classification algorithms. Since packet extraction over a large initial packet cap-
ture files data set takes time, this is used as speedup for later development. So it was decided
that the best idea is to process each packet capture only once. Note that only bytes_sent and
bytes_received values will be used as classification inputs. Timestamp and IP values were
included only for debugging.

Further processing involves formatting information so that it can be easily ingested by a clas-
sification or other chosen algorithms (fig. 12). Following experiments will use random forest
classification algorithm.

Majority of code has been written in Python programming language, targeting version 3.8.
Several bash scripts were used, mainly for gluing together, or for batch executing python scripts.
Information extraction from packet capture files was done with scapy package with custom code.
pandas package was used for preparing data for input into classification algorithm. Classification
algorithm was used from sciki—-1earn package. Packet capture was performed with t cpdump
and pyppeteer browser automation framework was used for automating website scraping. All
graphs were rendered with matplot1lib Other python packages were used, which can be found
in corresponding requirements.txt files but mainly as a tooling to write as little boilerplate
code as possible.

3.2 Exploratory Data Analysis
3.2.1 Data Points Overview

To understand data better we can compare an average number of data points extracted per web-
site fingerprint. Different information extraction method produce different number of data points
between protocols and different information extraction methods.

There are other features such as source and destination addresses but they were used only for
debugging, and are irrelevant in further analysis.

Table 1 shows that using HTTP/1.1 without connection reuse (by injecting Connection:
close header) produces most data points. It is explained by the fact that each resource is down-
loaded over an individual connection. It is included here only as a reference because it does not
reflect real world traffic, and will not be included in further comparisons.

Number of TCP connections does not change between protocols. This can be explained that
although protocols are different but the content is served from the same servers. The fact that
HTTP/3 has TCP connections even though it is a UDP-based protocol might be confusing but it
is explained by the protocol negotiation between client (browser) and server. Typical browser will
first decide whether to use HTTP/1.1 or HTTP/2 protocol. This happens during TLS handshake
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where client and server via ALPN TLS extension might indicate that they support HTTP/2. Once
protocol is negotiated, and headers of the first request are received, the browser might switch to
HTTP/3 by checking for A1t -Svc header. If header is present, it might indicate that some draft
of HTTP/3 is supported, for example h3-29. So at least during start, the TCP connection is not
avoidable, unless the browser decides to connect directly via HTTP/3 protocol.

TCP flow data shows that the least most data points are extracted with HTTP/1.1. HTTP/2 has
less data points which is indication of HTTP/2 server push feature where server sends resources
before client requests them. HTTP/3 has least data points but still a substantial amount. There are
two factors here. First, not all website request have to be served by the same protocol, because
not all servers might have HTTP/3 support, and not all of them need to have the same HTTP/3
draft version, since the HTTP/3 protocol is not finalized yet. Second, a browser can receive the
first response via HTTP/2 since it already opened a TCP connection, and proceed loading other
resource via HTTP/3.

Analyzing packet bursts results in least variation between protocols. Number of data points on
average almost does not change, so it can be considered the most stable method. This suggests
possibility of website fingerprints being protocol-independent when extracted with this method.

3.2.2 Packet Burst Threshold

Table 1 contains one important fact about packet bursts - packet burst threshold. Packet burst
threshold defines a minimal time interval between packets that marks a beginning of a new burst.
This means that by changing burst threshold we can control number of data points we want to
extract.
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Figure 13. Number of bursts vs. burst threshold.

Figure 13 confirms that there is little variation between protocols with any burst threshold.
Also, number of data points stabilizes when burst threshold is more than or equal to 1000 millisec-
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onds (1 second). This is due to the fact that bursts are calculated per destination address. This
means that for each destination address there will be at least one burst data point, and this is close
to the average number of TCP connections.

There is one caveat with bursts. They are dependent on the connection speed at least to some
degree. For example, given very slow connection and small burst threshold enough time can pass
between request and a response, and they would appear in different bursts. With fast connection
request and response may fit into one burst. Further tests will use burst threshold of 100 millisec-
onds.

As discussed in section 2, bursts can also be destination-unaware. This way no individual
connections are considered, only packet timing, with minimal filtering, such as by transport layer
protocol port. This results in far fewer bursts, as seen in fig. 14. What also can be seen is that all
protocols result in almost the same number of bursts.
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Figure 14. Number of bursts vs. burst threshold, destination-unaware.

The question is how to select a burst threshold value. Too short burst might create too much
variation in number of bursts due to random variables, such as network conditions or server load,
or even browser responsiveness. Too long bursts will not provide enough data points. To solve this,
we can create multiple captures of a selected website traffic, then analyze each capture with a set of
burst thresholds varying from a few milliseconds to a few seconds. Then we can find smallest burst
threshold at which number of bursts does not change between captures. For this https:/novi.com/
will be used, which is one of the websites in the list of websites that support HTTP/3. Sample size
- 10 captures.
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Figure 15. Standard deviation of number of bursts

We can see that standard deviation drops rapidly with increase of burst threshold interval. Also
HTTP/3 has greatest variation on small burst thresholds but all protocols converge. Since website
detection algorithm should tolerate some variation in the fingerprint, we will use burst threshold
of 100 milliseconds .

3.3 Fingerprint Classification
3.3.1 Initial Results

We will attempt train random forest classifier in order to recognize fingerprints of websites. Data
set will consist of 100 websites, each having 40 captures. Data set prepared for classifier will be
a .csv file. First column will be label - website name, following columns will be data points.
Example of data set:

freebasics.com, 1149976, 10615, 1.966902614036985, [...]
areal20.com, 3251855, 716l, 2.891106873313672, [...]

Data set is generated from extracted information of packet capture. When generating data set
for classification, a protocol and an information extraction method is selected, so the classifier is
trained to recognize web pages that were accessed via chosen protocol. Also it follows that we
must use the same information extraction method for training and actual classification attempts.

For initial test, the following information extraction methods were used for parsing packet cap-
tures:

* tcpconn - collecting how many bytes were sent and received per each TCP connection.

* tcpdest - collecting how many bytes were sent and received per each destination IP, mon-
itoring only TCP traffic.
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Protocol | Method Accuracy | Precision | Recall | F1 score
tcpconn 0.84 0.84 0.84 0.83
HTTP/1.1 | tcpdest 0.94 0.94 0.94 0.94
w/o tcpflow 0.86 0.86 0.86 0.85
keepalive | burst_250ms 0.84 0.85 0.84 0.83
noconnburst_250ms | 0.87 0.87 0.86 0.84
tcpconn 0.89 0.89 0.89 0.88
tcpdest 0.95 0.94 0.94 0.94
HTTP/1.1 | tcpflow 0.84 0.84 0.85 0.84
burst_250ms 0.80 0.80 0.80 0.79
noconnburst_250ms | 0.79 0.82 0.79 0.78
tcpconn 0.96 0.96 0.95 0.96
tcpdest 0.95 0.95 0.95 0.95
HTTP/2 | tcpflow 0.90 0.91 0.90 0.90
burst_250ms 0.83 0.82 0.82 0.81
noconnburst_250ms | 0.84 0.82 0.80 0.79
tcpconn 0.93 0.92 0.92 0.92
tcpdest 0.92 0.92 0.91 0.91
tcpflow 0.88 0.89 0.88 0.88
anyflow 0.86 0.85 0.86 0.85
udpflow 0.69 0.69 0.69 0.67
HTTP/3 | udpdest 0.92 0.93 0.93 0.93
burst_250ms 0.76 0.76 0.77 0.76
noconnburst_250ms | 0.84 0.81 0.82 0.79

Table 2. Classification results using Random Forest classifier.
* tcpflow - collecting how many bytes were sent and received per each TCP flow. Only
packets carrying application data are considered.

* burst_N - collecting how many bytes were sent and received per burst, taking into consid-
eration both TCP and UDP. NV stands for burst threshold.

* noconnburst_N - same as burst_N, but bursts are not calculated per each destination
IP.

* udpflow - collecting how many bytes were sent and received per each TCP flow.

* udpdest - collecting how many bytes were sent and received per each IP, monitoring only
UDP traffic.

* anyflow - combining t cpflow andudpflow into one.

udpflow and udpdest are essentially targeted at HT'TP/3, and are expected to provide iden-
tical results to their TCP versions.

Let’s analyze the first classification attempt results shown in table 2. We will use F1 score as
the main measure.
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Website Precision | Recall | F1 score
adwords.com 0.67 0.80 0.73
ai.facebook.com | 0.73 0.89 0.80
ampproject.org | 1.00 1.00 1.00

Table 3. Per-website result sample (HTTP/2 tcpflow).

Starting with HTTP/1.1 without keepalive, best results are achieved when we classify by in-
formation on how many data were transmitted per IP address. TCP flow and burst information
perform about the same.

Surprisingly there is not much difference whether connection persistence is used or not, mainly
that observing packet burst gives slightly lower score.

On HTTP/2 protocol best results are achieved with tcpconn with tcpdest. Using TCP
flows is worse only marginally, by 0.05 when compares to t cpdest

Results with HTTP/3 protocol are the most surprising, and there are two important points to
consider. First, we have used information extracted about TCP connections, and turns out those
score in the range of [0.88; 0.92]. After looking into packet captures more closely, it was found that
when HTTP/3 is enabled in browser, required resources loaded in a mix of HTTP/3 and HTTP/2.

For example, https://ampproject.org mixes HTTP/2 and HTTP/3 even when resources are served
from the same domain. First hypothesis was that the website uses some for of load balancing, and
some only some servers have HTTP/3 support enabled. Checking requests via browser showed that
Chrome browser decided to use HTTP/3 only for some requests. This has implication that web-
site fingerprints via HTTP/3 protocol only might be less stable than thought, if internal browser
acts randomly. Or it might be HTTP/3 implementation detail, since it is not finalized. Another
category of websites is, where main page document loaded via HTTP/2, and all other resources
via HTTP/3, see https://daulaykausar.com/ as an example. Last observation is that Chrome browser
can cache information about supported protocols. Opening https://http3check.net/ for the first time,
main document is loaded via HTTP/2. Repeating this results in main document being loaded via
HTTP/3. These facts can explain overall lower classification scores when HTTP/3 protocol is used.
Lastly, it seems that no website reports HTTP/3 support via ALPN.

Another type observation to consider is that using UDP flow information results in worst score
out of all results. There is one difference, however, between TCP flow and UDP flow information.
In TCP flows we only consider packets that carry application data. Meanwhile with HTTP/3 UDP
packets we cannot do that because all packets are encrypted.

As of bursts, it should be noted that when extracting information about packet bursts, the dif-
ference between extracting burst per IP address versus all network traffic, is insignificant.

One of the problems that were discovered with testing HTTP/3 was that not all websites which
support HTTP/3 advertise that fact to the browser. The headless browser version used does not
have an option to attempt use HTTP/3. Instead browser can only be instructed to prefer HTTP/3 if
website advertises the protocol via A1t —-Svc header.

Lastly, it must be noted that table 2 shows results that are averaged-out. How well an individual
website can be classified varies, as shown in table 3

Overall results are close to those in Appscanner, where accuracy of "Single Large Random For-
est" (random forest multiclass classifier whose inputs are statistical features of packets) is 86.9%.
Differences arise due to different interpretation of bursts and flows, and due to different data sets.
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3.3.2 Adjusting UDP flows

Using UDP packet flow information to classify website traffic showed the worst results. This is un-
expected at first, since HTTP/3 and HTTP/2 are similar, except the underlying transport. However
with t cpconn we consider packets only that carry application data, so packet types such as ACK
are ignored. This is not possible with udpflow because UDP itself does not have acknowledgement
mechanisms. The QUIC protocol draft states that "QUIC authenticates all packets and encrypts as
much as is practical"[12]. Exact size of ACK frames can vary, due to the way acknowledgements
work in QUIC - a single QUIC frame can acknowledge one or more packet ranges. Still, we can
assume that majority of those packets will cary just one range of acknowledged packets and will
be small on average, and so we will ignore them when extracting packet flow information.
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packet sizes.

Graph 16 shows distribution of outgoing (sent from client) packet payload sizes that are less
than 100 bytes. These were calculated from 109 packet captures, 1 per each website in our domains
list. Outgoing packet sizes frequencies are similar, as shown in fig. 17. We can see that packet
payload sizes are distributed unevenly, with a lot of occurrences of packet payload sizes between
28 and 33 bytes, and less but still significant occurrences of payload sizes of 56 and 58 bytes.
For start we will extend udpflow information extraction method so that it can ignore small packet
payload sizes. The minimal UDP packet payload size that breaks a flow will be called a flow
threshold. They still will be included in overall number of bytes sent, but will not break a flow.
Overall flow extraction algorithm changes minimally, as shown in fig. 18.
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Figure 18. Flow extraction with flow threshold. See fig. 8 for comparison.
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We will compare three cases - flow threshold of 0, 34, and 59. Flow threshold of 0 matches
HTTP/3 udpflow row in table 2 but is included here for comparison.

Flow threshold | Accuracy | Precision | Recall | F1 score
0 0.69 0.69 0.69 | 0.67
34 0.79 0.80 0.80 | 0.79
59 0.84 0.84 0.84 |0.83

Table 4. Results when using different flow thresholds for HTTP/3.

In table 4 we can see that with increase of flow threshold our classification results become more
accurate overall. This means that we were able to filter out QUIC packet transmission acknowl-
edgement frames, and fingerprints generated from packet captures became more stable. We can try
more flow thresholds and see how do they perform, and find an optimal flow threshold. Figure 20
shows that selected flow threshold values were correct guesses, as F1 score does not increase with
larger flow threshold values. This means that noise caused by QUIC protocol was successfully
filtered, and that considering QUIC acknowledgement packets is an important step during packet
capture information extraction.
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Figure 19. F1 score with different flow threshold values.

3.3.3 Adjusting Burst Threshold

Having introduced flow threshold and noticing its affect on classification results, we can check
another variable that we can change - burst threshold. Although a best value value was estimated
in previous sections, we can try a range of its values.
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Graph 20 shows that the bigger burst threshold, the better are classification results. However,
in case of connection-aware bursts, with bigger burst threshold all packets fit into a single burst per
destination IP, and this essentially equals calculating how many bytes were sent and received per
destination IP. This is essentially matches t cpdest method.

Note that there is no data for destination IP unaware bursts (noconnburst). This is because
there were no cases when there is period of inactivity in packet capture where there were no packets
transmitted for longer than 250 milliseconds. This resulted in a single burst. Single burst, being a
single data point, was not enough to calculate statistical information. In result, classification could
not be performed.

3.3.4 Adjusting Number of Features

Input to classification algorithm is derived from extracted information statistical features. Twenty-
five features were used, a subset of features used by Taylor et al.[20]. First ten features are listed as
follows:

1. Maximum value out of bytes sent or received.
2. Maximum value out of bytes sent.

3. Skew of bytes sent and received (values of bytes sent and received are combined into one
list).

4. Variance of bytes sent.

5. Standard deviation of bytes sent.
6. Kurtosis of bytes sent.

7. Skew of bytes sent.

8. Median absolute deviation of bytes sent.
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9. 90th percentile of bytes sent.
10. Mean of bytes sent and received.

The number of values chosen was arbitrary. We can check if reducing number of statistical
features impacts classification results. The goal would be to minimize number of these features
because it would result in less computations required. In graph 21 we can see how number of sta-
tistical features given given for classifier affect results. We can see that having just three statistical
features results in F1 score close to 0.8. Also noticeable that with HTTP/3 more statistical features
are needed to achieve F1 score comparable to other protocols. The conclusions are valid in this
case where we have a small number of websites. With larger data sets this might cause different
results.
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Conclusions and Recommendations

Applying website fingerprinting methods to HTTP/3 turned out to be the easier part out of all
preparations and research. Out of all main point to conclude, it should be stated that HTTP/3
protocol is not finalized yet. This leads to the fact that even though it is not expected to change
significantly, some details may change and this could affect fingerprinting, for example, due to
implementation details, such as padding. Second, it is difficult to independently collect a large
number of domains that support HTTP/3. Even when collected, most of them being owned to
Google, and are duplicates that target mainly Google search, Youtube, and other Google services.
Finalization of the protocol and time solve this issue, as browsers already have support for the
protocol even if it is disabled by default, and some website owners experiment by enabling the
protocol.

During development of experimental part it was discovered that some websites that support
HTTP/3 do not advertise that information yet, which meant it was not possible to access them via
browser with HTTP/3 protocol. Also, many websites are loaded via multiple protocols due to the
fact that resources are loaded from multiple web servers. Not of all are HTTP/3-enabled. This
means that multiple protocols must be considered when analyzing packet capture with intention of
fingerprinting websites visisted.

Finally, when extracting information from a packet capture, connection-oriented methods are
not applicable due to usage of UDP. Other methods such as extracting packet flow information must
be adjusted to ignore QUIC protocol packets that carry information such as packet acknowledge-
ments. In results, this was accomplished by packet size frequency analysis and allowed to improve
classification results.

Overall, usage of HTTP/3 does no significantly decrease classification results. This paper being
an early attempt of researching HTTP/3 impact, could be revisited when HTTP/3 gets finalized and
more widespread, and more data will be available.

Lastly, even though this research focused on a limited set of features and algorithms, knowledge
about HTTP/3 could be applied research of other papers.
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Future work

There are two valuable directions for future work - trying different algorithms for classification and
looking into other authors research into details, or providing a practical implementation that could
be used as a framework. For example by a network administrators wanting to identify unwanted
activity.

Implementing this and similar research as a tool should result in a quite a modular design. The
usual workflow is that packet captures are collected for analysis and algorithm training, followed by
information extraction from collected packet captures, then training, evaluation. Finally an actual
packet capture of some user’s traffic can be analyzed, and predictions made on what websites were
visited.

Each mentioned step can be thought as a separate module. For example packet capture collec-
tion is completely independent of next steps. As it was done in experimental part of this paper,
docker images running a headless browser software are a good choice for this. Collection of packet
captures can be extended to run on multiple machines for better throughput. Packet capture process
should be improved so that it will not be stopped by website anti-scraping measures, which might
distort fingerprint used for training versus actual website traffic.

In this paper different information extraction methods that extract information form packet
capture were mostly implemented as a separate classes in Python code. Instead they can be treated
as separate plug-in modules that can be used by framework. Some of these modules could be
provided as default by the framework, while others could be supplied by user, and be enabled
or disabled on further framework user needs. They also can be optimized for faster information
extraction, and be rewritten in languages such as C, providing binding to they core written in
Python. Experimental setup of this paper had information extraction step and another processing
stage so that information could be fed into into classification algorithm, so these steps can be
chained.

Same ideas apply to classification training and testing step. They could also be replaced, or
chained.

Processing of real user traffic and fingerprinting traffic is more complicated. If we want to
fingerprint websites visited by a user or multiple users on a network, we either capture packets
and store them for later analysis, or analyze them in real time. Both mechanisms should function
equivalently except that real time analysis would require fast processing to keep up with network
speeds.

Classification in previous sections has been done with packet captures where only one web-
site is accessed per packet capture. This makes information extraction, further processing, and
classification simple but does not reflect real world scenario.

In classification training and testing information from whole packet capture file were used.
When analyzing a packet capture with more data, sliding window approach can be applied.

This means that only a part of packet capture should be fed into classification algorithm, then
part that has some offset from then start of the packet capture and so on. The idea behind this is
that at each point in time it is likely that only one website will be accessed at a time. Although this
is not always a case, for example if a PC user is streaming music and visiting some other website at
the same time. A better case would be web browsing via smartphone, where user activity is more
focused on a single activity at a time.

The sliding window can be defined a a time span. This time span limits how many packets
are processed for feature extraction For example in a window all information from last five seconds
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may be used. Exact time span should be defined experimentally by comparing classification results,
or by finding average load time of websites that need to be identified.

Next, there must be a decision made at what resolution will the sliding window operate. Either
sliding window steps per each packet, or per each unit of extracted information. The second case
looks simpler since information extraction code would not need any changes but the problem is
that some of our information extraction methods operate per whole packet capture, eg t cpdest,
udpdest

As previously with extracted information from whole packet capture, statistical features can
be derived form each sliding window of information and used as input to pre-trained classifier.
Classifier would classify each window of extracted information. It is not expected that each window
will be classified as there might be overlaps between requests to different websites, or periods of
no activity However it is expected that classification will be robust enough to identify a website
even if not a complete fingerprint of it is present in a single window.
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