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Abstract: The initial boundary value problem for the non-stationary Navier-Stokes equations is studied in
2D bounded domain with a power cusp singular point O on the boundary. We consider the case where the
boundary value has a nonzero flux over the boundary. In this case there is a source/sink in O and the solution
necessary has infinite energy integral. In the first part of the paper the formal asymptotic expansion of the
solution near the singular point was constructed. In this, second part, the constructed asymptotic decompo-
sition is justified, i.e., existence of the solution which is represented as the sum of the constructed asymptotic
expansion and a term with finite energy norm is proved. Moreover, it is proved that the solution represented
in this form is unique.
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1 Introduction

In this paper we continue to study the boundary value problem for the non-stationary Navier—Stokes system

u-viu+@-vV)u+Vp=f,

divu =0, 1)
Uly0\0 =, .
u(x, 0) = b(x)

in a two-dimensional bounded domain Q with the cusp point O = (0, 0) at the boundary: Q = Gy U Qg, where
Gy={xe R? : |x1] < @(x2), x5 € (0, H] b)) = vox4, 70 = const, A > 1 (see Figure 1). For simplicity we
assume that the boundary 0Q N 9Qy is infinitely smooth. Here u = (uy, u;) stands for the velocity field, p
stands for the pressure, v > 0 is the constant kinematic viscosity.

It is supposed that suppa C Qg N 34, i.e., the support of the boundary value a € L2(0, T; W>/22(3Q))
is separated from the cusp point O. We also assume that the flux F(t) of a is nonzero:
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Fig. 1: Domain Q

The initial velocity b € W'?(Q) and the boundary value a have to satisfy the necessary compatibility condi-
tions
divb(x) =0, b(x)|30 = alx, 0). 1.3)

The solution u of (1.1) has to satisfy the condition

Ju-ndS+ [ a-ndS=0
o(h) 90N

where o(h) = {x € Gg : x, = h = const}, which means that the total flux of the fluid is equal to zero. Thus,

G(fh)u-ndx1=F(t)sé0, (1.4)

and we can regard the cusp point O as a source (or a sink) of intensity F(t).

More information and references concerning the Navier-Stokes equations in domains with singular
boundaries are given in the introduction to the first part of the paper, see [1]. In [1] the formal asymptotic
decomposition of the solution (u, p) near the cusp point was constructed. This asymptotic expansion has the

form
gV <X1’X2,t, ‘r) =yoll (%Jzﬁ) +UBUl (Xl,Xz,T) )
2

A A
X3 X3

pU (%,Xz, t, ‘r) = po.Ul ()’%,Xz, t) + pB.UI (%,XZ,T) )
2 2 2

where the pair uoUl, po-lly js an approximate solution (outer asymptotic expansion) of the Navier—Stokes
problem in variables y; = xlxg", Y2 = X2, t = t; the "slow" time variable ¢ plays the role of a parameter and, in
general, the initial condition is not satisfied. The pair (UB Ul , PB ’U]) is the boundary layer corrector (the inner
part of the asymptotic expansion) which compensate the discrepancy in the initial condition. Notice that
(UB’U], PB’U]) exponentially vanishes as the fast time 7 = é tends to infinity. The number J is taken so large

(1.5)

that the discrepancy HV! of (UU], PU]) in the Navier-Stokes equations belongs to the space L?(0, T; L2()),
while the discrepancy in the initial condition is zero (see [1] for details). Moreover, in order to ensure the
existence of all terms of asymptotic decomposition up to the order J, we have to assume that
1
% € L*(0, T; WY?2(0Q)), 1=1,2,...,]+1.

Here we justify this asymptotics. We prove that there exists a solution of problem (1.1) which is represented as
a sum of the singular part (the constructed asymptotic decomposition) and the function having finite energy.
To be more precise, we construct a solenoidal extension V of the boundary value a which coincides with UV}
near the cusp point and we look for the solution (u, p) of (1.1) in the formu =V +v, p = (PU] + g, where {
is a smooth cut-off function localising the asymptotical part of the pressure near the cusp point O. Then for
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(v, g) we obtain the problem

Vi —VAV+ (V- V)V + (V- VV+ (V- V)V + Vg =1,

divv =0, L6)
V]p0 =0,

u(x, 0) = b(x) - V(x, 0) := up(x)

with f € L2(0, T; L2(Q)), ty € W'2(Q). In the paper we prove the existence of a unique regular solution v to
(1.6).

The existence of singular solutions to the time-periodic and the non-stationary Stokes problem in the
domain with a cusp point was studied in [2, 3]. We can also mention the recent paper [4] where the Dirichlet
problem for the non-stationary Stokes system is studied in a three-dimensional cone. The non-stationary
Navier—Stokes equations in tube-structures were studied in [5, 6]. The solvability of the stationary Navier-
Stokes system in the cusp domain with source or sink in the cusp point was proved in [7]. The steady Navier-
Stokes equations are also studied in a punctured domain Q = Qg \ {0} with O € Q( assuming that the point
O is a sink or source of the fluid, see [8—10] and [11] for the review of these results. We also mention the papers
[12-15] where the stationary Navier—Stokes equations were studied in domains with paraboloidal outlets to
infinity. Such geometry has similarities with the cusp domains, the difference is that in the case of a domain
with outlet to infinity x, - oo, while in the cusp domain x, - 0.

The paper is organised as follows. In Section 2 we introduce the main notation, function spaces and prove
certain inequalities needed in subsequent sections. In Section 3 we study the Stokes problem and the Stokes
operator in the cusp domain. Finally, the main result of the paper, the unique solvability of problem (1.6), is
proved in Section 4.

2 Notation, function spaces and auxiliary results

Let G be a domain in R". We use usual notation of functional spaces (e.g., [16]). By LP(G) and W™P(G),
1 < p < oo, we denote the Lebesgue and Sobolev spaces, respectively. The norm in a Banach space X is
denoted by ||+ || x. C=°(G) is the set of all infinitely differentiable functions defined on G and Cg’(G) - the subset
of all functions from C*°(G) having compact supports in G. By W*9(G) we denote the completion of the C3(G)
in the || - || yym»(g)-norm and by W™-1/P:P (3 G) the space of traces on 9G of functions from W™P(G). The space
LP(0, T; X) consists of all measurable functions u : [0, T] > X with

. 1p
o, ) = <f |“(f)||§dt) <oo, 1lspc<oo.
0

We do not distinguish in notation the spaces of vector and scalar functions; from the context it will be clear
which space we have in mind.

Denote J5°(G) = {v € C3(G) : divv = 0} the set of all divergence free vector fields from C3’(G) and by
Jo(G) be the closure of J§°(G) in L2(G)-norm. Let H(G) = {v € W52(G) : divv = 0}.If G is a bounded domain
with Lipschitz boundary, then H(G) coincides with the closure of J5°(G) in the norm || - [|y1.2(g) (see [17]).

Let us consider the cusp domain Q. Let hy = H, hy = hy_q - %, where L is a Lipschitz constant for the
function ¢, k=1, 2, .... The sequence {h;} is decreasing and bounded from below. Assume that the limit of
this sequence is ag # 0. From the definition of the sequence it follows that ag = ag - %. Then ¢(ag) = 0.
However, ¢(ag) # 0 for ap # 0 and, hence the limit ag = 0. Since the sequence is decreasing and the limit is
equal to 0, all its elements are positive.

Denote w; = {x € R? : |x1| < ¢(x2), x2 € (hy, hj_1)}, =1, .. .. Note that

lo() <o) < 30(hy), tehy, k. .1
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Define the transformation y = P;x by the formulas

_ 2L _ 2L(x2-hy1)
V1= 0t V2= Tty 22

and introduce the domains

Go={y € R?:|y1|<2L,-1<y, <O},

G1={y e R*:|y1| <2L, -1-g(y1) <y2 < -1},

Gy={yeR?:|y;|<2L,-2<y, <1}.
In the definition of G; the function g € C* satisfies the conditions g(+2L) = 0, 0 < g(y1) < 1 for |y;| < 2L and
itis such that thecurve {y : y; = 2L} U{y : y1 = 2L} U {y : |y1] < 2L, y> = -1 — g(y1)} is infinitely smooth.

Obviously the transformation ;' maps G, onto w,. Consider the domain w; = ?;'G,. Then w; C w; =

{x eR?: |x1] < o(x2), hp_q - % <xy<h_q+ %} C Wi UwUwiq,l=2,3,...(seeFigure 2). It is
easy to see that

=1 =2

Fig. 2: Domains w;j, (u; and @j,4 in different coordinate systems

Let us fix K > 2 (sufficiently large) and define Wy = Pxl,G1, @) = Pxt,(Go U G1). Obviously, g C wg
and g C Wy. Let
K-1 R
Qg=0Q9U ( U a)l> U wg.
=1
The boundary of Qg consist of 9Q N Q and the curve I'y which is defined as I'y = Py Eo, where Ey = {y :
ly1] < 2L,y> = -1 - g(y1)}. By construction, the boundary 0Q is smooth (see Figure 3).
We can take also the other covering of the domain Q. Namely,
K-2 . .
Qr=0QoUwi U ( U a)l) Uwg 4 Uwg,
-1
where @y ; = Pty ({y € R? : |y1| < 2L, -1 - gly1) <y < -1}) = Pt (Gy).
1
We also introduce domains Q? =00 < U (u]-), 1=1,2,... (seeFigure 4).
j=1

In Qg we define the function space L3(Qx) with the weighted norm

1117200 = J FOOPdx+ [ @?(e2)|f(0)|*dx.
Qo 0x\Qo

Let us prove some auxiliary inequalities for functions defined in Q.
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Fig. 4: Domains _Q]’.j.

Fig. 3:Domains Q.

Lemma 2.1. (Poincaré inequalities). Let u € Wllo CZ(_Q), u|3g = 0. Then the following inequalities

[ uG)Pdx < Z@*(hy) [ |[Vu)|*dx,

w; W

H ¢(x3) 5 5 H o(x2) ,

[ 10 ?[uGfPdx < 2 [ [ |p0Q)¥|[Vuld)|*dx
h —tP(Xz) h - (x2)

hold for any x € R and any h € (0, H).

Proof. By the classical Poincaré inequality on the interval ( - p(x2), (p(xz)) , we have

o(x2) 5 5 o(x2) ou P
[ uba, x)Pdx s 9% () [ 2GR dx.
_(p(Xz) —(P(Xz)

— 1015

(2.3)

(2.4)

Integrating this inequality over (h;, h;_;) and applying (2.1) we derive (2.3). To prove (2.4) it is enough to mul-

tiply the above inequality by |@(x,)[*"? and integrate over the interval (h, H).

Lemma2.2. Letu € W};2(Q). Then

sy = €02l (10120 + @7 (i) [V 2o )

holds with a constant c independent of 1. In particular, if u € WIZO’CZ(Q), then the following estimate

IVl = €07 ) IVUlR (192 + 92V 2ulg,,)
holds.

Proof. After the transformation P;, the domain w; is transformed into the domain Gy = {y :
y2 < 0} which is independent of . In Gy holds the inequality (see [18])

g = €l (1ulEep + V4017260 )-
Passing in the last inequality to variables x we obtain

4 412
f Jul <p(x‘z)w(hz ax

2 2 2 41?
(f ey )(f Ul ey dx + wf, IVyul go‘(mfpf(h,,nd")

(2.5

lyil <1,-1<
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2 412 2 412
“a{ lul ‘Pi(xz)(l’(hl—l)dx( wfl Ul Se)gt 9X*
ou 2(,.2 20%(h1) 2 ou 12,2 412
S8 (0200)+ baP G 10 00)P) + 138 Po (o) iy )

Since |x1| < @(x2) and |@'(x,)| < const, from the last inequality using (2.1) we derive (2.5). [ ]
From (2.3) and (2.5) we obtain

Lemma2.3. Letu € W};2(Q), ulyq = O. Then
Il ey < cllullple, ) IVullle, ) < c@™> ()| Vull 2, (26)

with a constant c is independent of 1.

Let us consider in w; the divergence problem

divw=g inwy,
2.7
v=0 on ow,.
Lemma 2.4. Letg € L?(w;) and
fg(x) dx =0. (2.8)
(]
Then there exists a solutionv € W-2(w 1) of (2.7) satisfying the estimate
IVIlz2w) < Cllgllz2(w) (29)

with a constant c independent of 1.

Proof. The transformation P, (see (2.2)) maps the domain w; onto Gg = {y : |y1| < 1,-1 < y, < 0}. Because
of (2.8),

[ g@r NN @ (v)dy = [ g(x)dx =0,

Go

W

where J;(x) = is the Jacobian. Therefore (see [17]), there exists a function v € W12(G,) such that

412
o(hi)e(x2)
div,V(y) = ;@7 )P ()
and
IVyVIz2(6o) < €7 "8llz2(60)» (2.10)
where g(y) = g(ﬂ)l‘l(y)), etc. Let us define the vector field v(x) with the components

2Lx1 9 (x5)

vi(x) = ?1(y)|y:3>l(x)(p(§17{“_l) +V2(V)]y=p,00 o)

Vz(X) = ,];Z(y)‘yz?z(x) (P%i)fz)

Then it is straightforward to verify that

. 2 . ~
div yv = mdw YW lyeop, ) = 8.

Thus, we have only to show estimate (2.9). Let us estimate the norm || VxV/|2(,,). Using inequality (2.1) for ¢,
Poincaré inequality (2.3) and the relations |¢(x,)| < const, | (x2)@?(x2)| + | %(x2)@(x2)| < const (recall that
o(x;) = ’Yoxé, A > 1) we obtain

~ ~ . 2
[ 1Vx1(OPdx < g [ (VPO + [Vav2(Pi00)? + B dx
1

“ 0700
< S Gf IVyV(y)|*dy,
0

~ = 2
192 (02dx < s [ (|Vx02(P00))? + 2D ) g

2
W W 92(x2)

< iy [ IVVO)Pdy.
Go
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Estimating now ||Vﬁ|\%z(60) by inequality (2.10), using the expression for the Jacobean and returning to co-
ordinates x, we derive estimate (2.9) with a constant independent of I. [ ]

Remark 2.1. It is easy to see that Lemmas 2.1-2.4 remain valid if we take the domains wj, 1 = 2, ..., k, or @y,
wy, instead of w;.

3 Stokes problem and Stokes operator

3.1 Estimates of solutions to the Stokes problem

In Qg consider the Dirichlet boundary value problem for the Stokes system
—-vAv+Vp =1,
divv =0, (3.1
v, 0, =0

The weak solution v € H(Qg) to (3.1) satisfies the integral identity

v [Vv.-Vndx= [f-ndx vne H(Qg).
QK -QK

Lemma3.1. Letf ¢ L%(Q x)- Then problem (3.1) has a unique solution v €¢ H(Qg) and there holds the estimate

IVVliL2ay) = cllfllzz2 G2

with a constant c independent of K.

Proof. By Poincaré’s inequality (2.4) with x = 0,

)fo-ndx

< Clfl1Z200 I V11200 -
Hence, the statement of the lemma follows from Lax—Milgram’s theorem. [ |

Lemma3.2. Letf € L>(Qg) C L%(QK). Then the weak solution v of (3.1) satisfies the estimate

[IvvlPdx+ [ @ 2(x)|Vv]?dx<c [ |f|*dx (3.3)
Qo i\ Qx '

with a constant c independent of K.

Proof. Let 1

1 _of
e X € QOU(.:Ul“’f) =
d)(XZ) = K-1 J
—(pz%xﬁ, X e (U w,-) Uwg = QK\_Q?.

j=l+1
Here and below the number [ is fixed; we specify it during the proof.
Consider the function u = @(x,)v. Then divu = @ (x,)v,. Since v € H(Qk), the flux of v over any section
x, = const of Gy is equal to zero, i.e.,
o(x2) ,
| @ (2)valxy, x2)dx, =0 Vx; € (hg, H.
-(x2)

Integrating over x, we conclude that

[ @ (x2)valxy, x)dx =0, j=1+1,...,K-1; [ @ (x2)valxs, xz)dx = 0.

(1}1‘ wg
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Then by Lemma 2.4, there exist functions w; € Wl’z(wj),j =1+1,...,K-1, wg € W-2(@g) such that
divw; = ~@'(xp)v, in wj, j=1+1,...,K-1, divwg = -@'(xy)v, in wg.
Moreover, the following estimates

VWl 120y < P Vall 120 < cmax | D97 vall 12w
]

i1+1,...,K-1,
J=t+ s (.4)

VW12, < € max |9 0[197Va 2@
XEWg
hold with a constant ¢ independent of j and K. Taking into account inequalities (2.1), from (3.4) we obtain

lo(x2) VWil 120, < ¢max 10 () [l9~%(x2)v2 lL2(w))>
]

is1+1,...,K-1,
J=i (3.5)

lp(2) VWi 126y < ¢ max 10 ()92 (x2)V2ll 2@ -
K

Define the function
o, er?,
wx) = {wj(x), xcwj, j=1+1,...,K-1,

wi(x), x € wg

(recall that @'(x,) = 0in Q?). Take in the integral identity B = u + w. By construction, div(u + w) = 0 and
hence, u + w € H(Qg). This yields

v [ @|Vv|? dx——vf VV-V®-vdx-v [ VV-VwWdx
Qg Qg

+[f- (G)v+w)dx Ji+]2+]s5.

Q

Let us estimate the integrals J; in the right-hand side of the last relation. Using (2.4) and (3.5) we get

|]1|=‘v J Vv-V®@-.vdx|<2v [ [Vv||v]|@ (x2)| @3 (x2)dx

Q\0! 0\0f
/ 1/2 _ 1/2
<c sup |(p(xz)|< / (p‘z(xz)|Vv|2dx) ( [ e 4(xz)|v|2dx)
xeQx\Q! 0\ 0\QF
sc sup |90 [ @ 00)|VV/dx;
x€Q;\0f Q\0f
K-1
2l v > va-ijdx‘ +‘ / Vv-Vdex’
j=l+1 'w; Wx
K-1
se Y [ @ 2(x2)|Vv|?dx + € f 0 2(x2)|Vv|?dx
l+1w, Wi
+Ce Z f¢2(x2)|ij| dX+Cg f (pz(Xz)‘VW[d dx
j=l+1lw;j
se [ @ 2(Q)|Vv|Pdx+ce sup @' () (Z [ @72 (x2)|Vv|?dx
0\Q! X€QK\Q! j=l+1w;

+f(p‘2(xz)|Vv|2dx) s(e+ce sup |9 ()2 [ @7 2(x)|Vv|]Pdx;
Wk x€Q\Q! Q\0f
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J £-vax|
ﬁ

. _1
u}; £ ovdx| < |

K-1

Jf- 2(X)vdx‘ ‘ff 2(X)vdx‘

j=l+1 " w;

<cg(<p2(h) f |£|2dx + Z [ If2dx + f |£| dx)

j=l+lw;j

2
+£(W f [vi? dX+'7E IWM dx+Af et dx)

<c [ |f] dx+£(<p2(h) f |Vv|2dx + IZ f (pz(x)|Vv|2dx
Qg ] +1

+Af m|Vv| dx) scf f|?dx + ce [ @|Vv|?dx;
ok Qk QO

k-1
| [ f-wdx|=| [ f-wdx|s z ff wjdx]| + ‘ff wydx|
Qg QK\Qn =l+1
sc [ [fPdx + Z [ w2 dx+f |Wg|?dx
Qg j=l+1lw;
sc [ |fPdx+ Z [ @2(x2)|Vw; |2 dx + f 0% (x2)|[ Vwg | dx
Qx j= l+1w, e
<o [IfRdxrc S suplg 0 [ ot ta)lvaldx
Ok jol+1 XEW; w;
+c sup [ Q)12 [ @ *(x2)|va|?dx
XEwWg wx

<cf|f| dx+c sup |9 (x))? [ ¢ 2(x)|Vv|?dx.
x€Qx\Q} Qx\Q}

Collecting the obtained estimates yields
vf @|Vv|?dx < ¢y f |f|?dx
(3.6)

+cz(£+ sup |<p(xz)|) f(D\Vv\ dx,
XEQK\Qﬁ

where the constant c; is independent of K (but ¢; depends on I) and ¢, is independent of K and l. The func-

tion ¢(x,) is monotonically decreasing and tends to zero as x, > 0. Hence sup |¢'(x2)| = |¢@'(h;)| and
XGQK\-QIn

lli)m <p'(h,) = 0. We choose and fix I such that \(p'(hl)| < v/(4c,) and take € = v/(4c;,). Then from (3.6) follows

the inequality

[ @|Vv|?dx < ¢ f |£|%dx
Qg

which is equivalent to (3.3). [ ]

Lemma 3.3. For sufficiently large K the weak solution v of problem (3.1) satisfies the estimate

V2Vl 20y < Clifll 200 3.7)

with a constant c independent of K.

Proof. Consider the solution (v, p) of problem (3.1) in the domain w;, l=2,...,K-2.Changing the variables
y = P;(x) (see (2.2)) we rewrite problem (3.1) in coordinate y in the domain G,:
~ N 2 ~ ~
VA V() + Vy () = CE0F(y) + Hy),
div,¥(y) = g(), 3.8)

v =0,

’y1=12L
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where ¥(y) = v(P;1y), etc., G(y) = 20 1)p(y)

H(y) = 0(11()’) Vi an(y) 528 aylayz BN 5+ )5)751,
h h_
all(y) = V(((p ( ipl)(xip) (x2) Xl(p (;i)(fz)( : 1)) }X=T;1()’)’ (3.9)
— _y 209 ()ehy )
a12(y) = v epagy

11 (9" (0)p(0)-202(02)) 9 (hi_1)
P1y) =~ 2Lp3(xy) |x='y;1(y)’

YY) = (1), 20D,

_ _olhi1)-9(x) _ _x19 (x2)e(hi1)
M) = =FRGT gy 1200 = = EEET ceongy

aVl [)?2

8 = (gt + 2 5%
_ 9b)-o(h1) _ X190 (0)eh,)
pa(y) = WL(:TIJ(},)’ pa(y) = Wh:?,’l(y)'
Applying the usual local ADN-estimates for elliptic problems (see [19, 20]) in the pair of domains Go C G,
we obtain the estimate

||0||%Z(G0) + \|VyV||iz(G0) + ||Vy6||1%2(co) + ||Vya”%2(c0)
< (9" (- DIEl(,) + 1126, + 18126, (3.10)
+V12(6,) + 1d - AlEa(c, )

where g = | J q(y)dy. Since f(q(y) g)dy = 0, there exists w € W'2(G,) such that div,w = g(y) - g in

G
|sz

G, and
IVyWli126,) < €lld = iz,
(see [17]). Multiplying (3.8) by w and integrating by parts yields
19 - I3z, = f q(qly) - g)dy = f q(y)divywdy
—vayv Vywdy e (h’ 1) ff wdy [, H-wdy

< VHVy‘A’HLz(Gz)HVyWHLZ(Gz) + 2 zELIz g ||fHL2(Gz)||WHL2(Gz) + ||HHL2(GZ)HW||LZ(62)

< clIVyVll2619 - @lli2(,) + cO*(DIEll26011d - @ll2 (6, + B2 6,)18 - @ll2(6,)-

Therefore,
19 - qllz2(6,) < C(HV}'VHH(GZ) + (pz(hl—l)”fHLZ(Gz) + ”HHLZ(GZ))- (3.11)
From (3.10) using (3.11) and Poincaré’s inequality (2.3) we derive
||0||%2(G0) + HvyGH%Z(GO) + ||V§6||1%2(G0) + ||Vya”%2((;0)

- . R - (3.12)
c(@* ) IE122(6,) + I,y + 18136, + 19592, ) -

By definition w; = {x : [x1| < p(xy), hy_, — £h1)

<Xy <hp_q+ %{1)} and the following inequality

lp(hi_1) - @(x2)| < max |@'(x2)||h_1 - x2| < ¢ max @ (x2)|@(hy_1)
X2 EW] X2 €

2€W,;
holds. Fory = P;(x), x € a);, using this inequality, (2.1) and the definition ¢(x;) = yox’}, A > 1, we obtain
lar1 )| + (a2 + (B + [ W)| + [ W] + [ )] + (2 ()] < (D),
where llz)m £(l) = 0 (see (3.9)). Therefore, from (3.12) follows the estimate

||0||%Z(G0) + \|VyV||iz(G0) + ||V§6||1%2(G0) + ||Vya”%2((;0)
< (9" D IElE g, + 199916,
+ee()(IV391(,) + 1 9ydl2c, ) -
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Passing to coordinates x and using the same arguments we derive

mw”izwg + ||VXVH%2(¢,,,) + ‘Pz(hl—1)||v;2(v||]%2(wl)
#1921 = (92 )12 ) + 9V, (13)
+ce(l) (<p2(h1_1)|\v§v|\fz(m;) N Hvxqugz(wp), 1=1,...,K-2.

The constant ¢ in (3.13) is independent of I. Multiplying (3.13) by Z(h 5 yields

1 2 1 2 212
o (hin) HVHLZ(wI) + ) HVXVHLZ(U_,I) + HVXVHLZ(LUI)
#1938 1220 = (16120 + g7y V0V (3.14)
+ee(D) (IVEVIZ () + 93Pl ) o 1= 1een K= 2.

By the same ADN-estimate together with the properties of the domain wg, we get the inequalities

1 2 1 2 27112
o) Iz + g2y VeVl + ViV lizz,)
93P 2o = (1120, + i V5V ) (3.15)
+cs(K)(||v,%v||§z(w*K71) + Vbl

and 1 2 1 2 20112
P he) HVHLZ((,,K) t T ||VXV||L2(a,k) + Hva”LZ(wK)

Py < (181w + gty IV eV G0
24112 2
+ce(K)(||vxv||L2(w~K) + HvpoLz(a,p)’

with constants independent of K.
Let Iy < K-2 be a positive natural number (I, be fixed later). Arguing as above we can prove the following

local estimate for the pair of domains Qf o

lh+1 lo+2

”VHWz z(Qﬁ + va”Lz(Qﬁ ) = C(”fHLz(_Qﬁ + HvaHLZ(Qﬁ )) (317)

Summing inequalities (3.14) from [y to K - 2, adding (3.15)-(3.17) and taking into account that ¢(h;_;) ~ @(x;)
in w; and wj (see (2.1)), we get

v IVl

12(0f ) )yt e~ VHLZ(QK\Q” )
) IVpl?

#
w2 Z(Q )

+lo ' vv|? IV

L2(Q6\2f )
< (||f|\Lz(QK> IV 197 VIR g0 )

+e2e(lo) (|9 2v]2

12(Q6\2] ;) L2(Qc\2f ;)

(3.18)

+|Vpll;

L2(Qk \m LZ(QK\Qu )

Since 111>m £(l) = 0, we can chose [y to satisfy c,£(ly) < k, where k is such that

K(IV2VI2, g, a) 192l \Qu)) (||v2v||Lzmul+|\Vp||i2(gK)

2
HIv VHLZ(QK\Q?O))'
Then estimate (3.18) takes the form
2 2 - 2
Hv”Wz,Z(_Q?OH) + ”vaLZ('Q?O+1) + ||(P VHLZ(QK\Q?OH)
+‘|(p_1vv||iz(o \Qﬁ )+ HVZVsz(Q \Qﬁ + |‘Vp||]%2(QK\Q? 1)
0+

< c1 (IflZ g * 1991t 5+ ||¢‘1VvuLzm at )
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In particular,

I Zvl\fzmm “1(”f”%2(ﬂk)+” :v“iz(ﬂf )
0+
\% e (3.19)
Y ”LZ(QK\Q?) )
0

Estimating the last two term in the right-hand side of (3.19) by (3.2) and (3.3) we obtain (3.7). [ |

3.2 Stokes operator

The most results we present in this subsection are standard (e.g., [21]). Problem (3.1) can be rewritten in the
operator form (without loss of generality we suppose that f € Jo(Qg)?, adding the gradient part to the pres-
sure)
Av =f,
where A = PA : H(Qg) N W22(Qg) » Jo(Qg) is an unbounded operator with the domain H(Qg) N W22(Qy),
where P is the projector from L%(Qg) onto Jo(Qx) (Leray’s projector). For given w € H(Qg) N W?2(Qg) the
operator Aw is defined by
~ [ Aw-vdx = [ (-vAw+Vp)-vdx =-v [ Aw-vdx
Qg Qk Qg

=v [ Vw-Vvdx W e J5(Qk)
Qg

(for v € J§°(Qk) holds divv = 0). By density argument,

-/ AW - vdx = —v J Aw -vdx WV € Jo(Qg). (3.20)
Qx Qx )
Hence, B _
- f |AW‘2dX = -V f Aw - Awdx. (3 21)
Q[( -QK .

From (3.20) also follows the estimate

1AW | a0y £ IVWIL20) = Wl Eq,-

Since H(Qg) N W*2(Qg) is dense in H(Q), there exists a unique extension of the operator A (denoted
again by A) from H(Qx) N W22(Qg) to the whole space H(Q). Moreover, the extension 4 : H(Qx) » (H(Qg))"
is a bijection. A is called the Stokes operator.

It is known (see, e.g., [21, 22]) that

(i) The Stokes operator has a discrete spectrum:

AW = Aw, W € H(Qg), W #0;
/11' >0, lim Ai - +oo,
i%oo

(ii) The set {w;} of eigenfunctions of A is an orthogonal basis in Jo(Q) and H(Qx), ||Vw| 2x) = VA
Wil 120, = 1. Since 0Qk is smooth, we have w; € H(Qg) N W>2(Qg)2.
Relation (3.21) yields
1AW 12y < €AW 120y < €IV Wllz2(0,)- (3.2

From (3.3) follows the estimate

/|Vv|2dx+ / (p"z(x2)|Vv|2dxsc/\Z\v|zdx, (3.23)
Qo 0\ Qx

1 Recall that Jo(G) is the closure of the set J5°(G) = {v € CF’(G) : divv = 0} in L%(G)-norm.
2 The eigenfunctions w; depend also on K but we will not mark this in the notation.
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and from (3.7) we get the inequality
IV Wl 2(0p) < €AW 20y,
which together with (3.22) implies
1| VWl 12y < 1AW][F20 ) < C2lI VW] 20, (3.24)

Note that constants in (3.22),(3.24) are independent of K.

4 Solvability of Navier—Stokes problem

4.1 Construction of the extension of boundary data

Consider problem (1.1)-(1.4). Suppose that a € L?(0, T; Wfo/cz 2(0Q\{0}), a; € L*(0, T; Wllo/c2 200\ {0})),
suppa C 0Q N 9Q C 007,

First we consider the linear extension operator E in the domain Q%, E : W3/2 Z(aoﬁ) — W% 2(_Qﬁ) given
by Ea = wV), where W(”bm = a. Since the boundary 0Q N aaﬁ is smooth and suppa C 9Qp N 9oQ C aQ
the linear operator E is bounded:

HEaHWz Z(Qﬂ) HW HWZ Z(Qﬁ) = CHa||W3/2 2(00)* (4-1)

Moreover, w) can be constructed so that suppw™® ¢ 52 (see, e.g., [16]).
Ifa = a(x, t) and a;(-, t) € W22(3Q), then, due to the fact that the operator E is linear, we have Ea; =
(1)
and

B2l 1.0y < Clalipeagon)- 4.2)

Moreover, if a € L2(0, T; W3/22(00)), a; € L%(0, T; W'/>2(3Q)), then integrating (4.1), (4.2) by t yields
IWOIE 0, w2002y < €110, w209

(1)12 H (4.3)

2
[w¢ 1200, T;wr2(Q%) < CHat||L2(0,T;W1/2,2(ag))'

Let UU]( L, x5, t, T) be the formal asymptotic decomposition of the velocity component near the cusp
point O constructed in [1] . Recall that
UU]( x2,tr)=UO’m(X; )+UBU]( = X2, ;)
X3 X3 X3
where U%Ul is the outer asymptotic expansion and U is the boundary layer expansion (see also formulas

(1.5) in Introduction). In order to insure the existence of UU], the following regularity requirements for the
boundary value a are needed:

dla
otl
It is proved (see inequality (4.15) in [1]) that the vector field UV! satisfies the following estimates

e L2(0, T; WY%2(0Q)), 2, .., J+1.

sup ||UU]( Y2, t)”Wl 2t HU HLZ(O T;W22(T)
telo,T]

HU 0,120 < 326 g [1FI11q dt,

sup [[UVC, s, O1120200 + sup o2
tel0.7] e ¢ Em (44)

+vuy! IZ2(0,005220r) < 69 f |HF|HI+2 dt,
0
U(,y0,8) (12

T
0 Y2, 2
tSE.(l)pT] H 3y HWLZ(T) < (ﬂ“f}’z) Of |HFH|]+1 dt’
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J X 2
where y1 = 3, ¥ = X2, 9(y2) = 0¥, A> 1, T = (=70, %0): [[IFIl[} = 3 "’;ﬁ”
k=0

Since WH2(Y) ¢ C(T), we have

ul
sup (|UU](y1,)/z t)\2+|w| )
te(0,1)
y1€T

<C Sup HUU]( yz;t)szz(T) = Z(yz) f|||FH|]+2 dt

te(0
(4.5)
U (y1,y5,6) |2 oUI(y,,0 (12
sup |25yl i2ge < ¢ sup Tl |
up |20 up [
y1€Y
I 2
< g J IFIa dt.
Passing to coordinates x we obtain
Ul 2 f 2
sup UV (x1, x2, O|7dt = 5 [ |||F|||7,, dt,
t€(0,7) o) g I
x1€(-p(x2),p(x2)) . (46)
sup VAUV, xa, O < s [1IIFII,q dt.
te(0,7T) 0
x1€(~p(x2),0(x2))
Notice that F(t) = [ a-ndsS, and hence,
00
T 2 T 2 2 T 2
JIIIF(llfdt < c [[lalllfdt, sup [[|F|||7dt < c [|lallljdt, (4.7)
0 0 te(0,T) 0

wmmmwh—zuﬁwwwmmw

Consider the function B = wV) + ¢ U1, where ¢ = {(x,) is a smooth cut-off function equal to one in Q \Qg
and equal to zero in Qﬁ Obviously, B|yq = a, however, B is not solenoidal, div B = div w® 4 v{- Ul .= .

Notice that
[hdx= [ WV +¢U).ndS= [ a-ndS+ [ UU'.nds
Q! Yol 00oNoQ 208\00
=F(t)- F(t) = 0.

Since supph C ﬁﬁz and the boundary agg N 0 is smooth, there exist a function w® ¢ WZ’Z(Qg) such that
suppw®@ ¢ 62, w® = 0 in the neighbourhood of 005 \ 90 and

divw® = h in Qg,
o (4.8)

w\mg =0.

Moreover,
W2 Ol 02 < €lIAC, Ol

qﬂmm(mmwm+wﬂ(mmqmg

(see [23]). By construction in [23], it follows that the operator D of problem (4.8), D : w2 (-, t) € W“(Qé) >

divw (., £) = h(-, t) € Wl’z(Qg) is linear and the inverse operator D! defined on functions h € Wl’z(Qg),

satisfying the condition [ hdx = 0, is bounded. Moreover, equations (4.8) can be differentiated with respect
o

(4.9)

to t:
divw? = hy in 04,

@ _o,

wt'aog
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and o)
HW ( t)H;Vl Z(Qg) < Cth(" t)Hiz(_Qg)
< c(IWC, 012,05 + 1076 0112, s )-

Integrating inequalities (4.9), (4.10) with respect to t and using estimates (4.3), (4.4) and (4.7) we obtain

(4.10)

T
WPl oty = € J (186, Ol * G Ol
0
HIIFONE )t = [ (186 Olan) + 126, Ol ) de
0

a)?,,dt, (4.11)

o
O =~
PN

T
W o ooty < (12, O3 ragom) + [IF@IFy ) dt
T
< [lllaC, Olllfqdt,
0

where <a>;+1 = |a(, t)H%Vii/Z-Z(aQ) +|[[al, O)|f[y+1-
Define

w=w? +w(2), V=W+ (UU],

where ( is a smooth cut-off function defined above. By construction divV = 0, V3o = aand V = U for
x e 0\ Qg Therefore, for x € Q\ Qg the function V satisfies estimates (4.4), (4.6), while for x € Qg from (4.11)
and (4.4) it follows that

T
Of”V(.’ t)”i]/Z,Z(Qﬁ)dt + f Hvt( t)”LZ(Qﬁ)

T
scf (Ha||%v3/2,2(ag) +l1alllfq + |\|F|H1+1)df (4.12)
0
T
< ¢ [(a)f,dt.
0

We look for the solution (u, p) of problem (1.1) in the form
=v+V, p=q+{PU].
Then for (v, g) we obtain the following problem

—vAv+(v-V)v+(V-V)v+(v~V)V+Vq=f,

divv =0, 413)
V|sov0 =0,

V(X’ 0) = ﬁO(X)’

where f = f - fi,fi = Vi —vAV + (V- V)(V) + V((PU]), Uy = b - W (since UY(x, 0) = 0). Recall that the
number J was chosen such that

oVl —vaull + @ wyul! + vV = HY e L2(0, T; L2(Gy)).
(see [1]). Therefore, taking into account that W has compact support in 62, we conclude
fel?0, T;12(Q), 1o e WH2(Q).
Moreover, using results obtained in [1] we get (see estimate (4.19) in [1])

~ T
IE11Z20, 7312000 < C(fH%Z(O,T;LZ(Q)) + f<a>f+1dl‘-),
0 (4.14)

T
80520 = €(IBlnagoy + [@Fadt)-
0
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In the next subsections we construct the sequence of weak solutions v to the Navier—Stokes equations
in regular domains Qg and prove the uniform (with respect to K) estimates for them. The solution of problem
(4.13) is then found as a limit of {vg}.

4.2 Existence of the solution in Qk

Consider in Qg the following boundary value problem

Vi — VAVE + (Vg - VIVg + (V- V)vg

+(vg - VIV +Vgg =,

divvg =0, (4.15)
Vkloox = 0,

Vi (x, 0) = Ugo(x),

where gy € W"%(Qx), diviigo = 0 and ||tigo — U2y > 0as K > +oo (here we suppose that Uy is
extended by zero into Q \ Q).

In this subsection we omit the subscript K in notation of the solution v.

By a weak solution of problem (4.15) we mean the function v e L2(0, T; H(Qg)) with v¢, V2v €
L?(0, T; L?(Qg)) satisfying the initial condition v(x, 0) = tigo(x), and for all ¢ € [0, T] satisfying the integral
identity

T
J [ (ve-n+vov-Vn-((v+V)-V)p-v-(v-V)n-V)dxdt
0 2« (4.16)

for any test function n € L?(0, T; H(Qg)) with n, € L*(0, T; L*(Qg)).

Lemma 4.1. Let iy € W2(Q). There exists a sequence tixo € W"2(Qg) such that divix = 0 and I%l_gn ko —

Uo || wr.2(q) = 0. Moreover there hods the estimate

T
kol = ¢(IBlna + [ @Hadt) (417
0

with the constant c independent of K.

Proof. Let yx(x,) be a smooth cut-off function such that yx(x;) = 0 for x, > hg_q, xx(x2) = 1 for x, < hg_,
and |Vx(x2)| < m. Consider the sequence of functions tigy = yx(x2)to + Wg, where Wy is a solution of the
problem

div Wg = -Vyg - U, X € Wg-1,

‘/I\\IK =0, XE€EoWg-1.

Obviously, [ Vxg-todx = 0. Therefore, by Lemma 2.4, there exists Wx € Wh2(wg_y) satisfying the estimate
Wk-1

VWl 22wk 1) < VXK * Woll 12wy )
,1/\ o~
< |l Uoll 2wy y) < €IV L2(wy )

with the constant ¢ independent of K. By construction div gy = 0 and

(4.18)

[[tko — Uollwr2eq) < 11 = XK)Uollwr2(wy 1) + Wkl w2y 1) < CITollwrzug )

Since the right-hand side of this inequality tend to zero as K > oo, we getlgm [[Uko — Uo || wr.2(q) = O. Estimate
(4.17) follows from (4.14). [ ]
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T
Theorem 4.1. Suppose that f € L*(0, T; Q), b € W2(Q), the boundary value a has the finite norm [ (a)7,,dt
0
and let there hold the compatibility conditions divh = 0, b|yo = a(x, 0).There exists a positive constant kg
T
such that if the flux F(t) satisfies the inequality [ |||F||| f+2dt < Ko, then problem (4.15) admits at least one weak
0

solution v. The following estimates

sElp Iv(-, t)HLZ(QK) +f\|Vv( t)HLZ(QK)dt_ cB; (4.19)
telo,T
sup [|VVC, Oll7a(o, < ce™ (Ao + A1 + By) i= cB; (4.20)
tel0,T]
T
JIIVV(, D12, dt < cBy (4.21)
0
T
f |IV[(’, t)H%Z(QK)dt < CB5 (4.22)
0

hold. The constants in estimates (4.19)—(4.22) are independent of K and

T
Ao = ||b||%/v1,2(g) + HfH%Z(O,T;LZ(Q))’ Ay = f<a>}+1dt’
0

B =(1+e“4A)(Ag + A1), By =c9A; +cioB3,
B3 = eB2(4g + A1 + By),
By =Ag+A; +A1Bs + B3B2 + By,
Bs=Ag+A1+(1+A1)Bs+(1+B1B3)B1 + B3A;.

The constants c4, C9 and c1g are defined in the proof of the theorem.

Proof. We follow the scheme of 0.A. Ladyzhenskaya book [22] (see also [21, 24]) where the solvability of prob-
lem (4.15) is proved by the Galerkin method. Let {1);};2, be an orthogonal basis in the space H(Q). Consider

N
Galerkin approximations vV (x, t) = Z 7;” )(t)l/)l(x) of the solution v of problem (4.15) which are defined by

the following system of ordinary dlfferentlal equations (with respect to functions W(N ),l=1,...,N):

[ (Vg +vov®™ vy, — (v 4 V) - 9) gy - v
Qg
(v .Yy V)dx=- [f-dx, 1=1,...,N, (4.23)
Qg
WO =a, 1=1,...,N,

where a; are the coefficients of the initial function g in the basis {{;} 52, i.e., Uko = Y ayp;(x).
I=1

Multiplying (4.23) by 7, M) (¢) and summing by [ from 1 to N we obtain
f V™ 12dx +v f v 2dx

= (V(N) Vv de+ff v™dx.
Ok Qg

Consider the integral

’f (v . v)v™ . vax| <
Qg

(V(N) . V)V-V(N)dx‘
ol
+‘ [ V)V-V(N)dX’ =0 +1,.
Q\Q}
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For I; we have the estimate

1115 19V ey V12, g,

< ¢l YVl 2ty IV 2 o) 9V ™ 2 g
<% [ IV Rdx+ | WV, o [ VY Pdx.
QK 3 QK

Consider I,. By Poincaré inequality (2.4) and (4.6),

‘ [ W)V ®ax] < [ v vulax
Q[(\.Qg QI(\-Qg
T 1/2 (N)(11]2
sc( [UIFIfde) " [ Mot ax
0 #

x\0%

T 5 1/2 2
<ci([INFIFde) [ 19v®2dx.
Qg

o

Further,
' f £ v™ax

<c(£)(f |£|2dx + | @ (x2)|f| dx)
fols Q\QE
W

+e( [ “’Z(Xl)d +f|v(N)| dx)

QK\.Q3

scle) [ f12dx + coe f |vv®™ 2 dx.
Qg

C2

T 1/2
Thus, for F(¢t) such that F|||%.,dt <Y ande = we obtain
]+2 4C1 4
0

14 1 yM2gy v [ oviV2dx

QK QK ~
sc3|\vvuf2m§) [ v Rdx +c [ [fPdx.
.OK .QK

By Gronwall’s inequality, (4.24) yields

f I9VCs)]2
[ V™, )2dx e vap © [ WW(x, 0)]2dx

Qg Qg

c fHVV( 92 ds t -c f||VV( s)|)?
ce 3 Z(Qﬁ) fe 3 Lzmﬁ) Hf( T)”LZ(Q )dT
0
csfHVV( Ol%, s ~ T~
<e v ! ( [ Jgo(0)?dx +c [ \|f(-,T)|\%2(Q)dT).
O 0

Inequalities (4.24), (4.25) imply
N 2 ! N 2
sup |V )("t)||LZ(QK)+Vf [ 1vvW(x, £)? dxdt
tel0,T] 0 Qg
b 2 = 2
< c( [ IEC, 0112 dt + [ ixol2dx)
0 Q

T
e[ (IVVE Dl [ 1000 O )t

o [IVVE0)2
sC(1+e3f 2uah ¢ fllvv( t)HLz(m) )

DE GRUYTER

(4.24)

(4.25)
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where

~ R T
A= [ [ago())?dx + [ |[fC, O F2(g)dt
Qg 0

T
= C(”b”%/vl’2(9) + HfH%Z(O,T;LZ(Q))) +c [(a)f,qdt == c(Ao + A1)
0
(see (4.14), (4.17)). By (4.12),
T T
({ V(. t)H;VZ.Z(Qg) dt < c_()[<a>}+1dt. (4.26)

Therefore, using (4.17) we obtain

telo,T]
< Cg (1 + eC4A1A1) (Ao +A1) :=C5B1.

T
sup HV(N)(" t)H%Z(QK) + Vf / |VV(N)(X, t)|2dth
0 Qg (4.27)

Estimate (4.27) guaranties that the Cauchy problem (4.23) admits a unique solution for each fixed N. Now
we derive a number of a priori estimates for Galerkin approximations v, Estimate (4.27) is valid for Galerkin
approximations constructed using an arbitrary orthogonal basis. In order to estimate the higher derivatives
of vV ), as a basis we shall use the eigenfunctions of the Stokes operator.

Taking in (4.23) 1; = w;, where w; are eigenfunctions of the Stokes operator, i.e., ~Aw; = A;w;, multiply-
ing the obtained relations by /IWI(N )(t) and summing by [ from 1 to N we obtain

) (VEN) AV -y AV L AV 4 (v 1 V) - )V L AV
Qg

W . V)V zl‘,(N)) dx = [ f-Avdx.
Qg

This is equivalent to (see the properties of the Stokes operator)

14 7 1ovW2ax + [ |AvV2dx
QK QK

(V) 7)Y A gy
o (4.28)
- [ (V™. vV Av®™dx + [ - AvWdx = 23:} .
i
o Ox i=1

Let us estimate the right-hand side of (4.28). By Young’s inequality,

Usl<e [ 1AV 2dx +ce [ [f?dx. (4.29)
Qg Qg
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Further, by (4.6), (2.4) and (3.23),
V2l = {19V an Vo
W12 ol 2 gy ) v 1245 ) 2
+( [ v®Rvu |dx) }x(fmv |dx)
Qg

Qr\Q}
<€ f AV A+ eIV, 08 VYW1 2oy

N 1/2
+( f v 127U dx) (f|Av<N)|2dx)
Qx\2! Qx
K243

<e [ |Z‘V<N)|2dx+CEHVH%,VM(Qg)
Qg

T 1/2 _ )2 1/2 . 1/2
(JINFIFde) ([ Behax) 7 ( f 146 ax)
0 QK\Qg Qk

<e [ |Z‘V<N)|2dx+CEHVH%,VM(Qg)
Qg

IV V™20

(4.30)

Vv ™20,

T 1/2 )2 1/2 . 1/2
(S IFIFde) () Safax) () 1AV ax)
0 QK\Qg Qx

se [ 1AV 12dx + ce | V|2

N
wm(o”)”V"( 3200
Qg 3

T 1/2 -
+(JIIFIFde) [ 1AV Rdx.
0 Qg
Similarly (J; = J1; + J12) we obtain the estimates
Ui = ) [(V-v)vW -Z\V(N)dx'
Qg
. 1/2
< 1Vl a1V gy ( S 19 2ax)
Qg

T 1/2 vy 2 1/2 ~ 1/2
se [WIFIRLAe) () Saeax) (v 2ax)
0 Vol Qg

K \(23

. 1/2
< IV llynagaey IV ooy (S 1AV 2dx)
Qx

T 1/2 w2 1/2 ~ 1/2
we( JINFIRde) () Scbax) T ( [1Av 2dx)
0 Q\0! Q

3

(4.31)

A, 12 o2
—C(3+<f|||F|H]+zdt) IR
Qg
+Cel[ VI8 VY™ 20,

and
<e [ |AvWV)2dx

T2l =| J 0 9)v® - v ax
Qg

Qg

(L N e z V™1 | V9 (4.32)

+Hv(N) Hﬁ@}() ||VV(N) ||L4((71K)) .
Applying inequalities (2.6) and (2.5) we get

V)2 vV|2

LA(Qﬁ ||v LA(_Qﬁ)

1/2
IV ey 1TV 22 gy (9P ) + 1929V 12, )

(4.33)
< ce (HVV(N)H

Vv ™|

N,
LZ(_Qﬁ) + HV( )” Lz(_oﬂ))

+e||v2v(N) |12

12(Q%)

L2(9§)’
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VO 12, 9V,
< e (i )IV 2 VY (I9VV 120,
@2 DIV ) 5 el [TV
+e (VYO + 972 (e D TV )
V12,0 VY0125 < CelVV12260 19V 12
+e<|\V2v(N)||%2@K) + 92 () IVVWY 2250 -
Thus, (4.32)—(4.35) and (3.23), (3.24) imply

V2] <C€( f Av 2 dx + f VvV 2dx + [ de)

9*(x2)
_OK\.Q
+C(HVV(N)”L2 Qﬁ) + HV(N)”LZ(Qﬁ)HVV(N)Hiz(Qg))

K-1
+e 3 VW2 IV + V12 9V 1F o
Pt i (wy) (wg (wg)
<ce [ |AvN2dx + | vv ™2,
Qg
+\|v<N)||ime)||Vv<N’Hi2(Q |

(f TV 2dx+ S J 19V dx + [ [vv®? dx)

Qﬁ =1 w; e
< ce [ 1AV dx+ c|[vV)2 0 19V F2 00
Qg
+cl|[ VN2, 0,

Substituting (4.29)—(4.31), (4.36) into (4.28) yields

14 7 1ovW2ax + [ |AvV2dx
.QK QK

T 1/2 ~
< co(e+ ([ IIFIFde) ) [ 1Bu®2dx
0 Q
+CHV||§VZ,2(_Q§)
+c|[ VW2, 0 + ¢ [ [EPdx.
Qg

199 220 + €IV 2 IV 2 g,

T 1/2
Taking in (4.37) € = 7 and assuming that ( [|I|F |\|]2+2dt> < & We derive
0

4 ¥ Vv Pdx + ) AV 2dx < 7 |IVI2 0 VY] 220,

w2 Z(Qﬁ)

+cs(||v<N>|\L2(QK)HVV(N)||LZ(QK) VY2, 0) + o f I£2dx

Denoting
Y(t) = f [vvW(x, H)?dx, A(t) = co f £12dx + cs | TV 2,

B(t) cr||V2 + csnv(N)uLme)HVvW 17200

Wz.z(gﬁ)
we rewrite (4.38) as

Y () < BOY(®) + A(b).
By Gronwall’s lemma,

- fsB(T)d‘r
0

Y(t) < eof Bde(Y(O) + ft e A(s)ds)
0

— 1031

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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fT'B(‘r)d‘r
< eo

T
(Y(O) + 0fA(s)ds).

Estimates (4.26), (4.27) yield

T T T
J B0t =c7 [Vl 0t +cs [ VN 1200 VYV 72,

T T
scf] |V|\sz(gu)dt+c sup VMG, 02, [ [ 19V 2dxdt
0 telo,T] 0 Qg
< CoAq + CloB% :=B».
Therefore, from (4.39) and (4.27) we have

sup _[[VV®(, 010,
te(0,7)]

< ce? (HV“koHLZ(oK) VY0, 752200) (4.40)

+||f||L2(O TLZ(.Q))) < Clle (Ao + A, +Bl) = c11Bs.

Substituting (4.40) into (4.38) and integrating over ¢ yield

T ~ T
[ [ 1AvV)2dxdt < [ |Vig|?dx +c [ [ |f]*dxdt
0 Qx 00

T
V92 g, dt + Of IVV®22 gt

Qx

T
+c [ ||V

g‘H sz,z(_()g)

T
¢ [ IV 7200 VY™ 2 g At
0

W2 v (4.41)
<c(Apg+Ar)+c s(up IVVv HLZ(QK)f||V||Wz,z(9u)dt

we sup. ||v<N)HLzm) sup ||Vv<N)||LZ(QK)f Vv, 0 dt
te

+Cf ||VV( 132000t
0

<c [Ao + A1 +B3A; +B3B2 + Bl] := 12B,.

Let us estimate the norm of u(N ). Multiplying (4.23) by dﬂ(N )(t) and summing by I from [ = 1 to [ = N we

obtain .
[ v 2dx+ ¥4 [ vv®2dx
QK QK
442
=~ [ (@™ + V) V)™ . vM ax (442
Qg

—f (VW . 7YV - v ax + ff viMax
<1 f \V(N)|2dx+cf|f|2dx+cf (V(N)|2+|V\ )IVvW 2 dx

+cf [v()2 |VV| dx.
Qg

Let us estimate the last two terms in the right-hand side of (4.42). By the same argument as before,
J WWPIvV 2 dx
Qk
1/2 1/2 N
<c((J w®ptx)? ([ 1vvidx) '+ f IFIFde [ Slax)
o 03 Qx\2}

< C(IVIaags) J 79 2dx + [ I3 2dt [ 1300 dx);
3 0k 0 Qg
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J VP vv®2dx
Qg

\vé (N)|2
< c( sup Ve, OF [ [Vo®Pdx+ / IFldt [ Tt ax)
xeQ} ol folaYel;

<C(IVIyaqq | 9V P+ Of 1Pl ode [ 139 dx).
K K

To estimate the integral [ [v(")|2|vv(™)|2dx, we apply inequalities (4.33)-(4.34) and argue as in the proof
Qg

of (4.36). In virtue of (2.5) applied to Vv, we obtain
Qf vV 2| ovi™ 2dx < ch AV 2dx + | vV W2,
+CHV(N)HL2(QK)||VV(N 2200 < € f AV 2dx + | Vv 2,

" SFpT]HV(N(  OllZ2(0y) s[up HVV(N( t)||L2(QK))||VV ‘LZ(QK)
telo

<c | |AV(N)| dx+c(1+B1Bs) [ |VV(N)\2dx.
Qg Qk

Substituting the obtained inequalities into (4.42) yields
1 vW2dx+ 34 1 wvW2dx s ¢ [ [f2dx
Qg Q

Qk

(1+]\||F||\]+2dt) [ 1AvW2dx + c(1+B1B3) [ |[vvW™|2dx
Qg Qg
+C||V|| 22(92)9{; |VV(N)|2dX.

Integrating this inequality over [0, T] and using estimates (4.27), (4.41) we derive
T N .
[ [ v 2dxdt < c( [ |VUg|?dx +c [ |f|2dx)
Q

0 Qx Qg

T T
+c(1+ sup [||Fl|2,,dt) [ [ |AVW™2dxdt
te(0,7) 0 0 Qg

T
+c(1+B1Bs) [ [ |[vv™|2dxdt (4.43)
O.QK
+ sup |[vvW(, 0 f ' dt
p ” ”LZ(QK) ” ||W2,Z(_Q§)

te(0,7)
<C13 [AO +A1 + (1 +A1)B4 + (1 + 3133)31 + B3A1i| = Clng.

Estimates (4.27), (4.41) and (4.43) ensure that there exist a subsequence {V(N 1)} such that {V(N l)}, {VV(N ) 1
{v2yiNoy {VENI)} are weakly convergent in L2(0, T; L?>(Qk)). The limit v of this subsequence satisfies the
integral identity (4.16) and thus, is a weak solution of (4.15). This part of the proof is standard (see [21, 22, 24])
and we omit the details. Remind that in this section we have omitted the subscript K for notation of the
solution and Galerkin approximations, so vV = (N )and v = A\ & ]

4.3 Existence and uniqueness of the solution to problem (4.13)

By a weak solution of problem (4.13) in the cusp domain Q we mean the function v € L?(0, T; H(Q2)) with
V¢, V2v € L%(0, T; L(Q)) satisfying the initial condition v(x, 0) = ty(x), and for all ¢ € [0, T] satisfying the
integral identity

ft (Ve-n+vVv-Vn-((v+V)-V)np-v- (V- V)n-V)dxdt
0

(4.44)

OH'Sb%

(- ndxdt
Q
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for any test function n € L*(0, T; H(Q)), n, € L*(0, T; L?(Q)) having compact support in Q \ {0} (i.e., the
support of i is separated from the cusp point O)

Theorem 4.2. Assume that the conditions of Theorem 4.1 are valid. There exists a number x; > 0 such that if

T
JIFI f+2d t < K1, then there exists a unigue weak solution v of problem (4.13).
0

T
Proof. Let [ |||F|||},,dt < ko, where ko is a number from Theorem 4.1. Then, due to estimates (4.19)-(4.22) for
0

Vi, We can extract a subsequence { v, } such that {vg, }, { Vv, }, {V?vx, } and {v, ,} are weakly convergent
in L?(0, T; L*(Q)) as K; > oo Taking in (4.16) a test function n with the compact support and passing K; to
infinity we obtain for the limit v integral identity (4.44). Moreover, obviously v(x, 0) = tip(x) and thus, v is a
weak solution of problem (4.13). For v remain valid estimates (4.19)—(4.22).

Let us prove the uniqueness. Let u; and u, be two solutions of problem (1.1) having the same representations:
u; = V+vy and u, = V+v,, where vy, v, are solutions of problem (4.13). The differenceu; -u, = vy -V, :=
v € WY2(Q) satisfies zero initial condition v(x, 0) = 0 and the integral identity

t t
[ [ (ve-n+vVv-Vn)dxdt - ] _[(V - V)1 - vdxdt
0

(4.45)

o%wb\

=/ [ (v-V)n - Vdxdt - ff(v V)i - vidxdt = 0
0

Let us take in (4.45) = xx(x2)v + Wk, where y is defined in the proof of Lemma 4.1 and wy, is a solution of
the problem
{ divwg = -Vxg -V, X€ wg_1,

wg =0, x¢€owg,

satisfying the estimate
VWil 2wy ) < ClIVXE V2w )

o (446)
<l V| 2wy ) S VI L2(0g )

This gives
¢ ¢ ¢
%f%f)(K|v|2dxdt+vff)(KWv\zdxdt = —ffvt - wdxdt
0 o

—vfva Vxk - vdxdt - vfva Vwgdxdt
00

+ f f(V - V)(XxV + wg) - vdxdt (4.47)
00

+ ft [ (v V)V +wg) - Vdxdt
00

+ff(v V)(XkV + Wg) - vidxdt —ZL

i=1

Let us estimate the right-hand side of (4.47). Using the properties of yx and wy we obtain

t
1l < [ IVl 2qe ) Wkl 20k ) At
0

¢
= Cof (Hthiz(wIH) + va”%qwlﬂ)) dt;
(4.48)

t
T2l + 31 = [ IV 22 197 V1 2
0

t t
+ [ IV 2 I VWK 120 ) AE < € [ 1IVV]F (0,
0 0
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Integrating by parts yields

w

Oftg (V- V)(xxv) - vdxdt = ;c{t [ (V- V)xklv|*dxdt.

1

Therefore, by (4.6), (4.46),
Vil < (OfT IENF,de) moft (107120
TV 2y I VWK HLZ(wK,l)) dt (4.49)
(0PI a) ™[I0 g

Moreover, using (4.12), (4.6), (2.5) we get

Js| <

[ (v 9)V- v+ wi)axds

t
I [ (v-V)V-vdxdt’

<

w

FE2ade) " | 2412 :
ve( [IIFIFodt) [ [ xxg vidxde+ ||
0 0 o\0f 0

T 12 t
sc(JIIFIFde) [ | xxlVvfdxdt
0 0 0\0f

i (v-V)V-dexdt)

Wg-1

s N 12 - i (4.50)
re [ ((SUFIF2de) 10 Vi oy 107 Wil
0 0

IV ey IV g2 ) e

T 1/2 t
<c([IIFIFde) ~ [ [ xlVvldxde
0 J 109\9§

t t
+Cf||VVHL2(Q§)||v||L2(Q§)||vaL2(Q§)dt+Cfva”%Z(wkil)dt
0 0
< Tdet1/2 t Vv|*dxdt tvz dt tvvz 2, odt
sc( ( JIIFI2 +&) [ [xxIVvIPdxdt+ce [ | VV]|7ae, ydt+c [IVVI] o0 IXkVIIz2q)
0 00 0 0 L2(a3)

and
t

t
ffo(V~V)v-V1dxdt‘+‘f S (V‘V)XK<V'V1)dth‘
0Q

0 wk-1

[Je| <

t
+‘f J (v V)Wg - vidxdt

0 wg-1

t
<e [ [ xx|Vv|?dxdt
00
t
+C§f HXKV||%4(Q)HV1\|%4(Q)dt
0
t
+¢ [ 197V 2wy IVl o) 1V 22wy @8
0
t
+Cf”VWK”LZ(wK,l)”vHL"(wk,l)”Vl||L4(wK71)dl’
’ t (4.51)
<e [ [xk|Vv|*dxdt
0Q
t
+Cf||XKV||L2(_Q)||V(XKV)||LZ(Q)||VV1||12,2(Q)dt
0
t
+CfvalHLZ((uK_l)HVVHIZMZ(G)K?l)dt
0

t t
s ce [ [ xx|VVIPdxdt + ce [ [|VV1|F g llXx VIl dt
00 0

t
+¢ [ 1IVV1l 20 ) V¥ 20 A
0
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Substituting estimates (4.48)—(4.51) into (4.47) we obtain

t t
114 [ xvi2dxdt +v [ [ xx|Vv|?dxdt
Q 00

0
T 2 1/2 t N
< cu(([IIFI2de) ~ +e) [ [ xxlVvi2dxde
0 00
t
+¢ [ (IVVI2 0 + 19911f2(0)) v 2 gyt
o L2(Q5) Q) (

t
4 [ 196l 2w ) *+ 1991 120 ) |99 o |
0

T 1/2
Taking € = AC—VM in (4.52) and assuming that cy4 ( JHIF] |]2+2dt) < 7 we get
0

[ xxIv(x, ) dx
o

t
< [ (IVVIE s * 9Vl ) [ Ve, O dxat
0 Q
t
4 [ 196l 2w ) *+ 1991 120 |99 o |
0

Introduce the notation:

20 = [ XxIve, D2dx, B0 = (IVVC, 012, 0 + V16, D)
0 3

t
a®) = [ [Vl 2w + 19V |9V 2 | -
0
Then (4.53) can be written as

t
Z(t) < cysa(t) + c16 [ B(T)Z(T)dT.
0

By Gronwall lemma, the last inequality yields
t
Z(t) < cisa(t) exp (c16 [ B(T)dT).
0
Estimates (4.19), (4.20) for the solution v; and estimate (4.26) imply (see Theorem 4.1)

T T
JIVV1f2(gdt < cBy, sup)HvVlHiz(m <cBs, [|VV| dt < cA;.
0 0

2
2(0f
te(o,T L2(03)

This together with (4.54) yields

fT [ vlx, t)*dxdt < fTZ(t)dt < C15 fTa(t)dtexp (c1e fTB(t)dt)
0 0 0

%9k,

T
< ce®AitBiB) [ 1 (|2 + |Vv|?) dxdt.

0 wg-1

DE GRUYTER

(4.52)

(4.53)

(4.54)

(4.55)

Obviously, the right-hand side of (4.55) vanishes as K - oc. Therefore, passing in (4.55) to the limit, we obtain

T
J [ Ivix, t)|?dxdt = 0, and hence v(x, t) = vi(x, t) - v, (x, t) = O.
00

Remark 4.1. The solution u of problem (1.1) considered in Theorem 4.2 has the representationu = V + v,
where V is a singular part coinciding near the cusp point with the formal asymptotic decomposition of the
solution, and v is a regular part having finite energy norm. Theorem 4.2 states only the uniqueness of regular
part v. We do not prove the uniqueness of general singular solution of problem (1.1) having a source or sink

in the cusp point.
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Remark 4.2. The "smallness" assumption of Theorems 4.1 and 4.2 concerns only the smallness of fluxes

T
F(t) = [ a(x,t) - n(x)dS, i.e. of the magnitude of [ |||F|||;;»dt. We do not suppose that the norms of the
20 0
boundary value a, initial condition b or the right-hand side f are small.
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