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Abstract: Cybersecurity (CS) is a contemporary field for research and applied study of a range
of aspects from across multiple disciplines. A cybersecurity expert has an in-depth knowledge of
technology but is often also recognized for the ability to view technology in a non-standard way. This
paper explores how CS specialists are both a combination of professional computing-based skills
and genetically encoded traits. Almost every human behavioral trait is a result of many genome
variants in action altogether with environmental factors. The review focuses on contextualizing the
behavior genetics aspects in the application of cybersecurity. It reconsiders methods that help to
identify aspects of human behavior from the genetic information. And stress is an illustrative factor
to start the discussion within the community on what methodology should be used in an ethical
way to approach those questions. CS positions are considered stressful due to the complexity of
the domain and the social impact it can have in cases of failure. An individual risk profile could be
created combining known genome variants linked to a trait of particular behavior using a special
biostatistical approach such as a polygenic score. These revised advancements bring challenging
possibilities in the applications of human behavior genetics and CS.

Keywords: cybersecurity; risk assessment; genetic architecture; behavior genetics; complex traits;
genome-wide association study (GWAS); human factor; human behavior; stress genomics

1. Introduction

Cybersecurity (CS) is a contemporary field for research and applied study of a range
of aspects from across multiple disciplines. The guidelines for CS curricula distinguish
a knowledge area of Human Security (HS) and Organizational Security (OS). OS relates
to laws, regulations, standards to support risk management, planning, governance, and
risk assessment concerning insider threats that come from authorized access to sensitive
data and systems. These tasks are accompanied by the challenges of coping with stress,
fatigue, and the need for effective teamwork. HS covers topics such as CS awareness,
social engineering attacks, and abilities related to human misbehavior, e.g., the ability to
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implement measures to detect and mitigate social engineering attacks and discuss the
importance of risk perception in the context of mental models of CS and privacy.

CS positions are considered stressful due to the complexity of the domain and the
social impact it can have in cases of failure. The defense must be timely, as errors might
cause severe effects. Attack models and vectors are becoming more advanced due to the
development of technologies. Many soft skills lead to complex human behavior. One of the
soft social skills shaping factors might be genetic factors. Almost every human behavioral
trait is a result of many genome variants in action altogether with environmental factors.
The Human Genome Project [1] prompted the advancement of the genome, transcriptome,
and epigenome sequencing technology and analysis methodology. The development of
the technologies not only reduced the cost of genomic data generation but also introduced
many approaches to studying the interconnectedness of phenome-wide and genome-
wide coherence. A big leap was genome-wide association studies (GWAS) that identified
hundreds of genome variants related to particular behavioral traits. Recent technological
developments in approaches, i.e., machine learning algorithm approaches, have aided in
the analysis of phenome-wide association studies (PheWAS), expression quantitative trait
loci (eQTL) analysis, or whole-exome, whole-genome analysis. These advancements bring
challenging possibilities in the applications of human genetics and CS.

The possible underlying genetic background of physical and psychological traits,
fundamental for human performance under stressful conditions, might also be the same
mechanisms responsible for substance abuse, cardiovascular diseases, bipolar disorder, as
well as soft skills such as the ability to communicate, cope with fatigue, pressure, stress,
remain attentive, assertive, consistent, maintain sharp cognition and incident response.
An individual risk profile could be created combining known genome variants linked to a
trait of particular behavior using a special biostatistical approach such as a polygenic score.
With this knowledge, a CS specialist could become more aware of personal characteristics
and environmental conditions and learn to mitigate potential threats. Therefore, genetic
information can become an excellent tool for self-knowledge, which can ensure better CS
performance.

This paper explores how CS specialists are both a combination of professional computing-
based skills and genetically encoded traits. We review methods that help to identify aspects of
human behavior from genetic information. Behavior genetics addresses the interdisciplinary
effort to establish causal links between genomic loci and human behavioral traits and neural
mechanisms. A CS specialist who understands the risks of his behavior can better adapt
to adverse environmental conditions and cope with risk factors through well-rehearsed
techniques.

According to recent evolutionary-inspired theories (i.e., differential susceptibility, bio-
logical sensitivity to context), humans differ substantially in their sensitivity to contextual
factors, with some more susceptible to environmental influences than others. Importantly,
these theories suggest that heightened sensitivity predicts both the reactivity to adverse
contexts as well as the propensity to benefit from supportive features of positive environ-
ments [2]. The integration of genomic approaches into the analysis of social traits might
deepen the understanding of biology for human behaviors. Furthermore, risks related to
the behavior of the person may be determined by genomics and considered in the CS field
that is typically associated with technological sciences.

The primary idea of this research was to aid the CS field as it became essential in
all parts of life and increasingly problematic year on year. Our main goal was to spark
the scientific discussion of whether the genetic component could advance the CS topic
in any way. We believe this discussion could inspire further research studies exploring
interdisciplinary approaches in CS.

The article addresses the CS field as a complex discipline with multiple layers. We
deconstruct the CS specialist as a material (naturally/ genetically determined) and non-
material (psychologically determined) entity. Then, we map this entity to CS competences
required to conduct everyday tasks with stress as a psychological factor. All the structural
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prerequisites for the development and functioning of the psyche are genetically coded and
controlled. This could be extrapolated universally in other research areas related to human
behavior as well.

In this paper, we discuss the complex matter which was, and still is, the main limiting
factor of behavior genetics applications—the complexity of behavioral traits, methodolo-
gies, and technologies dedicated to the research of genetic architecture of a trait, ethical
aspects, and competence frameworks.

2. Genomic Factors

The genetic architecture of a phenotype refers to an entire complement of underlying
genetic factors, including their number, variant frequencies, and effect sizes of contributing
variants. The variation spectrum underlying complex phenotypes includes at least three ma-
jor classes of DNA variants: common single-nucleotide variants (common SNVs or ‘SNPs’,
allele frequencies 1%), rare single-nucleotide variants (rare SNVs, allele frequencies <1%),
structural variants, including copy number variants (CNVs), insertions/deletions, and
balanced translocations. In addition to inherited variation, rare variants can occur de novo,
arising in a parental gamete, a fertilized embryo, or the developing fetus [3].

Until recently, the success of the prediction of genetic effects was limited due to the
small number of variants that could be assayed. Today, technology allows for the genotyp-
ing of individuals to extract sets of genomic variation and is no longer an obstacle. Usually,
contemporary genotyping assays include hundreds of thousands of common genetic vari-
ants. However, common DNA variation adds only a small effect to the phenotype, and
many variants are contributing. Thus, there is a need to identify lots of variants before
testing them, and large sample sizes are needed to do that. However, even if we would have
sequences of genomes from every person on Earth and perform a genome-wide association
study (GWAS), traits could not be predicted with 100% accuracy. Statistically, there is no
linear endpoint. With such a complete database, science could only tell how much of the
variability in the world was due to genetics [4]. To get the complete picture of a particular
trait, a consideration of the environment is necessary. Knowledge of the DNA variants that
an individual carries can only predict the genetic value of the individual for a trait. Thus,
the accuracy with which the phenotype is predicted from DNA variants is limited because
the impact of environmental factors is ignored. However, this limitation may be overcome
by combining genetic predictors with predictors of environmental influences [5].

Besides the intricacy of complex trait genetics itself and statistical challenges, the
critical factor limiting the application of behavior genetic findings in practice is ethical
issues. The memory of the improper application of genetic knowledge, known as eugenics,
still casts a shadow on current attempts to apply behavior genetics. The discrimination
regarding genetic information in various socially important aspects of life, such as employ-
ment or health insurance, is also a considerable concern. There are also common worries
such as privacy and safety of personal information. Nevertheless, genetics paves the way
in medicine, forensics, recreation (related to direct to consumer (DTC) tests). All we need is
to work hard to integrate different disciplines, and in our case—improve computational ge-
netic methods, advance human performance in CS based on the comprehensive knowledge
we extract from different sources.

2.1. Determination of Behavior

Probably most of us usually do not even think about how the response to scalding
with boiling water is generated. The instant retreat from the boiling water is the result of
genetically determined behavioral patterns. Every trait on its basis is a genetic working,
and the level of trait expression depends on the environment, which shapes the genetic
program. As Dr. Francis Collins (Director of the National Institutes for Health (NIH), leader
of the Human Genome Project) once said: “The gene proposes, the environment disposes.
Genes load the gun, but the environment pulls the trigger”. Only a few human traits are
purely monogenic (i.e., determined only by one gene), most of them are multifactorial,
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thus as implied in the name—complex. Behavior is one of these. There are several genetic
methods used to evaluate the level of genetic components that shape human behavior
(Figure 1, adapted from Smoller, 2016 [6]).

Figure 1. Genetic methods for the analysis of complex trait—behavior.

Human and model organisms’ (e.g., monkeys, dogs, rodents, and other) studies are the
two main types of methodologies to investigate behavioral traits. To determine whether the
trait is inherited, it must run in families, and when the significant familial recurrence ratio is
achieved; it can be concluded that the disorder is familial. To evaluate h2, the narrow-sense
heritability [7], i.e., what fraction of a trait variation depends on genetic factors, human
studies mainly involve twin (identical or monozygotic and non-identical or dizygotic)
pairs or sibling analysis strategies. The point of the strategy here is that we can relatively
distinguish the environmental factors from genetic factors as twins or siblings typically
experience similar environments while growing up: family social status, exposure to toxins,
diet, climate, etc., all tend to be similar [8,9]. Furthermore, siblings are concordant for
ancestry and display negligible differences in population structure [10]. Heritability ranges
from zero when there is no contribution of genetic variants to the phenotypic variation to
100% when phenotypic variation entirely depends on genetic variation (i.e., monogenic).

Once the heritability of a trait is determined, molecular genetic studies can be under-
taken to map and identify the genetic factors at the level of DNA variation. For complex
traits to identify genetic regions (loci), association studies are a first-choice method and
more powerful than linkage studies. GWAS became a dominant strategy for many traits,
disorders, and conditions. Association studies typically utilize a case-control design to
determine whether specific genetic variants (alleles) are more common among the group
expressing the trait (cases) than among the individuals without a trait (controls) [6]. In
general, two strategies for association analysis of SNVs are widely used: candidate gene
studies and genome-wide association studies (GWAS). The first relies on genes that have
been implicated in a phenotype-based on prior evidence [11]. In contrast, GWAS enables a
so-called ‘unbiased’ search for risk loci by examining variants across the genome instead of
limiting the search to hypothesized candidates. GWAS of common SNPs became possible
with the development of DNA microarrays that interrogate millions of positions across the
genome. More recently, advances in DNA sequencing technologies have enabled exome-
wide (and even genome-wide) analysis of rare variants. Very large sample sizes (on the
order of 25,000 or more cases) are needed to adequately power genome-wide analyses of
either common or rare variants [6].

After we determine underlying genetic factors, the next step would be to analyze the
possible gene x gene interactions (epistasis, modifier genes) and also gene x environment
(GxE) interactions. These studies examine whether the effect of a genetic variant is modified
by environmental exposure.
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Establishing that a genome variant, gene, or gene set is associated with a disor-
der, or a trait of interest is only the first step in answering the question of how specific
genes contribute to the disorder or the particular trait (e.g., behavioral aspect related to a
skill/characteristic which is desired/undesired for CS specialist). A wide range of molecu-
lar, cellular, and clinical research studies may be needed to characterize the pathogenic or
alternative mechanisms involved. These include studies of gene expression, animal and
cellular models in which genes may be experimentally altered to study functional effects,
and clinical neuroscience studies (e.g., neuroimaging and neurophysiology) examining the
effect of genetic variation on brain structure and function [6].

As a consequence of the heterogeneity found in nature, most of the multifactorial traits,
such as behavioral traits are difficult to identify in humans. Thousands of variants can
have a small effect size on the trait, and this can differ dramatically in different subgroups
of individuals. Studies of distinct populations and families with extensive pedigrees added
great value to gene mapping and the genetic architecture of traits. Dogs can provide an
illustration of this. For example, it has been shown that the dog is a valuable resource to
study the genetic architecture of behavior [12]. The strengths of dog models of complex
genetics have been exploited mainly in the area of cancer [13], but recently also in behavior,
e.g., fear and aggression [14], obsessive-compulsive disorders [15], diverse behavioral traits
such as nerve stability, wariness, adaptability, sharpness, activity and other [16]. All of
these attributes are also of interest when investigating and assessing the characteristics of
CS specialists.

Once the genetic factors of a trait are mapped, then we can proceed with the models for
trait prognosis, or if it is a disease/condition, estimate the risk. There are several established
methods on how to predict traits, and this field is quickly evolving [5]. Currently, the
prediction is usually based on sequence data (imputed or assayed) or SNP panels and/or
individual variants thought to be associated with the trait. The foremost method of
prediction of additive genetic values is the best linear unbiased prediction (BLUP). Besides
this, there are several Bayesian methodical data on livestock [17–20] that give accuracy as
high as or higher than BLUP. What is more, some heuristic methods are also commonly
used. In human genetics, a standard method is called the ‘polygenic risk score’ (PRS). It
has the advantage that it can be calculated from summary data (i.e., estimated SNP effects)
without access to individual-level data. Another general-purpose prediction method that
can be applied to SNP data is partial least squares (PLS). PLS is a linear predictor and
neglects linear components of the genotypes that are of lesser importance to the prediction
of the phenotype. PLS results in a similar prediction to BLUP. Machine learning methods
have also been applied to prediction but do not seem to have an advantage over the linear
model methods described above. These methods could include non-additive interactions
between alleles and loci in the prediction of genetic value. Attempts have also been made
to include these non-additive effects in conventional models, but they do not generally
increase prediction accuracy [21]. Trait prognosis or risk prognosis models incorporating
genetic components could be applied in various fields and applications. We believe that
there are some important qualities of CS specialists that might depend on behavior that
could be altered/ intervened after we have an accurate prognosis. This accuracy could
be achieved by including as many as possible components to the prognosis model, and
genetic factors are one of them.

2.2. Ethics

Modern behavior genetics studies face ethical concerns relating to the medicalization
of behavior traits, mistreatment, and abuse of information for insurance or employment,
social aspects of information misuse such as public discrimination, impact on law and
judgment, and the risk of modern eugenics. Eugenics was rather a misunderstanding
of inheritance, thinking that a single gene can account for a complex behavioral trait.
Eugenicists sought to improve the human population and its gene pool by encourag-



Behav. Sci. 2021, 11, 152 6 of 15

ing “fit” individuals to procreate (positive eugenics) and discouraging or preventing the
reproduction of the “unfit” (negative eugenics).

One of the ethical issues for behavior genetics is medicalization. Sometimes medical-
ization of human traits is not always necessary as traits previously thought to be normal
can later be presented as a deviation from the normal human population [22–26]. The
medicalization of behavior traits can lead to another ethical concern—discrimination. The
discrimination of people with particular genome variations related to behavior genetics
can be found in different layers [27]. First, it can be discrimination in education when
children are divided according to their intelligence and IQ. Studies have shown that ge-
nomic variation accounts for 50–80% of individual differences in reading [28,29]. Also, it
was shown that arithmetic skills are at least partially genetically determined [30]. Recent
studies of educational behavior and application in practice could have a positive goal—to
help individuals with particular behavior to get better education/occupation. Even the
initiative for genome screening related to behavior traits for achieving better education was
proposed. Researchers suggested that special education from an early age could produce
better learning results. However, there is a thin line not to be crossed here regarding
discrimination and abuse. Second, it can be discrimination in work when an employer may
not accept or fire an employee that he considers to have undesirable traits. It also can be
discrimination by the insurance companies if insurers would use personality traits that are
known from genome data, such as novelty-seeking to estimate risk and so increase the cost
of insurance [31]. It can be discrimination in law when someone accused can be judged by
one’s behavioral genome data and not directly by the crime evidence.

It is of great concern that knowledge of behavior-related variation in the genome could
be misused in social and political aspects such as voting. A study by Hatemi et al. (2009)
showed that there is genome variation between liberal and conservative voters in the US
and that it is related to the cognitive processing of fear [32].

There has recently been concern over the use of genome profiling that is performed
by DTC genetic testing companies (e.g., 23 and Me) as the results they provide are con-
flicting. “My Gene Profile” company declared that it was able to provide a very wide
behavior profile—intelligence, emotion, artistic ability, addiction traits, and also physi-
cal performance. This company was shut down [33], and this case shows the need for
tighter regulations.

Science in recent years revealed a high amount of data related to behavior genetics
that can benefit the military, and this knowledge has already been in use. A good example
of behavior genetics application for military purposes is the Defense Advanced Research
Projects Agency (DARPA) research project of the drug called modafinil, which boosted
cognitive and physical performance in soldiers [33,34].

Taking into account ethical issues, the major risks for CS field specialists might be
personal genetic data leak or another mistreatment (e.g., matter for social engineering)
and information abuse for a discriminative purpose (e.g., the reason for not hiring). These
hazards should be carefully articulated and tackled before introducing genetic data into
the practice.

2.3. Human behind the Scene in Cybersecurity

Human factors play an essential role in CS, and in most well-known cases, a human is
either the possible source, vehicle, or destination [35] of cyber incidents. Deconstructing
attribution [36] of the cyber incidents is a multifaceted cyber-physical process often split
into technological, social, legal, and political dimensions. Often, the process ends in
terms of indicators of compromise in threat intelligence platforms [37] or much more
extensive socio-political analysis and condemnation. Hutchins et al. (2011) discuss Cyber
Kill Chain by structuring cyber-attacks [38]. Such a clear view enables a structured view
on the assessment of the risk and human participation in all stages of the attack. The
structured view of the Cyber Kill Chain [39] enables stochastic probability models to be
computationally derived and further extended.
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Typically, CS professionals are viewed as smart, technically skilled individuals [40],
and it is not easy to attract new talents to this professional field. There is a need to build a
picture of CS work roles by de-emphasizing technical competencies and focusing on other
desired skills, such as communication, decision-making, and support.

Most CS study programs follow the ACM/IEEE Cybersecurity Curricula [41] that
includes several non-technical knowledge areas (human security, organizational security,
and societal), as a cyber-specialist should possess knowledge in ethics, policy, law, and
human vulnerability.

The NIST NICE Cybersecurity Workforce Framework [42] is one of the best worldwide
known frameworks to define the working area of CS specialists. The framework covers
a set of roles and maps them to knowledge, skills, and abilities. The updated NICE
framework [43] introduces a concept of competence together with tasks for the role. The
CS field is dynamic, and a specific workplace might require doing specific tasks. Parrish
et al. (2018) emphasize that technical skills and human disposition (personal qualities,
e.g., socio-emotional skills, attitude) make a much larger impact on the success of the CS
professional than just knowledge itself [44]. Therefore, the intersection of knowledge, skills,
and disposition describes the intended competency.

Esparza et al. (2020) consider the habituation factor in knowledge, attitude, and
behavior model and support individuals’ likelihood of action by background, beliefs,
and prior experiences to assess cyber hygiene-related skills [45]. Alohali et al. (2018)
investigated correlations among several personality factors and security behavior [46]. For
example, based on the findings, people with high neuroticism were more unstable, and
their security behavior could be more radical than others. Therefore, user-oriented factors
could be used to predict risk-taking behavior.

Prevention against the attacks is the best strategy in CS. Furthermore, to understand
criminal behavior, it is not enough to focus on technology [47]. Moreover, the human factor
should be seen as a part of the solution, not as a problem [48].

3. Psychological Factors

Recent research has shown that genetic heritability of personality is calculated to
be 0.40, but this varies depending on which personality inventory is used and which
personality factors are measured [49]. For example, Extraversion, as measured with the
Eysenck scale, has a 0.42 heritability index, while the Five-factor model has 0.36.

Other psychological factors, such as cognitive styles, may also have genetic underpin-
nings that are relevant for CS specialist profiles. Cognitive styles, biases, and appraisals
have been shown to have correlations with genetic underpinnings, while personality
factors show less heritability as we age. For example, the heredity of intellect increases
significantly as a person ages, whereas the heritability of personality declines slightly, and
although increasing cognitive stability with age is largely mediated by genetic variables,
rising personality stability with age shows mediation by environmental factors [50].

This discrepancy between personality and cognitive aspects could be due to devel-
opmental processes in childhood and adolescence. For example, personality has strong
correlations to infantile temperament [51], while cognitive aspects may be more dependent
on the biological development of brain areas and its connections and hormonal systems
that mature as one ages [52].

A recent review has shown that there are discrepancies in genetic explanations for
personality factors and that new techniques, i.e., next-generation sequencing, can help
better understand the genetic contribution to personality factors [53].

Recent research on personality and cognitive factors in CS specialists is in its early
stages, but findings on both personality and cognitive profiles are becoming more avail-
able [54,55].
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3.1. Stress

We present an example to identify the potential of human factor identification based
on the genetic data. We chose the stress factor (SF) as a representative human factor
understandable globally and frequently used in an everyday setting.

3.1.1. Stress Factor Defined by Genome

Stress is defined as a state of threatened homeostasis that evokes a multiplicity of
somatic and adaptive reactions [56,57]. As with other human behavioral traits, stress has
complex manifestations due to genomic and environmental factors.

The role of stressful environments and the physiology of stress response systems have
been most closely linked to depression, anxiety, and traumatic stress disorders6. How
do we identify those individuals who are more susceptible to stress? This knowledge
is important for an individual when choosing a profession or place of work, as well as
for the institution hiring a specialist. For the more susceptible ones, stressful working
conditions such as flight control or CS might be too difficult to cope with. Studies are
showing that individuals might differ substantially according to how they respond to
similar experiences. It has been demonstrated that environmental sensitivity depends
equally on genetic factors as well as on environmental factors and that there are overlaps
between personality traits of neuroticism and extraversion [2]. Also, as an example, it has
been shown that the evaluation of the glucocorticoid receptor gene variant could help to
identify children differentially susceptible to stress and intervention to overcome adverse
negative environmental effects. Thus, information on the genetic background could be
valuable if we would like to influence certain behavior or a good indicator of whether we
should invest money and time in that person [58].

It is already well known that cortisol, which is produced in the adrenal gland, is the
main stress hormone. After a person experiences a stressful event, the level of glucocorti-
coid rises in the blood. The prefrontal cortex reacts to stress by making things look less
scary, the amygdala identifies danger from the environment. Then, the hypothalamus
activates the pituitary gland, which synthesizes hormones and induces the adrenal glands
to produce cortisol. Released into the bloodstream, cortisol reaches cells, binds to the
intracellular glucocorticoid receptors, and the receptors change, then translocate to the
nucleus where interact with the DNA [59]. Figure 2 shows the physical effect of stress.

Figure 2. Pathway showing stress and DNA relation.

Cortisol is a stress response system that increases heart rate and breathing, provides
energy to the muscles, allows clear thinking, and may boost memory. Cortisol shifts the
balance of neurotransmitters. It lowers dopamine that reduces the activity of the pleasure
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pathway, lowers norepinephrine which reduces motivation, and lowers serotonin which
reduces the mood.

Twins studies revealed 69–72% genetic impact on cortisol level [60,61]. Genes related
to cortisol, dopamine, serotonin, and norepinephrine directly affect the stress response.
In addition, genes that control neurotransmitters serve as neurotransmitter modulators
that participate in neuronal plasticity and stabilize synapses. Genome-wide association
studies provided many genes associated with stress like GR, NR3C1, GABRA6, OPRM1,
ACE, FKBP5, GCCR, CNR1, DRD2, ANKK1, NPY, DBH [56,62]. However, there are known
particular genes and SNPs in them that have a significant impact on stress resistance and
response during it. One of them is the COMT gene, whose main function is to regulate
the production of dopamine and affect how decisions are being made under pressure,
control stress, and resiliency [63]. Other authors refer to this gene as “warrior/worrier”,
because this gene variant shows how a person responds to stress [64,65]. For a “warrior”
person stress has less impact, and the person may even benefit from it. A “worrier” person
has lower stress resiliency. The high impact of the COMT gene has been proved not only
in human but also animal model studies such as those on rats or primates [65,66]. For
example, Pflüger et al. (2016) proved the high COMT gene impact to stress by studying
Japanese macaques, which have a high level of aggressive interaction and have a different
response to stressful events [66]. Another gene related to stress is BDNF, which serves as a
neurotransmitter modulator, participates in neuronal plasticity, and stabilizes synapses [63].
This gene has been shown to relate to stress in human and animal studies [67–69]. People
with specific variants in BDNF have better stress resilience. The final gene worth men-
tioning related to stress is SLC6A4, which is the serotonin transporter gene. Serotonin is
known as the mood neurotransmitter and has been well-studied for depression, suicide,
and stress [70,71]. It is known that these genes are related to stress, and those specific vari-
ants of these genes have a high impact—rs4680 variant on COMT gene, rs6265 variant on
BDNF gene, and rs25531 on SLC6A4 gene [65,70,72]. For example, Qi et al. (2020) studied
post-traumatic stress disorder by analyzing genome data of the parents in China that lost
their only child [72]. Not all parents who lost their only child suffered from a posttraumatic
stress disorder, and rs4680 (COMT), rs6265 (BDNF) have an impact on this [72].

The specific genome variants allow using this knowledge for practical purposes
without extensive, expensive, and lengthy analysis studies. Furthermore, these variants
are already being used by private companies for their customers to learn more about their
genome variation. Knowing stress-related genes may be used for sports, education, or
finding a more suitable occupation. Vogel and Schwabe (2016) studied the learning process
under the stress condition and found that there was a different effect on different people,
but the administration of 20 mg of cortisol increased memory and learning process rate [73].
The “warrior” personality type is better at picking highly stressful jobs, and learning under
stressful conditions even has benefits like memory boost.

Twin studies on the heritability of different neurotransmitters have uncovered dif-
ferentiating aspects of genetic involvement. For example, genetic influences on cortisol
have been shown to have high heritability at younger ages for cortisol production, and
this decreases during development [74]. They showed that the broad-sense heritability
index for cortisol production went from 42% at the age of 9 decreased to 0% at the age
of 17 indicating that environmental factors could better explain cortisol production. The
same study also showed that cortisol metabolism during the same age span showed that
A-ring reductases, which has both pubertal enzyme regulation and cortisol metabolism
functions, showed stable or increased genetic heritability, from 0–23% at the age of 9, from
23% to 51% at the age of 12, and from 51% to 66% at the age of 17 [75]. The differences in
production and metabolism during development and puberty have long lasting influences
on the development of the HPA -axis, indicating that genetic influence initially influences
cortisol production but is then more influenced by environmental aspects, while cortisol
metabolism heritability increases with age [75]. Studies have also shown that suppressed
expression of A-ring reductases in the HPA-axis contributes to increasing illnesses [76].
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The HPA-axis is influenced by the anterior cingulate cortex (ACC). The ACC is involved
when effort and regulatory processes are necessary for attention, effortful control, and
problem-solving [77] and has been shown to have genetic heritability [78]. The Anterior
Attention System, which involves the ACC and adjacent mid-prefrontal cortex, has been
shown to modulate stress systems, i.e., HPA-axis [79]. Decreased grey matter volume in
the ACC has also been shown to have an association with depression and increased critical
illness through decreased cortisol metabolization [80,81], while decreased ACC connec-
tivity has been shown to adversely modulate stress responses and psychophysiological
wellbeing [82].

3.1.2. Stress in Cybersecurity Professional Career

The document of ACM/IEEE Cybersecurity Curricula [41] does not have the word
stress mentioned at all.

The word stress is not found in the NIST NICE framework [42] either. However, the
term time (or timely) is used to define stressful conditions that require urgent decisions and
sharing to authorities (or administration) at the right time. Table 1 provides several task
examples with their descriptions and associated work roles. For example, a person in a
multi-disciplinary work role.

Table 1. Examples of tasks with some emphasis on stressful conditions due to time limits.

Task Description Role

T0854 Tip critical or time-sensitive information to
appropriate customers

Multi-Disciplined Language
Analyst

T0800
Provide timely notice of imminent or hostile

intentions or activities which may impact
organization objectives, resources, or capabilities

Threat/Warning Analyst,
All-Source Analyst

T0258

Provide timely detection, identification, and
alerting of possible attacks/intrusions,

anomalous activities, and misuse activities and
distinguish these incidents and events from

benign activities

Cyber Defense Analyst

Language analysts manipulate time-sensitive information to inform authorities (T0854).
Threat/Warning analysts and all-source analysts should provide timely notice about hostile
activities, as delay would mean higher cost (T0800). Cyber defense analysts should detect
and alert on time about anomalous activities (T0258).

In ACM/IEEE Cybersecurity Curricula, concept time is related to the analysis of
timelines, checking states of data/objects, real-time monitoring (or controls), network
analysis, project management, time management in social media, and agile decision making.
Nevertheless, time pressure—the stress factor, is missing. In the context of higher education,
the critical aspect is learning what and how to look for tools and develop abilities to
combine data sources, while professionals have to deliver tasks on time with an impact of
the decision in mind.

The ACM/IEEE Cybersecurity Curricula and the NIST NICE Framework do not reflect
the stress factor that is very common in CS work roles. Oltsik (2019) reports that 13% and
33% of CS specialists strongly agree or disagree, respectively, that they feel an unhealthy
level of stress as part of the job [83]. Other surveys report that 62% of professionals feel
stressed or very stressed by their jobs [84]. Among all stress aspects, there are factors
like the overwhelming workload, keeping up regulatory compliance audits, the fear of
getting something wrong, and constant emergencies and disruptions [83]. Therefore,
determination of the personal profile towards stress management could overall impact
personal resilience against cyber incidents.

The standard CS workforce preparation provides the basic skills required to enter
positions as junior specialists [84], but there is a gap between skill development in higher
education and skill usage in work positions. Personal traits are obtained from the social
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environment or defined in the genome that shapes the possible future professional. An
employer focuses on achieving the best performance of the organization by selecting
the most advantageous working staff in CS. The employer applies an indirect personal
trait analysis [85,86] for better employee integration into the organization. In most cases,
personal traits that are beneficial to support the best performance of CS specialists are not
considered and become apparent after a period of time.

As an example, we can deconstruct the following real CS situation. Objectives “Identify
indicators of compromise (IoCs) using threat detection tools” and “Negotiate IoCs with
collaborators” could be associated with a competence “Management and sharing of threat
information” because the competence requires the collection of IoCs from the tools, a
collaboration between team members during IoC retrieval process, and defining IoCs in the
reports. The competence can be related to the task shortly defined as “Timely information
management”. The person should be stress-resistant as the task requires:

• communication with collaborators that are busy with an incident response (their
primary focus is not reporting);

• systemic thinking (IoCs must be correct and context-related);
• self-control (the report must be submitted in time).

Therefore, it would be beneficial to identify the stress-related risk level of a particular
person. The genomic analysis could be a complementary part of the assessment as it
encompasses the information on the natural traits of the person. The personal risk makes
an impact on the performance indicators of the person and the team itself.

4. Concluding Remarks

This paper describes how human factors could be identified from the genetic data
and used for personalized risk assessment taking stress as a case. The current competence
frameworks do not include personalized approaches. Integrating human behavior factors
identified from genomic data into risk assessment strategies and professional training
outside the standard IT-oriented training schema is a thrilling challenge but with great
additional value. We chose the sufficiently genetically reasoned stress factor to emphasize
the impact of genetic information on performance in the CS field. Stress creates situations
when humans behave not as trained but naturally, based on genetic traits. Therefore,
various human features that can be defined by genetic information could be important risk
factors, e.g., addiction, introversion, aggressive behavior, depression, post-traumatic stress
disorder. Integration of genomic data into CS provides new opportunities to support an
individualized approach. For a particular person learning his/her genome variants related
to human behavior can help to expose and accept his/her strengths and weaknesses to
use and/or overcome them later. The provided example of stress-related genome variants
could guide the person on how to affect one’s reaction to the situations and circumstances
caused by stress, demonstrate the level of learning process under stress conditions, and
show resistance to stress.

Next to new approaches to CS, a number of challenges arise with their application.
Firstly, human genome data are considered highly sensitive data. Data administration
should follow procedures to ensure restricted access and high-level security, including both
raw, derived, and aggregated data associated with a person or any incident response team.
Secondly, interpretation of data and personalized risk assessment based on genomic data
should be performed carefully and ethically with many additional factors in mind. The
risk assessment cannot be based solely on genetic data to assign a person for a work role.
Any employee should be protected by legal documents against discrimination based on
findings from genetic data. Finally, to integrate genomic data into the CS exercises requires
that challenges in human and technological resources are overcome.

Multicomplexity/multifactoriality of the discussed research field—the behavioral
genetics of the aspects of the cybersecurity specialists’ activities is the main challenge in
identifying the wide combination of most possible factors. The ever-increasing number of
GWAS hits harness the power of molecular genetics to identify specific genes responsible
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for genetic influence on reacting to environmental triggers, such as stress. Future research
findings will be utilized for the analytics of the prediction scores. As well the delineation
of specific combinations of genomic factors and environmental factors (or construct of
gene-gene and gene-environment landscape plot/map) will suggest the best calculation
methods and attempt for ranging those prediction scores. The work can be extended in
several directions. Pilot studies should be executed to evaluate exercise implementation
and collect quantitative data for further research. Behavioral Neural Networks should
also be addressed to identify the risks detection process and the needs for behavioral
references. Risk assessment strategies with more precise parameter settings should be built
with additional risks in mind. Evaluation of ethically concerning aspects and determination
of measures have to be taken in order to tackle ethics-related risk management.
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