
mathematics

Article

Web-Based Tool for Algebraic Modeling and
Mathematical Optimization

Vaidas Jusevičius † and Remigijus Paulavičius *,†

����������
�������

Citation: Jusevičius, V.; Paulavičius,

R. Web-Based Tool for Algebraic

Modeling and Mathematical

Optimization. Mathematics 2021, 9,

2751. https://doi.org/

10.3390/math9212751

Academic Editor: Frank Werner

Received: 18 September 2021

Accepted: 26 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Data Science and Digital Technologies, Vilnius University, Akademijos Str. 4, LT-08412 Vilnius,
Lithuania; vaidas.jusevicius@mif.vu.lt
* Correspondence: remigijus.paulavicius@mif.vu.lt
† These authors contributed equally to this work.

Abstract: In this article, we present a new open-source tool for algebraic modeling and mathematical
optimization. We begin by distilling the main gaps within the existing algebraic modeling languages
and tools (varying performance, limited cross-compatibility, complex syntax, and different solver,
feature, and problem type support). Later, we propose a state-of-the-art web-based tool (WebAML
and Optimization System) for algebraic modeling languages and mathematical optimization. The
tool does not require specific algebraic language knowledge, allows solving problems using different
solvers, and utilizes the best characteristics of existing algebraic modeling languages. We also provide
clear extension points and ideas on how we could further improve such a tool.

Keywords: mathematical optimization; algebraic modeling languages; mathematical modeling;
AMPL; GAMS; Pyomo; JuMP

1. Introduction

It is common to routinely solve real-world problems using modern optimization tools
(e.g., [1–6]). These tools combine a mathematical model with an appropriate solution algo-
rithm (e.g., [4,5,7–13]) to solve the problem at hand. Thus, the way mathematical models
are formulated is critical for the impact of mathematical optimization in real life. Examples
of real-life problems include production and shipment by firms, investment planning,
macroeconomics stabilization, water distribution networks, oil refineries, petrochemical
plants, applied general equilibrium, international trade of aluminum and copper, and
many more [14]. Algebraic modeling languages (AMLs) are declarative mathematical
optimization modeling languages, which bridge the gap between model formulation and
the proper solution technique [2]. They facilitate the formulation of a mathematical model
as a human-readable set of equations. Moreover, they do not require specifying how
the described model should be solved or what mathematical optimization solver should
be used. Models written in an AML are known for the high degree of similarity to the
mathematical formulation. Such an algebraic design approach allows practitioners without
specific programming or modeling knowledge to be efficient in describing the problems to
be solved.

In general, AMLs are advanced software that provides a central link between an
optimization model’s mathematical concept and the complex mathematical optimization
solvers used to determine optimal solutions. Typically, AML software automatically reads
a model and the data generates an instance and transfers it to a solver in the required
format [15].

From the late 1970s, numerous AMLs were created (e.g., AMPL [16], GAMS [17])
and are still actively developed and used today. Lately, new open-source competitors
to the traditional AMLs started to appear (e.g., Pyomo [18,19], JuMP [20,21]). Thus, we
deem it important to identify, compare, and evaluate the most important characteristics of
modeling systems and algebraic modeling languages.

Mathematics 2021, 9, 2751. https://doi.org/10.3390/math9212751 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6178-5492
https://orcid.org/0000-0003-2057-2922
https://doi.org/10.3390/math9212751
https://doi.org/10.3390/math9212751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9212751
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9212751?type=check_update&version=1

Mathematics 2021, 9, 2751 2 of 18

Some comparisons of AMLs are made based on questionnaires sent out by the ven-
dors [22]. At the same time, in our previous research [23], we have conducted an extensive
theoretical and experimental analysis of the characteristics of the most prominent AMLs
(AMPL, GAMS, JuMP, and Pyomo) and the modeling systems supporting them. In a theo-
retical comparison, we evaluated how the reviewed modern AMLs match the current needs
of practitioners. While performing the experimental analysis, we used a purpose-built test
model library to perform extensive performance and presolving benchmarks.

We feel the need to continue research by further distilling the main gaps within
the existing AMLs and proposing both a more generalized modeling language and an
open-source-based tool combining the best characteristics of the existing AMLs. While
a suggestion for using LATEX as a foundation for the AML tool by Triantafyllidis and
Papageorgiou [24] already exists, we believe another, more user-friendly alternative can be
provided.

The contributions of this paper are the following:

• It identifies the differences amongst the most prominent algebraic modeling languages
for mathematical optimization, which make it challenging for practitioners to learn
and use it.

• It proposes concepts for a universal algebraic modeling language aimed to simplify
mathematical modeling and optimization. Thus, making it easier to learn and be
taught in a mathematics classroom and still making it suitable for a usual practitioner
once faced with a need for solving real-life mathematical optimization problems.

• It provides the prototype of the universal mathematical optimization system (We-
bAML and Optimization Ecosystem), implementing the proposed concepts and com-
bining the best characteristics of the most prominent AMLs.

The remainder of the paper is organized as follows: Section 2 presents an overview
on how the characteristics of the most prominent algebraic modeling languages differ and
what challenges it poses for a practitioner. Section 3 defines concepts of the universal
algebraic modeling language (WebAML) and describes a prototype of the optimization
ecosystem supporting it. Section 4 compares the proposed way of algebraic modeling with
classical ones and comments on the extensibility of the proposed language and prototype.
Finally, Section 5 concludes our work.

2. Materials and Methods

First, we need to identify the differences which make the most prominent AMLs
difficult for practitioners to learn and use. We start by examining the results published
in our previous research [23] and using datasets provided as part of it [25]. We continue
to compare AMPL, GAMS, JuMP, and Pyomo, which were identified as the most promi-
nent ones in our previous research. To compare the practical aspects of the algebraic
modeling, we have chosen to use an example of the classical transportation problem by
Dantzig, G. B. [26], which can be stated mathematically as seen in Listing 1.

This is a linear programming problem in which the objective function is to minimize
the cost of transportation subject to demand and supply constraints. The transportation
problem applies to situations where a single commodity is transported from various sources
of supply (origins) to different demands (destinations).

Let there be m sources of supply s1, s2, . . . , sm having ai (i = 1, 2, . . . , m) units of supplies,
respectively, to be transported among n destinations d1, d2, . . . , dn with bj (j = 1, 2, . . . , n)
units of requirements, respectively.

Let cij be the cost for shipping one unit of the commodity from source i to destination
j for each route. Suppose xij represents the units shipped per route from source i to
destination j. In that case, the problem is determining the transportation schedule that
minimizes the total cost of satisfying the supply and demand conditions.

Mathematics 2021, 9, 2751 3 of 18

Listing 1. The classical transportation problem by Dantzig, G. B. [26].

Minimize:
m

∑
i=1

n

∑
j=1

cijxij

Subject to:

n

∑
j=1

xij ≤ ai, for i = 1, 2, . . . , m (supply constraints)

m

∑
i=1

xij ≥ bj, for j = 1, 2, . . . , n (demand constraints)

xij ≥ 0, for all i = 1, 2, . . . , m and j = 1, 2, . . . , n

2.1. General Features

Based on the information available on the vendors’ websites of the discussed AMLs,
the general features are provided in Table 1. We can observe that none of them have a
full-fledged graphical user interface (GUI) to do the modeling. AMPL and GAMS provide
a simple GUI for writing a textual model code and running standard commands. Pyomo
and JuMP do not have any graphical interface at all.

Table 1. General features of AMPL, GAMS, Pyomo, and JuMP software packages.

General Feature AMPL GAMS JuMP Pyomo

Operating system Win/Mac/Unix Win/Mac/Unix Win/Mac/Unix Win/Mac/Unix
First released 1985 1978 2017 2008
User interface GUI (Textual) GUI (Textual) Command line Command line
License Commercial Commercial Free Free

They all support the three major operating systems (Windows, Unix, and Mac). There-
fore, the usage is relatively the same independent of what operating system or hardware
the modeler is using. However, it requires local installation, and thus access to the same
physical machine is needed.

AMPL and GAMS are commercial tools with academic licenses starting at USD 500
and the basic commercial license from USD 4000. However, adding more solvers might
easily double the price. JuMP and Pyomo are open source and distributed for free, though
the solvers have to be procured separately.

2.2. Syntax

The syntax to describe the problems for different AMLs is a noticeable difference to
explore. Fragniere and Gondzio [2] state that the algebraic design approach used in AMLs
should allow practitioners without specific programming or modeling knowledge to be
efficient in describing the problems to be solved. However, observing constraints of the
same problem defined in Listing 2, we can conclude that it does require some programming
knowledge to use AMLs such as Pyomo and JuMP, and it is also not a straightforward
process to switch between different AMLs. Exploring more complex language structures
(e.g., calculated parameters, suffixes) showcases even more differences between the syntax
of AMLs and complexity for practitioners to learn multiple of them.

Mathematics 2021, 9, 2751 4 of 18

Listing 2. The objective function and constraints of the transportation problem [26] expressed in
AMPL, GAMS, Pyomo, and JuMP syntax.

AMPL
minimize c o s t : sum{ i in I , j in J } c [i , j] * x [i , j] ;
s . t . supply { i in I } : sum{ j in J } x [i , j] <= a [i] ;
s . t . demand{ j in J } : sum{ i in I } x [i , j] >= b [j] ;

GAMS
c o s t . . z =e= sum ((i , j) , c (i , j) * x (i , j)) ;
supply (i) . . sum(j , x (i , j)) = l = a (i) ;
demand(j) . . sum(i , x (i , j)) =g= b (j) ;

Pyomo
def o b j e c t i v e _ r u l e (model) :

re turn sum(model . c [i , j] * model . x [i , j] f o r i in model . i f o r j in model . j)
model . o b j e c t i v e = Objec t ive (r u l e= o b j e c t i v e _ r u l e , sense=minimize)
def supply_rule (model , i) :

re turn sum(model . x [i , j] f o r j in model . j) <= model . a [i]
model . supply = Constra int (model . i , r u l e=supply_rule)
def demand_rule (model , j) :

re turn sum(model . x [i , j] f o r i in model . i) >= model . b [j]
model . demand = Constra int (model . j , r u l e=demand_rule)

JuMP
@objec t ive (model , Min , sum(c o s t _ f [i , j] * t r a n s [i , j]

f o r i in 1 : length (ORIG) , j in 1 : length (DEST)))
@constra int (model , [i in 1 : length (ORIG)] ,

sum(t r a n s [i , j] f o r j in 1 : length (DEST)) <= supply [i])
@constra int (model , [j in 1 : length (DEST)] ,

sum(t r a n s [i , j] f o r i in 1 : length (ORIG)) >= demand[j])

2.3. Compatibility

The compatibility between AMLs from a tooling perspective is also scarce. GAMS
Convert [27] is the only tool (commercial) capable of converting between different AMLs.
However, the conversion results in a scalar model being produced where the original model
structure is lost. An example of a GAMS Convert-generated scalar model in Pyomo format
can be seen in Listing 3. Once compared to the model in an original Pyomo format, as seen
in Listing 4, the scalar model becomes more difficult to read, understand, and extend.

Listing 3. The classical transportation problem [26] expressed in a Pyomo scalar format.

from pyomo . environ import *

model = m = ConcreteModel ()

m. x1 = Var (within=Reals , bounds =(0 ,None) , i n i t i a l i z e =0)
m. x2 = Var (within=Reals , bounds =(0 ,None) , i n i t i a l i z e =0)
m. x3 = Var (within=Reals , bounds =(0 ,None) , i n i t i a l i z e =0)
m. x4 = Var (within=Reals , bounds =(0 ,None) , i n i t i a l i z e =0)
m. x5 = Var (within=Reals , bounds =(0 ,None) , i n i t i a l i z e =0)
m. x6 = Var (within=Reals , bounds =(0 ,None) , i n i t i a l i z e =0)

m. ob j = Objec t ive (expr= 0 . 2 2 5 *m. x1 + 0 . 1 5 3 *m. x2
+ 0 . 1 6 2 *m. x3 + 0 . 2 2 5 *m. x4 + 0 . 1 6 2 *m. x5 + 0 . 1 2 6 *m. x6 , sense=minimize)

m. c2 = Constra int (expr= m. x1 + m. x2 + m. x3 <= 350)
m. c3 = Constra int (expr= m. x4 + m. x5 + m. x6 <= 600)
m. c4 = Constra int (expr= m. x1 + m. x4 >= 325)
m. c5 = Constra int (expr= m. x2 + m. x5 >= 300)
m. c6 = Constra int (expr= m. x3 + m. x6 >= 275)

Furthermore, during our recent benchmarks [25], we have identified a few flaws
of the GAMS Convert tool. Around 3% of models available in the GAMS library were
converted to AMPL, Pyomo, and JuMP with syntax errors, making them unsolvable. Most

Mathematics 2021, 9, 2751 5 of 18

of the Pyomo errors were caused by an incorrect GAMS Convert tool behavior where the
definition of the Suffix primitive uses AMPL but not Pyomo semantics. Similar issues
were observed in some of the JuMP models.

Listing 4. The classical transportation problem [26] expressed in a Pyomo original format.

from pyomo . environ import *
model = ConcreteModel ()
model . i = Set (i n i t i a l i z e =[’ s e a t t l e ’ , ’ san−diego ’])
model . j = Set (i n i t i a l i z e =[’new−york ’ , ’ chicago ’ , ’ topeka ’])
model . a = Param (model . i , i n i t i a l i z e ={ ’ s e a t t l e ’ : 3 5 0 , ’ san−diego ’ : 6 0 0 })
model . b = Param (model . j , i n i t i a l i z e ={ ’new−york ’ : 3 2 5 , ’ chicago ’ : 3 0 0 , ’ topeka ’ : 2 7 5 })
dtab = {

(’ s e a t t l e ’ , ’new−york ’) : 2 . 5 ,
(’ s e a t t l e ’ , ’ chicago ’) : 1 . 7 ,
(’ s e a t t l e ’ , ’ topeka ’) : 1 . 8 ,
(’ san−diego ’ , ’ new−york ’) : 2 . 5 ,
(’ san−diego ’ , ’ chicago ’) : 1 . 8 ,
(’ san−diego ’ , ’ topeka ’) : 1 . 4 ,
}

model . d = Param (model . i , model . j , i n i t i a l i z e =dtab)
model . f = Param (i n i t i a l i z e =90)
def c _ i n i t (model , i , j) :

re turn model . f * model . d [i , j] / 1000
model . c = Param (model . i , model . j , i n i t i a l i z e = c _ i n i t)
model . x = Var (model . i , model . j , bounds = (0 . 0 , None))
def supply_rule (model , i) :

re turn sum(model . x [i , j] f o r j in model . j) <= model . a [i]
model . supply = Constra int (model . i , r u l e=supply_rule)
def demand_rule (model , j) :

re turn sum(model . x [i , j] f o r i in model . i) >= model . b [j]
model . demand = Constra int (model . j , r u l e=demand_rule)
def o b j e c t i v e _ r u l e (model) :

re turn sum(model . c [i , j] * model . x [i , j] f o r i in model . i f o r j in model . j)
model . o b j e c t i v e = Objec t ive (r u l e= o b j e c t i v e _ r u l e , sense=minimize)

2.4. Solvers

Solvers are an essential part of what a modern AML offers. They implement appropri-
ate solution algorithms to solve the problem at hand. Some solvers are distributed together
with AMLs, while others can be purchased separately.

Since the “No Free Lunch Theorems for Optimization” [28] states that for certain types
of mathematical problems, the computational cost of finding a solution, averaged over
all problems in the class, is the same for any solution method. Thus, no single universal
solver for all problem types can exist. This is why in Table 2, we provide an overview of
the solvers supported by different AMLs grouped by problem types. As solvers usually
support several types of optimization problems, the last row reflects the total number of
unique solvers.

The quality of the algorithms implemented by the solvers is also important. In our
research, we have identified AMPL and GAMS as the ones providing the most extensive
set of state-of-the-art solvers for various types of mathematical optimization problems.
The list of supported solvers is continuously updated and growing [29,30]. We believe
that some solvers might be more significant since having support for multiple problem
types makes it appealing for practitioners. However, being universal does not guarantee
the best performance. Thus, practitioners might prefer more specialized but also more
efficient solvers.

AMPL comes with the majority of solvers bundled in a standard package. However, it
should not be confused that the solvers supported by AMPL are the exact solvers supported
by other AMLs. We can get into a situation where a specific problem needs a solver, which
is only available through the one and only AML. This would require the modeler to define
the model in a given AML, and it must be known upfront. It is not always the case in

Mathematics 2021, 9, 2751 6 of 18

real-life situations where the nature of the problem is not fully understood until it has been
defined in a specific AML and attempted to be solved.

Table 2. The number of solvers supported by AMLs grouped by the problem type.

Type AMPL GAMS JuMP Pyomo

Global 4 9 2 1
LP 17 21 9 10
MCP 1 5 1 1
MINLP 6 15 3 6
MIP 14 16 6 8
MIQCP 5 20 3 4
NLP 19 17 7 10
QCP 9 21 6 6

Total 47 35 14 25

2.5. Performance

Performance becomes essential once we start to solve complex real-life problems. Models
tend to grow in size and input data amount. Thus, we must focus on the solvers’ performances,
i.e., solution time, and consider the potential savings in a model instance generation phase.
Our benchmark results in Figure 1 [23] show significant model instance generation time
variation between different AMLs. It is important to note that while AMPL is a clear top
performer, open-source counterparts have varying results within different problem types.
Thus, choosing the right AML for a concrete problem type would impact performance.

15 10 19 14 11 22 11 10 20

51

234 227 240 234
242 259 238 236 262

364

838

719

841

764
745

936 852

669

826

1344

450.3

42.2

897.5

256.9

160.3

1498.7

72.3
19.0

604.3

1380.0

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

CNS DNLP LP MCP MINLP MIP MIQCP MPEC NLP QCP

M
ill
is
e
co
n
d
s

AMPL GAMS Pyomo JuMP

Figure 1. Average model instance creation time (in milliseconds) grouped by mathematical opti-
mization problem type. Benchmark conducted by Jusevicius et al. [23] using models available in the
GAMS library. It measures the time taken to load model instance and export to a format supported
by the solver.

2.6. Presolving

Presolving, a feature supported by very few AMLs, attempts to reduce the problem
size or determine the problem to be unfeasible even before sending it to the solver. Out
of the benchmarked AMLs, only AMPL supports presolving. Our research observed that
an AMPL presolver managed to simplify models in 52.8% of the cases, out of which five
times it determined that the problem solution is not feasible, thus not requiring to call the

Mathematics 2021, 9, 2751 7 of 18

solver. On average, once applied, the AMPL presolver managed to reduce the model size
by removing 18.42% of constraints and 10.73% of variables.

The benchmark seen in Table 3 was made to test the impact of the AMPL presolve on
solution time. The results were positive, allowing us to conclude that the presolver is an
efficient way to simplify larger problems leading to improved solution finding performance
once invoking a solver with an already reduced problem model instance. Moreover, the
ability to determine infeasible models can help modelers in the problem definition process
debug and find errors in the model definition.

Table 3. Benchmark of AMPL presolve impact on solving. Sample models were solved with a Gurobi
solver, and the solver’s presolve function turned off while keeping AMPL presolver on.

Iteration-Wise Time-Wise Iteration-Wise (%) Time-Wise (%)

Positive 33 44 54.10% 72.13%
Neutral 10 0 16.39% 0.00%
Negative 18 17 29.51% 27.87%

2.7. Parallelism

Parallelism is a feature we have not explored in our previous research, but it is
significant for solving real-life mathematical optimization problems. We can identify three
prominent use cases of parallelism within AMLs.

First, it is the parallelism in a problem-solving phase implemented by the solver
algorithms. There is the opportunity to use parallel computations to aid in the search for
(global) solutions, typically in a nonconvex (or discrete) setting. Mathematical optimiza-
tion algorithms have also utilized building blocks, most prominently decomposition and
parallel linear algebra techniques, to exploit the computational power of high-performance
machines [31].

Secondly, in some applications, optimization of a collection of problems is required
where each problem is structurally the same. Still, some or all of the data defining the
instance is updated [32]. Solving such collections of problems could benefit from the
single initiation of the base model instance, updating the base model instance with specific
scenario information and solving the scenarios in parallel.

Lastly, truly large-scale problems may require parallel processing for the solution of
the problem and during the model generation phase [33]. For this, we need an AML that
facilitates the modeling of the problem structure and can utilize problem structure in the
parallel model generation.

Our work focuses on the last two types of parallelism within AMLs since the first
one is implemented by the solvers and not by the AMLs themselves. Table 4 provides a
brief overview of how specific AMLs can implement the two types of parallelism in which
we are interested. It is worth noting that in none of the AMLs, parallel scenario solving
or parallel model generation is implemented by default. The tools or techniques cited in
Table 4 are provided by the scientific society, not the vendors themselves.

Table 4. Support for parallel scenario solving and parallel model generation in AMPL, GAMS,
Pyomo, and JuMP.

Type of Parallelism AMPL GAMS JuMP Pyomo

Scenario solving Preampl [34] GUSS/GRID [31] StructJuMP [35] Pyro/PH [36]
Model generation PSMG [37] .stage/GDX [38] StructJuMP [35] N/A

2.8. Summary

Summarizing all of the observations about differences within AMLs described so far,
we find the following:

Mathematics 2021, 9, 2751 8 of 18

• Practitioners must learn the specific syntax of a given AML, which is coupled to a
specific modeling environment. Practitioners are not flexible to reuse the knowledge
and simplify work;

• Very limited cross-compatibility between different AMLs makes it practically impossi-
ble to transfer the model from one AML to another automatically. This might result
in vendor lock-in—choosing to stay with a specific AML due to the increased cost of
switching;

• Different AMLs support different solvers, so, in some scenarios, practitioners might
have a solver available in another AML than the model is written and will not be able
to utilize it;

• Different AMLs have different levels of support for various model types. Since in the
beginning it is not always clear what type of problem we are dealing with, it is risky
to choose AML, which might not be supported;

• As identified in our practical benchmark, AML performance differs significantly
between modeling environments and model types. It is beneficial to be flexible in
choosing the best one for large models;

• Varying support for additional capabilities such as presolving or parallel solving.

This leads us to believe that while there are a few powerful modeling environments
and AMLs, neither provide a complete feature set required for the efficient and intuitive
modeling of mathematical optimization problems.

To address the identified gaps, we propose developing a "universal” AML and a tool
supporting it, which would benefit from the best characteristics of all of the existing AMLs.
We strongly believe that an open-source and web-based approach will make it much more
accessible for a wider audience, will not require local installations, and will utilize cloud
computing power. Thus, we are suggesting a web-based tool which:

1. Does not require syntax knowledge of any specific AML. Everything can be done via
a guided graphical user interface;

2. Internally combines and utilizes the best characteristics of different AMLs. Thus, it is
capable of converting between different AMLs;

3. Is designed for enabling presolving and parallel solving in the future;
4. Provides a framework for other contributors to extend it (e.g., feature to choose the

best solver based on the model type automatically).

3. Results

We have worked on two main building blocks supporting the vision of the universal
algebraic modeling system. The first one is a formal language capable of capturing problem
characteristics, which we call WebAML. The second one is a prototype of the tool allowing
us to build a model using the WebAML language and solve it using the underlying AMLs.
We have scoped the prototype to support three key operations—load the model from a
file, solve the model, and export the model to a file. Currently, our prototype supports
three AMLs: AMPL, GAMS, and Pyomo. All of the results and code base is available in
our WebAML GitHub repository [39], which is structured as follows:

• The webaml-schema directory contains the WebAML language definitions and trans-
portation problem example;

• The webaml-c4model directory contains an architecture model for a reference imple-
mentation of WebAML and Optimization System;

• The webaml-backend directory contains Java-based backend services supporting We-
bAML;

• The webaml-frontend directory contains a single-page front-end application for build-
ing and manipulating WebAML models.

Mathematics 2021, 9, 2751 9 of 18

3.1. WebAML Language

Once deciding on how to design and define WebAML language for structuring,
validating, and capturing the mathematical optimization model logic, we have taken into
account the following criteria:

• Models will be built using a graphical user interface. Thus, there is no need to have a
short and straightforward syntax;

• Model has to be strictly typed and well structured to allow converting it to the syntax
of other AMLs;

• Model will be used on the Web. Thus, the data interchange format should be
lightweight, open, standardized, and well adopted on the Web.

Based on the criteria above, we have decided to choose JSON [40] as a lightweight data-
interchange format and JSON Schema [41] as a metadata format to describe and validate
our WebAML data format. Most programming languages widely support JSON, which
is human-readable, and have a small metadata footprint compared to other formalized
formats such as, e.g., XML. Using JSON Schema creates additional value since tooling to
generate OpenAPI-based (the OpenAPI: language-agnostic interface to RESTful APIs;
https://swagger.io/specification (accessed on 17 September 2021)) services from JSON
Schema can simplify the development of a prototype while supporting more accessible
updates once the WebAML language format evolves.

We also had to choose how to capture the mathematical equations needed to define
constraints in the model. Here, we have chosen to use a well-known language, such as
LATEX, instead of its less-adopted counterparts, such as ASCII Math (AsciiMath: an easy-to-
write markup language for mathematics; http://asciimath.org (accessed on 17 September
2021)). This was dictated by both widespread knowledge of LATEX in academic society and
the existence of libraries capable of tokenizing LATEX formulas (LATEX.js: JavaScript LATEX
to HTML5 translator; https://latex.js.org (accessed on 17 September 2021)) and displaying
them nicely on the Web using W3C MathML [42] standard.

A detailed structure of a WebAML model is defined in the JSON Schema file called
webaml.schema.json, available on our GitHub repository. At the same time, a summary
of the basic components is provided in Table 5.

Table 5. Basic components of WebAML language.

Component Type Comment

Set Single-dimensional String and number data types supported
Table Two-dimensional Number data type supported
Parameter Scalar Fixed value

Indexed Can be calculated
Variable Continuous Upper/lower bound supported

Binary -
Integer Upper/lower bound supported

Constraint Simple For a single variable
Indexed Defined over a set

Objective Minimize Single objective only
Maximize Single objective only

As seen in Table 5, at the moment, we have limited our language to support only
the basic features. Thus, no syntactic sugar is maintained (e.g., aliases), and only single-
dimensional sets and two-dimensional arrays are supported. Features such as indexing
over partial sets are also not supported. However, our JSON Schema is defined in a flexible
manner. If the tooling working with the WebAML language supported more features, it
would be easy to extend the WebAML language by introducing new enumerated type
values to the schema definition.

https://swagger.io/specification
https://swagger.io/specification
http://asciimath.org
https://latex.js.org

Mathematics 2021, 9, 2751 10 of 18

In Listing 5, we demonstrate how the same constraints of the transportation prob-
lem provided in Listing 2 look in WebAML syntax. While being more verbose, we can
observe that it is also much more structured, thus making it easier to write code capable of
interpreting and converting it to different formats.

Listing 5. Constraints of transportation problem [26] expressed in WebAML syntax.

" c o n s t r a i n t s " : [
{

"name " : " supply " ,
" type " : "INDEXED" ,
" indexes " : [" i "] ,
" value " : "\\sum_j x_ { i j } \\leq a _ i " ,
" d e s c r i p t i o n " : " Observe supply l i m i t a t plant "

} ,
{

"name " : "demand " ,
" type " : "INDEXED" ,
" indexes " : [" j "] ,
" value " : "\\sum_i x_ { i j } \\geq b _ j " ,
" d e s c r i p t i o n " : " S a t i s f y demand at market "

}
] ,
" o b j e c t i v e s " : [

{
"name " : " c o s t " ,
" type " : "MINIMIZE" ,
" value " : "\\sum_i \\sum_j c_ { i j } * x_ { i j } " ,
" d e s c r i p t i o n " : "MINIMIZE t r a n s p o r t a t i o n c o s t "

}
]

3.2. Prototype of WebAML Optimization System

As identified in our earlier findings, we were set to build an extendable, open-source,
web-based prototype combining the best characteristics of the underlying AMLs. In Figure 2,
we provide the system architecture landscape viewpoint for this prototype of the universal
WebAML Optimization System using C4 architecture model (The C4 model for visualizing
the software architecture; https://c4model.com (accessed on 17 September 2021)) notation.
A more detailed system component diagram can be seen in Figure A1. All of the code is
provided on our WebAML GitHub repository [39].

We can observe that the WebAML modeling and mathematical optimization tool acts
as an orchestrator that allows the AML modeler to build the model, convert it to a specific
AML format, and send it for solving via local solvers or remote solving in the NEOS Server
platform. This way, we are not building any new solving capabilities, instead of relying
and building on top of the best features provided by the most prominent AMLs.

We are also proposing to utilize the GAMS Convert tool to support an even wider
variety of AMLs. Adding the support for a new AML that GAMS Convert already supports
is as easy as converting WebAML to GAMS (which already has native support in our
prototype) and then using GAMS Convert to convert to any other target AML. We have
shown how such an approach can work in the AMPL and Pyomo converters provided in
the prototype. A detailed description of how such a solution works while using AMPL as
an underlying AML is provided in Figure A2.

When implementing the prototype, we have chosen to split our front-end and back-
end parts of the prototype into:

• Client-side single page, React.js (React: A JavaScript library for building user in-
terfaces; https://reactjs.org (accessed on 17 September 2021)), the base application
responsible for guiding the user while building a WebAML model;

• Back-end application implemented using Spring Boot (Spring Boot: a framework for
building stand-alone, production-grade Spring-based applications; https://spring.

https://c4model.com
https://reactjs.org
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot

Mathematics 2021, 9, 2751 11 of 18

io/projects/spring-boot (accessed on 17 September 2021)) capable of parsing and
converting WebAML language to other AMLs and communicating with underlying
AMLs for solving the model.

WebAML and Optimization Ecosystem
[Enterprise]

AMLs
[Software System]

AMLs (GAMS, AMPL, Pyomo, JuMP)
installed locally on the node.

Solvers
[Software System]

Solvers installed locally on
the node.

Calls local solvers to
solve the model

NEOS Server
[Software System]

Remote solvers available via
NEOS platform.

Calls NEOS Server to solve
the model

GAMS Convert
[Software System]

GAMS tool to transpile GAMS
model to other AMLs.

WebAML and
Optimization System

[Software System]

Allows modelers to create and
solve optimization models.

Uses to solve created AML
model

Uses to convert generated
GAMS model to other AML

AML Modeler
[Person]

A person developing AML
models.

Uses UI to build and solve
WebAML models

Figure 2. C4 architectural model of a system landscape for the prototype of WebAML Optimization
System. Gray boxes indicate external elements provided by other systems.

This approach allows us to leverage the strength of modern browser support for
JSON and JSON Schema standards and offload the building of a WebAML model to the
client-side, thus reducing the load on the back-end services. The back-end also benefits
from the fact that WebAML is a JSON-based language and can quickly validate incoming
requests based on the standard JSON Schema while generating OpenAPI-based service
contracts using it.

Our prototype provides a simple yet straightforward and guided graphical user
interface for constructing a WebAML model. Examples of how the constraints of the
transportation problem [26] are displayed in our user interface can be seen in Section 4.1.
Since we decided to use LATEX for storing mathematical equations, we also included an
on-the-fly MathML-based visualizer of LATEX equations. We believe this helps validate
the mathematical expressions and guides nonsavvy LATEX practitioners in the modeling
process.

4. Discussion

We believe that in this research, we succeeded in proposing a universal web-based
AML that does not require any prior knowledge of a specific AML syntax and provides a
guided user interface for defining the model. Such a tool simplifies the process of algebraic
modeling and mathematical optimization, making it appealing for new practitioners (e.g.,
students) who are just trying to grasp the basics of mathematical optimization. We can also

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot

Mathematics 2021, 9, 2751 12 of 18

identify clear extension points and principles on how additional features such as presolving
or parallel model generation can be implemented.

The following sections show how algebraic modeling can be simplified by comparing
the traditional mathematical approach with our proposed user interface (UI)-based one.
We also, in more detail, define how the extensibility of the prototype can be leveraged.

4.1. Comparative Example

We continue using the classical transportation problem by Dantzig, G. B. [26] for the
comparative example to explore the potential advantages of using WebAML. This time,
we look into a concrete model instance where the goal is to minimize the cost of shipping
goods from two plants to three markets, subject to the supply and demand constraints.
Listing 6 provides the characteristics of such a model instance in a mathematical format.

First, we need to define the sets and indices describing plants and markets. Then, we
define the parameters that will hold the data about the capacity of each plant, the demand
at each market, and the distance between them. Later, we describe how the transportation
cost per case should be calculated. Having the data initiated, we define two variables we
except the solver to calculate: shipment quantities between the plants and markets and the
total transportation cost. Lastly, we need to describe the demand and supply constraints
and objective function.

Once we have modeled such optimization problems using a typical algebraic modeling
language, we need to know how such mathematical concepts have to be written in a textual
format. An example of the classical transportation problem expressed in a Pyomo original
format was already presented in Listing 4. If we would like to model it in a different
language than Pyomo, we would need to start from scratch and take the mathematical
concepts to yet another textual notation of another algebraic modeling language. As shown
in Listing 2, the syntax of algebraic modeling languages might differ a lot. Some are more
targeted towards practitioners with a mathematical background (e.g., AMPL, GAMS), and
others are familiar with common programming languages (e.g., Pyomo, JuMP).

Listing 6. Concrete model instance of the classical transportation problem by Dantzig, G. B. [26] with
the goal of minimizing the shipping cost of goods from two plants to three markets.

Sets: Plants {Seattle, San Diego} (m = 2 plants)
Markets {New-York, Chicago, Topeka} (n = 3 markets)

Indices: i On plants
j On markets

Parameters: Ai Capacity of plant i
Bj Demand at market j
F Freight in dollars per case per thousand miles
Dij Distance in thousands of miles

Cij Transport cost in thousands per cases (F ∗ Dij/1000)

Variables: Xij Shipment quantities in cases

Z Total transportation costs in thousands of dollars
Constraints: ∑n

j=1 Xij ≤ Ai ; for i = 1, 2, . . . , m ; observe supply limit at plant i

∑m
i=1 Xij ≥ Bj ; for j = 1, 2, . . . , n ; satisfy demand at market j

Xij ≥ 0 ; for i = 1, 2, . . . , m and j = 1, 2, . . . , n
Objective: Minimize transportation cost subject to supply and demand constraints

Min Z = ∑m
i=1 ∑n

j=1 CijXij

An alternative to capturing optimization problems in a textual format is using a guided
user interface proposed in our WebAML Optimization System prototype. In Figure 3, we

Mathematics 2021, 9, 2751 13 of 18

display how the supply constraint and objective function of a given transportation model
instance are captured using the user interface. The user is asked the basic information, such
as the type of constraint, indices used in the constraints, and the mathematical expression
of the constraint itself.

Figure 3. Screenshot of the user interface for the WebAML Optimization System. Supply constraint
and objective function of transportation problem are presented.

The constraints are entered using the LATEX mathematical syntax displayed in a visual
form to help the user and ensure that valid syntax is used. The objective function is entered
similarly. In essence, each type of the model component (set, parameter, constraint, etc.)
has its visual representation so that the user experience can be custom tailored to specific
kinds of model components. An example of how the solution to the problem and solver
output is displayed can be seen in Figure 4.

Figure 4. Screenshot of the user interface for the WebAML Optimization System. Obtained solution
of the transportation problem.

Mathematics 2021, 9, 2751 14 of 18

4.2. Extensibility

We can extend the user interface provided in our prototype further, thus making the
process even smoother by giving guiding text and introducing questionnaire-like behavior
and similar user experience improvements. We also believe that the architectural decisions
made in the design of the WebAML Optimization System make it the foundation for a
universal mathematical optimization toolkit. The toolkit could be extended with other
state-of-the-art features, such as presolving, distributed solving, or best solver selection
based on the model type.

Firstly, one can easily extend WebAML language based on the JSON Schema by
introducing new types for the already defined essential components. Listing 7 shows how
one could add a new data type called boolean to the set component.

Listing 7. WebAML JSON Schema extended with a new data type for the set component.

" s e t s " : {
. . .

" i tems " : {
. . .
" p r o p e r t i e s " : {

. . .
" valueType " : {

" type " : " s t r i n g " ,
" t i t l e " : " Data type of values in a s e t " ,
"enum " : [" STRING" , "NUMBER" , "BOOLEAN"] // New boolean type

} ,
. . .

}
}

}

Secondly, one can easily extend the back-end service to support new AMLs by writing
a converter from WebAML, thus implementing the WebAMLConverter interface and imple-
menting the AmlFacade interface for integration with the underlying AML binaries. It does
not require any changes to be completed in the controller or user interface. Everything is
registered automatically and works out of the box after fully implementing the AmlFacade
interface provided in Listing 8. There is even an option not to write a special WebAML
converter, but to use the GAMS Convert tool as demonstrated in the AmplConverter class.

Listing 8. Structure of AmlFacade interface.

publ ic i n t e r f a c e AmlFacade {
boolean isAmlAvailable () ;
S t r i n g getAmlName () ;
L i s t <Str ing > g e t A v a i l a b l e S o l v e r s () ;
AmlResult solveModel (S t r i n g model , S t r i n g s o l v e r) ;
S t r i n g convertModel (S t r i n g model , S t r i n g targetAml) ;

}

Finally, one can quickly introduce new features such as presolving or parallel solving
by extending the existing ModelController class and adding additional features as an
intermediate step between the convert and solve operations.

5. Conclusions and Future Work

In this research, we have identified the major differences and shortcomings amongst
four prominent algebraic modeling languages. One is the major is a lack of cross-compatibility,
resulting in the difficulty to switch between AMLs and the need to learn the specific syntax.
We identify that it can become a challenge in teaching mathematical optimization in schools
and universities. To address this and other identified shortcomings, we proposed a new

Mathematics 2021, 9, 2751 15 of 18

formalized algebraic modeling language (WebAML). We provided the graphical user
interface-based open-source tool (WebAML Optimization System) prototype for algebraic
modeling and mathematical optimization.

The tool does not require any specific algebraic language knowledge and allows for
solving problems using different mathematical optimization solvers. Thus, it simplifies
the process of algebraic modeling and mathematical optimization, making it available
for individuals without detailed technical knowledge. This makes it appealing not only
for enterprise users but also for teachers, lecturers, and students trying to understand
the basics of mathematical optimization. Worldwide research of the usage of information
and communication technology (ICT) to support, enhance, and optimize information
delivery has shown that ICT can lead to improved student learning and better teaching
methods (e.g., [43–46]). The tool also supports all of the solvers available in the underlying
AMLs, thus providing a wide range of free and commercial solvers. Since the tool can
easily be installed on a server and accessed via a web interface, an institution can acquire
a full academic or commercial license and allow easy access for every member to solve
large-scale optimization problems.

One possible future research direction could be extending the proposed WebAML
language to simplify the model definition process. Improving the user interface (e.g.,
adding textual guidance) and simplifying the syntax of the language (e.g., support for
implicit definition of sets) are among the potential nearest future works. Another research
avenue could be the development of extensions to the WebAML Optimization System. Our
analysis revealed a need for parallel model generation and presolving capabilities. We have
guided how such extensions can be built into our prototype. Further research could be
implementing automated solver algorithm selection in the WebAML Optimization System,
which would significantly simplify the work for practitioners. Research in automatic
algorithm selection is already ongoing and advanced [47]. Finally, testing in real-life
situations and improving the existing prototype are needed to make a tool be adopted in
mathematics classrooms and by enterprise users.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The research work of R. Paulavičius was funded by a Grant (No. S-MIP-21-53) from the
Research Council of Lithuania.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data underlying this article available on Zenodo at https://
zenodo.org/record/5500339 (accessed on 17 September 2021) and used under the Creative Commons
Attribution license.

Acknowledgments: Vilnius University Institute of Data Science and Digital Technologies.

Conflicts of Interest: The authors declare no conflict of interest.

https://zenodo.org/record/5500339
https://zenodo.org/record/5500339

Mathematics 2021, 9, 2751 16 of 18

Appendix A

API Application
[Container: Java and Spring Boot]

AMLs
[Software System]

AMLs (GAMS, AMPL, Pyomo, JuMP)
installed locally on the node.

Single-Page
Application

[Container: JavaScript]

Provides all of the WebAML
functionality to modelers via

web browser.

AMLController
[Component: Spring Boot Rest Controller]

Provides meta information
about supported AMLs and

solvers.

Makes API calls to
[REST]

Solver Controller
[Component: Spring Boot Rest Controller]

Converts WebAML model to
target AML and sends it for

solving.

Makes API calls to
[REST]

AML Facade
[Component: Interface]

An interface for implementing
translation of requests and

responses to/from specific AML
CLIs.

Uses

WebAML Converter
[Component: Interface]

Interface for WebAML to
specific AMLs converter

Uses

Uses

GAMS Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

GAMS CLI

Uses

GAMS Converter
[Component: Spring Bean]

Converts GAMS model to
specific AMLs.

Implements

AMPL Converter
[Component: Spring Bean]

Converts AMPL model to
specific AMLs.

Implements

JuMP Converter
[Component: Spring Bean]

Converts JuMP model to
specific AMLs.

Implements

Pyomo Converter
[Component: Spring Bean]

Converts Pyomo model to
specific AMLs.

Implements

Makes RPC callsImplements

AMPL Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

AMPL CLIs.

Makes RPC callsImplements

JuMP Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

JumP CLIs.

Makes RPC callsImplements

Pyomo Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

Pyomo CLIs.

Makes RPC callsImplements

Figure A1. Components of the WebAML Optimization System in C4 architectural model notation. WebAML Converter and
AML Facade interfaces support additional new AMLs.

API Application
[Container: Java and Spring Boot]

Solver Controller
[Component: Spring Boot Rest Controller]

Converts WebAML model to
target AML and sends it for

solving.

GAMS Converter
[Component: Spring Bean]

Converts GAMS model to
specific AMLs.

2. Build GAMS model from
WebAML

GAMS Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

GAMS CLI

4. Convert GAMS model to
AMPL

AMPL Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

AMPL CLIs.

6. Invoke AMPL solve

Single-Page
Application

[Container: JavaScript]

Provides all of the WebAML
functionality to modelers via

web browser.

12. Send back solution to
UI

[REST]
3. Return GAMS model

5. Returns AMPL scalar
model

11. Return solution

AMLs
[Software System]

AMLs (GAMS, AMPL, Pyomo, JuMP)
installed locally on the node.

7. Execute RPC call to
AMPL

10. Return AMPL solution

Solvers
[Software System]

Solvers installed locally on
the node.

8. Call specific solver 9. Return solver results

1. Submits WebAML model
for solving

[REST]

Figure A2. End-to-end flow to solve the WebAML model using AMPL. This showcases the usage of GAMS Convert if a
native WebAML to AMPL converter is not available.

References
1. Abhishek, K.; Leyffer, S.; Linderoth, J. FilMINT: An outer approximation-based solver for convex mixed-integer nonlinear

programs. INFORMS J. Comput. 2010, 22, 555–567. doi:10.1287/ijoc.1090.0373.
2. Fragniere, E.; Gondzio, J. Optimization Modeling Languages. In Handbook of Applied Optimization; Pardalos, P.M.; Resende,

M.G.C., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 993–1007.
3. Groër, C.; Golden, B.; Wasil, E. A parallel algorithm for the vehicle routing problem. INFORMS J. Comput. 2011, 23, 315–330.

doi:10.1287/ijoc.1100.0402.
4. Paulavičius, R.; Žilinskas, J. Simplicial Global Optimization; SpringerBriefs in Optimization; Springer: New York, NY, USA, 2014.

doi:10.1007/978-1-4614-9093-7.
5. Paulavičius, R.; Gao, J.; Kleniati, P.M.; Adjiman, C.S. BASBL: Branch-And-Sandwich BiLevel solver: Implementation and

computational study with the BASBLib test set. Comput. Chem. Eng. 2020, 132, 106609. doi:10.1016/j.compchemeng.2019.106609.
6. Paulavičius, R.; Sergeyev, Y.D.; Kvasov, D.E.; Žilinskas, J. Globally-biased BIRECT algorithm with local accelerators for expensive

global optimization. Expert Syst. Appl. 2020, 144, 113052. doi:10.1016/j.eswa.2019.113052.
7. Cosma, O.; Pop, P.C.; Dănciulescu, D. A Parallel Algorithm for Solving a Two-Stage Fixed-Charge Transportation Problem.

Informatica 2020, 31, 681–706. doi:10.15388/20-INFOR432.

https://doi.org/10.1287/ijoc.1090.0373
https://doi.org/10.1287/ijoc.1100.0402
https://doi.org/10.1007/978-1-4614-9093-7
https://doi.org/10.1016/j.compchemeng.2019.106609
https://doi.org/10.1016/j.eswa.2019.113052
https://doi.org/10.15388/20-INFOR432

Mathematics 2021, 9, 2751 17 of 18

8. Fernández, P.; Lančinskas, A.; Pelegrín, B.; Žilinskas, J. A Discrete Competitive Facility Location Model with Minimal Market
Share Constraints and Equity-Based Ties Breaking Rule. Informatica 2020, 31, 205–224. doi:10.15388/20-INFOR410.

9. Gómez, F.J.O.; López, G.O.; Filatovas, E.; Kurasova, O.; Garzón, G.E.M. Hyperspectral Image Classification Using Isomap with
SMACOF. Informatica 2019, 30, 349–365. doi:10.15388/Informatica.2019.209.

10. Lee, K.Y.; Lim, J.S.; Ko, S.S. Endosymbiotic Evolutionary Algorithm for an Integrated Model of the Vehicle Routing and Truck
Scheduling Problem with a Cross-Docking System. Informatica 2019, 30, 481–502. doi:10.15388/Informatica.2019.215.

11. Paulavičius, R.; Sergeyev, Y.D.; Kvasov, D.E.; Žilinskas, J. Globally-biased DISIMPL algorithm for expensive global optimization.
J. Glob. Optim. 2014, 59, 545–567. doi:10.1007/s10898-014-0180-4.

12. Stripinis, L.; Paulavičius, R.; Žilinskas, J. Penalty functions and two-step selection procedure based DIRECT-type algorithm for
constrained global optimization. Struct. Multidiscip. Optim. 2019, 59, 2155–2175. doi:10.1007/s00158-018-2181-2.

13. Stripinis, L.; Žilinskas, J.; Casado, L.G.; Paulavičius, R. On MATLAB experience in accelerating DIRECT-GLce algorithm for
constrained global optimization through dynamic data structures and parallelization. Appl. Math. Comput. 2021, 390, 125596.
doi:10.1016/j.amc.2020.125596.

14. GAMS Development Corporation. GAMS Model Library. 2021. Available online: https://www.gams.com/latest/gamslib_ml/
libhtml/index.html (accessed on 17 September 2021).

15. Fourer, R. Algebraic Modeling Languages for Optimization. In Encyclopedia of Operations Research and Management Science;
Springer: New York, NY, USA, 2013; pp. 43–51. doi:10.1007/978-1-4419-1153-7.

16. Fourer, R. AMPL : A Modeling Language for Mathematical Programming; Thomson/Brooks/Cole: Pacific Grove, CA, USA, 2003.
17. McCarl, B.A.; Meeraus, A.; van der Eijk, P.; Bussieck, M.; Dirkse, S.; Nelissen, F. McCarl Expanded GAMS User Guide Version

24.6. 2016. Available online: https://www.gams.com/mccarlGuide/ (accessed on 17 September 2021).
18. Hart, W.E.; Watson, J.P.; Woodruff, D.L. Pyomo: Modeling and Solving Mathematical Programs in Python. Math. Program.

Comput. 2011, 3, 219–260. doi:10.1007/s12532-011-0026-8.
19. Hart, W.E.; Laird, C.D.; Watson, J.P.; Woodruff, D.L.; Hackebeil, G.A.; Nicholson, B.L.; Siirola, J.D. Pyomo–Optimization Modeling in

Python, 2nd ed.; Springer Science & Business Media: Boston, MA, USA, 2017; Volume 67.
20. Dunning, I.; Huchette, J.; Lubin, M. JuMP: A Modeling Language for Mathematical Optimization. SIAM Rev. 2017, 59, 295–320.

doi:10.1137/15m1020575.
21. Lubin, M.; Dunning, I. Computing in Operations Research Using Julia. INFORMS J. Comput. 2015, 27, 238–248.

doi:10.1287/ijoc.2014.0623.
22. Fourer, R. Linear Programming: Software Survey. OR/MS Today 2017, 44, 1–13.
23. Jusevičius, V.; Oberdieck, R.; Paulavičius, R. Experimental Analysis of Algebraic Modelling Languages for Mathematical

Optimization. Informatica 2021, 32, 283–304. doi:10.15388/21-INFOR447.
24. Triantafyllidis, C.P.; Papageorgiou, L.G. An integrated platform for intuitive mathematical programming modeling using LaTeX.

PeerJ Comput. Sci. 2018, 4, e161. doi:10.7717/peerj-cs.161.
25. Jusevičius, V.; Paulavičius, R. vaidasj/alg-mod-rev: Algebraic Modeling Language Benchmark. 2020. Available online:

https://zenodo.org/record/4106728 (accessed on 17 September 2021). doi:10.5281/ZENODO.4106728.
26. Dantzig, G.B. The Classical Transportation Problem. In Linear Programming and Extensions; Princeton University Press: Princeton,

NJ, USA, 1963; pp. 299–315. doi:10.1515/9781400884179-015.
27. GAMS Development Corporation. GAMS Convert. 2020. Available online: https://www.gams.com/latest/docs/S_CONVERT.

html (accessed on 17 September 2021).
28. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82.

doi:10.1109/4235.585893.
29. AMPL Optimization Inc. AMPL Solvers. 2021. Available online: https://ampl.com/products/solvers/all-solvers-for-ampl

(accessed on 17 September 2021).
30. GAMS Development Corporation. GAMS Solvers. 2021. Available online: https://www.gams.com/latest/docs/S_MAIN.html#

SOLVERS_MODEL_TYPES (Accessed on 17 September 2021).
31. Bussieck, M.R.; Ferris, M.C.; Meeraus, A. Grid-Enabled Optimization with GAMS. INFORMS J. Comput. 2009, 21, 349–362.

doi:10.1287/ijoc.1090.0340.
32. Bussieck, M.R.; Ferris, M.C.; Lohmann, T. GUSS: Solving Collections of Data Related Models Within GAMS. In Algebraic Modeling

Systems: Modeling and Solving Real World Optimization Problems; Kallrath, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 35–56. doi:10.1007/978-3-642-23592-4_3.

33. Colombo, M.; Grothey, A.; Hogg, J.; Woodsend, K.; Gondzio, J. A structure-conveying modelling language for mathematical and
stochastic programming. Math. Program. Comput. 2009, 1, 223–247. doi:10.1007/s12532-009-0008-2.

34. Olszak, A.; Karbowski, A. Parampl: A Simple Tool for Parallel and Distributed Execution of AMPL Programs. IEEE Access 2018,
6, 49282–49291. doi:10.1109/ACCESS.2018.2868222.

35. Petra, Cosmin, G.; Anitescu, M. StructJuMP. 2020. Available online: https://github.com/StructJuMP/StructJuMP.jl (accessed on
17 September 2021).

36. Huchette, J.; Lubin, M.; Petra, C. Parallel Algebraic Modeling for Stochastic Optimization. In Proceedings of the 2014 First
Workshop for High Performance Technical Computing in Dynamic Languages, New Orleans, LA, USA, 17 November 2014.
doi:10.1109/HPTCDL.2014.6.

https://doi.org/10.15388/20-INFOR410
https://doi.org/10.15388/Informatica.2019.209
https://doi.org/10.15388/Informatica.2019.215
https://doi.org/10.1007/s10898-014-0180-4
https://doi.org/10.1007/s00158-018-2181-2
https://doi.org/10.1016/j.amc.2020.125596
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://doi.org/10.1007/978-1-4419-1153-7
https://www.gams.com/mccarlGuide/
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1137/15m1020575
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.15388/21-INFOR447
https://doi.org/10.7717/peerj-cs.161
https://zenodo.org/record/4106728
https://doi.org/10.5281/ZENODO.4106728
https://doi.org/10.1515/9781400884179-015
https://www.gams.com/latest/docs/S_CONVERT.html
https://www.gams.com/latest/docs/S_CONVERT.html
https://doi.org/10.1109/4235.585893
https://ampl.com/products/solvers/all-solvers-for-ampl
https://www.gams.com/latest/docs/S_MAIN.html#SOLVERS_MODEL_TYPES
https://www.gams.com/latest/docs/S_MAIN.html#SOLVERS_MODEL_TYPES
https://doi.org/10.1287/ijoc.1090.0340
https://doi.org/10.1007/978-3-642-23592-4_3
https://doi.org/10.1007/s12532-009-0008-2
https://doi.org/10.1109/ACCESS.2018.2868222
https://github.com/StructJuMP/StructJuMP.jl
https://doi.org/10.1109/HPTCDL.2014.6

Mathematics 2021, 9, 2751 18 of 18

37. Grothey, A.; Qiang, F. PSMG: A Parallel Problem Generator for Structure Conveying Modelling Language for Mathematical
Programming. 2013. Available online: https://www.maths.ed.ac.uk/ergo/pubs/ERGO-13-009.pdf (accessed on 17 September
2021).

38. Bussieck, M.; Fiand, F. High Performance Computing with GAMS. 2017. Available online: https://www.gams.com/fileadmin/
resources/presentations/informs2017_HPC_with_GAMS.pdf (accessed on 17 September 2021).

39. Jusevičius, V.; Paulavičius, R. vaidasj/webaml: WebAML Tool for Algebraic Modeling Languages. 2021. Available online:
https://zenodo.org/record/5500339 (accessed on 17 September 2021), doi:10.5281/ZENODO.5500339.

40. Bray, T. The JavaScript Object Notation (JSON) Data Interchange Format. 2017. Available online: https://www.rfc-editor.org/
rfc/pdfrfc/rfc8259.txt.pdf (Accessed on 17 September 2021), doi:10.17487/RFC8259.

41. Wright, A.; Andrews, H.; Hutton, B.; Dennis, G. JSON Schema: A Media Type for Describing JSON Documents. 2020. Available
online: https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00 (accessed on 17 September 2021).

42. Miner, R.R.; Carlisle, D.; Ion, P.D.F. Mathematical Markup Language (MathML) Version 3.0. 2014. Available online: https:
//www.w3.org/TR/2014/REC-MathML3-20140410/ (accessed on 17 September 2021).

43. Pandolfini, V. Exploring the Impact of ICTs in Education: Controversies and Challenges. Ital. J. Sociol. Educ. 2016, 8, 28–53.
doi:10.14658/pupj-ijse-2016-2-3.

44. Valasidou, A.; Bousiou-Makridou, D. The Impact Of ICTs In Education: The Case Of University Of Macedonia Students. J. Bus.
Case Stud. (JBCS) 2008, 4, 29–34. doi:10.19030/jbcs.v4i3.4765.

45. Otto, T.; Albion, P. Understanding the Role of School Leaders in Realizing the Potential of ICTs in Education. In Society for
Information Technology & Teacher Education International Conference; Willis, D.A., Price, J., Davis, N., Eds.; Association for the
Advancement of Computing in Education (AACE): Nashville, TN, USA, 2002; pp. 506–510.

46. Trucano, M. Assessing the Effects of ICT in Education. In What Do We Know about the Effective Uses of Information and Communication
Technologies in Education in Developing Countries? Scheuermann, F.; Pedro, F., Eds.; Publications Office of the European Union:
Luxemburg, 2009; pp. 61–68.

47. Kerschke, P.; Hoos, H.H.; Neumann, F.; Trautmann, H. Automated Algorithm Selection: Survey and Perspectives. Evol. Comput.
2019, 27, 3–45. doi:10.1162/evco_a_00242.

https://www.maths.ed.ac.uk/ergo/pubs/ERGO-13-009.pdf
https://www.gams.com/fileadmin/resources/presentations/informs2017_HPC_with_GAMS.pdf
https://www.gams.com/fileadmin/resources/presentations/informs2017_HPC_with_GAMS.pdf
https://zenodo.org/record/5500339
https://doi.org/10.5281/ZENODO.5500339
https://www.rfc-editor.org/rfc/pdfrfc/rfc8259.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc8259.txt.pdf
https://doi.org/10.17487/RFC8259
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00
https://www.w3.org/TR/2014/REC-MathML3-20140410/
https://www.w3.org/TR/2014/REC-MathML3-20140410/
https://doi.org/10.14658/pupj-ijse-2016-2-3
https://doi.org/10.19030/jbcs.v4i3.4765
https://doi.org/10.1162/evco_a_00242

	Introduction
	Materials and Methods
	General Features
	Syntax
	Compatibility
	Solvers
	Performance
	Presolving
	Parallelism
	Summary

	Results
	WebAML Language
	Prototype of WebAML Optimization System

	Discussion
	Comparative Example
	Extensibility

	Conclusions and Future Work
	
	References

