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Introduction

Optical spectroscopy experiments are an essential tool for probing the properties of molecu-
lar systems [1]. Their complete characterisation requires determining a large number of para-
meters, and this, in turn, has stimulated the development of the broad variety of experimental
techniques that are available today. An important class of experimental methods belongs to the
domain of Stark spectroscopy, whereby the conventional absorption [2–4], fluorescence [5,6], or
even two-dimensional spectroscopy [7] experiments are performed with an additionally applied
external static electric field [8–10]. Specifically, the Stark fluorescence (and, similarly, absorp-
tion) spectrum is defined as the difference of two spectra: one registered with an externally
applied electric field, and one without it. Such a setup allows one to determine the static di-
pole moments and polarisabilities of the system components. In particular, these experiments
provide a way of identifying and parametrising the charge-transfer (CT) states. A CT state may
form as an intermediate state of an excitation energy transfer reaction when an electron of an
excited molecule (donor) becomes localised on another molecule (acceptor) [11]. The excitation
energy transfer involving the CT states is essential for the early stages of photosynthesis [11,12],
and the CT states seem to constitute an important part of the non-photochemical quenching
mechanism [13].

Interpretation of experimental data, however, is no trivial task due to the interweaving of
various effects that occur in real systems. To extract numerical values of parameters of interest,
such as the dipole moments and polarisabilities, they have to be incorporated into a model,
and a fit of the experimental data should be produced. If an agreement is obtained, then the
used values can be considered correct. The first theoretical model that has been proposed for
analysing the Stark spectroscopy data is due to Liptay [8] — it enables one to express the
Stark fluorescence (absorption) spectrum as a linear combination of the zeroth, first, and the
second derivatives of the corresponding field-free spectrum. By virtue of its simplicity and
straightforward interpretation, this model has proven to be an effective tool for determining
system parameters from the Stark spectra, and it continues to be the default method of ana-
lysis [5,6,13]. Nevertheless, some authors have questioned the applicability of this model because
the parameters obtained from the fit were unphysical in certain cases [14]. It has been argued
that the underlying assumptions may no longer be satisfied for systems such as molecular ag-
gregates, where the excitonic levels may be arbitrarily close [15]. A new method for simulations
of spectroscopic signals has been developed in Ref. [15], which, however, is only targeted at
Stark absorption experiments. To the best of our knowledge, no attempts to simulate Stark
fluorescence spectra using a microscopic theory have been made so far, and the present study
is the first work in this direction.

The aim of this work is to simulate the Stark fluorescence spectra of model molecular
systems and determine how the presence of CT states influences the shapes of the spectra. In
the process, we check whether the Liptay formalism yields results consistent with those obtained
using a numerically exact method. Additionally, we apply the quantum-classical theory to the
calculations of the Stark fluorescence spectra to find whether such an approach could be used
in cases when the system does not allow for a numerically exact treatment.
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1 Methods

1.1 Definition of the model

In this work we will study the properties of a small molecular aggregate — a molecular dimer.
We shall speak of a dimer as a pair of molecules (monomers) that are spatially well-separated
and hence are bound non-covalently [16]. In this case the monomers interact electrostatically,
and the interaction may be adequately described in the dipole approximation [11]. The chloro-
phyll (ChlD1) and the pheophytin (PheoD1) molecules bound together in the Photosystem II
reaction centre [12,16,17] are an example of such a dimer — the distance between them is about
10 Å, but their interaction plays an important role in the process of photosynthesis [2, 17,18].

In order to simulate real spectroscopic experiments, it is necessary to consider the system of
interest not as an isolated entity, but as one interacting with its surrounding environment, such
as a solvent. Full quantum calculations of these composite systems are notoriously demanding
in terms of required computational resources [19,20], and a different approach is required. In the
recent years, it has been proven effective to apply the theory of open quantum systems [11,21]
to study such aggregates, to the extent that the results of the simulations may be directly
compared with the experimental data [17, 22–25]. Therefore, this is the approach adopted in
the present work.

Every application of the said theory begins with a separation of the total system to a small
subsystem that is of main interest and its environment, termed the bath. The total Hamiltonian
is written in its most general form as

ĤT = ĤS + ĤB + ĤSB + ĤSF + ĤF. (1)

The terms ĤS and ĤB describe the subsystem and the bath, respectively, and their interaction
is accounted for by the ĤSB term. Calculations of spectroscopic properties require an additional
term, denoted ĤSF in the above formula, responsible for the interaction between the subsystem
and the external electromagnetic field. If this field is treated quantum-mechanically (as in the
present work), its Hamiltonian ĤF has to be included as well.

The first three Hamiltonians in Eq. (1) depend of the model of the system, and they are
defined in the two following sections. The last two terms having a more general nature are
defined while discussing the methods of calculations of fluorescence spectra in Section 1.2.

1.1.1 The electronic subsystem

As we are mostly interested in the emission spectrum of the dimer, our main focus is
on the electronic transitions of the system. Consequently, we define our subsystem as the
electronic degrees of freedom (DOFs) of the dimer. Each of its constituent monomers contributes
its highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) to the total manifold of accessible states, also called sites. Two models that are widely
used to further parametrise the subsystem are the Frenkel exciton model [16] and the more
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recently developed tight-binding electron–hole model [26]. We will use the latter approach as
it is better suited for describing the CT states by virtue of direct modelling of electrons and
holes.

Let |0〉 denote the composite ground state whereby both monomers occupy their HOMOs
(i.e., there are two electrons residing on the two HOMO orbitals of the system). We then define
operators ê†m and ĥ†m that act on |0〉 creating, respectively, an electron on the LUMO and a
hole on the HOMO of the m-th monomer. The possible singly-excited states are the molecular
excitations,

|m∗〉 ≡ ê†mĥ
†
m |0〉 , (2)

and the CT states ∣∣∣m−n+
〉
≡ ê†mĥ

†
n |0〉 , (3)

where the electron and the hole created as a result of an excitation occupy different monomers.
Additionally introducing the corresponding annihilation operators êm and ĥm that fulfil the
Fermi anticommutation relations, we may finally construct the subsystem Hamiltonian as [17]

ĤS =
∑
m,n

temnê
†
mên +

∑
m,n

thmnĥ
†
mĥn −

∑
m,n

V eh
mnê

†
mĥ
†
nĥnêm +

∑
m6=n

Jmnê
†
mĥ
†
mĥnên. (4)

Each index in the double sums runs over all excited electronic levels included in the problem,
from 1 to Nel, except the last sum, where the terms m 6= n are excluded. The terms m 6= n in
the first two sums represent the hopping of the electrons and holes between different monomers
m and n, which may occur in an excited state. The corresponding hopping rates are denoted
by temn and thmn, while the diagonal terms temm and thmm are the energies required to create,
respectively, an electron and a hole on monomer m. Further, V eh

mn is the Coulomb attraction
energy between an electron on site m and a hole on site n, and Jmn is the ‘resonance’ Coulomb
coupling between the monomers m and n corresponding to the dipole–dipole interaction. Since
we restrict the analysis to the singly-excited states, we ignore the electron–electron and hole–
hole repulsion energies; these become relevant only for multiply-excited states [17].

For a better understanding of the structure of Hamiltonian (4), let us analyse its matrix
elements. The diagonal elements of ĤS in the site basis {|m−n+〉} are1

〈m∗| ĤS |m∗〉 ≡ εm∗ = temm + thmm − V eh
mm, (5)〈

m−n+
∣∣∣ ĤS

∣∣∣m−n+
〉
≡ εm−n+ = temm + thnn − V eh

mn, (6)

where we denote the energy of the excited state |m〉∗ by εm∗ and the energy of the CT state
|m−n+〉 by εm−n+ . As we can see, the energies εm∗ and εm−n+ needed to create an excited
state consist of the energies required to create an electron (temn) and a hole (thmn), and the
electron–hole interaction energy V eh

mn that plays the role of the binding energy. For the purposes
of simulations, however, these constituent terms need not be specified.

1We use the identities êmê†n |0〉 = ĥmĥ
†
n |0〉 = δmn |0〉.
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The couplings between the different states of the site basis are given by

〈m∗| ĤS |n∗〉 = Jmn, (7)

〈m∗| ĤS

∣∣∣k−l+〉 ≡ Jm∗k−l+ = δmlt
e
mk + δmkt

h
ml, (8)〈

m−n+
∣∣∣ ĤS

∣∣∣k−l+〉 = δnlt
e
mk + δmkt

h
nl. (9)

The first equation confirms that parameters Jmn represent the coupling strength between two
molecular excitations.2 The couplings Jm∗k−l+ will be used directly rather than the hopping
rates, while the couplings between two CT states will not be used altogether as we will include
at most one CT state in the simulations.

In the rest of this work, we will use the simpler notation |n〉, where n = 1, . . . Nel, for
both molecular excitations and CT states. The characters of the states will be states explicitly.
Likewise, sums running from 1 to Nel will enumerate all subsystem states, both molecular
excitations and CT states.

1.1.2 The vibrational bath

The remainder of the total system, which consists of the vibrational DOFs of the dimer and
the environment, will constitute the bath. While the electronic subsystems has been specified
in great detail, the bath will be treated more generically. It is sufficient to assume that each
vibrational DOF may be adequately described as a normal-mode harmonic oscillator [11, 27]
and that each electronic level has Nosc oscillators in its environment. Formally, we have

ĤB =
Nel∑
n=1

Nosc∑
ν=1

ωnν
2 (X̂2

nν + P̂ 2
nν), (12)

where X̂nν is the dimensionless coordinate operator of the ν-th oscillator coupled to the n-th
state, P̂nν is the corresponding momentum operator, and ωnν is the frequency of the oscillator.
Note that we use the relativistic units throughout this work: ~ = 1, c = 1. The terms ‘energy’
and ‘frequency’ will therefore be used interchangeably, and these quantities will be measured
in cm−1.

The subsystem–bath interaction occurs through the coupling of bath modes to the excited
states of subsystem. Therefore, the corresponding Hamiltonian is constructed as a (tensor)

2Alternatively, this can be seen by noticing that we may insert an operator |0〉〈0| in the last sum in Eq. (4)
without changing the matrix elements of ĤS. The summand then assumes a more suggestive form,

Jmnê
†
mĥ
†
m |0〉〈0| ĥnên = Jmn |m∗〉〈n∗| . (10)

The reason for the specific combinations of operators in the last two sums in Eq. (4) may thus be intuitively
understood using the analogies

ê†mĥ
†
mĥnên ⇔ |m∗〉〈n∗| , ê†mĥ

†
nĥnêm ⇔

∣∣m−n+〉〈m−n+∣∣ . (11)
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product of the vibrational coordinate operator and the ‘molecular coupling operator’ [17]

ĤSB = −
Nel∑
n=1

Nosc∑
ν=1

ωnνdnνX̂nν |n〉〈n| . (13)

Interaction with the subsystem causes shifts in the average coordinates of bath oscillators, and
the shift of the ν-th oscillator that interacts with the n-th excited state is denoted by dnν . In
practice, these parameters control the strength of interaction between the excited subsystem
states and the bath oscillators.

The chosen system–bath interaction has the structural form

ĤSB =
∑
n

ŜnB̂n, (14)

where Ŝn is a subsystem operator and B̂n is a bath operator. In this case, the effects that the
bath has on the subsystem are encoded in the bath correlation function [11, 27]

Cmn(t) = Tr
(
ρ̂eq

B eiĤBtB̂me−iĤBtB̂n

)
− Tr(ρ̂eq

B B̂m)Tr(ρ̂eq
B B̂n). (15)

Here, ρ̂eq
B is the bath equilibrium density operator given by the canonical distribution

ρ̂eq
B = e−βĤB

Tr(e−βĤB)
, (16)

where β = kBT , and kB is the Boltzmann constant. For the chosen form of the Hamiltonian (13),
the bath operators are just the sums of the coordinate operators,

B̂n = −
Nosc∑
ν=1

ωnνdnνX̂nν , (17)

and the correlation function (15) may be calculated explicitly3 [11]. Analysis of its Fourier
image, Cmn(ω), reveals that its odd and even parts contain the same information, and it is
more convenient to work with the odd part C ′′mn(ω) only, which is called the spectral density [11,
27]. In the present work, we assume that the different states m and n are uncorrelated; the
corresponding spectral density C ′′n(ω) ≡ δmnC

′′
mn(ω) of the harmonic oscillator bath is [11]

C ′′n(ω) = π

2

Nosc∑
ν=1

ω2
nνd

2
nν

(
δ(ω − ωnν)− δ(ω + ωnν)

)
, (18)

where δ(ω) is the Dirac delta-function. The spectral densities of molecular systems may be meas-
ured experimentally, and the results imply that it is reasonable to model them by well-defined
continuous functions instead of the sums of the delta-functions [11]. To facilitate comparison
of the results obtained with different methods (see Section 2), in our simulations we used the

3Note that Tr(ρ̂eq
B X̂nν) = 0, so the second term in Eq. (15) vanishes.
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Debye spectral density [11,27]
C ′′n(ω) = 2λnγω

ω2 + γ2 . (19)

Here, γ is the bath relaxation rate, and λn is the reorganisation energy that controls the strength
of interaction between the bath and the n-th subsystem state. To see how λn are connected to
the parameters dnν , we may express the reorganisation energy as an integral over the spectral
density and substitute its expression from Eq. (18):

λn = 1
π

∞̂

0

C ′′n(ω)
ω

dω =
Nosc∑
ν=1

ωnνd
2
nν

2 . (20)

Thus, having chosen the overall subsystem–bath interaction strength λn, we may calculate the
strengths of interaction dnν between each n-th excitation and ν-th bath oscillator. To do so, we
view the spectral density (18) as a discrete function of Nosc frequencies ωnν , so that

d̃nν =

√√√√2C ′′n(ωnν)
πω2

nν

, (21)

where d̃nν are the coupling strengths that can be readily calculated using the chosen form of
the spectral density, Eq. (19) in our case. Such a choice, however, does not ensure that the
normalisation condition (20) holds for the couplings d̃nν . We have

Nosc∑
ν=1

ωnν d̃
2
nν

2 = An =⇒ λn
An

Nosc∑
ν=1

ωnν d̃
2
nν

2 = λn, (22)

where An is some constant that we can calculate. Comparing the implied equation with Eq. (20),
the formula for the actual coupling strengths dnν follows as

dnν =
√
λn
An

d̃nν . (23)

1.2 Calculations of fluorescence spectra

In this section, we discuss the methods of calculation of stationary (or relaxed) fluorescence
spectra of molecular systems in the absence of any external electromagnetic fields. The static
external field present in the Stark spectroscopy experiments will be treated in the next section.
Let us first state the assumptions about the physical experiment that we seek to simulate.

The molecular subsystem is assumed to be excited by an infinitely short laser pulse, and
subsequent ‘equilibration’ — relaxation to the lowest (i.e., singly excited) electronic levels of
the excited electronic state manifold — is assumed to be instantaneous as well. Therefore,
we do not take into account any photons emitted during the equilibration period, but rather
restrict the analysis to the photons emitted thereafter. Since radiative lifetime of the molecular
excited states is often on the order of nanoseconds and the equilibration time of the excited
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states is a few to tens of picoseconds [11], our assumption of instantaneous excitation and
the following equilibration corresponds to this separation of timescales. Finally, we ignore the
multi-photon relaxation and any nonradiative relaxation channels, such as thermal decay or
internal conversion [11].

The fluorescence spectrum f (ω, t) of a molecular system is effectively a distribution function
of photon frequencies which shows the number of photons per unit frequency range (around ω)
that the system emits per unit time at time t after excitation. We aim at describing the relaxed
fluorescence spectrum, therefore we are interested in the steady-state distribution f (ω). It may
be conveniently calculated as a sum of single-mode distributions fks(t) that describe emission
of photons with frequencies corresponding to a specific wave vector |k| = ωk and a specific
polarisation s.

From a purely quantum perspective, the rate of emission of a photon with a wave vector
k and polarization s may be calculated as the rate of change of the occupation number cor-
responding to the (k, s) mode of the electromagnetic wave [27, 28]. The occupation number
operator is given by

N̂ks = â†ksâks, (24)

where operators âks and â†ks are the bosonic photon annihilation and creation operators. We
must now find the operator f̂ks that corresponds to the emission rate observable fks. By identi-
fying the photon emission rate with the emission spectrum [27], we adopt one of the several
possible quantum definitions of the spectrum [29]. Such an intuitive definition turns out to be
adequate for the present analysis as the spectra calculated using the final formula agree with
the measured spectra reasonably well [22, 24].

It follows from our definition of the emission rate that

fks(t) = d
dtNks(t), (25)

where Nks is the mode occupation number observable which operator N̂ks corresponds to. The
operator f̂ks corresponding to the time derivative of Nks is then given by [30]

f̂ks = i[ĤT, N̂ks], (26)

where ĤT is the total Hamiltonian of the composite system. At this point, the forms of the last
two Hamiltonians in Eq. (1) become relevant. The free-field Hamiltonian of the electromagnetic
field is given by [28,31,32]

ĤF =
∑
k,s

ωk

(
â†ksâks + 1

2

)
, (27)

while the system–field interaction Hamiltonian is taken to be of the form

ĤSF = −µ̂ · Ê = −
Nel∑
n=1
µ0n(ê†nĥ†n + ênĥn) · Ê (28)
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where µ̂ is the dipole moment operator, µ0n is the transition moment from state |n∗〉 to the
ground state, and Ê is the standard second-quantised electric field strength operator [28,31,32].
Note that here we ignore the diagonal elements of µ̂ that become relevant only when an external
electric field is applied. This Hamiltonian corresponds to the dipole approximation [27, 28],
whereby it is assumed that each molecule may be adequately described as a single electric dipole,
neglecting higher order effects related to the magnetic dipole moment and electric quadrupole
moment. Therefore, the electric field is assumed not to change appreciably over the dimensions
of the molecules. This approximation is valid as long as the wavelength of the radiation is much
greater than the size of the molecule. For example, the dimensions of a porphyrin ring of a
chlorophyll molecule are > 1 nm, clearly much less than the wavelength of visible light.

The aim is now to find the quantum average of the emission rate operator (26). We approach
it with the help of the density matrix formalism, which is mandatory when working with open
quantum systems. Introducing the total density operator ρ̂T(t) that describes both the system
and the field, we have

fks(t) = TrT
(
f̂ksρ̂T(t)

)
= TrT

(
i[ĤT, N̂ks]ρ̂T(t)

)
, (29)

where the index ‘T’ (total) emphasises that the trace is taken with respect to both the system
and the field states. To proceed, we assume that the electromagnetic field is in the vacuum state
initially (at some t = 0 when the system has reached excited state equilibrium and the fluores-
cence starts), so that only spontaneous emission, but not stimulated one, takes place. Further,
the system–field interaction is assumed to act as a small perturbation, allowing one to use a
perturbational expansion of the density matrix with respect to the electric field strength [27].
The next step is then to insert the first order solution of the Liouville–von Neumann equation

d
dt ρ̂T(t) = −i[ĤT, ρ̂T(t)] (30)

into Eq. (29). After numerous manipulations, shown at full length in our previous work [33], we
find that the spectrum may be obtained by calculating the dipole–dipole correlation function

Cd−d(t) = TrSB

((
µ̂I(t) · σE

)(
µ̂I(0) · σE

)
ρ̂SB(0)

)
(31)

and taking its Fourier transform:

f (ω) ∝ ω3<
∞̂

0

dt 〈Cd−d(t)〉or e−iωt, (32)

where µ̂I(t) denotes the dipole moment operator in the interaction picture,

µ̂I(t) = ei(ĤS+ĤSB)tµ̂e−i(ĤS+ĤSB)t. (33)

In an actual fluorescence experiment, usually the emitted light of a specific polarisation is
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kE
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x

y

z
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Figure 1: The geometry of the simulated experiment.

registered [34]; this unit polarisation vector is denoted by σE in Eq. (32). Also, it is important
to account for the fact that the dipole moments of the molecules in the sample may be randomly
oriented with respect to σE. Therefore, an orientational averaging over all possible mutual
orientations of σE and µ̂ has to be performed, which is denoted by 〈•〉or in Eq. (32). The
specific details about the orientational averaging are given below.

The dipole moments of the molecules are most naturally specified in the molecular reference
frames attached to each molecule of the sample. Meanwhile, the vector of polarisation that
corresponds to a specific experimental setup has to be defined in a certain ‘Lab’ frame. Then,
it is assumed that the dipole moment vectors are the same in all molecular reference frames,
but these frames are randomly oriented with respect to the Lab frame. Denoting the Euler
angles [35] between the molecular and Lab frames by α, β, and γ, the orientational averaging
may be expressed as [34]

〈g(α, β, γ)〉or = 1
8π2

πˆ

0

2πˆ

0

2πˆ

0

g(α, β, γ) sinα dα dβ dγ, (34)

where g(α, β, γ) is an arbitrary function. In order to calculate the scalar products of vectors µ̂
and σE defined in different reference frames, we transform the dipole moment operator to the
Lab frame using the standard transformation matrix [34].

The geometry of the simulated experiment is shown in Fig. 1. The unit vector kE shows
the direction of propagation of the light that is registered, and σE defines the corresponding
polarisation. The vector E shows the direction of the static external electric field relevant for
the Stark fluorescence experiments. We used a typical choice [2] of the angles shown in the
figure: ϑ = π/4 and χ = ϕmagic with cosϕmagic = 1/

√
3.

Now let us consider the operator ρ̂SB(0) ≡ TrF
(
ρ̂T(0)

)
under the trace of Eq. (32). This

term stands for the excited state equilibrium density matrix of the system (subsystem + bath),
with the electromagnetic field DOFs traced out. In order to calculate ρ̂SB(0), we assume that
the subsystem and the bath are uncorrelated in the beginning of the experiment (at t = t0 < 0),
which means that the density operator of the system may be written as a (tensor) product of
the density operators of the subsystem and the bath,

ρ̂SB(t0) = ρ̂S(t0)ρ̂B(t0). (35)
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Here, the subsystem is taken to occupy the ground state, ρ̂S(t0) = |0〉〈0|, while the bath is
in thermal equilibrium, ρ̂B(t0) = ρ̂eq

B , as given by Eq. (16). At this point, the subsystem is
excited (by a laser pulse), causing the subsystem and the bath to interact until a new equilib-
rium state is reached. Note that this state is different from the initial one, as the subsystem
reaches a certain superposition of the excited states rather than the ground state. The bath
also adapts accordingly and evolves to a state different from ρ̂eq

B . From the perspective of sim-
ulations, we therefore have to calculate the dynamics of the relaxation process using the initial
condition (35). Once the system has equilibrated, we ‘open’ the optical relaxation channel4

and calculate the relaxation dynamics. Specifically, we calculate the evolution of µ̂(t) until
the dipole–dipole correlation function (31) has decayed to zero (to a given tolerance). Having
obtained the operator µ̂(t) at discrete time points, we calculate Cd−d(t) and take its Fourier
transform to obtain the final spectrum.

When the spectra are simulated numerically, one is usually only interested in the shape of
the spectrum rather than its absolute magnitude. Indeed, the shape contains all the available
information about the system, and the spectrum always has to be normalised to match the
experimental data. For this reason, the dimensional constants are omitted in Eq. (32). To be
specific, we will associate with a spectrum the following quantity:

F (ω) = <
∞̂

−∞

dtΘ(t) 〈Cd−d(t)〉or e−iωt. (36)

Here, as is customary when working with spectra of model systems [25,36,37], we omitted the
factor of ω3 which does not make any noticeable difference because the spectrum is non-zero
only in a small interval of ω. We have also introduced a function Θ(t) defined to be equal to 0
for t < 0 and 1 for t ≥ 0. Having written the function F (ω) in such a form, we may easily
obtain an expression for the integral of F (ω) which will be important for the analysis of the
spectra. Integrating both sides of Eq. (36) over all frequencies, we obtain

∞̂

−∞

dω F (ω) = 2π 〈Cd−d(0)〉or . (37)

Here, we assume that Cd−d(0) is real, which holds true if µ̂ is real (see Eq. (31); the equilibrium
density operator ρ̂SB(0) is necessarily real).

An additional remark regarding Eq. (36) is in order. It is important to recognise that
f(ω) from Eq. (32), and hence also F (ω), is the rate of emission of photons, while in an
actual experiment, the total number of emitted photons of each frequency, S(ω), is registered.
However, as F (ω) is constant (in time), we have simply S(ω) = τF (ω), where τ is the duration
of observation. Therefore, the function S(ω) measured in an experiment is directly proportional
to F (ω) that we may calculate using Eq. (36), and the shapes of these two functions are the

4As mentioned in the beginning of this section, the electronic relaxation process is a few orders of magnitude
faster than the optical relaxation, so it is physically justified to assume that fluorescence starts only after the
relaxed state is reached.
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same. This holds even if we take into account that the emission rate will eventually fall down
to zero due to the reduction of populations with time5. In this case, the actual emission rate
is F (ω)u(t), where u(t) is some decaying function, such as e−t, but we again have S(ω) =´∞

0 dt F (ω)u(t) ∝ F (ω). This justifies our identification of F (ω) with the spectrum that may
be obtained experimentally.

1.3 Stark fluorescence spectra

The Stark fluorescence spectrum is defined as the difference of two spectra [9, 10]:

FS(ω) = FE(ω)− F (ω), (38)

where FE(ω) is the fluorescence spectrum in the presence of an external static electric field of
strength E , while F (ω) is the fluorescence spectrum when no external field is applied. Let us
review the main effects that cause the differences in these two spectra.

If the system possesses a static dipole moment µ′nn in a certain state |n〉, the energy εn of
that state will shift if an external electric field is applied:

ε′n = εn − µ′nn · E . (39)

This is the essence of the Stark effect which causes line splitting in the atomic spectra and band
broadening in the spectra of molecular systems [38]. In the general case, not only the energies
of the states but also the directions and the magnitudes of all dipole moments of the system
may change in an external field [39]:6

µ′mn = µmn + α̂mnE +O(E2). (40)

Here, µmn are the matrix elements of the dipole moment operator already encountered in
Eq. (28); its diagonal elements are the static dipole moments, while the off-diagonal ones are
the transition dipole moments. The term α̂mn is the polarisability tensor describing the field-
induced change of the mn-th dipole moment. For further analysis of the spectra, it is convenient
to define the differences between the static dipole moments in the excited states and the ground
state:

∆µnn = µnn − µ00. (41)

Assuming we are dealing with a sample of randomly oriented molecules, it is clear from
Eq. (39) that the energy shifts will not be the same for all molecules since the shift depends on
the mutual orientations of µ′nn and E . The energy levels will effectively split, causing broader
spectral bands of FE(ω) compared with those of F (ω). Moreover, the intensities of the maxima
of the spectral bands will reduce, similarly to the reduction of intensity of spectral lines in
the case of atomic Stark effect. Further, as long as the field-induced change in the dipole

5This is caused by the radiative relaxation and also by nonradiative relaxation channels.
6Equation (40) is given in the Gaussian units.
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moment is negligible, |α̂mnE| � |µmn|, the positions of the maxima of the bands will not
exhibit a shift since the broadening will be symmetrical around εn. The said requirement is
in fact satisfied for most realistic molecules and field strengths used in experiments, with the
typical ratio being |α̂mnE|/|µmn| ∼ 10−3 [8]. Finally, if the molecules are not isolated and are in
thermal contact with an environment (such as a solvent), orientational effects may arise. Based
on thermodynamical considerations, it will be energetically more favourable for molecules to
rotate in such a way so as minimise their energy. Specifically, if the molecules are in thermal
equilibrium with the environment and each molecule is in a certain state |n〉, then the probability
that the angle between vectors µnn and E equals ϑ is given by the Boltzmann factor [39]:

pn(ϑ) ∝ exp
(
−εn − µnn · E

kBT

)
∝ exp

(
µnnE cosϑ

kBT

)
. (42)

As a result, the intensity of the spectral bands of F (ω) may either increase or decrease, and an
overall redshift of FE(ω) with respect to F (ω) may be observed [39]. These effect are, however,
also rather minute: the relative change of intensity of the spectral bands of F (ω) is ∼ 10−4,
and the shift of the spectral bands makes up only ∼ 10−3 of the full width at half maximum of
the bands [39].

An experimentally obtained Stark spectrum contains contributions from all of the above
effects, so that extracting system parameters becomes problematic. The first model that was
proposed to analyse the Stark spectra is due to Liptay, and it lets one express the Stark
fluorescence spectrum as a sum of derivatives of the corresponding field-free fluorescence spec-
trum [8,10]:7

FS(ω) = E2
(
AχF (ω) + Bχ

15
d

dωF (ω) + Cχ
30

d2

dω2F (ω)
)
. (43)

This formula is obtained assuming that the fluorescing molecules are immobilised and that the
change of intensity and position of the spectral bands when the field is applied is relatively
small [8, 10]. The first two terms describe the dependence of the fluorescence spectrum on the
polarisabilities and hyperpolarisabilities of the dipole moments, while the last term encompasses
contributions from the differences of the static dipole moment (∆µnn). We will not be concerned
with the effects caused by the polarisabilities, so the exact expressions for the coefficients Aχ
and Bχ will not be important. If we set Aχ = Bχ = 0, then the Stark spectrum is given only by
the second derivative of the fluorescence spectrum, and the corresponding weighting coefficient
is [9, 10]

Cn
χ = |∆µnn|2

(
5 + (3 cos2 χ− 1)(3 cos2 ζ − 1)

)
. (44)

The formula (43) should be used for each spectral band separately, so the coefficient given in
Eq. (44) actually describes the band corresponding to the transition |n〉 → |0〉. The symbol χ
denotes the angle between E and σE (see Fig. 1), and ζ is the angle between µ0n and ∆µnn. Note

7Note that we operate with the quantity F (ω) defined in Eq. (36) that does not have the ω3 factor originally
present in Eq. (32). Therefore, contrary to the usual form of Eq. (43) (see, e.g., Refs. [8–10]) we may write
simply d

dωF instead of ω3 d
dω

F
ω3 , and d2

dω2F instead of ω3 d2

dω2
F
ω3 .
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that by choosing the former angle so that cos2 χ = 1/3, the coefficient Cn
χ becomes independent

of the angle ζ. This allows one to determine the parameter |∆µnn|2 directly from the fit of
experimental data.

Our simulations of the Stark fluorescence spectra have been performed using the defini-
tion (38): two spectra, with and without an external field, were simulated and their difference
was taken. The formalism laid out in the previous section remains largely the same when an
external field is included, but a few notable differences have to be considered. When an external
electric field is present, it is no longer reasonable to assume that the electromagnetic field is in
the vacuum state. In this case, it is most convenient to model the initial state of the field in
terms of coherent states [32, 40,41]:

ρ̂F(0) = |{zks}〉〈{zks}| , (45)

where notation |{zks}〉 means that each mode of the field is in a coherent state, defined as the
eigenvector of the photon annihilation operator:

âks |zks〉 = zks |zks〉 . (46)

Using these states, it is possible to find an explicit expression for the field state wherein the
expectation value of the electric field strength operator matches the required classical value, E
in our case [40]. Then, we should repeat the derivation [33] of the formula (36) for the spectrum,
with the subsystem–field interaction given by Eq. (28), but the initial density matrix of the
field being in the form (45). However, a simpler approach is possible. Using the properties
of coherent states, the Liouville equation (30) maybe transformed in such a way so that the
subsystem–field interaction Hamiltonian part of ĤT becomes [42]

ĤSF = −µ̂ · (Ê + E), (47)

and the initial condition for the field is now the vacuum state. Thus, the final formula (36)
remains valid in the presence of an external electric field at the expense of an additional term
(−µ̂ · E) now appearing when transforming µ̂ to the interaction picture:

µ̂I(t) = ei(ĤS+ĤSB−µ̂·E)tµ̂e−i(ĤS+ĤSB−µ̂·E)t. (48)

Note that when calculating the field-free spectra, only the off-diagonal elements of µ̂ play a role
(see Eq. (28)), but for the calculation of Stark spectra, the diagonal elements are essential. Also
note that we adopt the convention that the diagonal elements of µ̂ are the difference moments
∆µnn defined in Eq. (41).
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1.4 The quantum-classical formalism

An important aspect of the fluorescence spectrum formula (36) is the orientational averaging.
It can be calculated analytically if no external field is present since in that case one simply
has to calculate the orientational average of (µ̂ · σE)2, which results in a factor of 1/3 (see
Ref. [34]). However, the analysis is complicated in the presence of the external field. Since
it causes an orientation-dependent shift of energy levels (39), the equilibrium density matrix
ρ̂SB(0) becomes dependent on the orientation as well. Analytical calculation of the average would
only be possible if one had an explicit expression for ρ̂SB(0), which is not achievable for systems
with many DOFs. Moreover, an explicit expression for µ̂I(t) would also be needed since the
evolution of this operator depends on the orientation between µ̂ and E (see Eq. (48)). Thus,
it only seems possible to perform the averaging by repeating calculations of the correlation
function (31) with different orientations and calculating the mean. This operation induces
substantial computational cost for methods conventionally used for calculating fluorescence
spectra, such as the Hierarchical Equations Of Motion (HEOM) approach [36] or methods
based on the Quantum Master Equation [22, 43]. A way to circumvent this issue is to apply a
method of calculating system dynamics which is based on the Monte Carlo (MC) integration
at its core. For such a method, three additional integration dimensions corresponding to the
three Euler angles will not require any additional computational resources.

The MC integration method used in the present work is based on an approximate solution
to the quantum-classical Liouville equation. This section is therefore devoted to introducing
the underlying quantum-classical theory.

1.4.1 Quantum-classical Liouville equation

Any theory of open quantum systems must inevitably resort to approximations if the num-
ber of bath DOFs is large, and it seems reasonable to try applying classical mechanics for the
description of the bath. For molecular simulations, this is justified if the subsystem in question
corresponds to electronic DOFs, and the bath comprises nuclear DOFs. However, combining
classical description of well-defined trajectories of coordinates and momenta of bath particles
with the discrete Hilbert space of the subsystem requires some ingenuity. This may be accom-
plished by performing the Wigner transformation [11, 44, 45] which is defined for any operator
Â as8

AW(Q,P ) =
∞̂

−∞

dZ eiPZ/~ 〈Q− Z/2| Â |Q+ Z/2〉 . (49)

To compute the transform, one has to start with the operator in the coordinate representation,
Â(X,X ′), and introduce ‘new’ coordinates Q = (X + X ′)/2 and Z = X − X ′. Calculation of
the integral then amounts to performing the Fourier transformation where the transformation
parameter P is the momentum. The result, AW(Q,P ), is just a classical coordinate–momentum
phase space distribution function. This interpretation, however, should not be taken too liter-

8In this section, ordinary units are used, and the Planck’s constant ~ is restored.
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ally because it is fundamentally impossible to determine the simultaneous probability of the
coordinates and momenta of a quantum system. Formally, the definition (49) does not guarantee
that AW(Q,P ) is everywhere positive, but it is necessarily real as long as Â is Hermitian.

The next step in combining quantum and classical description in a single framework is to
realise that we may perform a partial Wigner transformation, transforming only those DOFs
which we wish to take into account approximately. In the present case we will want to transform
all operators with respect to the bath coordinates — the resulting quantity will therefore remain
an operator in the subsystem Hilbert space, while the Hilbert space of the bath will be reduced
to a classical phase space.

The central equation of the quantum–classical formalism is obtained by performing a partial
Wigner transformation of the Liouville–von Neumann equation,

∂

∂t
ρ̂(t) = − i

~
[Ĥ, ρ̂], (50)

where ρ̂ and Ĥ are the density matrix and the Hamiltonian of the composite system. Applying
the definition (49), we obtain [11]

∂

∂t
ρ̂W(Q,P, t) = − i

~
(
ĤWe~

←→
Λ /2iρ̂W − ρ̂We~

←→
Λ /2iĤW

)
, (51)

where we defined an operator ←→Λ that may be written in terms of the Poisson brackets {•, •}:

ÂW←→Λ B̂W = ∂ÂW

∂P

∂B̂W

∂Q
− ∂ÂW

∂Q

∂B̂W

∂P
= −{ÂW, B̂W}. (52)

Even though it is exact, Eq. (51) can only be used in practice once the exponential operators
are expanded. Expanding them to the second order in ~, one obtains the Quantum–classical
Liouville Equation (QCLE) [11, 44]:

∂

∂t
ρ̂W(Q,P, t) = − i

~
[ĤW, ρ̂W] + 1

2
(
{ĤW, ρ̂W} − {ρ̂W, ĤW}

)
+O(~2). (53)

Here, the symbols Q and P stand for the sets of all bath coordinates and momenta that result
by taking a multidimensional analogue of the transformation (49). It is interesting to note
that in the classical limit, the operators become functions and the QCLE becomes exactly the
classical Liouville equation [45]. Another important observation is that the QCLE is exact (i.e.,
correct not only to O(~2)) for harmonic baths such as the one defined in Eq. (12) and if the
system–bath coupling is linear as in Eq. (13).

Solving the QCLE exactly, however, does not seem feasible because Eq. (53) is really a
system of partial differential equations containing as many classical variables as there are bath
DOFs. What one may achieve by working with the QCLE rather than the fully quantum
Liouville–von Neumann equation is a more favourable scaling of the solution as the subsystem
and bath sizes increase. In the next section, we will therefore introduce an approximate solution
of the QCLE.
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1.4.2 Forward-backward trajectory solution

As mentioned in the beginning of this section, a method that relies on the MC integration
is desirable if one wishes to simulate Stark fluorescence spectra that require calculating the
orientational average. A quantum–classical method that meets this criterion is the Forward-
backward Trajectory Solution (FBTS) proposed by Hsieh and Kapral [46]. We will briefly outline
the idea behind this method below.

Any operator Â in the Heisenberg picture satisfies the same form of equation as the Liouville–
von Neumann equation (50), except for the opposite sign. We can thus write the QCLE (53)
for a partially Wigner-transformed operator ÂW as

∂

∂t
ÂW(Q,P, t) = i

~
(−→
HÂW − ÂW←−H

)
, (54)

where we introduce the ‘forward’ and ‘backward’ operators

−→
H = ĤW

1 + ~
←→Λ
2i

 , ←−
H =

1 + ~
←→Λ
2i

 ĤW. (55)

The formal solution of this equation follows as

ÂW(Q,P, t) = Ŝ
(
ei−→Ht/~ÂW(Q,P, 0)e−i←−Ht/~

)
, (56)

where ÂW(Q,P, 0) is the initial Wigner-transformed operator, and the ordering operator Ŝ
ensures the proper order in which the forward and backward operators act.

The next key step it to switch to the Stock–Thoss mapping basis [47–49] which allows one to
describe the quantum subsystem consisting of Nel states |n〉 in terms of Nel fictitious harmonic
oscillators. Using the occupation number notation, the mapping may be expressed as

|n〉 → |n〉M ≡ |01 . . . 1n . . . 0Nel〉M . (57)

In the Hilbert space of these oscillators, we have the usual creation and annihilation operators
which may be written in terms of the coordinate (q̂n) and momentum (p̂n) operators of the
same Hilbert space as

â†n = 1√
2

(q̂n − ip̂n), ân = 1√
2

(q̂n + ip̂n), (58)

whose action is defined as â†n |0〉M = |n〉M, ân |n〉M = |0〉M. An arbitrary operator of the mapping
basis can now be expressed in terms of the elements of the same operator in the subsystem
space:

ÂM =
∑
n,n′

Ann′ â
†
nân′ . (59)

Finally, we introduce the coherent states of the mapping basis defined as

ân |z〉 = zn |z〉 , zn = 1√
2

(qn + ipn), (60)
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which may be used to obtain the mean values of coordinates and momenta of the oscillators:

qn(t) = 〈z| q̂n |z〉 , pn(t) = 〈z| p̂n |z〉 . (61)

To proceed with the derivation, we split the propagators in Eq. (56) into K short-time
propagators,

ÂW(Q,P, t) = Ŝ
(

e−i∆t1
−→
H/~ . . . Ŝ

(
e−i∆tK

−→
H/~ÂW(Q,P, 0)ei∆tK

←−
H/~

)
. . . ei∆t1

←−
H/~

)
. (62)

and insert the resolution of identity for coherent states,

Î =
ˆ d2z

πNel
|z〉〈z| , (63)

between the exponential propagators. The resulting multi-dimensional integration, however,
cannot be performed analytically because the coherent states form an over-complete basis,
with the inner product of such states being

〈z|z′〉 = exp
(
−1

2 |z − z
′|2 − i=(z · z′∗)

)
. (64)

Nevertheless, we may invoke the orthogonality approximation on the coherent states by letting

〈zj(tj)|zj+1〉 ≈ πNelδ
(
zj+1 − zj(tj)

)
, (65)

where δ(z) is the Dirac delta-function. As we can see from Eq. (64), this approximation is
reasonable if the phase space coordinates of the coherent states differ significantly. Thus the
intermediate integration is greatly simplified, yielding the following formula for the evolution
of the matrix elements of ÂW [46]:

AW
nn′(Q,P, t) = 1

4
∑
m,m′

ˆ
dq dp dq′dp′(2π)−2Nel exp

(
−1

2

Nel∑
k=1

(q2
k + p2

k + q′2k + p′2k )
)

(66)

× (qn + ipn)(q′n′ − ip′n′)AW
mm′(Qt, Pt, 0)

(
qm(t)− ipm(t)

)(
q′m′(t) + ip′m′(t)

)
.

Here, AW
mm′(Qt, Pt, 0) is the element (m,m′) of the initial value of the operator ÂW(Q,P, 0)

where the coordinates and momenta are taken at time t. The subsystem and bath phase space
coordinates are propagated using a set of Hamilton equations [46]:

d
dtqm = 1

~
∂

∂pm
Hcl(Q,P, q, p),

d
dtpm = −1

~
∂

∂qm
Hcl(Q,P, q, p),

d
dtq

′
m = 1

~
∂

∂p′m
Hcl(Q,P, q′, p′),

d
dtp

′
m = −1

~
∂

∂q′m
Hcl(Q,P, q′, p′), (67)

d
dtQmµ = 1

~
∂

∂Pmµ
Heff(Q,P, q, p, q′, p′), d

dtPmµ = −1
~

∂

∂Qmµ

Heff(Q,P, q, p, q′, p′).
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Here, we defined the following ‘classical’ and ‘combined’ Hamiltonians:

Hcl(Q,P, q, p) = HW
B + 1

Nel
TrS(ĤS + ĤW

SB) + 1
2
∑
n,n′

hW
nn′(qnqn′ + pnpn′), (68)

where
ĥ = ĤS + ĤSB − TrS(ĤS + ĤSB), (69)

and
Hcomb(Q,P, q, p, q′, p′) = 1

2
(
Hcl(Q,P, q, p) +Hcl(Q,P, q′, p′)

)
. (70)

In the system of equations (67), the trajectories qm(t), pm(t), q′m(t), and p′m(t) correspond
to the m-th subsystem state, while Qmµ(t) and Pmµ(t) describe the dynamics of the µ-th
bath oscillator attached to the m-th subsystem state. The total number of equations follows
as neqs = 4Nel + 2NelNosc, which shows that the method scales linearly with the number of
electronic (subsystem) states. The latter fact is an important advantage of the FBTS, which
is essentially achieved through the classical description of the bath. The main disadvantage of
the method, which is perhaps less obvious, lies in the physical abstractness of the orthogonality
approximation (65). While this is the only approximation used to arrive at the final solution,
its interpretation is rather ambiguous. Consequently, it is not possible to establish the region
of validity of the method (depending on the system parameters) analytically, and some testing
is required. This issue has been studied in Ref. [50], where the FBTS has been applied for the
calculation of system dynamics and general trends have been determined. However, a separate
analysis is needed to assess the accuracy of calculations of spectra.

Once we have found the evolution of the required operator, we may calculate the expectation
value of the corresponding observable as

A(t) = Tr
(
Â(t)ρ̂

)
=
ˆ

dQ dP TrS
(
ÂW(Q,P, t)ρ̂W(Q,P )

)
, (71)

where ρ̂W(X) is the partially Wigner-transformed initial density matrix of the composite system.
The integration over the classical variables Q and P essentially corresponds to tracing over the
bath DOFs. If we substitute the expression for ÂW(Q,P, t) from Eq. (66), we obtain an integral
whose dimensionality is neqs. Even for a typical small problem, we have Nel = 2 and Nosc = 50,
resulting in neqs = 204. Therefore, one has to resort to the MC integration, generating the
phase space variables randomly, calculating the integrand, and averaging the results. Notably,
the convergence is enhanced by the exponential factor in Eq. (66) which ensures that only a
small part of the subsystem phase space is relevant for the calculation. As we show below, the
initial bath density matrix in Eq. (71) also has an exponential form, so that overall convergence
is satisfactory. Furthermore, high dimensionality of the problem may be turned to our advantage
when additional orientational averaging is required: adding three more integration dimensions
will have no noticeable impact on the calculation time when the original problem already has
more than 100 dimensions.
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1.4.3 Application to spectroscopic calculations

According to Eq. (71), the dipole–dipole correlation function (31) may be calculated as

Cd−d(t) =
ˆ

dQ dP TrS

((
µ̂I(t;Q,P ) · σE

)(
µ̂I(0) · σE

)
ρ̂W

SB(Q,P, 0)
)
. (72)

Here, the dipole moment operator µ̂I(0) is a subsystem operator, and initially, its partial Wigner
transform with respect to the bath is identically equal to itself. The evolution of the dipole
moment may be calculated using the FBTS formula (67), which makes the operator depend on
the bath coordinates and momenta parametrically. One sees this by considering the fact that
µ̂I(t;Q,P ) is given by a combination of subsystem variables qm(t), pm(t), q′m(t), and p′m(t) which
are obtained by solving the equations (67) where the initial conditions for the bath variables Q
and P have to be specified.

The first step of calculation of the spectrum is to find the partial Wigner transform of the
excited state equilibrium density matrix ρ̂W

SB(Q,P, 0) using the FBTS formula. At the initial
time moment t = t0, right after the system is excited, it is reasonable to assume that the
subsystem and the bath are uncorrelated, meaning that the initial density matrix may be
factorised into subsystem and bath parts,

ρ̂SB(t0) = ρ̂S(t0)ρ̂B(t0), (73)

with the same factorisation holding for ρ̂W
SB(Q,P, t0). The system is taken to occupy the ground

state |0〉 at t = t0, while the bath oscillators are taken to be in thermal equilibrium, so that
the canonical energy distribution may be assumed, resulting in

ρ̂B(t0) =
Nel∏
n=1

Nosc∏
ν=1

1
Znν

exp
(
−β~ωnν2 (X̂2

nν + P̂ 2
nν)
)
, (74)

where Znν is the partition function for the oscillator with frequency ωnν . Carrying out the
Wigner transformation, one obtains [27]

ρW
B (Q,P, t0) =

Nel∏
n=1

Nosc∏
ν=1

1
π

tanh
(
β~ωnν

2

)
exp

[
− tanh

(
β~ωnν

2

)
(Q2

nν + P 2
nν)
]
. (75)

Finally, we have to write down the Hamilton equations (67) for the chosen Hamiltonians (4),
(13), and (12). The partial Wigner transformations of the latter two operators follow trivially
using X̂W = Q and P̂W = P , and the partial differentiations yield
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d
dτ qm = pm

γ
Am + 1

~γ
∑
n6=m

Jmnpn,
d
dτ pm = −qm

γ
Am −

1
~γ

∑
n6=m

Jmnqn,

d
dτ q

′
m = p′m

γ
Am + 1

~γ
∑
n6=m

Jmnp
′
n,

d
dτ p

′
m = −q

′
m

γ
Am −

1
~γ

∑
n6=m

Jmnq
′
n,

d
dτ Qmµ = ωmµ

γ
Pmµ, (76)

d
dτ Pmµ = −ωmµ

γ

[
Qmµ −

dmµ
4

(
q2
m + p2

m + q′2m + p′2m + 4
Nel

)
+ dmµ

4Nel

Nel∑
n=0

(q2
n + p2

n + q′2n + p′2n )
]
.

Here, we use the dimensionless time τ = tγ measured in units of the spectral density parameter γ
(see Eq. (19)), and we define

Am = ε′m
~
−

Nosc∑
ν=1

(1− δ0,m)ωmνdmνQmν −
1

Nel~

Nel∑
n=0

(
ε′m −

Nosc∑
ν=1

(1− δ0,n)~ωnνdnνQnν

)
. (77)

The variables ε′m are the energies of the subsystem states, which are shifted if an external
electric field is present:

ε′m = εm −∆µmm · E . (78)

Unfortunately, direct application of the FBTS formula (66) with Â = ρ̂SB turns out to be
inefficient, as the contribution of the majority of MC trajectories becomes very small because
of the term ρW

SBmm′(Qt, Pt, 0). Indeed, as the system evolves, the phase space coordinates Q
and P begin oscillating with considerable amplitudes, which results in small values of the said
term given its Gaussian-like dependence on Q and P (see Eq. (75)). Converged results of the
density matrix of the composite system can only be obtained if the subsystem–bath interaction
is rather weak [51], which is definitely not the regime of actual interest. To circumvent this
issue, we may invoke an approximation and assume that the separation (73) holds not only at
t = t0 but also at t = 0. Then, Eq. (72) becomes

Cd−d(t) =
ˆ

dQ dP ρW
B (Q,P, 0)TrS

((
µ̂I(t;Q,P ) · σE

)(
µ̂I(0) · σE

)
ρ̂S(0)

)
. (79)

Here, the bath density matrix ρW
B (Q,P, 0) is just the time-dependent distribution function of the

bath trajectories Q(t) and P (t), which are found by propagating the Hamilton equations. The
subsystem density matrix ρ̂S(0) is still not known at this point, but, contrary to the composite
density operator ρ̂SB, it may be calculated efficiently using the FBTS formula.

Thus, the algorithm for calculating the Stark fluorescence spectrum is the following. First,
we generate a set of variables q, p, q′, p′, Q, P and the three Euler angles for the orientational
averaging, and propagate the system density matrix until equilibrium is reached to obtain
ρ̂S(0). Since the bath oscillators are propagated simultaneously with the subsystem variables,
the bath density matrix ρW

B (Q,P, 0) is obtained in the process as well. Next, we propagate the
dipole moment operator for a set period of time that ensures that the correlation function will
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have decayed considerably by the end of this period. This procedure (finding the equilibrium
and propagating the dipole moment) has to be repeated twice — once with an external field,
and then without it. According to the MC integration method, all of the described operations
have to be repeated numerous times with different initial conditions, and the results should be
averaged. Having obtained the averaged dipole–dipole correlation function, it only remains to
perform its Fourier transform as given by Eq. (36).

To perform the calculations, we wrote a parallel computer program that is adapted for
running on high performance computers. The source code is available on Gitlab9.

9https://gitlab.com/jakovbraver/fbts
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2 Simulations

In this section, we will present and analyse the modelled Stark fluorescence spectra with
several goals in mind. First, we wish to evaluate whether the FBTS allows one to obtain
sufficiently accurate or at least qualitatively correct results. Second, it is interesting to test the
Liptay formalism (43) — while it is actively used for analysing the Stark spectra, there are no
published works that compare this model with the exact results. Finally, we will study how the
presence of a CT state in the system influences the Stark fluorescence spectra.

To obtain formally exact results, we used the aforementioned HEOM approach [36, 52],
which by now has become one of the standard tools used for benchmarking other methods.
The HEOM, however, has several serious drawbacks. First, it produces exact results only for
a limited set of spectral densities (the Debye spectral density (19) being one of them), and
therefore cannot be used for simulating arbitrary realistic systems. Second, the method scales
unfavourably as the subsystem size increases, making it impractical for subsystems with more
than ten electronic levels. The scalability of HEOM becomes even more of a problem when
calculating the Stark fluorescence spectra as the orientational averaging further increases the
calculation time.

The spectra calculated using HEOM, FBTS, and the Liptay formula (43) were normalised
as follows. The field-free HEOM fluorescence spectra were normalised so that the maximum
of intensity coincides with the FBTS result. The same scaling factor was then used to rescale
the Stark fluorescence spectra obtained using HEOM. The Liptay formula was used by dif-
ferentiating the HEOM fluorescence spectra (which are considered exact), and each resulting
curve was rescaled so that its minimum value matches the HEOM result. In cases when the
Liptay formula yielded curves whose shapes are drastically different from the HEOM results,
the Liptay spectra were simply normalised in a way that makes them visible at the chosen scale.

To gain more insight into the calculated spectra, especially when a CT state is present in the
system, it will prove useful to calculate the equilibrium values of subsystem state energies and
populations. The energies may be found approximately as the eigenenergies of the subsystem
Hamiltonian ĤS; the populations are then given by the diagonal elements of the system density
matrix ρ̂S = e−βĤS/Tr(e−βĤS), where ĤS is assumed to be diagonalised. Such a calculation,
however, totally neglects the presence of the bath and may be inadequate if the system–bath
coupling is strong. A more accurate approximation for the equilibrium state of the subsystem
has been derived in Ref. [53]. There, it is shown that the equilibrium subsystem density operator
is given by the familiar Boltzmann distribution,

ρ̂S ≈
e−βĤeff

Tr(e−βĤeff )
, (80)

calculated using the following effective Hamiltonian:

Ĥeff = Ĥε − Λ̂ + e−βΛ̂/6ĤJe−βΛ̂/6, (81)
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where Ĥε and ĤJ are, respectively, the diagonal and off-diagonal parts of ĤS, and Λ̂ =
diag({λn}). As we can see, the influence of the bath comes down to a change of the res-
onance couplings between subsystem states. Correspondingly, the energies of the subsystem
states are given by the eigenvalues of Ĥeff . Even though the formula (81) presents an ap-
proximation that breaks down in the limits of low temperatures or very strong system–bath
interaction strengths [53], it can be considered correct for all the cases that we will study.
Following Ref. [53], we will refer to the basis in which Ĥeff is diagonal as the global basis.

2.1 Systems with two molecular-excitation states

We begin the analysis by studying the spectra of a family of systems with similar parameters
for the purpose of testing the FBTS method. The parameters have been chosen to resemble
those typical for the photosynthetic complexes [16]:

∆ε ≡ ε2 − ε1 = 100 cm−1, J = 100 cm−1, λ = 50 cm−1, γ−1 = 100 fs, T = 300 K. (82)

In this model, we have a ground state |0〉 and two excited states, |1〉 and |2〉, both of which are
molecular excitations. The energy gap between the ground state and the lowest excited state is
ε1− ε0 = 15000 cm−1, while the energy difference ∆ε between the excited states is given above.
The resonance coupling between the states is denoted by J ≡ J12. Throughout the analysis, we
will often specify the parameters of the subsystem by providing the subsystem Hamiltonian;
for the present case it would take the form

ĤS =
 ε1 J12

J12 ε2

 =
 0 100

100 100

 . (83)

In this notation, the ground state is ignored for brevity (it would correspond to an additional
row and an additional column), and the energy gap ε1 − ε0 is subtracted from the site ener-
gies (e.g., the energy of state |2〉 is actually 15100 cm−1). For clarity, we note that site-basis
states |1〉 and |2〉 correspond to the states of uncoupled monomers; they are the eigenstates of
Hamiltonian (83) taken with J12 = 0.

The chosen value of the system–bath coupling strength λ corresponds to the intermediate
coupling regime, and the coupling is the same for both states: λ1 = λ2 = λ. The relaxation
constant γ−1 is taken to be large enough so that the dynamics may be considered non-Markovian
and therefore arguably less trivial.

The strength of the external electric field is chosen to be |E| = 3 MV/cm so that the
Stark effect is pronounced. This is in line with the strengths of the field used in the actual
experiments, where the value varies from 0.3 to 2 MV/cm [2, 7, 9]. Choosing a greater value is
also more convenient when numerous calculations have to be performed because it speeds up
convergence of both HEOM and FBTS. Values that are closer to those used in the experiments
would require up to an order of magnitude more calculation time, but that is acceptable when
only a couple of simulations (of a real experiment) have to be performed. The transition dipole
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Figure 2: Fluorescence spectra (top) and Stark fluorescence spectra (bottom) calculated using HEOM
and FBTS. The dashed lines represent the second derivatives of the corresponding fluorescence spectra.
Two cases are shown: (a) ∆ε = 0, (b) ∆ε = 300 cm−1.

moments used in the simulations are µ01 = (1, 0, 0) and µ02 = (0, 1, 0), and the static dipole
moments are ∆µ11 = (1.5, 0, 0) and ∆µ22 = (0, 1.5, 0); the values are given in the Debye units.

We will test the FBTS by varying one of the parameters while others will be set equal to
their ‘default’ values (82). We start with the analysis of two edge cases for the energy gap ∆ε
shown in Fig. 2. The upper graphs contain the fluorescence spectra, and the lower plots show
the Stark fluorescence spectra. The intensities are given in arbitrary units, with the same ones
used for all the graphs allowing for an evaluation of the magnitude of the Stark effect. In the
upper part of Fig. 2a, corresponding to the case of degenerate levels, ∆ε = 0, we can see
that the FBTS captures the positions of the peaks and their relative intensities accurately.
While not completely resolved, two rather than one spectral bands are obtained because the
interaction between monomers (J) removes the degeneracy of the levels. The theoretical values
of the peak positions may be found using the effective coupling formalism, Eq. (81). The
eigenvalues of Ĥeff for the system under consideration (neglecting the bias of 15000 cm−1) are
−42 cm−1 and 142 cm−1 which is close to the exact results predicted by HEOM. In the lower
part of Fig. 2a, we notice that the FBTS yields the Stark fluorescence spectrum with a similar
accuracy. The positions of the two minima coincide with the positions of the maxima seen in
the corresponding fluorescence spectrum, which is in line with the HEOM results. According to
the definition (38), the negative parts of FS indicate the reduction of intensity when an external
field is introduced, while the positive parts signify an increase of intensity. In the present case,
the effect is rather weak — the intensity of the maximum of the stronger fluorescence band
decreases by approximately 6% in an external field. Looking at the dashed line that shows
the second derivative of F , we see that its shape has some noticeable disagreements with the
results obtained using the two other methods. This could result in the static dipole moments
of the system being determined incorrectly using Eq. (44). A different situation is seen when
the energy gap between levels is large, ∆ε = 300 cm−1, which is shown in Fig. 2b. In the lower
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Figure 3: Same as Fig. 2 for the cases (a) J = 30 cm−1, (b) J = 300 cm−1.

part, we can see that this time the agreement between the exact HEOM results and the F ′′

curve is noticeably better, while the FBTS results are less accurate. This can be traced down
to the fact that the corresponding fluorescence spectrum is also calculated less accurately than
in the case of degenerate levels. Therefore, we conclude that the error in the FBTS calculations
increases as the energy gap increases. For molecules with a certain orientation, the external
electric field causes an even higher separation of the levels, which further reduces the accuracy
of FBTS leading to a less accurate Stark fluorescence spectrum.

Now let us consider the variation of the resonance coupling strength J . The analysis of the
case J = 30 cm−1 is shown in Fig. 3a. In the fluorescence spectrum, we notice that the weak
coupling does not separate the energy levels enough for two peaks to be visible. Indeed, the
eigenenergies predicted by the effective coupling theory (81) are ±57 cm−1, and the spectral
bands are too broad for the peaks to be resolvable. Speaking of the accuracy of FBTS, the
method provides the results that are close the exact ones. The Stark fluorescence spectrum, on
the other hand, is calculated less accurately, but qualitative correctness is certainly achieved.
Turning to the regime of strong molecular coupling, J = 300 cm−1, the FBTS performs better
at calculating both types of spectra as demonstrated in Fig. 3b. The second derivative also
provides a better fit of the Stark fluorescence spectrum, which can be attributed to the fact
that the bands corresponding to the different transitions are well-separated.

Finally, the dependence of the accuracy of FBTS on the subsystem–bath interaction strength
has to be investigated. In Fig. 4a we can see that the quantum-classical method works very well
when the subsystem interacts weakly (λ = 10 cm−1) with the bath, although the fluorescence
intensity of the high-frequency band is underestimated, leading to similar discrepancies in the
Stark fluorescence spectrum. The Liptay formalism is also certainly applicable in this regime as
the exact HEOM results indeed follow the shape of F ′′. We also notice that the Stark effect is
especially pronounced in this case — the intensity of the low-frequency band falls by almost a
third when an external field is switched on. This is to be expected because for small values of λ,
the bath-induced broadening of the spectral bands is small, hence the broadening due to the
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Figure 4: Same as Fig. 2 for the cases (a) λ = 10 cm−1, (b) λ = 100 cm−1.

external field is more noticeable. Meanwhile, strong interaction with the bath leads to relatively
weak intensity of the Stark fluorescence spectrum as shown in Fig. 4b, corresponding to the case
λ = 100 cm−1. This case poses difficulties for the FBTS as the shape of the calculated Stark
fluorescence spectrum differs appreciably from the HEOM results. This is especially true in the
region of the higher frequencies, where the fluorescence spectrum is also calculated inaccurately.
The second derivative curve likewise does not provide a reasonable fit of the exact results.

In summary, the results of this section show that the FBTS is generally applicable for
calculating the Stark fluorescence spectra. The dependence of the accuracy on the system
parameters is largely in line with the results of the thorough analysis performed in Ref. [50],
where the FBTS was applied for the calculations of system dynamics. Specifically, we conclude
that the accuracy in calculations of the Stark fluorescence spectra falls down for higher values of
the energy gap (∆ε) and reorganisation energies (λ). Conversely, stronger interaction between
the monomers (J) decreases the error.

2.2 Systems with one molecular-excitation state and one CT state

Now let us analyse a different model, where state |2〉 is a CT state. Such a state is described
by a zero transition moment, large static dipole moment, and a strong interaction with the
bath [11]. Correspondingly, we set µ02 = (0, 0, 0) and ∆µ22 = (0, 15, 0), whereas λ2 will be
varied. The dipole moments of the molecular-excitation state, |1〉, are the same as in the previous
section: µ01 = (1, 0, 0), ∆µ11 = (1.5, 0, 0). The reorganisation energy of the first state is chosen
to be rather small, λ1 = 10 cm−1, for a better contrast with the CT state. In the two following
sections, we will investigate two cases where the energy of the CT state will be either lower or
higher than that of the other state, which is optically bright.

A remark about notation has to be made. The global-basis eigenstates of Ĥeff will be denoted
as |n〉GB, where n = 1, 2. Correspondingly, the element (0, n) of the dipole moment matrix µ̂
transformed to the global basis will be denoted as µGB

0n , and it will represent the transition
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dipole moment from state |n〉GB to the ground state |0〉, with the latter being unaffected by
the transformation. Further, we note that it is a matter of choice which of the eigenstates to
call |1〉GB and which to call |2〉GB; it is only important to keep track of which state corresponds
to which energy and transition dipole moment. We will adopt the convention that the state
with the lower transition dipole moment in the global basis is called |2〉GB: |µGB

02 | < |µGB
01 |.

2.2.1 Case 1: εCT < εbright

We begin with the case where we set the bright state |1〉 to have higher energy than the CT
state |2〉:

ĤS =
100 100

100 0

 . (84)

The spectra calculated using this Hamiltonian with different values of λ2 are shown in Fig. 5.
First, we consider a system where state |2〉 is not exactly a CT state because of the weak coupling
with the bath, λ2 = 10 cm−1. In the fluorescence spectrum in Fig. 5a we can clearly see two
separate bands, including the ∼ 14900 cm−1 band corresponding to the transition |2〉GB → |0〉
even though the second state is optically dark. This is explained by the redistribution of the
oscillator strength that takes place due to the resonance coupling. A simple calculation shows
that in the global basis, the transition dipole moments redistribute as follows: |µGB

01 |2 = 0.73 D2,
|µGB

02 |2 = 0.27 D2, hence the transition from state |2〉GB becomes allowed. Although we obtain
that |µGB

02 |2 < |µGB
01 |2, the intensity of the |2〉GB → |0〉 transition band is nonetheless higher

than that of the |1〉GB → |0〉 transition band. This is in turn caused by a higher equilibrium
population of state |2〉GB: ρGB

22 = 0.74, ρGB
11 = 0.26. The FBTS, however, underestimates the

intensity of the high-frequency band, similarly to what we have seen in Fig. 4a. The same holds
true in the Stark fluorescence spectrum, which is now quite different from the case analysed in
Fig. 4a. In the lower part of Fig. 5a, we immediately notice that the Stark fluorescence spectrum
definitely does not have the shape of F ′′. We will now show that this is due to the dependence
of the equilibrium state populations on the orientation of the molecules.

When no external field is present, the subsystem Hamiltonian is given by Eq. (84), and the
eigenenergies of the subsystem are

εGB
1 = 150 cm−1, εGB

2 = −70 cm−1 (85)

(note that these are not the eigenvalues of ĤS from Eq. (84) but rather the eigenvalues of Ĥeff

from Eq. (81)). In the ensemble of molecules, some of them will be oriented in such a way so
that the static dipole moment of state |2〉 is aligned with the external field when it is applied:
∆µ22 ↑↑ E . In that case, the energy of state |2〉 changes by −∆µ22 · E = −756 cm−1, and the
subsystem Hamiltonian becomes

Ĥ↑↑S =
100 100

100 0− 756

 . (86)
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Figure 5: Spectra of systems with one bright state and one CT state, with εCT < εbright. Three cases
are shown: (a) λ2 = 10 cm−1, (b) λ2 = 100 cm−1, (c) λ2 = 200 cm−1.

The corresponding state energies and the transition dipole moments in the global basis are

ε↑↑1 = 101 cm−1, ε↑↑2 = −777 cm−1, (87)

|µ↑↑01|2 = 0.99 D2, |µ↑↑02|2 = 0.01 D2.

It follows that in this configuration, the energy of the bright state is lower than in the absence
of the field (i.e., ε↑↑1 < εGB

1 ) . Therefore, the high-frequency band shifts towards the lower
frequencies. However, since ε↑↑1 is considerably higher than ε↑↑2 , the population of state |1〉GB

is vanishingly small, so it almost does not fluoresce at all. Despite being overwhelmingly more
occupied, state |2〉GB barely fluoresces as well because of the small transition moment. The
corresponding region of fluorescence at ω ∼ 14223 cm−1 is not shown in Fig. 5a because the
intensity is unnoticeable there at the chosen scale. Thus, if a dimer is oriented in such a way
so that ∆µ22 ↑↑ E , then the fluorescence intensity of the original bands (corresponding to the
absence of the field) decreases, and no noticeable fluorescence appears at any other frequencies.
The analysed parallel orientation corresponds to an edge case, but the results may be extended
to the interval ϑ ∈ (0;π/2), where ϑ is the angle between ∆µ22 and E (orientations where
ϑ ∈ (π/2;π) will be studied below). For larger angles in this range, the difference between
the state energies is not as large, resulting in appreciable population of state |1〉GB. Given its
high transition dipole moment, that state does fluorescence, but the band shifts towards the
lower frequencies. Therefore, rather than simply broadening, the fluorescence band centred at
ω ≈ 15150 cm−1 (see Fig. 5a, upper panel) undergoes a shift, causing a decrease of intensity
at that frequency and an increase of intensity in the region of the lower frequencies. We note
in passing that the broadening of the |1〉GB → |0〉 transition due to the static dipole moment
∆µ11 was ignored in the reasoning because the magnitude of that effect is considerably smaller
compared to the discussed effects related to ∆µ22.
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Now let us consider the other edge case: ∆µ22 ↑↓ E . The Hamiltonian is now

Ĥ↑↓S =
100 100

100 0 + 756

 , (88)

and the corresponding subsystem parameters are

ε↑↓1 = 76 cm−1, ε↑↓2 = 760 cm−1, (89)

|µ↑↓01|2 = 0.98 D2, |µ↑↓02|2 = 0.02 D2.

As we can see, the energy of state |1〉GB is again lowered compared to the field-free case, causing
a redshift of the fluorescence band. Moreover, in this configuration, we have ε↑↓1 < ε↑↓2 , leading
to the population of state |1〉GB being close to unity, fostering high fluorescence intensity at
ω = 15076 cm−1. Meanwhile, the dark state shifts to higher frequencies but does not fluoresce
there because its population is low and the transition dipole moment is small. Similarly to the
previous configuration, the intensity of the dark state band (which is highly fluorescent when
no field is present) decreases.

To complete the analysis of Fig. 5a, we turn to an intermediate case where ∆µ22 is not too
far from being perpendicular to E and set ϑ = 105◦. We then have

Ĥϑ
S =

100 100
100 0 + 196

 , (90)

and

εϑ1 = 29 cm−1, εϑ2 = 247 cm−1, (91)

|µϑ01|2 = 0.72 D2, |µϑ02|2 = 0.28 D2.

Here, state |1〉GB ends up being even lower than in the two edge cases analysed before. Its popu-
lation and transition dipole moment are approximately 3 times greater than the corresponding
parameters of state |2〉GB, leading to high fluorescence yield. This and the similar configura-
tions contribute to the fluorescence in the region of ω ≈ 15050 cm−1 in the Stark fluorescence
spectrum.

Let us summarise the above analysis and connect it to the resulting Stark fluorescence
spectrum in Fig. 5a. The negative band centred at ω ≈ 14900 cm−1 appears because the external
field shifts the energy of state |2〉GB, either to the lower frequencies (up to ω ≈ 14223 cm−1) or
to the higher frequencies (up to ω ≈ 15760 cm−1). However, no noticeable increase of intensity
at those frequencies is observed because of the small resulting transition dipole moment of state
|2〉GB. Next, the negative band centred at ω ≈ 15150 cm−1 results because the external field
lowers the energy of state |1〉GB for most orientations, and the fluorescence band red-shifts. This
also contributes to the large intensity maximum positioned at ω ≈ 15050 cm−1 in the Stark
fluorescence spectrum.
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Since the Liptay formalism has been developed mainly for Stark absorption experiments [8],
the formula (43) becomes inadequate for simulating fluorescence spectra when the equilibrium
populations play a major role. As we have just shown, this occurs if one of the states possesses
a large static dipole moment and is therefore very sensitive to the external electric field.

Now let us consider a system where the dark state is a CT state which interacts with the
environment strongly. The case of λ2 = 100 cm−1 is illustrated in Fig. 5b. In the fluorescence
spectrum, we observe that the lower frequency band, corresponding to the transition from the
CT state, is broader than the higher frequency band. This happens precisely because of the
strong interaction with the environment. As a result, the left band is calculated less accurately
than the right one using the FBTS. In the Stark fluorescence spectrum, these discrepancies
translate to an overestimation of the intensity of the positive band, and one may only settle for
a qualitative agreement with the exact results. Comparing the shapes of the HEOM spectrum
and the F ′′ curve, we conclude that the latter certainly cannot be used to describe the actual
spectrum. This is in part attributed to the fact that the resulting spectrum is distinctly different
from all other Stark fluorescence spectra that we have studied so far in this work. Indeed, the
absolute values of the minima of the spectrum are equal to approximately 1 unit, while the
maximum of intensity reaches 6 units, so the minima are relatively shallow. This effect is even
more pronounced in the case of λ2 = 200 cm−1 shown in Fig. 5c, where the negative part of the
Stark fluorescence spectrum to the left of the main band is barely noticeable.

An essential feature of the Stark fluorescence spectra in Fig. 5 is that the integrated in-
tensities are positive rather than being close to zero as in all other cases studied before. This
means that the overall fluorescence intensity increases when the system is placed in an external
electric field. In the literature, such an increase is attributed exclusively to the decrease of the
rate of nonradiative relaxation processes which causes more molecules to relax by emitting a
photon [4,54]. Our simulations, however, do not take into account any nonradiative relaxation
channels, therefore, that explanation is inapplicable here.

We argue that the Stark fluorescence spectrum may become mostly positive specifically due
to the presence of a CT state, which is most pronounced in Fig. 5c. The Stark fluorescence
spectrum shown there may be analysed in the same way as we studied the case in Fig. 5a. The
main difference in the present case is that due to the strong coupling with the environment,
the CT state does not fluoresce intensely (i.e., its transition dipole moment is small). Hence,
when the field is introduced and the energy of the CT state is shifted, the reduction of intensity
of the original band is less noticeable. This explains the shallow minimum at ω ≈ 14800 cm−1

in Fig. 5c. On the other hand, the absence of a minimum at ω ≈ 15150 cm−1 is supported by
the fact that state |1〉GB red-shifts to a lesser extent. Comparing the positions of the maxima
of F and FS in Fig. 5c we can see a shift by only approximately 55 cm−1, while in case of
λ2 = 100 cm−1 the shift is by 81 cm−1 (see Fig. 5b), and for λ2 = 10 cm−1 it is 104 cm−1 (see
Fig. 5a).

The relative change η of the overall fluoresce yield may be calculated as the ratio between
the integrals of the Stark fluorescence spectrum and the corresponding field-free fluorescence
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spectrum:

η =
´∞
−∞ FS(ω) dω´∞
−∞ F (ω) dω . (92)

The values of η calculated from the HEOM data are provided in the corners of the lower
plots in Fig. 5. As we can see, the higher the value of λ2, the more noticeable the increase
of intensity is. If the CT state interacts with the bath strongly, λ2 = 200 cm−1, the intensity
increases more than 1.5 times when an external electric field is introduced. For comparison, in
the previously studied case of a system with two molecular-excitation states and reorganisation
energy λ = 100 cm−1 (Fig. 4b), we obtain η = 10−4, which is essentially zero at the tolerance
level used in our calculations.

We note that the increase of fluorescence yield may be evaluated approximately without
performing an actual calculation of the spectrum. It follows from Eq. (37) that the integral of
the spectrum is given by the initial value of the dipole–dipole correlation function. If we invoke
the approximation (73) at that time moment, just like we did to arrive at Eq. (79), we obtain

Cd−d(0) = TrSB
(
(µ̂ · σE)2ρ̂SB(0)

)
≈ TrS

(
(µ̂ · σE)2ρ̂S(0)

)
, (93)

where we used TrB
(
ρ̂B(0)

)
= 1. The subsystem density matrix may be approximated using

Eq. (80), and this way Cd−d(0) may be readily obtained. It only remains to perform the ori-
entational averaging, but this step introduces no difficulties. Our calculations have confirmed
that the values of η found using Eq. (93) do coincide with those obtained by a direct numerical
integration of the calculated HEOM spectra.

2.2.2 Case 2: εCT > εbright

The case when the energy of the bright state |1〉 is lower than that of the CT state |2〉 is
analysed is Fig. 6. The subsystem Hamiltonian in the absence of the field is chosen to be

ĤS =
 0 100

100 200

 . (94)

The first thing we notice in Fig. 6 is that the FBTS is highly accurate in almost all of the
demonstrated spectra, with the exception of the Stark fluorescence spectrum in the λ2 =
200 cm−1 case. Next, we find that the intensity of the right fluorescence band, corresponding
to the transition from the CT state, is very weak, and this band is clearly resolved only in the
fluorescence spectrum in the λ2 = 10 cm−1 case. This is natural since the CT state has a small
transition dipole moment and its population is also small because its energy is higher than that
of the bright state. Speaking of the λ2 = 10 cm−1 case, we may state that the Stark fluorescence
spectrum does resemble the shape of F ′′, although the agreement is imperfect.

The main effect responsible for the shapes of the depicted Stark fluorescence spectra is the
following. The external field may cause the energy of state |2〉GB to become even higher than
when there is no field, and as a result of the resonance coupling, the energy of state |1〉GB
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Figure 6: Spectra of systems with one bright state and one CT state, with εCT > εbright. Three cases
are shown: (a) λ2 = 10 cm−1, (b) λ2 = 100 cm−1, (c) λ2 = 200 cm−1.

becomes higher as well. When the energy of state |2〉GB becomes lower than that of state |1〉GB,
the energy of the latter again increases. This causes a blueshift of the highly intense fluorescence
band at ω ≈ 14950 cm−1. Consequently, the fluorescence at ω ≈ 14950 cm−1 becomes less
intense, while the fluorescence intensity at ω ≈ 15050 cm−1 increases, which is illustrated in the
Stark fluorescence spectra.

Calculated values of the overall change of the fluorescence intensity are presented in the
lower plots of Fig. 6. As we can see, the fluorescence yield decreases in an external field, but
if the CT state interacts with the environment very strongly, λ2 = 200 cm−1, the decrease
is hardly noticeable (η = −2%). Once again, as we mentioned when studying the case of
εbright > εCT in the previous section, an experimentalist’s conclusion of such results would be
that the nonradiative relaxation processes become more active in the presence of an external
field, leading to the decrease of fluorescence yield [3,5,13,54–58]. Our results, however, indicate
that the fluorescence yield may decrease due to the presence of a CT state in the system. It is
therefore likely that both effects are present in the actual experiments.

2.3 Systems with two molecular-excitation states and one CT state

Now let us study the spectra of slightly more complex systems, consisting of two molecular
excitations (|1〉, |2〉) and one CT state (|CT〉 ≡ |3〉). In the global basis, we will refer to the state
with the smallest transition dipole moment as |CT〉GB ≡ |3〉GB, while the two other states will
be called |1〉GB and |2〉GB. First, we choose the energy of the CT state to lie lower than those of
the other two states, which resembles the case εCT < εbright of Section 2.2.1. The Hamiltonian
of the system is the following:

ĤS =


0 50 100
50 100 100
100 100 −100

 . (95)
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Figure 7: Spectra of systems with two molecular-excitation states and one CT state, with
εCT < ε1 < ε2. Two cases are shown: (a) λ = 10 cm−1, (b) λ = 20 cm−1.

Here and in the following Hamiltonians, the CT state is characterised by the third row and third
column. In the present case, the energies of the states are thus (neglecting the 15000 cm−1 bias)
ε1 = 0, ε2 = 100 cm−1, εCT ≡ ε3 = −100 cm−1. The off-diagonal elements of the Hamiltonian
represent the couplings between the states: the strength of the coupling between the bright
states is 50 cm−1, while the interaction between the bright states and the CT state is twice
stronger. The subsystem–bath coupling is specified as follows: we choose a certain base value
λ, and the interaction strength for each n-th state is then given by λn = κnλ, where κn is
a numerical factor. For all of the systems studied in this section, we set κ1 = κ2 = 1 and
κCT ≡ κ3 = 10.

The spectra calculated using the Hamiltonian in Eq. (95) are studied in Fig. 7. In the
field-free fluorescence spectra, we can clearly see two bands corresponding to the bright states.
The band corresponding to the CT state, on the other hand, is not directly visible, but it
is responsible for the broad tail in the region of lower frequencies. The fluorescence spectra
calculated using the FBTS match the HEOM results rather well, although the error is larger in
the case of stronger subsystem–bath coupling shown in Fig. 7b. Arguably, that case turns out
to be outside of the range of validity of the FBTS if one is interested in the Stark fluorescence
spectrum. In the lower part of Fig. 7b, we observe that the FBTS overestimates the intensities
of the bands considerably, and their relative intensities are also determined inaccurately. The
situation is thus qualitatively the same as in Figs. 5b and 5c, except that here we have two
bright states rather than one, and hence two maxima instead of one. The main effect is again
that the energies of the bright states become lower in the external electric field due to the
coupling with the CT state, and the spectral bands red-shift. Finally, we note that the FBTS
remains valid in the regime of weaker subsystem–bath interaction (Figs. 7a), while the Liptay
formalism is inapplicable in both cases.
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Figure 8: Spectra of systems with two molecular-excitation states and one CT state, with
ε1 < εCT < ε2. Two cases are shown: (a) λ = 10 cm−1, (b) λ = 20 cm−1.

Next, we turn to a subsystem with the Hamiltonian

ĤS =


0 50 100
50 200 100
100 100 100

 , (96)

where the energies are arranged in such a way so that ε1 < εCT < ε2. Looking closely at the
fluorescence spectrum calculated using HEOM in Fig. 8a, we notice that the broad band centred
at ω ≈ 15000 cm−1 is composed of two bands, one of which in fact corresponds to state |CT〉GB.
According to the effective coupling theory, those bands should be centred at εGB

1 = −100 cm−1

and εGB
CT = 27 cm−1, and corresponding the transition dipole moments are |µGB

01 |2 = 0.47 D2

and |µGB
03 |2 = 0.70 D2. The CT state thus no longer remains dark in the global basis, and it is

responsible for the peak at ω ≈ 27 cm−1. Consequently, in the Stark fluorescence spectrum in
Fig. 8a, we can see three minima corresponding to the three bands of the fluorescence spectrum.
The FBTS provides a satisfactory fit of the correct HEOM spectrum, while the F ′′ curve does
not. In Fig. 8b, we can see that the strong coupling again presents difficulties for the FBTS
when calculating the Stark fluorescence spectrum. As a result, the quantum-classical method
predicts an increase of fluorescence yield by 20%, while the (correct) HEOM result is η = +1%.

The final system studied in this section is described by the Hamiltonian

ĤS =


0 50 100
50 100 100
100 100 200

 . (97)

Here, similarly to the system discussed in Section 2.2.2, the energy of the CT state is the
highest in the system: εCT > ε2 > ε1. Comparing the spectra corresponding to the present case
(Fig. 9) to those shown in Fig. 6 we notice that they are quite similar. The Stark fluorescence
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Figure 9: Spectra of systems with two molecular-excitation states and one CT state, with
εCT > ε2 > ε1. Two cases are shown: (a) λ = 10 cm−1, (b) λ = 20 cm−1.

spectra indicate a blueshift of the spectral bands when the field is introduced, and an overall
decrease of fluorescence yield takes place. In the upper panel of Fig. 9a, the fluorescence band
at ω ≈ 15000 cm−1 consists of two bands whose maxima are positioned at εGB

1 = −62 cm−1

and εGB
2 = 13 cm−1 according to the effective coupling theory. This explains the corresponding

minima of the F ′′ curve, but the HEOM results indicate that the shape of the correct Stark
fluorescence spectrum is a different one. The FBTS results agree with these exact results,
but the method once again leads to inaccurate results in the case of stronger subsystem–bath
interaction, shown Fig. 9b.
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3 Discussion

Let us now summarise the main results of the simulations. In our study we concentrated
on three main points: the main features of the Stark fluorescence spectra, the range of validity
of the FBTS results, and the applicability of the Liptay formalism. We discuss each aspect
separately in the following sections.

3.1 Main features of the Stark fluorescence spectra

The initial part of our analysis has shown that when the static dipole moments of the sub-
system are small (∼ 1.5 D), the shapes of the Stark fluorescence spectra are quite predictable.
They largely follow the shapes of the second derivatives of the corresponding field-free fluor-
escence spectra, allowing for a well-known and a rather straightforward explanation. On the
other hand, the presence of states with a large dipole moment (∼ 15 D) leads to non-trivial
results. Analysis of a two-level subsystem where the dipole moments of the states are 1.5 D and
15 D has revealed that an increase or a reduction of total fluorescence yield may be observed
when the system is placed in an external electric field. In the Stark fluorescence spectra, this
is signified by the integrated intensity being either positive or negative. We argue that this is
caused by a change of the average state populations which occurs in an electric field. Let us
illustrate this with a calculation for a simplified model.

Consider an ensemble of two-level molecules described by the Hamiltonian

Ĥ =
ε1 0

0 ε2

 , (98)

where the resonant coupling between the states is assumed to be small and is therefore neglected.
Let this ensemble interact with a bath of inverse temperature β. According to the canonical
distribution, the density matrix of each molecule of the ensemble is

ρ̂ = e−βĤ

Tr(e−βĤ)
=


1

1 + eβ∆ 0

0 1
1 + e−β∆

 , ∆ ≡ ε1 − ε2. (99)

When an external electric field is turned on, the Hamiltonian of each molecule becomes

ĤE(ϑ, φ) =
ε1 − µ11 · E 0

0 ε2 − µ22 · E

 , (100)

where µ11 and µ22 are the static dipole moments of the states. The density matrices of the
molecules will then depend on the orientation:

ρ̂E(ϑ, φ) =


1

1 + eβ(∆−µ·E) 0

0 1
1 + e−β(∆+µ·E)

 , µ ≡ µ11 − µ22. (101)
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Figure 10: Schematic representation of the subsystem energy levels for different angles ϑ between
µ and E. The green circles represent level populations, and a small circle indicates ∼ 3% of the
total population. The figure is drawn to scale — the sizes of the energy gaps and the relative level
populations illustrate the calculations of Section 2.2.1, Eqs. (85)–(91).

The aim is now to compare the average population of state |1〉 with and without the field. The
orientationally-averaged population of state |1〉 with the field on is

〈
ρE11

〉
or

= 1
4π

2πˆ

0

dφ
πˆ

0

dϑ sinϑ 1
1 + eβ(∆−µE cosϑ) = 1− 1

2βµE ln 1 + eβ(∆+µE)

1 + eβ(∆−µE) . (102)

As we can see, generally, the external field changes the average population:
〈
ρE11

〉
or
6= ρ11.

Specifically, we have 

〈
ρE11

〉
or
> ρ11 if ∆ > 0,〈

ρE11

〉
or
< ρ11 if ∆ < 0,〈

ρE11

〉
or

= ρ11 if ∆ = 0.

(103)

Thus, the average population of the level that is higher (when no field is present) increases in the
external field, and the average population of the lower one decreases. The process is illustrated
in Fig. 10, which corresponds to the situations calculated in Section 2.2.1, Eqs. (85)–(91).
The populations of the levels are proportional to the number of green circles (a small circle
indicates ∼ 3% of the total population), and ϑ is the angle between µ and E . The leftmost
part corresponds to the situation when no external field is present or when µ ⊥ E . When the
orientation of the field is such that ϑ < 90◦, the population of the higher level reduces, but
not by a substantial amount since it is small even without the field. In the depicted edge case
when ϑ = 0, the decrease of population is by ∼ 90%. On the contrary, when the orientation
is such that ϑ > 90◦, the population of the level that was initially higher increases noticeably
— by ∼ 200% when ϑ = 180◦. As the calculation above has shown, on average, an increase
of population takes place. If we now choose state |2〉 to be dark, then an overall increase of
fluorescence yield will be observed in an external field because there will be more molecules in
the bright states |1〉 compared to the field-free situation.

In Fig. 10, it is assumed that the static dipole moments of the states are different and the
static dipole moment of state |2〉 (and hence of |2〉GB as well) is greater, corresponding to the
case studied in Section 2.2.1. We have also illustrated that the energy of state |1〉GB depends
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on the orientation, even if its static dipole moment is zero — this is supported by the direct
calculations performed in Section 2.2.1. The exact energies of the states therefore depend on
the orientation and the specific values of µ11 and µ22. On the other hand, as far as the average
populations are concerned, only the magnitude of the difference vector µ is important (for this
illustratory system, at least), which is clearly seen in Eq. (102).

Finally, let us evaluate the magnitude of the possible increase of the average population of
the higher level. Choosing parameters similar to those used in Section 2.2.1,

ε1 = 100 cm−1, ε2 = 0, T = 300 K, E = 3 MV/cm, µ = 15 D. (104)

we find
ρ11 = 0.38, ρE11 = 0.44, (105)

which yields a 14% increase of the average population of the bright state. Meanwhile, we ob-
tained an increase of the fluorescence yield η = +13% in Section 2.2.1 when the subsystem–bath
coupling was small (see Fig. 5a). Obviously, the similarity of these results is mostly accidental
since we neglected the coupling between the states in the present calculation. Moreover, ad-
ditional orientational effects arising from the terms µ̂ · σE in the dipole–dipole correlation
function (31) are important for the calculation of spectra. Nevertheless, the calculation of the
average populations preformed here provides an explanation of this effect, and it also explains
the growth of the value of η for higher reorganisation energies that was observed in Section 2.2.1
(see Fig. 5). Indeed, according to the effective coupling theory, if the reorganisation energies
of the states are different, then the energy gap between them increases (note the −Λ̂ term
in Eq. (81)), and it follows from Eqs. (99) and (102) that the relative increase of population,(〈
ρE11

〉
or
− ρ11

)
/ρ11, grows monotonically with increasing energy gap ∆. For clarity, we note

that the reduction of the fluorescence yield that we found in Section 2.2.2 (see Fig. 6) is caused
by the fact that there, the bright state is lower than the dark one, and the orientationally-
averaged population of the lower state reduces in an external field (see Eq. (103)).

The simulations of the three-level subsystems that we performed in Section 2.3 have demon-
strated that the resulting Stark fluorescence spectra may be interpreted similarly to those
corresponding to the two-level systems. When the CT state, possessing a large static dipole
moment, was the lowest state in the system, a total increase of fluorescence yield in an external
field was observed. When the energy of the CT state was in the middle of the energies of the
two other states, we have seen a reduction of fluorescence intensity for smaller values of λ
and an increase for higher values. Systems where the CT state is the highest indicate that the
fluorescence intensity decreases when an external electric field is introduced.

3.2 Range of validity of the FBTS results

Reviewing the accuracy of the spectra calculated using the FBTS, we may notice several
trends although generally the dependence of the accuracy on the parameters is non-trivial. First,
all of the calculated field-free fluorescence spectra provide quantitatively correct results and may
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be used for fitting experimental data. On the other hand, the Stark fluorescence spectra are
calculated less accurately in almost all of the studied cases — even the smallest discrepancies
seen in the field-free spectra seem to be amplified in the corresponding Stark spectra. Next,
the accuracy almost certainly falls down with increasing subsystem–bath coupling strength. If
at least one of the subsystem states interacts with the environment strongly (λ ∼ 100 cm−1),
one should not expect the calculated Stark fluorescence spectrum to be quantitatively correct.
The results in Fig. 6b, however, present an exception as the FBTS Stark spectrum matches
the exact HEOM curves almost perfectly in that case. Turning to the three-level subsystems,
we notice that very strong interaction with the environment (λ ∼ 200 cm−1) might lead to the
FBTS results being wrong even at the qualitative level.

Thus, we are lead to conclude that the FBTS may prove useful for simulating and perhaps
analysing the experimental data of the field-free fluorescence spectra. The FBTS may also be
used to get an estimate of the shape of the Stark fluorescence spectrum if the model of the
subsystem assumes moderate strength of coupling with the bath (λ . 100 cm−1).

3.3 Applicability of the Liptay formalism

Application of the Liptay formalism for the Stark fluorescence spectra simulated in this
work has revealed that the second derivative curve provides a reasonable approximation of the
exact results only when there are no CT states in the system. Even if a band corresponding to
a CT state is clearly visible in the field-free fluorescence spectrum, it does not simply broaden
when the fields is applied, but causes a shift of other bands and a change in the fluorescence
yield as discussed in Section 3.1. These effects are not encoded in the shapes of the field-free
spectra and therefore cannot be represented correctly by the second derivative curves.

At this point, it might appear that we should have tried fitting the spectra using all three
terms of the Liptay formula (43) instead of using only the last one. While it is likely that
we would have been able to get a very good agreement with the exact results that way, the
interpretation of the fitted coefficient would be questionable. For example, the inclusion of the
first derivative component would certainly provide a better fit in cases when the band shift
is observed, but the obtained coefficient Bχ would indicate that some of the elements of the
polarisability tensor are non-zero, which does not correspond to the actual model that we used.
It is, however, possible that the Liptay formula (43) may nonetheless be useful if the expressions
for the coefficients are adapted to account for the effects caused by the CT states.
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Conclusions

1. The presence of charge-transfer states in the system may cause a change of the total
fluorescence yield in an external electric field: an increase if the energy of this state is the
lowest in the system, or a reduction if its energy is the highest among all states.

2. The quantum-classical FBTS method may be applied for simulating the Stark fluorescence
spectra if the subsystem–bath coupling strength does not exceed the strength of the
resonance coupling (λ/J > 1).

3. The Liptay formalism does not allow for an estimation of the magnitude of the specific
effects caused by the presence of charge-transfer states in the system.
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Jakov Braver

Molekulinių sistemų fluorescencijos Štarko spektrų modeliavimas

Santrauka

Optinė spektroskopija yra pagrindinis molekulinių sistemų tyrimo būdas. Ypač informatyvūs
yra Štarko spektroskopijos eksperimentai, leidžiantys nustatyti sistemos elektrinius dipolinius
momentus ir poliarizuojamumus. Fluorescencijos (ir, analogiškai, sugerties) Štarko spektras api-
brėžiamas kaip dviejų spektrų skirtumas: išmatuoto esant išoriniam statiniam elektriniam lau-
kui ir be jo. Šie skirtuminiai spektrai padeda charakterizuoti dideliu statiniu elektriniu dipoliniu
momentu pasižyminčias tamsines krūvio pernašos (CT) būsenas, atliekančias svarbų vaidmenį
fotosintezės procese.

Eksperimentinių duomenų interpretacija yra sudėtingas uždavinys, nes registruojamą spekt-
rą neišvengiamai lemia daug įvairių fizikinių efektų ir sistemoje vykstančių procesų. Štarko
spektroskopinių duomenų analizei plačiai naudojamas Liptay formalizmas, kuris dėka savo pa-
prastumo tapo pagrindiniu ir, faktiškai, vieninteliu analizės būdu, taikomu šioje srityje. Tačiau
keliuose darbuose buvo pastebėta, kad naudojantis šiuo analizės būdu gaunamos nefizikinės
sistemos parametrų reikšmės. Buvo pradėta kurti naujas Štarko spektrų analizės metodikas,
tačiau kol kas jos apsiriboja tik paprastesniais – sugerties – Štarko spektrais. Iki šiol literatūro-
je nėra paskelbta fluorescencijos Štarko spektrų modeliavimo metodikų, paremtų mikroskopiniu
aprašymu, – esamas darbas yra pirmasis žingsnis šia linkme.

Šio darbo tikslas yra sumodeliuoti fluorescencijos Štarko spektrus ir išsiaiškinti, kokią įta-
ką spektrų formai turi sistemoje esančios CT būsenos. Modeliavimo metu tikrinama, ar Liptay
formalizmo rezultatai sutampa su gaunamais kitu, formaliai tiksliu metodu. Taip pat siekiama
pritaikyti fluorescencijos Štarko spektrų skaičiavimui kvantine-klasikine teorija paremtą meto-
dą, kuris galėtų būti naudojamas tais atvejais, kai formaliai tikslus skaičiavimas nėra įmanomas.

Skaičiavimams atlikti taikoma atvirųjų kvantinių sistemų teorija: molekulinė sistema skirsto-
ma į elektroninių lygmenų posistemę ir virpesinę aplinką. Spontaninis spinduliavimas aprašomas
naudojantis kvantinės elektrodinamikos principais, o fluorescencijos Štarko spektras skaičiuo-
jamas kaip dipolių koreliacinės funkcijos Furjė vaizdas. Formaliai tikslūs rezultatai gaunami
Hierarchinių judėjimo lygčių (HEOM) metodu, tačiau jis pasižymi keliais trukumais: jis tinka
tik siaurai modelių klasei ir netinka didelių sistemų modeliavimui dėl per didelio kiekio reika-
lingų skaičiavimo resursų. Šių trūkumų pavyksta išvengti pritaikius kvantine-klasikine teorija
paremtą Tiesioginių ir atgalinių trajektorijų sprendinio (FBTS) metodą.

Pirmame šio darbo etape modeliuojamos sistemos, sudarytos iš dviejų sužadintų elektroninių
būsenų, kurios abi yra šviesinės. Varijuojant sistemos parametrus, nustatoma, kad daugumoje
atvejų FBTS metodas leidžia kiekybiškai teisingai suskaičiuoti šių sistemų tiek įprastus fluores-
cencijos, tiek fluorescencijos Štarko spektrus. Detalizuojant, FBTS tikslumas krenta stiprėjant
posistemės sąveikos su aplinka stipriui, didėjant energijos tarpui tarp lygmenų bei esant silpnai
sąveikai tarp jų. Liptay formulės tikslumas yra panašus.
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Antrame etape nagrinėjamos sistemos, kuriose viena būsena yra šviesinė, o kita – tamsinė
CT būsena. Šiuo atveju fluorescencijos Štarko spektruose stebima, kad suminis fluorescenci-
jos intensyvumas padidėja esant išoriniam elektriniam laukui, jeigu CT būsenos energija yra
mažesnė nei šviesinės būsenos (kai išorinio lauko nėra). Priešingu atveju stebimas suminio flu-
orescencijos intensyvumo sumažėjimas įjungus išorinį lauką. Taip pat rezultatai nurodo, kad
Liptay formulė yra praktiškai netinkama šiais atvejais, kadangi jos pagalba suskaičiuoti spektrai
net kokybiškai nesutampa su HEOM rezultatais. Tuo tarpu kvantinis-klasikinis FBTS meto-
das yra kokybiškai teisingas, nors tikslumas yra nepatenkinamas tais atvejais, kai CT būsenos
sąveikos su aplinka stipris yra labai didelis.

Trečiame etape sistemos papildomos dar viena šviesine būsena, taigi iš viso sistemoje yra dvi
šviesinės būsenos ir viena CT būsena. Fluorescencijos Štarko spektruose vėl stebimas suminio
fluorescencijos intensyvumo padidėjimas arba sumažėjimas priklausomai nuo būsenų energijų
konfigūracijos. Nustatoma, kad Liptay formulė yra netinkama nė vienu išnagrinėtu atveju, o
FBTS metodas tinka tik kai CT būsenos sąveikos su aplinka stipris yra vidutinio stiprumo, bet
net ir tais atvejais kiekybinis tikslumas nėra užtikrinamas.

Paskutinėje darbo dalyje analiziškai išnagrinėjama dviejų lygmenų sistema esant išoriniam
elektriniam laukui. Pasirinkus supaprastintą sistemą, kurioje sąveikos tarp lygmenų galima ne-
paisyti, suskaičiuojamos vidutinės lygmenų užpildos, suvirdurkinant per būsenų statinio dipo-
linio momento ir išorinio elektrinio lauko tarpusavio orientacijas. Šie skaičiavimai rodo, kad
aukštesnės energijos lygmens užpilda padidėja išoriniame elektriniame lauke lyginant su atve-
ju, kai lauko nėra. Atitinkamai, vidutinė žemesnio lygmens užpilda sumažėja išoriniame lauke.
Taip paaiškinami fluorescencijos Štarko spektruose stebimi suminio intensyvumo padidėjimai
arba sumažėjimai.

Darbo pabaigoje suformuluojamos šios išvados:

1. Krūvio pernašos būsenų buvimas sistemoje gali sukelti suminio fluorescencijos intensyvu-
mo pokytį išoriniame elektriniame lauke: padidėjimą, jei šios būsenos energija mažesnė
nei kitų būsenų energijos, arba sumažėjimą, jei jos energija didesnė nei kitų būsenų.

2. Kvantinis-klasikinis FBTS metodas gali būti taikomas fluorescencijos Štarko spektrų mo-
deliavimui, jeigu posistemės sąveikos su aplinka stipris neviršija rezonansinės sąveikos
stiprio (λ/J > 1).

3. Liptay formalizmas neleidžia nustatyti krūvio pernašos būsenų sukeltų efektų didumo.
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