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Summary

We describe a parametric model for the P-wave of a single electrocardiogram (ECG) lead trajectory. Though
previously met in the bioengineering literature, the model was not treated in a complete parametric fashion. The
paper fills the gap by making use of both frequentist and Bayesian approaches. Supporting real data example is
provided. Further potential applications are also discussed.
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1. Introduction

Electrocardiogram (ECG) is a well-established
tool in daily cardiological practice. The list of
its applications includes usage for interpreta-
tion of the cardiac rhythm, detection of my-
ocardial ischemia and infarction, conduction sys-
tem abnormalities, preexcitation, long QT syn-
dromes, atrial abnormalities, ventricular hyper-
trophy, pericarditis as well as other conditions [1].
An important thing to note is that particular ap-
plications usually are tied to some specific ECG
segment the whole set of which is depicted in
Fig. 1 and reflects different phases of the cardiac
cycle. For example, diagnosis of myocardial in-
farction (MI) is based on ST-segment whereas that
of atrial fibrillation – on (absence of) a P-wave.

Therefore, it is not surprising that the literature
is abundant of items dealing with analysis and
modeling of data coming from some distinct ECG
segment. In what follows, by analysis and model-
ing we reference two distinct branches of ongoing
research. To modeling we assign all items dealing
with an analytic model of the ECG curve corre-
sponding to the single cardiac cycle as well as

* Corresponding address: V. Skorniakov, Faculty of Mathe-
matics and Informatics, Vilnius University, Vilnius, Naugar-
duko str. 24, LT-03225, Lithuania

Phone: +370 684 88083
E-mail: viktor.skorniakov@mif.vu.lt.

Figure 1. Single ECG wave of a heart in normal sinus rhythm.

items dealing with an ECG curve measuring (in-
cluding whole ECG, distinct segments or certain
characteristics) technique, e.g., [2,3]. Analysis
branch refers to the set of research items drawing
an inference based on some adopted model or,
as is usual in medical practice, on visual and/or
manual assessment of ECG ([4,5] may serve as ex-
emplary references). There are, of course, research
items spanning both branches [6–10]. Here, as a
rule, the authors introduce some novel measuring
technique or analytic model, and then its capabil-
ity to describe particular pathology is tested.

DOI:10.2478/semcard-2021-0001 1
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Figure 2. Single P-wave’s approximation by Gaussian mixtures
having different numbers of kernels [8].

The present paper is devoted to a particular
analytic model of the P-wave of the ECG curve.
To our best knowledge, the model was consid-
ered in [2], and later in [8]. The main idea is to
represent the P-wave as a mixture of Gaussian
curves perturbed by a random noise stemming
from the measuring device. Figure 2, reproduced
from Fig. 3 of [8], shows a single P-wave trajectory
approximated by mixtures having different num-
bers of Gaussian curves. Fit seems quite good and
thus justifies assumption regarding chosen ana-
lytic form.

Turning to biomedical literature cited previ-
ously, one finds that, in addition to this model,
there are a lot of other analytic and numerical
methods to characterize ECG ([11] gives a very
exhaustive review of the topic as a whole, and
the very recent review [12] focuses on Machine
Learning models in particular). Based on these,
various accurate computer-aided cardiac diagno-
sis (CACD) systems are developed. Taking all the
said into account, the question regarding our re-
consideration occurs. The reasons are as follows.
First of all, we consider fully specified parametric
version, resulting in a rigorous statistical model,
suitable for parametric inference. [2] and [8] dis-
cussed semi-parametric versions and focused only
on the estimation of model parameters without
any discussion regarding further inference. Sec-
ondly, we consider a modification of versions
given in [2] and [8]. Therefore, at least formally,
the model may be termed as a new one. Thirdly,
up to date, even most advanced automated sys-
tems designed for computerized interpretation of
ECG readings still cannot replace human beings
[13]. Thus, the new model in the toolbox does
not seem redundant. Finally, in contrast to many
previously referenced sophisticated models, the
model considered exhibits the following list of
features:

– simplicity;

– ability to describe dynamics of the P-wave
quite accurately by a small set of scalar param-
eters having a clear physical interpretation;

– ability to conduct simple and rigorously
grounded statistical analysis, involving virtu-
ally any interesting characteristics computed
from the previously mentioned set of param-
eters.

In our opinion, these features are very valu-
able when turning to causal inference, and they
are usually unavailable in case of application of
“black box” methods of Machine Learning. To
gain a couple of concrete examples, consider: a)
exploratory analysis devoted to looking for rela-
tionships between newly emerging markers and
the P-wave; b) construction of the confidence in-
terval for a peak time of the P-wave curve in
a population of healthy young individuals. In
Sect. 3, we outline other possible applications and
extensions.

The untouched part of the paper consists of
Sect. 2 and the Appendix. In Sect. 2, we provide
a specification of the model, two possible ways
of parameters’ estimation, and comments regard-
ing subsequent statistical inference. Here one also
finds exemplary real-data implementation. The
Appendix is devoted to computational and some
mathematical details.

2. Model

2.1. General setting
We assume that one records single subject’s P-

wave within a fixed time interval [0,T]. In a fully
non-parametric approach, an observed trajectory
is then described by a continuous time process1

X = (Xt), t ∈ [0,T], having a mean function μt =
EXt and a variance function σ2

t = E(Xt – μt)2, t ∈
[0,T]. Since we had an ability to take a series of
independent measurements of the same subject,
the data at hand was given by a discrete set

{Xk,ti : k = 1, . . . ,m; i = 0, . . . ,n} (1)

where:

– Xk = (Xk,t) are independent identically dis-
tributed (i.i.d.) copies of X = (Xt);

– Xk,ti denotes an observation made at time
point ti and coming from the trajectory Xk.

Our goal was then to gain a consistent esti-
mator of (μt), which could be further used for a

1 for short, further on we omit time interval [0, T]; unless
stated otherwise, it is assumed that all processes considered
evolve within this particular interval
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subsequent statistical analysis, carried out by a
physician and aiming at establishing some diag-
nosis, comparison of controls with those being ill,
etc.

Since all variables involved are bounded, by
the Law of Large Numbers (LLN),

μ̂t = Xt =
X1,t + · · · + Xm,t

m
P→ μt and

σ̂2
t = S2

t =
1
m

m∑

k=1

(Xk,t – Xt)2 P→ σ2
t

(2)

giving one pair of possible estimators for μt , σ2
t .

However, μ̂t has a drawback of being completely
non-parametric and inconvenient to work with
for an ordinary practitioner. It is, therefore, de-
sirable to provide a more handy alternative. The
latter is presented in the forthcoming subsection
with all notions introduced retained unaltered
unless stated otherwise.

2.2. Parametric version
Our single subject’s data consisted of m =

258 trajectories each of which was measured at
equally spaced 251 time points corresponding to
n = 250 in (1). More details regarding measure-
ment procedure are given in the Appendix. Here,
we focus on the model specification. In what
follows, m, n always stand for the quantities in-
troduced by the formula (1). Figure 3 depicts all
trajectories shifted to the same origin, with a bold
line showing μ̂t , t = t0, . . . , tn given by (2). An ob-
served pattern implies that (μt) could be well ap-
proximated by some mixture of Gaussian curves
t �→ ae( t–τ

σ )2
. By making use of least squares estima-

tion (LSE), this was done in [2] and [8]. However,
any further consideration of the distribution of
obtained quantities, which is necessary for subse-
quent statistical inference, was provided. In our
refinement, we assumed that

Xk,ti = a0 + τ0ti +
p∑

j=1

aje
–(

ti–τj
σj

)2

+ εk,i. (3)

Figure 3. Single subject’s readings: averaged P-wave corre-
sponds to point averaged curve.

Where εk,i ∼ N(0;σ2
0), k = 1, . . . ,m; i = 0, . . . ,n, are

independent random variables (r. vs.) and aj, τj,
σj ∈ R are unknown model parameters. Hence,
our model differed from counterparts of [2,8] by
an addition of a linear term a0 + τ0ti, which is
well seen in Fig. 3, and a fully specified distribu-
tion of the remainder εk,i. Since (3) is a particular
version of a non-linear Gaussian regression, our
first choice was to estimate unknown parameters
by making use of Maximum Likelihood Estima-
tion (MLE) procedure [14], Ch. 5.5. An alternative
competing method was empirical Bayes (EB) ap-
proach [15]. From Table 1 and Fig. 4 (we do not
provide a graphical illustration for the MLE case
since the view obtained was essentially the same),
it is seen that both methods produced very simi-
lar and accurate fit. The details regarding compu-
tations are given in the Appendix. Here we restrict
ourselves to comments regarding statistical infer-
ence.

These are as follows.

1. MLE offers a well-developed asymptotic the-
ory. Since the sample size is large, by taking
this approach, one ends with a set of accurate
and consistent point estimates (PEs) accom-
panied by corresponding confidence intervals
(CIs). Consequently, point hypothesis testing
is readily available. Moreover, Delta method
[14], Ch. 3, allows obtaining both PEs and CIs
for a very broad class of functions of model
parameters, whose values may be of practical
interest in applications.

2. EB approach, though being more expensive
computationally, in addition to PEs and CIs,
offers a flexible framework for interval hy-
pothesis testing. In our opinion, in this par-
ticular setting, empirical estimators of prior
parameters are very natural. Therefore, the
usual criticism of Bayes approach regarding
the choice of priors’ parameters does not seem
to be an obstacle here. However, one can al-
ways argue regarding the choice of prior dis-
tributions. It is a place to say that we have
used normal priors for all parameters. This
worked well for us, yet one is free to consider
alternatives. We did not settle on that since
our goal was to illustrate the work of method
and a good fit was the criterion for putting
other alternatives aside.

3. Both methods are readily available in ev-
ery widely used statistical package. Therefore,
using the information provided in the Ap-
pendix, it is easy to adopt model (3).

3
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Figure 4. Model prediction and residuals: empirical Bayesian approach.

Table 1.
Summaries of models

Modela Estimated mean equation R2
adj. (R2

raw) MSEb

MLE 12.692 + 0.084t + 36.086e–( t–185.000
22.721 )2 – 28.668e–( t–234.000

26.505 )2 0.883 (0.888) 33.363

EB 12.593 + 0.085t + 35.031e–( t–186.930
22.514 )2 – 26.4748e–( t–235.282

28.692 )2 0.883 (0.888) 33.353

aMLE: Maximum Likelihood Estimation based model; EB: empirical Bayesian approach based model; bmean squared error.

3. Possible applications and extensions

We first discuss possible model extensions,
which are then also incorporated into subsection
devoted to possible applications.

3.1. Extensions
Model (3) describes the pattern of a single sub-

ject’s P-wave curve. To extend the model to the
whole subjects’ population, it is reasonable to
assume that the model is subject-specific. That
is, having a sample of N independent subjects,
a subject having number i is described by his
own set of parameters {(aji, τji,σji)}pi

j=0, i = 1, . . . ,N
(note that, for different subjects, we allow differ-
ent numbers of parameters). By taking such an
approach, we identify randomly drawn subject
with a random draw of parameters from the cor-
responding parameters’ space. Subject’s param-
eters estimation methods discussed in Sect. 2.2
remain valid since the model given there may
be viewed as a conditional one with respect to
a fixed realization of a set of parameters. The
estimated values {(âji, τ̂ji, σ̂ji)}pi

j=0, i = 1, . . . ,N then
may be used for an estimation of the true dis-
tribution in the parameters’ space (pi’s, though
treated as random variables, are observed by a
physician after gaining the subject’s readings).
Being aware of it, one can draw certain clin-
ical insights. Moreover, the introduced model
allows to go in an alternative way and apply
non-parametric Baeysian modelling, which re-
cently becomes more and more popular in med-
ical applications and appears in very different
modelling settings (see, e.g., [16–21]). Putting
aside philosophical issues regarding relative mer-
its of frequentist and Bayesian approach, we see

that such a wide range of modelling options al-
lows embedding the single subject’s model con-
sidered by us into very different modelling con-
texts and obtain practically valuable insights. Sev-
eral directions regarding such insights are dis-
cussed in the forthcoming subsection.

3.2. Possible applications
The importance of P-wave analysis in clinical

practise is well established [22–24], and it extends
beyond the analysis of cardiac arrhythmias, atrial
conduction delays and can be used for predic-
tion of clinical outcome of a wide range of car-
diovascular disorders, including ischemic heart
disease and congestive heart failure [25,26]. How-
ever, the research is going on, and new papers still
appear. Therefore, talking about possible applica-
tions of our model, we first provide an exemplary
list demonstrating different directions of investi-
gations and comment on how our model could
be used in these settings. After that, we outline
several new applications one could think of after
the adoption of the model introduced by us.

3.3. Adoption of the model in the contexts
already explored

Table 2 provides a list of publications which
focused on the exploration of relationships be-
tween P-wave based measures and various clinical
conditions. The list below offers our model-based
substitutes to all scalar P-wave based measures
listed in Table 2.

P-wave Signal Average substitute and assess-
ment of P-wave morphology. Since our model
yields the equation of the averaged curve, the
substitute here is straightforward. Also, the esti-
mated curve can be used for an investigation of

4



Seminars in Cardiovascular Medicine, 2021; 27:1–11 e-ISSN 1822-7767

Table 2.
P-wave related studies

PI Conditions studied P-wave based measures usedb References

AF Post-coronary artery bypass graft surgery, Ischemia or
angina, Recurrence of AF following cardioversion, After
accessory pathway ablation, Following cardiac surgery

P-wave duration, P-wave dispersion, Signal
Average

[27–31]

PE Diagnosis of tuberculous constrictive pericarditis P-wave terminal force [32]

CAD After percutaneous transluminal coronary angioplasty,
Acute myocardial infarction, Coronary artery bypass
grafting

P-wave duration, P-wave dispersion [27,33,34]

CHD Atrial septal defect, Atrial septal aneurysm P-wave duration, P-wave dispersion, P-wave
vector, Signal Average

[35,36]

VHD Aortic stenosis, Mitral stenosis, Pulmonary stenosis P-wave duration, P-wave dispersion [37–39]

HF Response to cardiac resynchronization therapy, Heart
failure in prior myocardial infarction

P-wave morphology, P-wave terminal force [40,41]

IS Incidence of ischemic stroke P-wave morphology, P-wave terminal force,
P-wave duration, P-wave maximum area

[25,42]

AH Pulmonary arterial hypertension P-wave duration, P-wave dispersion [43,44]

AD Rheumatoid arthritis, Systemic lupus erythematosus,
Multiple sclerosis, Ankylosing spondylitis

P-wave dispersion, P-wave axis, P-wave
duration

[1,45–47]

aPI: Problem Investigated; AF: Atrial Fibrillation; PE: Pericarditis; CAD: Coronary Artery Disease; CHD: Congenital Heart Dis-
ease; VHD: Valvular Heart Disease; HF: Heart Failure; IS: Ischemic stroke; AH: Arterial Hypertension; AD: Autoimmune Diseases.
bdifferent studies have employed at least one of the listed measures ward.

morphology associated with that particular lead
for which the model was built.

P-wave duration and P-wave dispersion sub-
stitutes. We are inclined to think that linear com-
binations (or, more generally, functions) of σj, j =
1, . . . ,p, may provide information similar to that
yielded by P-wave duration and P-wave disper-
sion.

Terminal force substitutes. Since P-wave ter-
minal force is defined as the product of the du-
ration and amplitude of the terminal phase of
the P-wave in lead V1, one can consider products
aj × σj as possible substitutes.

P-wave maximum area. The analytic form of
the P-wave equation allows applying numeric in-
tegration to compute the area under the curve
associated with the particular lead for which the
model was built.

3.4. Possible novel usages
Novel usages stem from the fact that one has a

clearly defined statistical model with explicit dis-
tributional assumptions. Below, we list only a few
examples of this kind. In our opinion, the pro-
vided amount is sufficient for: a) justification of
the model’s utility; b) generation of other possi-
ble applications of similar kind.

Building CIs and testing hypothesis for a particu-
lar subject. Both MLE and EB models allow build-
ing various CIs intervals for functions g(θ), where
θ denotes the vector of model parameters. Con-
sider, for example, construction of the confidence
interval for a) the first peak time of the P-wave
curve of the subject investigated, or b) the area
under the P-wave. Having such intervals, one can

easily test hypotheses whether these parameters
fall into the acceptable region and then react ac-
cordingly.

Deriving population specific norms for preventive
tasks. Recall the discussion given in Sect. 3.1.
It was noted there that, applying the model to
the sample of subjects drawn from some specific
population, one can assess the distribution of pa-
rameters in that population and then utilize this
information. Consider, for example, prevention.
Say, we have constructed the confidence interval
for the parameter of interest (e.g., a peak time
of the P-wave curve) in a population of healthy
young individuals. Having particular individual
from the target population, one can then esti-
mate his/her parameter and check whether it is
in the acceptable range as suggested in the previ-
ous item “Building CIs and testing hypothesis for
a particular subject”.

Looking for relationships with other clinical mark-
ers. Exploration constitutes a very huge part of
clinical research. Almost all studies listed in Ta-
ble 2 are devoted to the tasks of this kind. Af-
ter applying the model to the sample of N sub-
jects and obtaining their estimates of parameters
θ1, . . . ,θN , one can utilize these values for further
statistical analysis. Table 2 shows that there are a
lot of directions to take. Moreover, one can apply
various statistical models. To gain a few concrete
examples, consider:

a) separating those with a present pathology
from those with an absent pathology by
making use of logistic regression, discrimi-
nant analysis, tree-based model or some other

5
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model with g(θ1), . . . , g(θN) acting as indepen-
dents;

b) exploring relationships by means of regres-
sion model in which g(θ1), . . . , g(θN) act as de-
pendents and some other markers (probably
appended by the set of various characteristics
devoted to accounting for confounding) as in-
dependents;

c) conducting a clinical trial in which g(θ1), . . . ,
g(θN) act as easy to obtain surrogate markers
before the final endpoints become available.

Appendix

A.1. Data
The investigation conforms with the principles

outlined in the Declaration of Helsinki and ap-
proved by the local ethics committee. To obtain
the data, single subject’s ECG readings having the
total duration equal to 5 min and registration rate
equal to 1 ms were recorded. The filtered data
were used. To extract P-waves, the following al-
gorithm was applied (see Fig. 5).

Algorithm for extraction of distinct P-waves. For
each QRS complex:

– find the moment of R peak τR

– roll back 300 ms to moment t0 = τR – 300
– take readings {Xt0 ,Xt1 , . . . ,Xt250}, ti = t0 + i, i =

1, . . . , 250 and treat them as a P-wave of the
corresponding cardiac cycle.

A.2. Asymptotic properties of MLEs
Below, we consider asymptotic properties of

MLEs of the model described in Sect. 2.2. To be
more precise, the following issues are covered:
a) asymptotic consistency; b) asymptotic normal-
ity; c) asymptotic inference based on a) and b).
To make expressions more compact, we introduce
some notions.

Figure 5. Data extraction visualized: the P-wave consists of the
first 251 points extracted from 300 points segment measured
backwards from the R peak.

– For k = 1, . . . ,m, Xk = (Xk,t0 , . . . ,Xk,tn)
T denotes

an observed vector corresponding to the k-th
trajectory Xk.

– For i = 0, . . . ,n, X·,i = 1
m

∑m
k=1 Xk,ti denotes an

averaged trajectory at ti whereas X· = (X·,1, . . . ,
X·,n)T .

– For i = 0, . . . , 1 and j = 1, . . . ,p, κi,j = e
–(

ti–τj
σj

)2

and
κ·,j = (κ0,j, . . . ,κn,j)T .

– θ = (σ0,σ1, . . . ,σp,a0, . . . ,ap, τ0, . . . , τp)T denotes
the vector of the model parameters.

– For a random vector (r.v.) Y ∈ R
q, fY(y) stands

for its density at y ∈R
q.

– For x = (x1, . . . ,xq)T, y = (y1, . . . ,yq)T ∈ R
q, ‖y‖ =√

y2
1 + · · · + y2

q , x ◦ y = (x1y1, . . . ,xqyq)T and x · y =
∑q

j=1 x1y1 + · · · + xqyq denote the standard Eu-
clidian norm, Hadamard product and inner
product respectively; x◦d = x ◦ x ◦ · · · ◦ x; finally,
1q = (1,1, . . . , 1)T ∈ R

q (when the dimension is
clear, subscript is omitted and 1 is written in-
stead of 1q).

From (3) (and Section A.1), it follows that Xk ∼
Nn+1(μ(θ, t);σ2

0In+1), where In+1 is an identity ma-
trix of order n+1, t = (t0, . . . , tn)T is the time vector,
and μ(θ, t) = μ = (μ0, . . . ,μn)T with μi = a0 + τ0ti +
∑p

j=1 aje
–(

ti–τj
σj

)2

, i = 0, . . . ,n. Taking into account in-
dependence of Xk, k = 1, . . . ,m, log-likelihood is
then equal to

�m(θ) =
1
m

m∑

k=1

ln fXk(Xk)

= –(n + 1) ln(σ0

√
2π)

–
1

2mσ2
0

m∑

k=1

n∑

i=0

(Xk,ti – μi)2

= –(n + 1) ln(σ0

√
2π) –

1
2mσ2

0

m∑

k=1

‖Xk – μ‖.

(4)

Because of the nature of the problem consid-
ered, it is reasonable to assume that the parame-
ters’ space Θ is a compact interval [σ̃L, σ̃U ](p+1) ×
[ãL, ãU ](p+1) × [τ̃L, τ̃U ](p+1) of (0,∞)(p+1)×R

(p+1) × (0,
∞)(p+1) and that the true value θTRUE lies in the
interior of this compact interval. Even without
detailed computations, it is then quite evident
that, assuming such Θ, �m is three times contin-
uously differentiable on Θint with partial deriva-
tives dominated by some measurable integrable
function, and one can exchange the order of
differentiation and integration provided there
is a need. Moreover, computations below show
that the Fisher information matrix J (θTRUE) =
EθTRUE(

∂
∂θ ln fX1 (X1))( ∂

∂θ ln fX1 (X1))T is non-singular
provided we drop artificial and practically irrel-
evant cases (see explanation below). That is, all
standard assumptions ensuring existence, consis-
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tency and asymptotic normality of MLE estimator
(see, e.g. [14], Theorems 5.41–5.42) θ̂m hold and

yield relationships θ̂m
P→ θTRUE,

√
mJ (θTRUE)(θ̂m –

θTRUE) d→ N(0; In+1). In order to employ these for-
mulas practically, one has to obtain an expression
for J (θ) and replace J (θTRUE) with an estima-
tor J (θ̂TRUE). For the sake of the readers’ con-
venience, we provide computation of J (θ) and
estimating equations for solving θ̂m. The latter are
given only for completeness and may be omit-
ted since, in our opinion, it is more convenient
to make use of the computational scheme pro-
vided in Section A.3. First, note that ln fX1 (X1) =
–(n + 1) ln(σ0

√
2π) – 1

2σ2
0
‖X1 – μ‖2. Hence,

∂

∂θ0
ln fX1 (X1) =

∂

∂σ0
ln fX1 (X1)

= –
n + 1
σ0

+
1
σ3

0
‖X1 – μ‖2

=
1
σ0

(
ξn+1 – (n + 1)

)

=
ξn+1 – Eξn+1

σ0

(5)

∂

∂θs
ln fX1 (X1)

1
σ2

0

n∑

i=0

(X1,i – μi)
∂

∂θs
μi

=
(X1 – μ) · μ′

θs

σ2
0

for s ≥ 1.

(6)

Where ξn+1 = ‖X1–μ‖2

σ2
0

∼ χ2
n+1 and μ′

θs
= ( ∂

∂θs
μ0, . . . ,

∂
∂θs

μn)T . Therefore, J (θ) equals to

1

σ4
0

⎛

⎜⎜⎜⎜⎜⎜⎝

σ2
0 Var(ξn+1) 0 · · · 0

0 (μ′
θ1

)T cov(X1)μ′
θ1

· · · (μ′
θ1

)T cov(X1)μ′
θ3p+2

0
.
.
.

. . .
.
.
.

0 (μ′
θ3p+2

)T cov(X1)μ′
θ1

· · · (μ′
θ3p+2

)T cov(X1)μ′
θ3p+2

⎞

⎟⎟⎟⎟⎟⎟⎠

=
1

σ2
0

⎛

⎜⎜⎜⎜⎜⎜⎝

2(n + 1) 0 · · · 0
0 μ′

θ1
μ′
θ1

· · · μ′
θ1

μ′
θ3p+2

0
.
.
.

. . .
.
.
.

0 μ′
θ3p+2

μ′
θ1

· · · μ′
θ3p+2

μ′
θ3p+2

⎞

⎟⎟⎟⎟⎟⎟⎠

(7)

And detJ (θ) = 2(n + 1)σ–6(p+1)
0 det(M), where M =

(μ′
θr
· μ′

θs
), r, s = 1, . . . , 3p + 2, denotes the second

block diagonal matrix in (7). Note that det(M) is
the Gram determinant corresponding to the sys-
tem of vectors {μ′

θs
}, s = 1, . . . , 3p + 2. Thus, it is

nonzero if and only if that system is composed of
independent vectors. The dependence is the pre-
viously announced artificial condition (consider,
for example, the case of (aj, τj,σj) = (ai, τi,σi) for
some i �= j, which should very rarely, if ever, occur
in practise). Having estimate θ̂m, one can always
check the condition empirically by computing
detM(θ̂m). If it happens so that detM(θ̂m) ≈ 0, it is
advisory to reconsider the model and try to min-
imize the number of parameters. Otherwise, one

can apply the asymptotic theory given above. For
this, it remains to note that, for any j = 1, . . . ,p,

μ′
θs

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1n+1 = 1 for θs = a0,
(t0, . . . , tn)T = t for θs = τ0,
(κ0,j, . . . ,κn,j)T = κ·,j for θs = aj,
2aj

σ2
j
((t0 – τj)κ0,j, . . . , (tn – τj)κn,j)T

= 2aj

σ2
j
(t – τj1) ◦ κ·,j for θs = τj,

2aj

σ3
j

(
(t0 – τj)2κ0,j, . . . , (tn – τj)2κn,j

)T

= 2aj

σ3
j
(t – τj1)◦2 ◦ κ·,j for θs = σj.

(8)

Combining these expressions with (4)–(6), we
see that estimating equations ∂

∂θ �(θ) = 0 for solv-
ing θ̂m can be written as follows:

σ0 =

√√√√ 1
(n + 1)m

m∑

k=1

‖Xk – μ‖2 (9)

(X· – μ) · 1 = 0,
(X· – μ) · t = 0,
(X· – μ) · κ·,j = 0,

(10)

(X· – μ) ·
(
(t – τj1) ◦ κ·,j

)
= 0,

(X· – μ) ·
(
(t – τj1)◦2 ◦ κ·,j

)
= 0

(11)

for j = 1, . . . ,p. Since μ does not depend on σ0,
from (9), it follows that an estimator of σ0 is
completely determined by values of the rest es-
timators. Next, for any A ⊂ {1,2, . . . , 3p + 2}, let
θA denote a sub vector of θ which is composed
from coordinates θs, s ∈ A, and let A1,A2,A3 ⊂
{1,2, . . . , 3p + 2} be the subsets for which it holds
θA1 = (τ0,a0,a1, . . . ,ap)T , θA2 = (τ1, . . . , τp)T , θA3 = (σ1,
. . . ,σp)T . Noting that μ = KθA1 with K = (t1n+1κ·,1,
. . . ,κ·,p) and rewriting equations (10) in an equiv-
alent form

X· · 1 = 1TKθA1 , X· · t = tTKθA1 ,

X· · κ·,j
j≥1
= κT

·,jKθA1 ,

one arrives to conclusion that

θA1 =
(
KTK

)–1
KTX· (12)

Since K depends only on θA2 , θA3 , one needs
to solve these parameters in order to obtain so-
lutions for σ0 and θA1 . One can rearrange the
first set of the equations (11) into the fixed point
equation for θA2 , then plug into this equation the
value of θA1 given by (12), and solve θA2 iteratively
for any fixed θA3 . Equations for θA3 , however, re-
main quite complicated and do not seem to ad-
mit substantial simplification. Nonetheless, one
can make use of the derivations given above to
find initial solutions for σ0, θA1 and θA2 provided
the initial solution for θA3 is already at hand. The
latter solution then may be supplied to any stan-
dard software package offering MLE procedure.
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However, it is more natural to take into account
the nature of the problem considered and to ob-
tain the initial solution as explained in the forth-
coming Section A.3. Therefore, we do not settle
down on further development of the above route.

There remains to say a word regarding statisti-
cal inference. The latter is quite straightforward:
having any well-behaved function g : Θ→R

q, one
should employ the Delta method (see [14], Ch. 3)
which allows both asymptotic testing and build-
ing of CIs.

Finishing this subsection, we remind that, in
our particular case, p = 2, m = 258, and n = 250.
However, to keep a more general framework, we
will remain with unplugged values without em-
phasizing this in the sequel.

A.3. Computations
A.3.1. Preliminaries
From the results of Section A.2, it follows that

analytic solution of parameters was unavailable
in case of MLE framework; the same applied
to EB framework as well. Therefore, parameters
were estimated numerically. Computations were
performed by making use of R statistical com-
puting environment [48]. In addition to base R,
the following packages were employed: pracma
[49] for finding peaks of ECG curves; mcmc [50]
for Bayesian analysis. MLE estimation was based
on quasi-Newton method. For Bayesian analysis,
Metropolis–Hastings algorithm was applied. For
each model, initial solutions had to be supplied.
The latter were obtained by making use of the fol-
lowing algorithm.

Algorithm for generation of initial values.

1. Fix the number of Gaussian curves p and com-
pute averaged trajectory {μ̂(ti)|i = 0, . . . ,n},
where μ̂(ti) is given by (2).

2. Set treg = 140, σ0 =
√

1
n

∑n
i=0 s2

i , s2
i = 1

m–1 ×
∑m

k=1(Xk,ti – X̄·,i)2, and obtain initial estimates
â0, τ̂0 by fitting simple linear regression model
on the subset {μ̂(ti)|i = 0, . . . , treg}

3. Compute res0 = {μ̂(ti) – â0 – τ̂0ti = res0(ti)|i =
0, . . . ,n}

4. For j = 1, . . . ,p:
(a) âj = amplitude of the peak of the first

wave of resj–1;
(b) τ̂j = time corresponding to the peak of

the first wave of resj–1;

(c) σ̂j =
√

–(t(0)–τ̂1)2

log(
resj–1(t(0))

âj
)
, where

t(0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
{

t ∈ {0, . . . , τ̂j – 1}|
∣∣resj–1(t)

∣∣

≥ 0.8|âj|
}

, for τ̂j ≥ n
2 ;

min
{

t ∈ {τ̂j + 1, . . . ,n}|
∣∣resj–1(t)

∣∣

≥ 0.8|âj|
}

, for τ̂j < n
2 ;

(d) resj = {resj–1(ti) – âje
(

ti–τ̂j
σ̂j

)2

|i – 0, . . . ,n}.
5. Take {σ̂j, âj, τ̂j}p

j=0 as an initial solution.

Remark 1. To justify computation of σ̂j in 4.c,
note that t �→ ae( t–τ

σ )2
has two inverse branches on

(0,a) : t±(x) = τ ±σ
√

– log( x
a ). The choice of thresh-

old value 0.8 is arbitrary. However, in [2] it is
noted that varying threshold values do not affect
results significantly and the model is robust with
respect to this quantity.

In Sect. 2.2, we have already mentioned that
all priors for parameters were normal. The hyper-
parameters were obtained as follows. First, for
each distinct trajectory, we have obtained esti-
mates {(âkj, τ̂kj, σ̂kj)}p

j=0, k = 1, . . . ,m, in the same
way as explained above in the “Algorithm for
generation of initial values”. That is, the only
difference was that we have used distinct trajec-
tories Xk, k = 1, . . . ,m instead of an averaged one.
After that, we have assumed that σj ∼ N(σj, s2

σj
),

aj ∼ N(aj, s2
aj

), τj ∼ N(τ j, s2
τ j

) were independent with

σj =
1
m

m∑

k=1

σ̂kj, s2
σj

=
1

m – 1

m∑

k=1

(σ̂kj – σj)2,

aj =
1
m

m∑

k=1

âkj, s2
aj

=
1

m – 1

m∑

k=1

(âkj – aj)2,

τ j =
1
m

m∑

k=1

τ̂kj, s2
τ j

=
1

m – 1

m∑

k=1

(τ̂kj – τ j)2.

Consequently, the posterior used to perform
computations was proportional to

e�(θ) =
p∏

j=0

ϕ(σj|σj, sσj)ϕ(aj|aj, saj)ϕ(τj|τ j, sτ j),

where �(θ) is given by (4) and ϕ(x|μ,σ) = 1
σ
√

2π
×

e–( x–μ
σ )2

denotes the density of the r. v. having
normal distribution N(μ;σ2). The values of the
hyper-parameters are given in Table 3.

Note that, for j ≥ 1, σj entered the posterior
squared meaning that there was no positivity
constraint on these parameters, and only σ0 had
to be positive. However, from Table 3 it is seen
that the coefficient of variation Cσ0 = sσ0

σ0
≈ 0.099

was small. Moreover, the obtained initial value
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Table 3.
Hyper-parameters of the priorsa

σ0 σ1 σ2 a0 a1 a2 τ0 τ1 τ2

Mean 16.811 24.602 25.246 9.355 18.561 –11.979 0.095 199.124 219.733

St. dev. 1.658 5.639 6.875 5.979 34.288 26.360 0.042 21.972 20.778

a each parameter was assumed to follow normal distribution with the mean and standard deviation given in the corresponding
column.

and MLE estimate were equal to 16.811 and
16.172 correspondingly. Hence justification of
the choice of the normal prior used by us.

A.3.2. Factual implementation with R
# packages
library(pracma);library(mcmc)
# data
path <- "/media/visk/Local Disk/Science/P wave ECG/data.csv";
df<- read.csv(file = path)

# I) initial assignments
m <- 258 # number of trajectories
n <- 250 # number of points in a single trajectory
p <- 2 # number of Gaussian curves
t <- seq(from=0, to=n, by=1) # time vector
r <- 140 # number of points for estimation of a0, tau0
meanX <- rowMeans(df, na.rm = FALSE, dims = 1) # averaged X

# F) auxiliary functions
# F.1) function for computation of estimates from a given curve
getEstimatesFromCurve <- function(curve){

# vectors for parameters storage
a <- matrix(data = 0, nrow=p, ncol=1);tau <- matrix(data = 0,
nrow=p, ncol=1);sigma <- matrix(data = 0, nrow=p, ncol=1);
# computation of a0, tau0
regLine <- lm(curve[1:r]∼t[1:r]);a0 <- as.numeric(regLine$
coefficients[1]);tau0 <- as.numeric(regLine$coefficients[2]);
res <- as.vector(x = curve - a0-tau0*t) # subtract linear part
#computation of the rest parameters
for (j in (1:p)){

peakPos <- findpeaks(res, minpeakdistance=1, npeaks=1,
sortstr=TRUE)
peakNeg <- findpeaks(-res, minpeakdistance=1, npeaks=1,
sortstr=TRUE)
a[j] <- (peakPos[1]>peakNeg[1])*peakPos[1] - (peakPos[1]<=
peakNeg[1])*peakNeg[1]
tau[j] <- (peakPos[1]>peakNeg[1])*peakPos[2] + (peakPos[1]<=
peakNeg[1])*peakNeg[2]
# time, step and threshold for computation of sigma[j]
tsigma = tau[j]; s = ifelse(tsigma>n/2,1,-1);threshold =
abs(0.8*a[j])
while (abs(res[tsigma])>threshold) {tsigma = tsigma-s}
sigma[j]=sqrt(-(tsigma-tau[j])ˆ2/log(abs(res[tsigma]/a[j])))
res <- res - a[j]*exp(-((t-tau[j])/sigma[j])ˆ2)
}

return(c(sigma, a0, a, tau0, tau))
}

# F.2) function for computation of log-likelihood
getLL <- function(posterior = FALSE, hyperPar = NULL){

ll<-function(par){
# par[1] ∼ sigma0, par[2:(p+1)] ∼ sigma[1:p]; par[p+2] ∼ a0,
par[(p+3):2*(p+1)] ∼ a[1:p]; par[2*p+3] ∼ tau0, par[(2*p+4):
3*(p+1)] ∼ tau[1:p];
f1=0
f1=sapply(1:p,function(k){f1=f1+(par[p+2+k]*exp(-((t-
par[2*p+3+k])/par[1+k])ˆ2))}); f1=par[p+2]+t*par[2*p+3]
f=n*m*log(par[1])+(1/(2*par[1]ˆ2))*sum((df-f1)ˆ2)
if (posterior){f = -f+sum(sapply(1:c(3*(p+1)),
FUN = function(i){return(dnorm(par[i],hyperPar[i,1],
hyperPar[i,2]))}))}
return(f)

}

return(ll)
}

# M) MLE block (run I and F blocks first)# estimation
sigma0 <- mean(apply(df,2,sd))
initialVals <- c(sigma0,getEstimatesFromCurve(curve = meanX))
mleEst <- optim(par=initialVals, fn=getLL(),

lower=c(rep(1.0e-5,p+1),rep(-Inf, c(2*(p+1)))),
method="L-BFGS-B", control=c(maxit=100000))

parVec <- mleEst$par # for parameters order, see comments in getLL

# B) Bayesian block (run I and F blocks first)

# computation of hyperparameters:
# parameters’ order corresponds to that used previously, i.e.
# sigma0, sigma, a0, a, tau0, tau
hyperPar <- matrix(data = 0,nrow = 3*(p+1), ncol = 2)
hyperPar[1,1] <- mean(apply(df,2,sd)) # sigma0mean
hyperPar[1,2] <- sd(apply(df,2,sd)) # sigma0sd
# all the rest:
hyperM <- matrix(data = 0,nrow = 3*(p+1), ncol = 2)
hyperM <- sapply(X = 1:m, FUN =function(i){getEstimatesFromCurve
(curve = df[,i])})
hyperPar[2:c(3*(p+1)),] <- t(apply(X = hyperM,MARGIN = 1,FUN =
function(prow){return(c(mean(prow),sd(prow)))}))
# estimation
sigma0 <- mean(apply(df,2,sd))
initialVals <- c(sigma0,getEstimatesFromCurve(curve = meanX))
set.seed(2018)
batchSize <- 100000
mc <- metrop(getLL(posterior=TRUE, hyperPar=hyperPar),initial=
initialVals, nbatch = batchSize, scale = 0.5)
parVec <- apply(mc$batch[1:batchSize,],2,mean)

# S) summaries
y_est=parVec[p+2]+t*parVec[2*p+3]
for (j in 1:p){y_est=y_est+(parVec[p+2+j]*exp(-((t-parVec[2*p+3+j])/
parVec[1+j])ˆ2))}; plot(df[,1],type="l",col=’green’, ylim=c(-20,90))
for (i in 2:n) {lines(df[,i], type="l", col=’green’)}
lines(x=t,y=y_est, col=’red’, type=’l’, lwd=3); lines(x=t,y=meanX,
col=’blue’, type=’l’, lwd=2, lty=2)
err = (df-y_est); mse=sum(errˆ2)/(n*m); sRES=sum((df-y_est)ˆ2); sTOT<-
sum((df-mean(as.matrix(df)))ˆ2)
R2=1-sRES/sTOT; R2_adj=1-(sRES/(n-2-(p+1)*3-1))/(sTOT/(n-1));
hist(as.numeric(matrix(data = unlist(err),ncol = 1)))
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[43] Şap F, Karataş Z, Altin H, Alp H, Oran B, Baysal T, et al.
Dispersion durations of P-wave and QT interval in chil-
dren with congenital heart disease and pulmonary arte-
rial hypertension. Pediatr Cardiol 2013;34(3):591–6.

[44] Bandorski D, Bogossian H, Ecke A, Wiedenroth C, Gru-
enig E, Benjamin N, et al. Evaluation of the prognos-
tic value of electrocardiography parameters and heart
rhythm in patients with pulmonary hypertension. Car-
diol J 2016;23(4):465–72.

[45] Guler H, Seyfeli E, Sahin G, Duru M, Akgul F, Saglam
H, et al. P wave dispersion in patients with rheumatoid
arthritis: its relation with clinical and echocardiographic
parameters. Rheumatol Int 2007;27(9):813–8.

[46] Razazian N, Hedayati N, Moradian N, Bostani A, Af-
shari D, Asgari N. P wave duration and dispersion and
QT interval in multiple sclerosis. Mult Scler Relat Disord
2014;3(5):662–5.

[47] Aksoy H, Okutucu S, Sayin B, Ercan E, Kaya E, Ozdemir O,
et al. Assessment of cardiac arrhythmias in patients with
ankylosing spondylitis by signal-averaged P wave dura-
tion and P wave dispersion. Eur Rev Med Pharmacol Sci
2016;20(6):1123–9.

[48] R Development Core Team. R: A language and environ-
ment for statistical computing. 2013.

[49] Borchers HW. pracma: Practical Numerical Math Func-
tions. 2018. https://cran.r-project.org/web/packages/
pracma/index.html.

[50] Charles J. Geyer LTJ. mcmc: Markov Chain Monte Carlo.
2019. https://cran.r-project.org/web/packages/mcmc/
index.html.

11

View publication statsView publication stats

https://cran.r-project.org/web/packages/pracma/index.html
https://cran.r-project.org/web/packages/mcmc/index.html
https://cran.r-project.org/web/packages/pracma/index.html
https://cran.r-project.org/web/packages/mcmc/index.html
https://www.researchgate.net/publication/349916539

	On the P-wave model of a single electrocardiogram lead
	Introduction
	Model
	General setting
	Parametric version

	Possible applications and extensions
	Extensions
	Possible applications
	Adoption of the model in the contexts already explored
	Possible novel usages

	Data

	Asymptotic properties of MLEs
	Computations
	Preliminaries
	Factual implementation with R

	Declarations of interest
	Author contributions
	Funding
	References

