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Abstract

Seabirds are impacted by coastal light pollution, leading to massive mortality

events. Juveniles comprise the majority of affected individuals, while adults

are only seldom grounded and reported in rescue programs. We propose a con-

nection between visual system development of burrow nesting seabirds and

the observed higher vulnerability to light pollution by a specific age group. We

illustrate the need for multidisciplinary research to better understand and fur-

ther mitigate light-induced mortality.
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The anthropogenic use of artificial light at night and con-
sequent light pollution are eroding natural nightscapes
worldwide, resulting in unintended and negative conse-
quences for biodiversity and ecosystems (Gaston, Davies,
Nedelec, & Holt, 2017). While our understanding of how
artificial light affects genes, individuals, species and com-
munities, is still limited, the growing rate of urbanization
and hence light pollution, represents an urgency for com-
prehensive multidisciplinary research (Gaston, Visser, &
Hölker, 2015; Hölker et al., 2010).

Petrels and shearwaters (hereafter petrels) are highly
adapted seabirds and one of the most threatened avian
groups (Rodríguez et al., 2019). Petrels have the ability to
navigate in the dark and to execute behaviors at various
ambient light levels, from underwater foraging to colony vis-
itation at night and underground nesting (Brooke, 2004).
Consequently, they must possess anatomical and physiologi-
cal adaptations to low-light levels, different optical media
and rapid ambient light changes (reviewed in Martin, 2017).

In coastal areas, petrels are attracted to, and dis-
orientated by, urban artificial lights. Following exhaus-
tion or collision, individuals fall to the ground in fallout
events becoming susceptible to lethal threats such as fatal
injuries, vehicle collisions, predation, dehydration and
inanition, or getting trapped (reviewed in Rodríguez
et al., 2017). Grounded birds are sporadically observed
throughout the year; however, fallouts are particularly
severe during fledging season affecting thousands of juve-
niles during their first flights from nest to sea (Ainley,
Podolsky, Deforest, Spencer, & Nur, 2001). Fallouts are
aggravated by environmental drivers such as adverse
weather (fog, rain), strong onshore winds and darker
nights with reduced moonlight (Rodríguez et al., 2014;
Syposz, Gonçalves, Carty, Hoppitt, & Manco, 2018;
Telfer, Sincock, Byrd, & Reed, 1987). Without interven-
tion fallouts are most likely fatal, increasing juvenile
mortality rates and contributing to population declines
(Fontaine, Gimenez, & Bried, 2011; Gineste et al., 2016).
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Rescue campaigns are the most frequently employed mit-
igation measure worldwide, when citizens and organiza-
tions collect and release fallen birds. Data collected
during such campaigns have shown that juveniles have a
higher vulnerability to light pollution, making up from
68% to 99% of the rescued individuals (reviewed in
Rodríguez et al., 2017).

The reasons for seabird attraction to lights remain
unclear, currently resting upon three main hypotheses.
First, foraging inexperience, where young individuals
might confuse artificial light outputs with their naturally
occurring bioluminescent prey (Imber, 1975). Second,
associating light from the nests entrance with a food
source, as chicks only feed whenever parents land and
enter the nest to deliver sustenance (D. Ainley pers.
comm. in Rodríguez et al., 2017). Third, interference of
artificial light with navigation capabilities, either by
outshining natural celestial cues or by interfering with
vision-based magnetic navigation control mechanisms
(Guilford, Padget, Bond, & Syposz, 2018; Telfer
et al., 1987).

Chicks of burrow-nesting petrels spend most of their
early life in the dark environment underground, only
going out at night to practice flight motions during the
end of the nestling period (Yoda, Shiozaki, Shirai,
Matsumoto, & Yamamoto, 2017). Mitkus and colleagues
have studied development of the visual system in a
burrow-nesting seabird—Leach's storm-petrel (Hydro-
bates leucorhous) (Mitkus, Nevitt, & Kelber, 2018), a
species affected by light pollution (Miles, Money,
Luxmoore, & Furness, 2010). Leach's storm-petrel
chicks spend 6–8 weeks in dark underground burrows
before fledging. Their vision starts to function only
around the third week post-hatching, however the ret-
ina is still immature and continues to develop, reaching
adult-like state probably only sometime after fledging.
In contrast, olfactory bulbs reach adult-like size before
fledging, and can be used to identify burrows 1 week
after hatching (Mitkus et al., 2018).

Two factors responsible for poor vision in recently
fledged petrels were presented (Mitkus et al., 2018). First,
a trade-off prioritizing olfaction over an energetically
costly visual system. This underdevelopment of vision
possibly reflects an adaptation to underground nesting
where visual cues and necessity to use them are minimal.
Second, a lack of visual stimuli prevents a growing eye to
achieve emmetropia, that is, to produce a well-focused
image. Dark underground burrows hinder visual experi-
ence due to the lack of visual cues, most likely resulting
in severe focus deficiency upon fledging. Such handicap
is expected to be corrected with urgency after fledging,
allowing the juveniles to orientate and feed indepen-
dently without parental care. While emmetropization

was not tested in Leach's storm-petrel chicks in the afore-
mentioned study, in other avian species (e.g., American
Kestrel Falco sparverius and Common Barn-owl Tyto
alba) juveniles achieve emmetropia after 1–2 weeks of
visual exposure (Andison, Sivak, & Bird, 1992; Schaeffel &
Wagner, 1996).

Assuming similar developmental mechanisms in all
burrow-nesting petrel species, we suggest that untrained
and undeveloped visual system coupled with innate
behavioral inexperience at fledging could be one of the
main drivers of the massive fledgling fallout events
observed every year on oceanic islands, and the leading
factor for the age disparity observed. This argument is
supported by the observations that other non-petrel sea-
birds grounded by light pollution, such as puffins, are
also burrow-nesters (Wilhelm et al., 2013). On the
other hand, surface-nesting petrels such as fulmars or
albatrosses have not been recorded at fallout events
nor in light attraction events at sea, to the best of our
knowledge.

While knowledge regarding vision in petrels is limited
(Capuska, Huynen, Lambert, & Raubenheimer, 2011;
Hart, 2004; Martin, & Brooke, M. de L., 1991; Mitkus,
Nevitt, Danielsen, & Kelber, 2016; Reed, 1986), the fledg-
lings versus adults and burrow-nesting versus surface-
nesting species biases at fallout events suggests a connec-
tion between vulnerability to artificial lights and visual
system development. Differential exposure to daylight
during development could further suggest differences in
light attraction between species and conspecifics. The
depth and the tortuosity of the burrow greatly determines
the amount of light coming into the nest, thus chicks
from darker nests might have a higher visual handicap.
Conversely, surface-nesters experience natural light
cycles and should receive enough visual input for the
eyes not to develop focus deficiencies. Additionally, fledg-
ing during the day versus night could influence immedi-
ate exposure to light pollution, and aggravate fallout for
already vulnerable groups. Further research is needed to
resolve these interactions, as well as ensuing questions,
such as the potential role of artificial light and light pol-
lution as a surrogate of sunlight in vision development.

Our hypothesis could also be valid for sea turtles,
which show a reaction to light pollution similar to that of
seabirds. Sea turtle hatchlings are misdirected by artificial
lights when they emerge from their buried nests, leading
to massive mortality events (Limpus & Kamrowski,
2013). Adult sea turtles are less vulnerable to artificial
lights and are able to find their way to the ocean after
laying their eggs in the same lit beaches. This age dispar-
ity has been attributed to increased experience and differ-
ent visual perspective to the horizon due to higher height
of adults (Limpus & Kamrowski, 2013). However,
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ontogenetic differences in visual systems could also occur
in sea turtles (Horch, Gocke, Salmon, & Forward, 2008)
and help to explain the disruption of the ocean finding
behavior by artificial lights.

Conservation measures currently implemented, that is,
rescue campaigns, already target fledging season and con-
sequently the more vulnerable life-stages (Rodríguez et al.,
2017), but such campaigns are palliative actions as they
only rescue grounded birds. To reduce artificial light
impact it is recommended shielding the lighting structures
as well as turning off, or decreasing the use of, street and
private lights during fledging season, which in some loca-
tions has reduced the fallouts (Reed, Sincock, & Hailman,
1985; Rodríguez et al., 2014). Changing the spectral compo-
sition of light can also reduce the number of grounded sea-
birds (Longcore et al., 2018). However, without knowledge
on specific mechanisms that drive seabird attraction or dis-
orientation by artificial lights, it is difficult to propose mea-
sures to effectively reduce, or eliminate, negative effects of
this phenomenon. Future studies should investigate spe-
cific aspects of seabird vision across different life stages and
species, for example, contrast sensitivity, flicker fusion fre-
quency or innate color preferences, to better understand
how and what seabirds can see.
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