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Abstract: The initial boundary value problem for the non-stationary Navier-Stokes equations is studied in
2D bounded domain with a power cusp singular point O on the boundary. The case of the boundary value
with a nonzero flow rate is considered. In this case there is a source/sink in O and the solution necessary has
infinite energy integral. In the first part of the paper the formal asymptotic expansion of the solution near the
singular point is constructed. The justification of the asymptotic expansion and the existence of a solution
are proved in the second part of the paper.
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1 Introduction

The point source/sink approach is widely used in physics and astronomy. For example, stars are routinely
treated as point sources. Pulsars are treated as point sources when observed using radio telescopes. Generally,
a source of light can be considered as a point source, for example, light passing through a pinhole or other
small aperture, viewed from a distance much greater than the size of the hole. In nuclear physics, a "hot spot"
is a point source of radiation. Sources of various types of pollution are often considered as point sources in
large-scale studies of pollution. Sound is an oscillating pressure wave. As the pressure oscillates up and down,
an audio point source acts in turn as a fluid point source and then a fluid point sink. (Such an object does not
exist physically, but is often a good simplified model for calculations.)

Fluid point sources and sinks are commonly used also in fluid dynamics and aerodynamics. Point source-
sink pairs are often used as simple models for driving flow through a gap in a wall. The use of localized suction
to control vortices around aerofoil sections is one of such problems. In oceanography, it is common to use
point sources to model the influx of fluid from channels and holes. There are also applications of pulsed
source-sink systems in the study of chaotic advection and many others.

The asymptotic behaviour of the solutions to the Stokes and Navier—Stokes equations in singularly per-
turbed domains become of growing interest during the last fifty years. There is an extensive literature con-
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cerning these issues for various elliptic problems, see, e.g., [1-12]. In particular, the steady Navier—Stokes
equations are studied in a punctured domain Q = Qg \ {0} with O € Q, assuming that the point O is a sink
or source of the fluid [13-15] (see also [16] for the review of these results). Although the steady Navier—Stokes
equations in singularly perturbed domains are well studied, there are few papers studying the initial bound-
ary value problem for the non-stationary Navier-Stokes equations in such domains (e.g., [17-19]). We can also
mention the recent paper [20] where the Dirichlet problem for the non-stationary Stokes system is studied in
a three-dimensional cone and the paper [21] where the solvability of the steady state Navier—Stokes problem
with a sink or source in the cusp point O was proved for arbitrary data.

In recent papers [22, 23] the authors have studied existence of singular solutions to the stationary, time-
periodic and initial boundary value problems for the linear Stokes equations in domains having a power-cusp
(peak type) singular point on the boundary. The case where the flux of the boundary value is nonzero was
considered. Therefore, there is a sink or source in the cusp point O and the solution is necessary singular. In
[22, 23] by constructing the formal asymptotic decomposition of a solution, we reduced the linear problem
with singular data to one with regular right-hand side and then applied the well known solvability results for
the Stokes system. Constructing the asymptotic representation we followed the ideas proposed in the paper
[24] where the asymptotic behaviour of solutions to the stationary Stokes and Navier—Stokes problems was
studied in unbounded domains with paraboloidal outlets to infinity. In turn, the method used in [24] was
a variant of the algorithm of constructing the asymptotic representation of solutions to elliptic equations in
slender domains (see, [25-28] for arbitrary elliptic problems; [29, 30] for the stationary Stokes and Navier—
Stokes equations).

In this paper we study the non-stationary Navier—Stokes equations in a two dimensional power cusp
domain. To be precise, we consider the initial boundary value problem

u-viu+@-vV)u+Vp=f,

diva =0,
(1.1)

ulyg = alx, t),
u(x, 0) = b(x)

in the 2D bounded domain Q = Gy U Qo, where Gy = {x € R? : |x1]| < @(x2), x5 € (0, H] boox;) = Yox4,
7o = const, A > 1, and 00 N 0Qg is C? (see Figure 1). Here u = (u1, u5) stands for the velocity field, p stands
for the pressure, v > 0 is the constant kinematic viscosity. We assume that the initial velocity b ¢ W2(Q)
and the support of the boundary value a € L2(0, T; wi2:2(90Q))is separated from the cusp point O, suppa C
00y N 0Q. We also suppose that the flux of a is nonzero, i.e.,

a{) a-ndS=-F(t), F()=0, (1.2)

where nis the unit outward (with respect to Q) normal to dQ. Moreover, the initial velocity b and the boundary
value a have to satisfy the necessary compatibility conditions

divb(x) =0, b()|30 = alx, 0). (1.3)
From (1.2) it also follows that
[/ b-ndS=0.
20

The solution u of (1.1) has to satisfy the condition?

J u-ndS+ [ a-ndS=0,
a(h) 20N

where g(h) is a cross-section of Gy, i.e., a(h) = {x € Gy : xn = h = const}. Thus,

U(j}’[)u-ndx1=F(t)5c‘0, (1.4)

1 This condition means that the total flux of the fluid is equal to zero.
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Fig. 1: Domain Q

and we can regard the cusp point O as a source (or a sink) of intensity F(t).
Notice that problem (1.1) cannot have a solution with the finite Dirichlet integral. Indeed, by (1.4) and the
definition of G, we have

FOP - | [ wat0dal <200 [ o of ax

a(h) o(h)

X)/‘auz(x t)‘ dx..

o(h)
Dividing this inequality by ¢>(x,) and integrating over x, from 0 to H, we get

H
dXz

<p3(

|F(t)\ / / [Vuy(x, t)| dxdx; <c/ |Vu(x, t)| dx.

0 g(h)

Let F(t) # 0. Then the Dirichlet integral of u can be finite only if f < oo, but this is not the case for

3( 2)
o) = 'yox’zl with A > 1. Thus, the solution u of (1.1) satisfying condltlon (1.4) is necessary singular in the
cusp point O and its singularity depends on cusp’s power A. Rather, roughly speaking, the divergence in the
cusp of the normal component of the velocity field of the fluid holds from the flux, that is, making to zero the
"surface portion" near the cusp.

In order to prove the solvability of such solution, we first construct the formal asymptotic expansion of
it near the singular point. It contains both outer and inner (boundary layer-in-time) asymptotic expansions
and has the following form

Um( , X, t, T) yol <7,x t>+UBU ( A,xz,r>,

2 X3

PU]( A,xz,t ‘r) POU]< X2, >+PBU]( A,xz,r).
X3 X3

The pair (U%U), PO-U1) is an outer asymptotics of the solution, the "slow" time variable ¢ plays the role of a
parameter and the initial condition is not satisfied in general case. The pair (UB’U], PB’U]) is the boundary
layer corrector (the inner part of the asymptotic expansion) which compensate the discrepancy in the initial
condition and exponentially vanishes as T -> oo. Note that the fast time variable 7 = 2 -5 inour case depends on
X3, i.e., the fast time variable 7 is changing dependently of the distance to the cusp pomt 0. The construction
of the boundary layer-in-time is based on the ideas proposed in [17]-[19], where an asymptotic expansion of
solutions to the non-stationary Navier—-Stokes equations is constructed in thin structures.
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Both outer and inner parts of the asymptotic expansions are of the form of finite sums in powers of x;.
We construct these sums up to the terms which leave in equations (1.1) the discrepancy belonging to L?(Q)
and then the solution of problem (1.1) is constructed as the sum of the asymptotic expansion and the term
with finite energy.

The paper is divided into two parts: the construction of the formal asymptotics and the proof of the exis-
tence of a remainder (the existence of a part with the finite energy norm). This is done because otherwise the
article becomes too long and bearing in mind that the construction of asymptotics and the proof of existence
use different techniques and these parts can be read separately.

Let G be a bounded domain in R". In this article, we use usual notations of functional spaces (e.g., [31]).
By LP(G) and W™P(G), 1 < p < oo, we denote the usual Lebesgue and Sobolev spaces, respectively. The norms
in L?(G) and W™? are indicated by ||-||z» and || || wm.». We denote by C*°(G) the set of all infinitely differentiable
functions defined on G and by C3’(G) the subset of all functions from C*°(G) with compact supports in G. By
W*4(G) we denote the completion of the C3’(G) in the || « ||ywmr norm. The space L?(0, T; X) consists of all
measurable functions u : [0, T] > X with

T 1/p
lallzro,1:x) = <f |“(t)|pdt> <oo, 1lspc<oo,
0

2 The leading-order term

In the paper we construct a formal asymptotic decomposition of the solution (u, p) near the cuspidal point
0 € Gg. It has the following form

u(%y X2, t, T) = uo(%’ X2, t) + ub(%, X2, T)s

2 2 2
X1 X1
X X

1), (2.1)

pCt %2, 6,0 = p°G 30, 0+ P
where T = t/x3%; the pair (u°, p°) is the outer part of asymptotic expansion and (u?, p?) is the boundary-
layer-in-time corrector (the inner part of the asymptotic expansion) which compensate the discrepancy in
the initial condition.

Consider homogeneous problem (1.1) in the domain Gy (remind that Ulyguno0 = 0). We formally put (2.1)

into (1.1) and then separate the result into two problems
u? —vAu® + (u° - V)u® + vp° = 0,
divu® =0,
u’|36,n00 =0, 2.2)

J u-ndS=F(),
o(h)

and
u? —vAu? + @° - V)u? + @l - v)ul + (b - vyub + vp? = o,

divu? =0, (2.3)
uls6,n00 =0, ul(x,0) =b(x) - u’(x, 0).

The terms (u° - V)u?, (u? - ¥)u® in (2.3) depend not only on the fast time variable 7 but also on the slow time
t.
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2.1 The leading-order term of the outer asymptotic decomposition

Consider problem (2.2) in the domain Gy. Rewriting (2.2) in coordinates y; = x5, y, = X2, t = t, we obtain
the initial boundary value problem in the domain IT = {y € R? : |y1] <70, ¥2 € (0, H)}:

oeud —v(y32202 + D2 + (u® - Mus +y;91p° = 0, y e II,

oeud - v(y52107 + DHug + (W - Mug + Dp° = 0, y € I, 2.4)
y5'01ug + Dus = 0, ’

0 _
u ||Y1|=70 =0,

0 . _ 90 oyt _ ([ v
rn,](_192,at_&y®_az A)’z)’1al,m— @

The leading-order term for the outer asymptotic decomposition is the same as for the time-periodic Stokes
problem (see [22]) or nonstationary Stokes problem (see [23]). In particular, it was shown in [22] that the
leading-order asymptotic term (Uy,, Py,) has the form

where 0 =

Ul,].lo (J/1 s Y2, t) = y1210+3/\_2%1,],10 (J/1 ’ t)’
F(t _
U1, y2, ) = KLO))/’Z‘““ Lo(yy), 2.5)
F(t) 22
Pyo()’1,)’2,f)= Koyoygo+y}210+ Q}lo(ylyt);
where
Mo = 1- 3A, (26)

the function @ is the solution to

voi®(y) =1, |yil<v0, |
, Cie, @) = 5y (I1* - 3) » @7)
{ D(y1) =0, |y1| =10, y1) = 3 (IV1l* =)
o
ko= [ ®ly)dyr =-5,7% <0 2.8)

—o

and (%1,y,> 2y,) is the solution of the Stokes type problem

VO, (1, O) + 012, (y1, ) = 0, [y1] < 70,
01% 1o (Y1, 1) = %(y1, 1), 2.9)
%1,y0(Y1’ t)“)’l‘:’Yo = Oy

with % (y1, t) = AK51F (O(1 +yq - 01)@(y1). Moreover, by construction, the following compatibility condition
for problem (2.9)
Yo
| %(y1,t)dy,1 =0
~—7Yo
holdsz2.
Since in (2.9) the time variable t is included only as a parameter, in general, the vector function
(Ul,llo’ Uz,uo) does not satisfy the initial condition. In order to compensate the discrepancy u(x,0) =
-Uy, (y1, ¥2, 0), we have to construct a boundary layer near the point ¢ = 0°.

2 Hereafter we assume that all arising initial boundary value problems admit smooth solutions. The solvability results, regularity
and estimates of these solutions are discussed in Section 4.2.

3 Notice that on this step we do not satisfy the "regular" part b of the initial condition, we just compensate the discrepancy
appearing in the initial condition because of the inner asymptotic decomposition.
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2.2 The leading-order term for the boundary layer

Rewriting (2.3) in fast coordinates y1 = x1x3%, y2 = x2, T = tx32}, we get

22200l —v(y;2203 + Db + (W° - M)u? + (u” - Ny )ug
+u® - M)t +yy'01p" =0, yell,

yaorud - v(y3203 + Db + (u® - )b + (- 0, )08 (210)
+u? - Mub +DppP =0, yel, |

A
y'o1ub + Dpub =0,

ub“yl‘:'y()zoy ub(Yh}/z:O)=—U].lo()/1,)’2,0),

-1 -1 0 y3'o1
where ©j = 0, —Ay; y101 — 2Ay; 107, 0r = —, My, = .
oT Dp

We look for a solution (U5, , P5,) of (2.10) in the form
Ph (1, y2,7) = v5°8h (1) + 28 (y1, v2, T),
b b b (211)
Uyo(yI) Y2, T) = (U1,y0()’1, Y2, T)y Uz,yo(yly Y2, T)) s

where s
b +31-
UL V1, y2, T) = yh°

U8 01, y2, ©) = i (1, 1),

A_
b (y1,y2,T) = yhorH 2 b

%1?}10 ()/1 ) T),

0 1, 1)
with
ULy W1, 7) = Oy (1, 7)
and pg is described in (2.6). Substituting solution (2.11) into (2.10), collecting the terms with the same powers
of yn, and having in mind that F(0) = O (see (1.2)), we get the following problems

dr @b (y1,7) - vOI DY (y1,7) = sh. (1), |y1] <0,

D (01, Dljyy 10 =00 Ppy(y1,0) =0, 2.12)

Yo b
| @5,(y1, T)dy; =0,

E
and
ar@/fyo(h, T) - Va%%llfyo()/h 7)+0125, (1,7 =0, |y1] <70,
ULy, (1, T) = AAp(y1, T, 01, 00) %, (1, T), 2.13)
Uf,yo‘lyd:'y() =0, Uf,yo()/h 0) = ~U1,,(y1,0) := U?,yo()’l),
where

Ap(y1,7,01,07) =1 +y101 + 270r. (2.14)

The homogeneous inverse problem (2.12) has a unique trivial solution (@20, sﬁo) = (0, 0) (see, e.g., [32]) and
therefore Uﬁ’,y , = 0 and so the right-hand side of equation (2.13), is zero.
For the function g we get the following ODE

dgp, (1)
dt

(because sﬁo (1) = 0). The pair (Uf,yo’ Qﬁo) solves the 1-dimensional non-stationary Stokes type problem (2.13).
The solvability conditions of problem (2.13)

2AT - yog,ljo () =0. (2.15)

Yo
f Ab(yly T, aly aT)Ugyo(ylx T) dyl = O,
~7o
0= AAb(yl9 T, al, aT)U%J’uO(yl, O) = _al Ul,yo(yly 0) = Oy
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are satisfied automatically.
The function gﬁo is the solution to ODE (2.15) and has the form

3

gh (1) = Cran 3,
and we set the constant C = 0, in order to have finite boundary layer pressure Pﬁo at point T = 0.
Consider "mixed" terms, i.e., the terms (U, -M,) U{’,yo, (Uﬁo . ‘ﬁb) Ut,uo» (Upo » ) Uﬂ’,yo and

(UﬁO -‘ﬁb> Uy, u,- As it is said before, these terms depend not only on the fast time variable 7 but also on
slow time t. We expand these terms in Taylor’s series with respect to the variable ¢ and then replace t in
obtained expression by the product Ty%". As a result, we get (recall that Ulz’, o = 0)

(Upoly, ) ) UY (v, 7) =
y

ou o
quo(y, 0) + Y35 %0 (y, 0) + ... + U 2 V0 (y,0)+.--} N ) U 0, 7)
y};°+u 3T§1LO(Y1,0 T)+)/”°+M > t”” (1,0,7) +..
ke DA A .
yuo+2(<+1) 31' atlkllo 1,0, 7) +.. y’2‘°+2 3T(11L0(y1,0,r)+ T(ll’;lo(y,o,r),

where y = (y1, y2), M, is defined in the beginning of the present section,

T8 01,0, 7) = (% o (y1, 0) - M) % (y1, 7),

Ny = %
b7\ ho+3A-2-Ay101 - 2470 | °

and by T(l) we denote the collection of the remaining terms that belong to L2-space* and, therefore, we are
not 1nterested in their detailed expression. Similarly,

(U0, 7)) Unoly, 0 = 57210, 01,0, 7) + TC), (1,72, 0, ),

where
T(12L0 (1,0,7) = (%ZO(YI: T)- mbb) U,y (V1,0)

and T (12;40 is in L?-space. The same argument gives®
b b
(UHO - Np) U2,y0 + (U}lo : mb) Uz,yo =

yﬂoM 2 (T(l)

()’1, 0) T)+ T(Z) ()’1, Oa T)) + nglo(y! Or T)+ T(Z) (y!O T)

2,Uo 2,10
where
T, 01,0, 7) = (% o (y1, 0) - Mpy) 2, (y1, T) = 0,
ngzlo (1,0,7) = (@/20()’1, T)- ‘ﬁbb) U 1 (¥1,0),

with T(l) =0and T(z) is in L?-space (since U2 2o = 0)-

4 Hereafter, by L2-space we mean the space L%(0, T; L2(Gy)).
5 The term (Uyo ‘Rb) U oo of course is equal to zero, and we write the calculations containing it only in order to explain what
kind of terms could appear and to have the same notations for all approximations.
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Functions Uy, Qu,, Uﬁo, ijo leave in equations (2.4)1, (2.4),, (2.10)1, (2.10), the discrepancies Hy j, =

Hl,yo(yly Y2, t, T)’ HZ,yO = HZ,].lo(yl’ Y2, t, T):

(VZDZ ~ (Uyy - M) - (UL, - 9M,) - a[) Unpo

»Ho

+2A-3
bo Jt/l,},lo(yly t)
Uo+3A-4

b
2 yl,}lo(yl’ 7)

‘/Vll,)}lo(yl’ T) +F13}10(y1’ YZ,O, T)

= Fi),yo(yly Y2, t) +F11J,y0(y11 Y2, T) +F1,yo()’1’ Y2, O! T)’

Hy =
+ (mi ~ (Uy, - ) - (UL, -mb)) u?
= ylzj0+3A74<97A1,y0()’1, H+y
+y;210+3/1—2§1’”0(y1’ H+y
+y;210+2}l—3
Hy o = (v@z — (Uy, - 90) — (UL,

(2.16)

- 9p) = 3t) Uy = D2y,

+ (v@f, ~ (Upo - M) — (UL, -mb)) Ut 0,2,

2A-3 &=

= YT K, O+ y
g

5 T e, O +y

+ygo+A72046b

+A-2
M V1, 8)
Uo+2A-3

2 yzb»ﬂo (yl ’ T)

oW1, T+ Fa,(y1, 2,0, 7)

= Fg,yo(yl’yz’ t) +F12),y0(y13 Y2, T) +F2,}10(yls )/2,0, T)-

In order to explain formula (2.16), we represent it schematically:

. = terms including {#® + 4"} =
is a collection of discrepancies aris-

ing from the leading-order term of

the boundary layer construction.

)

- b
Hy,= F, + Fb + Fy, =

4
F}, is a collection of discrepancies
arising from the leading-order term
of the outer asymptotic expansion:
Fp, = termsincluding {(F+ ¥+ T} =

Where .4 denotes the discrepancies
arising from the nonlinear terms

in equations (2.10);,, and .7 are the
discrepancies arising from the linear
part of equations (2.10)1 5.

F,, is a collection of all terms that
belong to L2-space .

Where . denotes the discrepancies
arising from 0;Uy,, .#" denotes the
discrepancies arising from the non-

linear term (U, - 91Uy, in equa-

tions (2.4)1,2 and 7 -terms arising
from the linear part of equations

(24)1,2.

Our goal is to construct such an asymptotic decomposition of the solution that discrepancies would be-
long to the L?-space. However, since A > 1, neither F}, nor Fﬁo satisfies this condition and we need to construct

higher-order terms of the asymptotic decomposition.

3 Higher-order terms of the asymptotic decomposition

3.1 Outer asymptotics

In order to construct the solution of problem (1.1), we have to ensure that discrepancies in equation (1.1)
belong to L2-space. However, this is not the case having only the leading order asymptotic term. Therefore,
we have to compensate the singular terms in the expressions of discrepancies (2.16). To do this, we construct
the higher order asymptotic terms. They leave some new discrepancies which also may be singular. So, we
compensate them in the same way and continue this process until the discrepancies are from L?-space.
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In this subsection we compensate the terms arising from construction of the outer asymptotic decom-
position. At each step of this process we obtain the same equations with the right-hand sides having similar
structure. Therefore, we first consider the equations

deur — v(y3*101 + DNuy + (- Muy +y;101p = Z1(91, 92),
oz — v(y52402 + DHuy + (0 - Muy + Dp = Zy(@1, 92), G1)
Y52 01u;s + Du; =0, '

u||)’1|='YO=O’ u()/1,y2,0)=0,

with "abstract" right-hand sides (Z 1001, ©2), Z1(p1, (pz)) having the form of one of the following expressions

(vD291,vD%p; - Dpy) ,
or

(Z1(p1, 92), Zo(@1,92)) = ¢ = (( - M1, (@ - M), (3.2)
or

~ (091, 0tP3),

where the functions ¢ = (¢4, ¢,) and p,, are specified below.
Let 31-2
P11, y2, ) =V (1, 0),

©2,,(y1,y2,8) = )/’2H2/171?/2,y()/1, b, (3.3)
Pou1,¥2,t) = Vigu(t) + VA2 2,51, ),

gy be arbitrary functions and u belong to a certain set of indices M. Substituting expressions (3.3) into (3.2),

we derive
Z1(@1,, 2,) =
ML+A*2

V®2(P1,y ~Y, j\l,y()/l» t),
-(@, - M1, = ~(0 Q1 01 + 92 D)P1y
~ yIZMN+A_2</‘/1,]1(yls t)’

T+A-2 =

_at(Pl,y Nyg/j 91,;1()’1,0,

ZZ((Pl,y, 472,;1) =
VD2Q)  — DPpy = VD23, - D (y’z“u’ze%) ~ YL u (1),
=9 (@, - My, = —(}/EA‘PL,, 01+ P2, D)Pay ~ VN5 (1),
=0t@au ~ Vo T (1),

where
ML=]1+2/1—2, MN=2]J+4/1—2, MT=H+2A. (3.4)

From (3.4) we obtain the following rules for elements of the set M

HEM=pu+21-2¢eM,
i, Up EM =y +up +4A-2 € M, (3.5)
HEM= pu+2Ae M.

In the lemma below we describe the set M which is the most narrow set of indices satisfying (3.5).
Lemma3.1. 1 Ifparameter A= %1 orA= N2 N=1,2,..., then

M={1-31+k(A-1): k=0,1,... };
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2.Ifparameter A= M4 N =1,2,..., then
M={1-31+k(A-1): k=0,1,...}U
{1—3)l+k(/\—1)+2: k=0,1,...} = M, UM,>;
3. In other cases

M={1-31+2i+2jA+k(A-1):1,j,k=0,1,...}; (3.6)

For the reader convenience the proof of Lemma 3.1 is given in Appendix B. The proof itself is irrelevant for the
construction of the asymptotic expansion, however it explains why the three cases described in Lemma 3.1
appear.

Assume that (U%M!| p0.IMl) js represented in the form

UMy, y,, )= 5 Y20 (0, 0),

pem
U9 ™Miy1,y,, 0 = LY 8 0,0, (37)
u
POMI(y, v, f) = ZMy’;gy(t) Y2 9,004, 0),
e

where M is the set of indices described in Lemma 3.1; the pair of functions (%, s 2, is the solution of

—vo1% u(y1, ) + 01 2u(y1, ) = Z1(%, 5, %3, V1] < Y0,
01%,u(y1, t) = ~ A%, (y1, 1), (3.8)
%1,F||Y1|:’Yo(y1’ t) =0,
where p, ji € M,
A(}l) =uU+ 2A-1- Aylal, (39)
Uy (1, 1) = gu(OUD(y1) + %, (y1, 0);

@ is the solution to problem (2.7), the function %2*,” satisfy the equations

{ —Va%%z*,y()/h ) = Zo(% 5, %), Y1l < o,
Uy pliys1=0 015 1) = 0.
Functions gy are uniquely determined from the following solvability condition for problem (3.8)
Yo
| AW%,u(y1, t) dys = 0. (3.10)
—7o
Indeed, using (2.8) and the equality
o Yo
J yi-01@(y1)dy1 = - [ @(y1)dy: = —ko.
—o —Yo
we rewrite (3.10) in the form
Yo .
guOuxo(u+31-1) =~ [ AW, ,(y1, t) dy1,
—o
Thus, if u # 0 and p # po, then

Yo .
gu(t) = —T,lm J U, (y1, ) dy1.
—Yo

6 Numbers p, 1 € M are different.
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In the case y = yp we have
F(t)
KoKo

gllo(t) =

Hereafter we assume that y # 0.
First of all we will study the first case of Lemma 3.1, i.e., A = % orA= %, and then, without going into
details, the other two cases.

3.1.1 Outer asymptotics. Case A = Vil or A = Ni2,

IfA =21 or A = 82 then from (3.7) and Lemma 3.1 we get

]
U?’U]()/l’ Y2, 0= yi'% oy, )+ > YE1+k(A_1)%1,k()/1, b,
k=1

F(6) _ T _peko-
Ug’m()’l, y2,t) = KLO))’zA‘D()ﬁ) +> y2/1+k(/1 Y k1, 0), (.11)
k=1 3.11
F(t) - 1
POy ,ys, ) = —l _yl3h oA gyt
V1,2, D) RV R o(y1, O+
J
> y%’%k("’l)gk(t) + YE17A+k(A71)Qk(Y1, t,
k=1

where Uy = Uy,, the pair (%10, £o) solves problem (2.9), @ is defined by (2.7) and the functions (% x, 2i)
solve the following problems

—vo1% k(y1, ) + 01 2k(y1, ) = 21 k1, 0),  |y1| <70,
01% (1, t) = —A(1 = 3A + k(A - 1), 1 (y1, O), (3.12)
2,k |y =0 V1, ) = O,

with A described in (3.9),

U 1, ) = g1 - 34 + kA - 1)D(y1) + % 1 (v1, D)

and %2*’ « satisfying the equation

{ —vOi% (1, t) = 234y, 0, |val <70, 613)
%Z*,k‘ |y1|=y0()’1, t) =0.
The functions g; are uniquely determined from the solvability condition for problem (3.12):
Yo
[ AQ =34+ k(A - 1)% x(y1, ) dy1 =0, (3.14)
~o
and arguing as above, we find
1 o
gik() = T R ASAKED) j %z,k()’h t)dy1, (3.15)
~Yo
k=1,2,...,and
F(t)
t)= ————— .16
8o(t) ol =30 (3.16)

(see Section 2.1). Note that 1 — 3A + k(A — 1) # 0 due to the assumption u # O.

The right-hand sides 2 (y1, t) = (27 x(y1, V), 25 x(y1, t)) contain the most singular terms which we com-
pensate at the step k = 1, 2, .... Notice that writing down problems (3.12), (3.13), we multiplied both sides
of (3.1) by y3*. Therefore, Z;(y1, >, t) = y%AHZ(yl, ¥2, t), where H is equal to the most singular term in the
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discrepancies Hy, i.e., the functions 2y = (29 x, 2 ) are equal to 53]- = (ﬁu, ,/f‘z,,-), N = (M js N
Fj= (71, js ﬁz,j) or a sum of them, j = 0, 1, ...7. We compensate them by the following rule:

</V09§0+</V19§1+</V29"'9§%+</Vﬁ+1+,§09...

~ ~ (3.17)
9Eﬁ+}-+t/1/ﬁ+j+l+9j9...

J=12, 00, N = (Mo M)y T = (T jo Fop)s T i = (P po T ) and
Frayi, ) = )’E(fhkmfl))‘/@zULk(Yh V2, 1),
Fo a1, 0 =y, O D20, L (y1,y2,6) - D (yg"‘“k("‘l)ﬁk(yl, t))} :
My, ) = =y, O S (U, 0, 0,

i+j=k

My, b) = —J’E(_M_Hk(}l_l)) > Ui - MU, i(y1,y2, 0,
itj=k

Fra1, ) = -y, O AV g (v, v, 0),
ﬁz,k()ﬁ, )= —y£(7A+k(A71))atUz,k()/1, Y2, 1),

wherei+j =k k,i,j=0,1,2,.... Scheme (3.17) means that the functions (24,1, 21), 02/2*’1 solve problems
(3.12), (3.13) with the right-hand side 2’1 = .#y; the functions (24,2, 2,), 02/2*,2 solve problems (3.12), (3.13)
with the right-hand side 27, = Z o + 41 and so on.

3.2 Boundary layer.

Consider equations (2.10) with right-hand sides having special form

y322orul —v(y32202 + D2)ub + (- My)ul + (u? - My)u
+? - Ml + yto1p? = 28 (v, 1), yell,

y2210cub - v(y;2103 + @2)ub + (u® - M)l + (P - 9y) G18)
ug+ @ - My +Dpp? = 28 (v, 1), yell,

yroub + ®ub = o,

ub‘|y1|:'yo=0’ ub(yl’yZ’O)=_U]10(y1’y2’0)’

where functions Zf (v, 1), k=1,2,..., depend on the case whether A = % (orA = %) or A has another
value.

3.2.1 Boundary layer. Case: A = 1 or A = M2,

If A = N1 or A = M2 then the functions Z2(y, 7), k = 1, 2, ..., in (3.18) have the following representation
22y, 1) =y (i MMV 200, 0.3 20,0, m)
and are described by the following rule

> TS T S S A S

= P

LN

ST >
j=wrl 7

g+l

7 Recall that functions denoted by italic letters do not depend on y,.
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j=1,2,...,4b=

where

(f/kaa k) fb = (ylbkf ?zbk) and

ngk()’l ) = Y; ~(=3+k(A- 1))V©2 Ub (y, ),
F3 iy, 1) =y, A {v@zUi’,k(y, -2 (v 2b0, 1) |

Moy, ) = - |y, 32 (U7 - 9007, 1)+ Ty (31, 0, 7)
1+j=

+T’1’)k(y13 09 T)) ’
APy, T) = - (y;““'“’““” > (U2 -MUL iy, 1) + Ty x(y1,0,7)
i+j=k
+Tg,k(yly O’ T)) ’

%1](}/1’0)

0
T, (1,0,7) = [ %:(y1,0)- ! %Wy, 1),
1.x(1,0,7) ( i(y1,0) (—1+j(}l—1)—)ly161—2A16T>> 11, 7)

0
T ) O’ = %b ’ : h
1,k(y1 T) ( i (y1, 1) (_1 +jA-1) - Ay101 - 2AT61>

01

-1-2A +](/1 - 1) - /Iy101 - 2/1161

b = . .
Tz,k()’bO, T) = (%l(yl,o) <_1 _ 2A+](/1— 1)—/()/101 —2AT61>> %2]()/15‘[)

d
T, x(y1,0,7) = <%f’(y1, 7)- ( . !

i+j=kk, i,j=0,1,2,...
We look for the boundary layer asymptotic expansion in the form:

J
vy, 1) = Sy Vb, 0),
k=0
]
Uy, 1) = 3y A Vb v, 1),
k=0

J
pPBUy, 1) = S i3k gh(qy 4y 1A kAD) 9b(y, 1),
k=0

where (%fk, ,@f), k=1,2,..., are solutions to the problems

af%fk - Va%%fk + 61,@11{’ = %Izk’ Y1l <0,
Uy = [MAp(y1, 7,01, 00) - k(A - D] %),
%1l?k||}'1|=70 =0, %11?I<(yl’ 0) = —62/1,1(()/1, 0);

U1, T) = Op(y1, T) + 5 (1, T),

the operator A, is described by formula (2.14); the functions %4’ solve the problems

{af%zk —VOI %Sy = ks V1l <05
%Z?kllhlryo =0, %sz()’ly 0)=0

while the @%, s?, k = 1, 2, ..., are solutions to the problems

0 @b (y1, T) - vO3 @2 (y1, ) :=sE(1),  |y1| < 05
(Df(yly T)||y1|:70 = O, (D]lz(yly 0) = —7/2,1((}’1, O)’

Yo b Yo
J Oy, D) dys =~ [ % (y1, T) dys.

—7o ~o

DE GRUYTER

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Notice, that (3.23) is the inverse problem, the function sﬁ(r) is not known and we have to find it in order to
satisfy the flux condition (3.23)3, i.e., the solution to problem (3.23) is the pair ((Df, sf).
Finally, gz(‘r) are found from ODE’s,

dgb(r)

sf(r) = —ckg,lZ(‘r) +2AT o7

Yo

where ¢, = 1 - 31 + k(A - 1). Note, that by construction, [ % x(y1,t)dy1 = O. Therefore, the solvability
—o

condition

Yo Yo
[ % (y1,0)dyr = [ % i(y1,0)dys
—Yo —Yo
holds automatically. Remind, that by assumption y # 0. Therefore, 1 — 31 + k(A - 1) # 0 and we find

T
= (% [ sP(t)t Mt dt) ™k if My >0, (3.24)

0

and -
gh(r) = (5 RG] dt) ™, if My <o, (3.25)

T

where M = 5k # 0.
Finally a compatibility condition for problem (3.20)

[AAb(yly T, aly aT) - k(/‘ - 1)] ?/zlfk(,)’h O) = _al%l,k(ylx O)

is satisfied automatically due to the construction.

i i .1 - N1 _ N+2
3.2.2 Discrepancies. Case: A = °~ or A = 5=,

The pair of functions (Uy, Q) leaves in equations (3.1) discrepancies Hy = (Hy , H; x):
Hk()/) t’ T) = ﬁk—l(y, t) + i“\k(y’ t) + Nk()/a t)

k - k
+ ) Fi(y, )+ Y. F(y, ) +F}_ (v, 7) (3.26)
j=max{0,k-y%4-1} j=1

+F,€(y, T) + Nf(y, T),
wherek=0,1,..., ﬁ,l(y, t)=0, Ff’l(y, 7)=0
Fuy, 0 = (v MO0F 41, 0,552 HODZ, 40, 0)
Ny, 0 = (13" 20D 4, 0,7, O 401, 0)
Fuy, 0 = (v 007001, 0,570 5 401, 0)
Ff(y’ ) = ( -3+k(A- 1)32~bk(y1 1), yz/l 2+k(A- ng k(yl,T))
Nf(y, 7) = ( 2/1 2+k(A- DJV 01,1, —2A-1+k(A- 1)JV (yl,r)) )

k
and ) F; is the collection of terms belonging to L%-space.
j=1

3.3 Cased = T4,
3.3.1 Outer asymptotics. Case A = V¥4,

As in the previous section, Z;(y1, y», t) = yzAHZ (y1, Y2, t), where H} is equal to the most singular term in the
discrepancies Hy, k = 1, 2, ..., i.e., the function &} = (Qq, K 25, 1) is equal to the most singular term which
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we compensate at the step k, and is described by the following rule®

No%{ No>Fo+Ni, ifA>3, o 0 0

Fo + N; > Ny, if A < 3.
?Lﬁj +NL%J+1 +Ix\ILﬁJ+1fﬁ 9§0+ﬁ1 ->
Fl o N2 ot N g ooa >0 627
ﬁLﬁﬁH +NL%1J+1+)' +IA~\'IL%1J+17%+}- -> ij +ﬁj+1 ->
?Lﬁj-ﬂ#l + N[ﬁjmz +7V[ﬁj+1—ﬁ+j+1 2.
where | x| is the integer part of the number x, j € N, N = (U- U, N=(U-9U+U- MU, N- (U-2M)Uand

Fuy, 0= (v, 4070, 0,775 400, 0)

Ny, 6 = (1" 200 41, 0,y O 401, 0)

Ni(y, £) = y£A+k(/1—1)(/’V‘1“’k(y1, 0, y;—sz(A—l)l/T/z“’k(yl, t)) , (3.28)
Ny, £) = yg—Mk(A-l)fVLk(yl’ 0, y;-zzuk(/\-l)jz’k(yl’ t)) ,

F(y, ) = (yg“"“’”ﬁl,k(yl, £),y," D2, (1, t)) ,
Sinced # ¥l and A # 82, N =1, 2,..., from (3.7) and Lemma 3.1 it follows that
K
U?’U]()’, )= ya'%,oly1, )+ Y£1+km_1)@/1,k()’1, t)
k=1

L _
+> y%+k(/‘71)%1,k()’1, t),

k=1
F(t) _ K _ _
Ug’m(y, t) = KLO)YZA‘D(YI) +) )’2/‘+k(A 1)@2,1(()’1, t)
k=1
L —
+ 2y, 1y, 1), (3.29)
k=1
F(t) _ 1
PO,U] ) = 1-31 1-A
v, 0 Ko(1—3/1)y2 +y; " 2o(y1,t)
K
+3 [ﬁ“*"“‘“gk(t) +y, M 9, (4, t)}
k=1

L ~
+ 30 [N g (0 + gl MO Gy, 1)
k=1

. J+ 25 J-2+1 . . .
where ] € N, K = min {], {#J }, L= {%J , the pair (24,0, 2o) solves problem (2.9), @ is defined in
(2.7), the functions (%4 i, 2) solve problems (3.12) with the right-hand sides 331,k—1 + M+ VG Lk the

functions 02/2*, « satisfy equations (3.13) with the right-hand sides Z. 2k-1+ Mkt N 2k and g are uniquely
determined from the compatibility condition (3.14) and are given by either by (3.15) or (3.16).
The functions (% 1, 2), k = 1, 2, ..., are solutions to the problems

20, 23 Z D%
_Val%l’k“'algk yl,k—l +JV1,k,

NU1yx = AG-31+kA- 1)1 (3.30)
Y1kl = 0
8 In this section we assume that A = %, o) ﬁ e N.
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U1, 0) = 5 (O3 - 30+ k(A - D)D) + 75 1 (y1, D),

?Z*’ , satisfy equations (3.13) with the right-hand sides .7, ;_; + V% 2.k functions gy are uniquely determined
from the solvability condition for problem (3.30) which is equivalent to the equation

Yo —
[ AB =31+ k(A - 1)), 1 (y1,t)dy1 =0

—o

Remark 3.1. The functions ?7k in fact also produce some discrepancies. However, one part of it is already in
L?-space and the other part has the same powers of y, as discrepancies produced by % ;. Therefore, in order
to keep the notations as simple as possible, we do not write these terms explicitly in the scheme (3.27).

3.3.2 Boundary layer. Case A = V4

In this case the outer asymptotic expansion (see (3.29)) includes both functions U,(y, t) and flk(y, t). There-
fore now we have to compensate both initial values U, (y, 0) and U (y, 0). Thus, the right-hand sides for the
boundary layer problems are alternating in a similar way as the outer asymptotic ones: the functions Zf (v, 1),
k=1,2,...,in(3.18) obey the following rule

N} { §§9126’+1Ei1’), T3 RN

Fo + N7 > Ng, ifA < 3.
~b o~
LA o L 2t N >F3+N2 >
~b

b b |
Fl—/uj +N\_ﬁj+2+N|—/ﬁ7J+2’ﬁ9"'9 (331)
wh b -
FLA 1J+J+NLA 1J+1+J+NLA 1J+1——+19F +N}+1
b ~b
FL%JH‘H +NLA 1) H+2 + NLA 21 ]+ 1+l >.

where j € N, the functions Fy, Ny, Fy, Ny, N are described in (3.28) and

ﬁz(y’ T) _ —3+k(/1 1) (“b -A-2+k(A-1) 0—~b (J’l: T)

Z1x1, 1)y,
N2(y, 1) = (v 2D b (g, 1), y, 2R v APy, T )),

ﬁZ(y, T) = V) kA1), Ab M1, 1), yl ~2Ak(d- DJV 1, T)) (3.32)

kb o~ —~—
Ni(y, 1) = )/%_Mk(/l_l)«/VLk()’l, T),)’g_ZMk(A_l)JVz,k(YL T)) ,

Fo(y,7) = ( SV Zh (v, 1),y A 7D k(yl,r))

Remark 3.2. Here, as in the previous section, we expand terms (U- ‘Itb)Ub ,(ub -0)U, (U- ‘ﬁb)Ub, (ub -‘)Tb)fj,
(U- mb)ﬁb (ub . U, U - ‘ﬁb)ﬁb b . ‘)Ib)f] in Taylor’s series with respect to the time variable ¢t and
then replace t in this expansion by the product Ty 21 In order to keep notations as simple as possible, we
do not write out these terms exp11c1tly We collect the terms having the same power of y, and denote the
corresponding sums by N, N,N.
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We look for the boundary layer asymptotic expansion in the form:

UB []](y’ T) _ Z Y5 —1+k(A- 1)%bk(y1 T) + Z y1+k(/1 1)02/1,](()/1’ T),
1

uB Uy, 1) = Z y, M ADgb (v, 1) + Z y3 Ak 1, 7),
=1 (3.33)

PB,[]](y’ 7) = Z [ 1-3A+k(A-1) b(T)+y 1-A+k(A- l)gb(y T)}
k=0

L
£ [y;—B}Hk(A—l) gf(r) + yé—Mk(A—l) 5}3()’1, T)}
k=1

where (ﬁz/l’fk, 2,13), k=1,2,..., are solutions to problems (3.20) with the corresponding right-hand sides de-
scribed in (3.31), the functions 02/{3 « are described by (3.21) with %, being the solutions to problems (3.22)
with right-hand sides described in the scheme (3.31) and the functions (@2, 52) solve inverse problems (3.23).
Since by assumption 1 — 31 + k(A — 1) # 0, the functions gﬁ are gyven by (3.24) or (3.25).

The functions @?17’ o é}(’ ,k=1,2,..., are solutions to

UL~ VAU + 0198 = 2L, vil <o,
61%1 k= [/IAb(yl, T, 01, 07) — k(A - 1)] 2,k? (3.34)
1,k||)/1|='YO = O’ 1’}(()’1, O) = —%1,k(}’1, 0)'

The right-hand sides in (3.34) are functions from the scheme (3.31) corresponding to terms with "~

U y1,7T) = Dpy1, T) + %51 (y1, T),

the operator A, is described by formula (2.14); the functions ?A/f « Satisfy the equations

UL, ~VOIUL, = Xy Iyl < 7o,
{ rN:,k 1%k Ni,k 1l <0 (3.39)
%2,k||y1|='yo = O! %z’k(ylf O) = Oa
while the functions (@f, E,lz), k=1,2,..., are solutions to the inverse problems
0r DY (y1, T) ~vOIDPL(y1, 7) :=32(1),  |y1] < Y0,
(’52()’1’ T)||,V1|=’Yo =0, ‘52()/1, 0) = _q//\;,k(yl’ 0)’ (3,36)
Yo Yo __
[ d’f(yl, )dy1 =~ [ %1, 7)dy.
—-Yo ~—Yo

Finally, the functions §f(r) are solutions to the following ODE’s

~ d
sh(r) = —cigh(r) + 27 gé‘r( )

Yo __

with ¢, = 1 - 34 + k(A - 1). Notice, that by construction, [ %, x(v1,t)dy: = 0. Therefore, the solvability
—Yo

condition

Yo __ Yo __
| % (y1,0)dyr = [ % i(y1,0) dys

—o ~o

holds automatically. Remind, that by assumption, u # 0. Therefore, 1 — 34 + k(A1 - 1) # 0 and
T
FAGE <71/1 GG dt) ™k if My >0,
0

and
= (ﬁ GG dt) ™k, if My <O,
T
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where M = 7% # 0.
Compatibility condition for problem (3.34)

[AAp(y1, T, 01, 07) = k(A - 1)] %, (y1,0) = _alé/\;,k()’l, 0)

is satisfied automatically.

3.3.3 Discrepancies. Case A = %

Let us denote the elements of sequence (3.27) by Sy, k = 0,1, 2,..., i.e.,, Sg = Np and so on, and by Sﬁ
the elements of sequence (3.31). Then the discrepancies Hy = (Hy y, H; ) left by the functions (U, Q) in
equations (3.1) can be written in the form

k ~ ~
H(y, t,7)=>" (Fi(y, t) + Ni(y, t) + Fi(y, t) + Ni(y, t)+
i=0

Ny, 0+ B2y, 1) + NGy, 1)+ B2y, 1) + N2, 1)+ N (y, ) (337)

—g (Si +Sf’) +Fy,

~ ~ ~ = ~ ~ ~ zb
where Fy, Ny, Fi, Ni, Ng, Fﬁ s Nﬁ, Ff, Nﬁ, N are described in (3.28) and (3.32); the functions F; belong to
the L%-space. Formula (3.37) means that we sum up all the discrepancies and then subtract the discrepancies

which are already compensated.
Note that the most singular term in (3.37) is equivalent to

(77 A0, 6, ¥, D))

3.4 Other value of the parameter A
3.4.1 Outer asymptotics

IfA# M2 A+ M2 and A # ¥4, N=1,2,..., then from (3.7) and Lemma 3.1 we get

y£1+2i+2]‘/\+k(}t—1)%1’{1.’].’,(} ()/1 , t),

Mh-n
s
M=

-
=)
T
)
T
)

Uy, 6 =

U?’“”’K](y, £ = y£A+2i+2M+k(A_1)%2,{i,j,k}(yl’ f),

MN
e
M=

]
=]
-
Il
=]
~
]
o

(3.38)

1-3A+2i+2jA+k(A-1)
Y
k=0

—-1-A+2i+2jA+k(A-1
;5 +2i+2jA+k( )Q{i,j,k}(yl’ t)} ,

Mh-n
M\
M=

pOLLKl(y ) = 81ijiky (O

T
o
T.
o

where the functions (%, ; j x}» 2{i,j,k}) Solve the problems

VO, (i 1, 0+ 0120110 01, 0 = 21,411y 01, ),
% (i ky V1, ) = A0 %, 1y 015 O, (3.39)
1,11,y V15 Oljyy =0 = O-

A(@{i,j,k}) is defined in (3.9), @{i,j,k} =1-31+2i+ 2]/1 + k(A - 1),

U, (1,001 ) = (1. (0O (11, @Y1 + Xy g1y V1, D),
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the functions ?/2*’ (Lik} satisfy equations

{ VoI, 11 015 0 = Za (i 01, 0 1l <0, (3.40)

Uy, 11,13 V15 Dl = O-
The functions gy; ; 1 are uniquely determined from the following solvability condition for problem (3.39)
Yo
J A0 ))? 11 j V1, ) dy1 = 0
~7o
Similarly as above,

Yo N
8k (O =~ I 5 .01, O dya,
~o

__1
¥o0Oyijk}
k=1,2,....Note that the condition u # 0 is equivalent to 1 -3A+2i+2jA+k(A-1) # 0. The right-hand sides
Z(v1,y2, 0 = y3HY, k1, ¥2, 1), where Hl ';,x are equal to the most singular terms which we compensate
at the given step {1 sk}, i,j,k=1,2,.

3.4.2 Boundary layer

We look for the boundary layer asymptotic expansion in the form:

I J K
Uf’[l’]’K] (y’ T) _ Z Z y£1+21+2]/1+k(/1 1)%17{1 i) (}’1 , T)
i=0 j=0 k=0
I ] K
U?’“J’K](y, T) _ Z Z Z Y5 “A+2i+2jA+k(A- 1)%b{l ik (}/1, T)
i0j=0 k=0 (3.41)
I J K
PB’[I’]’K]()/, 1) = Z Z z [yl —3A+2i+2jA+k(A-1) b” k}(T)

T
o
S
t T
Il
(=}

K
+y2 A+2i+2j/\+k(/1’1)a@?i’j’k} ()’1, T)i| s
where (% ; : 1y, 20; 1y)» 15 J» k=0, 1, ..., are solutions to
) , b b
Ty (ijiky ~ Va%%l,{i,j.k} +01205 1y = ik Wl' o
N (i jxy = M1, T,01,00) = 2i = 2jA = kA= D] % ;5 495 4

b b
U 1,00y yal=v0 = 05 %1,{,-,}-,;{}()’1, 0) = ~% i j,iy V1, 0),
%2%{1',;',1@(}’1, T) = @lfi,,-,k} 01 D+ 25 43y V1, T,
operator A, is described by formula (2.14); the functions %f (iik} satisfy the equations
b
{af%f{i,j,k} ~VOIUS i1y = 25 (ke (3.43)
Uy (i yi=0 = 00 %5415, (Y1, 0) = 0.

The right-hand sides Z G, k}(yl, V2, T) = y2 H{” k}()/1, y2, T), Where H{” K} is equal to the most singular
terms which we compensate at the step {i,j, k},i,j,k=1,2,....
Further, the functions (LD’{’I.’ ik} s’fi’ i k}) are solutions of the inverse problems

0D, 1y (1, 1) VAR, (1, 1) = s (@, Iyal <7,
b

D1 015 Dljyy =0 = 05

b 9 (3.44)

(D{i,i,k} (y1,0) = - %) {1,k (y1,0),

70 o
f (D?i,j’k}(yly T) dY1 =" f OZ/Z?{i,j,k}(yl’ T) dyl

—o ~70
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Finally, gl{’i, i k}(r) are found as solutions to ODEs

dgb. ik (T)
s?l’]’k} (T) = _C{l’],k}g?l’],k}(‘[) + ZAT{léin}s

Yo
where ¢y =1-34+2i+2jA+ k(A -1). Since [ %2,{i,j,k}(y1, T) dy; = 0, the solvability condition
—Yo

Yo Yo
| % 401,00 dys = [ 2 3.k (V15 0) dys
—o —o

is satisfied. Moreover,
T
b b — ij — ij .
g{i,].,k}(‘r) = <le1 ({s{i’j,k}(t)t Myijny -1 dt) ™My if Myij i > 0,
and
$lijn (0 = (ﬁ IRORIUE dt) T, i My <0,
T

s
where My; iy = =35

Compatibility condition for problem (3.42)

[AAp(y1, T, 01, 07) - 2i = 2jA - k(A - 1)] ?/zlf{i,,-,k} =-01?,(i,j,s V1, 0)

is satisfied automatically.

3.4.3 Discrepancies

Functions Uy;;ky, Qqjk; leave in equations (3.1) the following discrepancies Hyy ;g =
(Hy,q1,5,k3> Ha q1,0,x3)

I J K
H{I,],K}(y, t, T) = z(:) Z(:)kz% |:V®2U{i,j,k}(y’ t) - atU{i’j’k}(y, t)
i=0 j=0 k=

Uiy - U s 0 + VQZUl{,i,i,k}(y’ 7)
(3.45)

~(Ufi ik - MUY 05 ) - [T{i,f,k} + T?i,j,k}] ¥,0,7)
_S{I,],K} (y’ t) - S?I,],K} (y, T)i| 5

where S 1, Sf{’ 1)k} are the sums of all already compensated terms for outer and boundary layers parts,
respectively.
As before, we expand the terms (Uy; j i} - ‘ﬁb)U?i’ iy (Uf{’i’j’ iy - MUy .y in Taylor’s series with respect
to the time variable t and then replace t by the product Ty%". These expansions are denoted by Ty; ; ;, and
b
Tk
The most singular term in formula (3.45) can be written in the form

(y£3+zi+sz+k(A—1)%,(y1’ 1), y; RDRAOD) ey, g r)) .
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4 Regularity, existence and estimates

4.1 Regularity conditions

Consider the asymptotic expansion
U (x, 1) = UOU]( 4%, t) + UB[”( A,Xz,xb),

(4.)
where (U%V, pO-U)) s the outer asymptotic expansion given by formula (3.11) if A = N1 or A = N¥2 (by for-
mula (3.29)if A =X +4 and by formula (3.38) if the parameter A has other value); (U U1 pB.UYY is the boundary
layer-in-time expansmn given by (3.19) if A = X1 or A = 22 (by (3.33) if A = ¥4 and by (3.41) if parameter A
has other value). (UV, PU1) is an approximate solutlon of problem (1.1) and the corresponding discrepancies
H ](y', yn, t, T) are given by formulas (3.26), (3.37), (3.45). Constructing the above asymptotic representations
we were solving problems (3.12), (3.13), (3.20), (3.22), (3.30), (3.34), (3.35), (3.36), (3.39), (3.40), (3.42), (3.43),
(3.44). Therefore, it is necessary to have at each step sufficient regularity of the data which is needed for the
solvability of the corresponding problems. Examining the right-hand sides of these problems we see the loss
of one time derivative on each step of the outer asymptotic construction. Therefore, in order to ensure the
existence of all terms of asymptotic expansion up to the order J, we have to assume that the flux

F() € W*2(0, T).

Since the flux F(t) is the integral of the normal component of the boundary value a(x, t) over 00, the last
requirement imply, the following regularity conditions for a:

ola
otl
The boundary layer construction does not cause any loss of regularity, and it is enough to suppose that
b e Wh2(Q).
Note that these regularity conditions are the same as for the construction of the asymptotic expansion
for the non-stationary Stokes problem in a power cusp domains (see [23]).

e L2(0, T; WY22(0Q)), 1=0,1,2,...,] +1.

4.2 Estimates of asymptotic decomposition

Let us first formally summarize the types of problems we were dealing with while constructing asymptotics.
As for the outer asymptotic part, we faced with the following problems:

{ ~va1U,(y1) = Z2(y1),

(T1)
Uz (=) = Ua(0) = 0,

and
—vo1Ui(y1) - 91Q1) = Z1(y1),

01U1(y1) = G(y1), (T2)
Ui(=y0) = Ui(y0) =0
Yo
where the solvability condition f G(y1) dy, = 0 is satisfied.

—Yo
Problems of type (T1) have explicit solutions

Y1
Us(y1) =ay1+b -1 [ Zy(s)ds, (4.2)

—o
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where a and b are found to satisfy boundary conditions.
From (T2), we find that

Y1
Ui(y1) = [ G(s)ds, (4.3)
—o
and, therefore,
Y1
Qly1) = -vGy1) - [ Zi(s)ds. (4.4)
—7o

As for the boundary layer construction, we meet three types of problems:

0:®(y1,T) - vO1®(y1, 7) = s(1),

@y, =y =0, D@(y1,0) = ud(y1), (13)

Yo
[ @y11)dy, = F(1),
Yo
Yo
where the flux F(¢) and the initial data ué’(yl) satisfy the conditions F(0) = O and [ ué’ dy, = 0. Notice that
—Yo

Yo
the necessary compatibility condition for problem (T3) is F(0) = [ ué’ dyq;
—Yo

0 U1(y1, 1) = voiUi(y1, ) + 01Q(y1, 7) = Z1(y1, ),
01U1(y1, ) = G(y1, 7),

U1(=70, T) = U1(n0, T) = O,

Ui (y1,0) = u?,

(T4)

Yo
with two compatibility conditions | G(y1, 7)dy; = 0 and G(y1,0) = aluﬁ’ (y1) that are satisfied due to the

—7o
construction; and
0:Ur(y1,7) = vo3Us(y1, T) = Zo(y1, 7),
Uz (=70, 7) = Uz(v0, T) = O, (T5)
Us(y1,0) = 0.

Results concerning the regularity and estimates of solutions of boundary layer problems (T3), (T4), (T5) follow
either from classical results concerning heat and Stokes equations, or from results about inverse problems.

Problem (T5) is the initial boundary value problem (with zero initial value) for the classical heat equation
and its solution satisfies the estimates (e.g., [33])

sup [|U2(, Dllwrey + 10211200, 00; w22y *
7€[0,00) (4.5)

+[07 U2l 12(0,00502 (7)) < CllZ21112(0,00512(7))>

where T = (=v0,70). If in addition 0:Z, € L%(0,c0; L%()), then U, € L*=(0,o00; W>2(Y)), 0:U, €
L*°(0, oo; L2(Y)) and

sup [|U2(, Dllwezry + sup 10Uz || g2+
7€[0,00) T€[0,00)

(4.6)
< C(1Z2120, 001200 * 19222 |20 etz )

If the right-hand side Z, of (T5) exponentially vanishes as 7 - oo, then the solution U, also exponentially
vanishes and

S[up ) (ethHUZ(', T)H%/lfle(T)) + ||eutU2H%z(0’°o;W1,z(T))
T€[0,00

2 2
+1€0rUa | 22(0,00322(r) = ClIE™ ZII72(0,005220r):

(4.7)

where u € (0, u«) with sufficiently small p«.
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Problem (T4) is a nonstationary 1-dimensional problem of the Stokes type; the corresponding existence
theory is well known (e.g., [34]), problem (T4) admits a unique weak solution U; € L2(0, c0; W-2(T) N
W22(T1)) with 0:U; € L?(0, o0; L?(Y)), 01Q € L?(0, oo; L?(T)) such that

sup [|U1(, Dllwraery + 1 U1llL2(0,00w220r)) *
7€[0,00)

+|10r Ut 12(0,0052(r)) + 101 QlIL2(0,00522(1)) (4.8)
< C (121 20,0120 * 16l 20,005m220) + [ o)
If, in addition u? € W22(T), 0:G € L*(0, oo; L?(Y)), 0:Z;1 € L?(0, o0; L*(Y)), then

sup [|U1(, Dllwazry + sup (10Ul 12(ry
7€[0,00)

7€[0,00) (4.9)

< C({1Z1llwr2(0,0022(r)) + 1Gllwr.2(0,00,wr2(1)) + Hulwaz,Z(r))-

The solution of (T4) exponentially vanishes in the integral sense as T - oo, provided that data exponentially

vanishes. For sufficiently small u > O there holds the estimate

o) (ezm”Ul(" TWA/LZ(T)) + 1€ UnlIZ2(0, 00wy
T7€[0,00
+||eHd, Uy ||%2(0’m;LZ(T) (4.10)
< C(11eZ1 20 cestzry *+ 118Gl 20,005mr20) + 1 o))

Problem (T3) is the inverse problem for the heat equation. It admits a unique weak solution (@, s) €
L%(0, 00; WH2(7) N W22(X)) x L*(0, o0) with 0:@ € L?(0, o0; L2(T)) provided uf € WH2(), F € WH2(0, o0)

Yo
and the compatibility condition F(0) = [ ug dy, holds. Moreover, the following estimate
~—7o

sup [|®(, T)H%/vl,zur) + \|¢’||%2(o,m;wz,2(r)) + \|af¢||1%2(o,m;L2(T)
7€[0,00) (4.17)

#5120, = C (14 Bnary + 1730, )

isvalid. If the flux & exponentially vanishes, then for sufficiently small 4 > O we additionally have the estimate

S[l(,)lp | (ezuthp(., T)H%VM(T)) + ||e“’¢||%2(o,m;w1,2(r))
7€10,00

+1€# 01 @720 wos2(r) + €751 E2(0,00) (4.12)
< C(1U313a0r) + 1€ T30, )

° Yo

If the data are more regular u} € W2(1) N W22(Y), F € W?2(0, 0o) and F(0) = [ ub(y1)dy = 0, then the
—7Yo

solution also has the improved regularity, @ € L*°(0, oo; W?%(Y)), @1 € L>(0, o0; L2(Y)), s € L>(0, o) and

sup H@(-,T)||%V2,2(T)+ sup ||af‘p||%2(y)
7€[0,00) 7€(0,00)

+ sup IS = C(Iub ey + 1F a0,
7€[0,00)

(4.13)

The unique solvability of problem (T3) and estimates (4.11), (4.12) are proved in [32, 35]. The proof of estimate
(4.13) is given in Appendix A.
Define
UWx, ) = U2V x1 /34, 32, ) + 0BV 0y /35, xa, 1631,
PO, £) = POV (xy /x4, xa, 8) + PEV(xy /3, xa, 1031,
where UOUI yB.Ul| pO.Ul pB.Ul gre given either by (3.11), (3.19) or by (3.29), (3.33), or by (3.38), (3.41) depending
on the value of A. By construction,

divull(x,) =0 in Gy, U'(x,H)=0 on Gy NaQ,
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UV(x,0)=0 in Gy, / U ndx, = F().
a(h)

Let us start with estimates of leading-order term of the asymptotic decomposition. Problem (2.9) is of type
(T2) with the solution depending on t as a parameter. Moreover, the right-hand side G(y1, 7) in (2.9) is equal
to Akg F(H)(1 + y1 - 91)@(y1), where @ = L (|y1]|? - ~3) is a solution of problem (2.7) (which is of type (T1))
with Z,(y1) = 1. Clearly, the leading asymptotic term (see (2.5)) satisfies the following estimates

okU1 1 0 KU1 o 1,
oyF < Cy; |F(b)], 3 oy < Cyy [F ()],

okU _ o oku -

o <o IFOL |5 < Cy ' |F(8),

m a (4.14)
akUl 0 “1-k 0 a 1,0 -1-k 7/ .
— | <C F(t)|, — <C F (1),

ok ya CIFOL |5 ayk y2 CIF ()|
kU0 Ak 0 KUy Ak
— | <O TIF@O, |5 < Cyy," |F (0],
oyk ot oyk

k=0,1,2,....

Using estimates (4.14) of the leading asymptotic term, estimates (4.5)-(4.13) of solutions to problems (T3)—
(T5) and following the scheme of construction of the asymptotic decomposition we obtain, by induction, the
following estimates

sup [[UVC, y2, Ollipnacry + 107120, w2y
te[o,T]

T
U202y € 707 g 11F[[7,1 dt,

sup [UVC,y2, )12 a0 + sup [[UY)2,,
telo,T] telo,T]

02 T X (4.15)
HIVUE I L20,0022(r)) < 7727 OleFle dt,
su H aU”](-,yz,t) HZ < [ fT|HFH|2 dt
. G[O?T] o lwem = 9 ) J¥1
2 _d oF() | A
where |IFl[f = 3> |25, 0(v2) = 0y5.
k=0
Since WY2(Y) ¢ C(T), we also have
1
sup (IUU](yl,yz, O + ’aU (y1 Y2, t)| )
te(0,00)
Y1€T
T
<C sup f HUU]( Y2, t)HwZZ(T) = 2%,2) f|||FH|%+2 dt,
te(0,00) 0 0
oUNy1,y,,0 2 ULy, 12
sup |7| dt<c sup e T | ey
£€(0,00) t€(0,00 f” 2 HW”(T)
y1€Y
T
< mg\llFlHﬂl dt.
Passing to the coordinates x yields
T
sup (001, xp, O17dt < 6 1IIFI|IF, dt,
te(0,00) 0
x1€(-9(x2),9(x2)) (4.16)
T .
sup |VxUU](X1,X2, % < m S/ |HF|H%+1 dat.
te(0,00) 0

x1€(-90(x2),0(x2))
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4.3 Estimates of discrepancies

Functions UV1, pUl satisfy the Navier—Stokes equations

oVl —vaull + @ wyul + PV = Hy,
divul! = o,
0 (4.7)
U ‘aGHﬂaQ = Oa
ulx,00 = o.

The estimates of discrepancies depend on the value of A. If A = % orl= %, then, by construction,

‘|HI||1%2(T) < C)’Eal (Hﬂ]—lﬂizq) + HJOZ]H%Z(T)

J ~ J
2 2 2
HIA T L2y + > , ||yk“L2(T)+kz -7kl 22y
k=max{0,J-1-4%; } =1
b 12 b2 b2
HIF a2y + 177 12y + 1477 HLZ(T))-

In the case A = N4,

||H]||%2(T) < ¢y,

JARON ~ ~
’Z (Fk+Nk+Fk+Nk
k=0

~ A ~ ~, =b J-1
+Nk+Ff+N,€+F£+N£+Nk) -3 (Sk+Sf) +Fy
k=0

12(1)
IfA# N A N2 )2 N then

J K
0j=0 k=0
2

1
HH{I,],K}HIZ,Z(T) < C)’;h
~Wijag - U0 0+ VD20 0 (1, D) = (UF 4y - MUY 4 0, D)

1

(v@ZU{i,;,k}(y, t) = 0cU¢i,j,13 (v, )

2
- |:T{i,j,k} + T?i’j,k}} ()’, 03 T) - S{I,],K} (y’ t) - S?[’],K}(y’ T)) LZ(T)’

where 0 < a; < 2°. Passing to the variables x we obtain for all three cases the following estimate
T 2 T 2
/ HH]”LZ(GH)dt < ¢ [ IIFIll}, dt. (4.18)
0 0

In the last case we chose all three numbers I, ], K so big that the discrepancy H {LL.K} belongs to L2, but, for
simplicity, we denote Hy; ; ¢ just by Hy.

Appendix A

Proof of estimate (4.13). Differentiating equation (T3) with respect to T we get
drDr(y1,7) ~vOiD:(y1,7) = (). (A1)

Multiplying (A.1) by @ and integrating over the interval (—vo, o) yields

1 d Yo Yo Yo
EE/|Cl>r|zdy1+ /|V®T\2dy1=s'(T)/Q>Tdy1=s'(T)3"(T).

~70 ~Yo —o

9 We chose J or I, ], K big enough to satisfy this condition.
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So, integrating from O to 7, we get

1 Yo By T Y 2
3 [ 1@y, D7dy1+ [ [ |VDi(y1, 1)|"dydr

o 0 -0
=3 f |@:(y1,0)|? d)’1+fs (NF (r)dr
—’Yo
=3 }0 |D+(y1, 0)|*dy1 —fs(r)&" "(Ndr + s(1)F (1) - s(0)F (0).
—Yo 0

Since 7(0) = 0, we have s(0) = O (see [32]) and hence @-(y;, 0) = vo3dD(y1, 0) = valuz(yl) Therefore, using
(4.12) we obtain
Yo T Y%
L [ 1®c(y1, DPdyr + [ [ [VDi(y1, 1)|*dy1dr
—Yo 0 -
<Y f 02Uy ) Py + L [ d F'(nd 2 (A2)
<3 Uz | y1+2f|5(r| r+s f| (")| r+é|s(7)]
Yo 0
+ce|F (1))? < C(Haluznwz,z«_wmn + H?HWZ,Z(O,M)) +e|s(r)2.
From equation (T3) we have
(1) = @re(y1, 7) - vOT1 P (y1, 7),

and because of (4.12) we can write
s(1) = - [s(dr = - [ (Prly1, 1) - vOIDi(y1, 1)) dr
T T

Multiplying this relation by v, (y1), where vq is solution of the problem

{ votvg =1,
Voljy;|=o = 05
integrating this relation over the interval (-vo, 7o) and integrating by parts, we obtain

SOKo =~ [ | (@rlyr MVolys) - va2Drlyr, nvo(yr)) dysdr

T Yo
oo Yo o Yo
—[3& [ Dily1, Dvolyr)dyrdr+v [ [ ®:(y1,103vo(y1)dy dr
T *’Yqyo MT 'Yo
=1 [ @clyr, Dvolyr)dy: + [ 31 & f D(y1, r)dy,dr
—Yo T —Yo

Yo
=3 [ @:(y1, Dvolyr)dy: - 35(1),

~Yo

Yo
where kg = f vo(y1)dy; < 0. Therefore,
Yo

Yo
Is(D)> < ¢ [ |@c(y1, 7)2dys + c|F(1)|?
o (A3)
sc [ @y, DIPdys + cl|Fllfpna (0,00

~—Yo
From (A.2), (A.3) follows the inequality
Yo
sup [ |@c(y1, T)|*dys + sup |s(7)]?
7€[0,00) 0 7€[0,00) (A4)

sc Ha%”gH%vLZ(ﬂo,%) + ||?||%/vz,2(o,w) .
Finally, from equation (T3) we get

Yo Yo
sup [ |01®(y1, D)2dyr < sup [ |®c(y1, T)dys
7€[0,00) -0 7€[0,00) -0 (A.S)

+ sup \S(‘r)|25c(|\a T EA |\§|\§V2,2(0,m)).
7€[0,00)
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Estimates (A.4), (A.5) together with (4.11) imply (4.13). [ ]

Remark 4.1. The above proof of a priori estimate (4.13) for the solution of problem (T3) contains inaccuracy.
The solution which we have in hands does not possess enough regularity to perform all computations in the
proof. However, these reasonings can be justified in a usual way by using Galerkin approximations.

Appendix B

Proof of Lemma 3.1. Remind that we start from pg = 1 — 31 € M (see (2.6)).
1. If 1 = Uy = Yo, then from (3.5), we get

Mo+Uo+4A-2=pp+A-1=(1-3)+A1-1.
If
H1=1-31+i(A-1), U2 =1-31+j(A-1),
it follows from (3.5); , that
U1 +2A-2=1-31+([+2)(A-1),
Hi+Uo+4A-2=1-3A+(+j+ DA-1).

Obviously, elements constructed following the rule (3.5);3 belong to the set T =
{1-3A+2jA:j= O 1,...}. Elements from the set T belong to M if k = j(2+ ;%) is a natural num-
ber, i.e., if either ;%4 € Nory € N@A = Yl orad = M2 N = 1,2,...). Indeed, from (3.5); we
have

M> 1—3A+j<z+Afl)(A—1)=1-3A+sze T.
Thus, if A= 2 orA = %2 N =1,2,..., then M is the most narrow set of indices, satisfying (3.5).
2.IfA= N*‘* ,but A # N” and A # N+2 ,N=1,2,..., then y%; € N, however, y2; and y}; are not natural

numbers. In thlS case an element U3 Wthh obeys the rule (3.5)3 can be expressed as u; + 2, where p; obeys
(3.5)1. Now, analogically to the first case, we show that y; € My and pu,, us € M,

U1 =1-31+i(A-1), 2 =1-3A+jA-1)+2, u3=1-31+k(A-1)+2,

obey the rules (3.5), i.e. we show that M = M; U M,. It is is already proved in first part that y; € M. From
(3.5)1 we get
o +20-2=1-31+(+2)A-1)+2 € My;

and from (3.5), it follows that

Ui+ Uy +4A=-2=1-3A+(i+j+1)A-1)+2 € My;
Mo+ U3 +4A-2=1-3A+(G+k+4)(A-1)+6.
However, since ﬁ € N, one can easily check that the last element belongs to M», i.e.,
1-30+(+k+4)A-1)+6=1-31+1A-1)+2 M),
(j+k+4)(A—1)+4=1(A—1)<:>1=j+k+4+7/\i‘1;
Finally, from (3.5)3 we obtain
U2 +2A=1-3A+(+2)(A-1) + 4.
Since ﬁ € N, we easily check, similarly as before, that the last element belongs to My, i.e.,

4

1—3A+(j+2)(/l—1)+4=1—3/1+i(/l—1)eM1<:>i=j+2+A_1.
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3.If
H1=1-3A+2i1 +2j1A+ ki(A-1), py =1-31+2ir +2j)A+k(A-1),

then from (3.5); we get that
U1 +2A -2 =1-31+2i1 +2j1A + (ky + 2)(A - 1);
from (3.5), it follows that
H1+ U +4A=2=1=-3A+2(iy +ip) + 2(j1 +j2)A + (k1 + ko2 + DA - 1);
and finally, from (3.5); we obtain
H1+20=1-31+2i1 +2(1 + DA+ k(A - 1). [ ]
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