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SUMMARY
Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential
expression of ASCL1,NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogene-
ity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcrip-
tomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor
diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes.
We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across sub-
types and predictsworse overall survival. SCLC exhibits greater immune sequestration and less immune infil-
tration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction
than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC
tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.
INTRODUCTION

The prognosis for patients with small cell lung cancer (SCLC),

the most aggressive lung cancer histology, remains exception-

ally poor: most patients present with metastatic disease, and

the recent addition of immune checkpoint blockade to first-

line chemotherapy has only modestly improved median sur-

vival (Horn et al., 2018; Rudin et al., 2021). The strong predilec-

tion for early metastasis and therapeutic resistance contribute
Cance
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to poor long-term outcomes, with 5-year survival of 15%–30%

for limited-stage disease, and less than 1% for patients with

extensive-stage disease (Byers and Rudin, 2015; Siegel

et al., 2020).

Although SCLC appears morphologically homogeneous,

recent data from both murine models and human tumors sug-

gest the existence of SCLC subtypes with distinct therapeutic

vulnerabilities (Rudin et al., 2019). An emerging consensus

has classified these subtypes based on differential expression
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of four transcription factors: ASCL1, NEUROD1, POU2F3, and

YAP1 (Rudin et al., 2019). This classification has led to new

questions, such as whether subtypes are associated with

particular disease stages, metastatic potential, or immune mi-

croenvironments, and whether there is plasticity between sub-

types (Chalishazar et al., 2019; Ireland et al., 2020; Rudin

et al., 2019).

Single-cell RNA sequencing (scRNA-seq) offers a unique op-

portunity to address these questions by dissecting the intratu-

moral heterogeneity of SCLC and its tumor microenvironment

(TME). Multiplexed ion beam imaging (MIBI) is a complementary

technology that profiles multiple protein markers simultaneously

at single-cell resolution in the spatial context of tissue. Efforts to

apply these technologies to human SCLC tumors have been

limited, as surgical resections of primary tumors are performed

in under 5% of SCLC patients (Vallières et al., 2009), and bio-

psied samples are not typically preserved in a manner amenable

to single-cell profiling. Since resection is only clinically indicated

for very early-stage de novo disease, these samples fail to cap-

ture the spectrum of disease progression.

Here, we have constructed a single-cell atlas of SCLC patient

tumors, with comparative lung adenocarcinoma (LUAD) and

normal lung. Our analysis reveals high inter-patient transcrip-

tomic diversity in SCLC and immune cells, largely driven by sub-

type-specific changes in cancer gene programs and immune

dysfunction. In themidst of substantial heterogeneity, we identify

a stem-like, pro-metastatic tumor subpopulation marked by high

PLCG2 expression that spans the full diversity of SCLC subtypes

and predicts worse overall survival. Together, our analyses pro-

vide a deep characterization of the molecular features of SCLC,

with clinical implications.

RESULTS

Human SCLC tumors are more heterogeneous
than LUAD
We profiled the transcriptomes of 155,098 cells from 21 fresh

SCLC clinical samples (Figure S1A; Table S1) obtained from 19

patients, as well as 24 LUAD and 4 tumor-adjacent normal

lung samples as controls (Figures 1A and S1B). The SCLC and

LUAD cohorts include treated and untreated patients (Figure 1B).

Samples were obtained from primary tumors, regional lymph

node metastases, and distant metastases (liver, adrenal gland,

axilla, and pleural effusion) (Figure 1C).

All scRNA-seq data were merged, normalized, batch-cor-

rected, and clustered to identify coarse cell types, including

epithelial, mesenchymal, lymphoid, and myeloid cells (Figures

1A, S1B, and S1C; STAR Methods). Further clustering within

the epithelial compartment identified cells comprising the respi-

ratory epithelium (including alveolar epithelial types 1 and 2, cili-

ated, club, neuroendocrine, and tuft cells) and hepatocytes

derived from liver metastases.

MSK-IMPACT targeted sequencing (Cheng et al., 2015) of 14

SCLC samples demonstrated frequent mutation or loss of RB1

and TP53, and recurrent mutations in CREBBP and KMT2B

(Figures S1D and S1E). This information facilitated the identifi-

cation of cancer cells that harbor transcripts bearing character-

istic variants. We also inferred single-cell copy-number varia-

tion (CNV) to support cancer cell identification (STAR
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Methods). We detected higher CNV levels in SCLC than

LUAD (Figure S1F), consistent with higher tumor mutation

burden in SCLC (Yarchoan et al., 2019). Based on studies

investigating cell types of origin (Ferone et al., 2020), we

consider clusters of neuroendocrine and alveolar epithelial

type 2-like cancer cells to represent SCLC and LUAD,

respectively.

Following cell type annotation, we characterized tumor het-

erogeneity within our atlas. Of 38 epithelial clusters (N =

64,301 cells), we found that LUAD and SCLC clustered sepa-

rately as expected; 5 LUAD clusters contain 7,635 cells from

24 tumors and 25 SCLC clusters contain 55,815 cells from

21 tumors, consistent with the higher stromal content of

LUAD. To quantify the inter-patient heterogeneity of SCLC,

we calculated the Shannon entropy of patients for each clus-

ter (STAR Methods). Low Shannon entropy signifies that the

cluster phenotype is rarely shared across patients, i.e., inter-

patient heterogeneity is high. Malignant SCLC cells showed

significantly higher inter-patient heterogeneity (lower entropy)

than LUAD cells (Figure 1D), even when restricting analysis

to treatment-naive samples (Figure 1E). We observed low

phenotypic diversity in stromal and immune cell populations,

consistent with minimal batch effects across samples, and

high diversity in neoplastic cells compared with stroma,

consistent with previous studies (Azizi et al., 2018; Puram

et al., 2017). Our results suggest that, despite its homoge-

neous histological morphology, SCLC has a high degree of

transcriptional tumor heterogeneity, exceeding that of LUAD

and normal stroma.

Tumor heterogeneity of canonical SCLC subtypes at
single-cell resolution
Next, we considered the 54,523 SCLC cells in our dataset and

characterized cell states within the canonical SCLC subtypes

(Rudin et al., 2019) (STAR Methods). SCLC subtypes are typi-

cally classified by the expression of ASCL1, NEUROD1,

POU2F3, and YAP1, but a single-gene strategy is unreliable

for scRNA-seq, given the prevalence of gene dropout. Recent

studies from our group and others have also questioned the

value of YAP1 alone as a subtype marker (Baine et al., 2020;

Pearsall et al., 2020).

We therefore used a neighbor-graph-based approach,

which harnesses multiple genes that define the full complexity

of each subtype, to calculate the probability of a given SCLC

subtype per cell (Levine et al., 2015) (Figure 1F; STAR

Methods). We identified the most likely subtype of each cell

(Figure 1G) and used this to categorize the major subclone

of each sample as SCLC-A (N = 14), SCLC-N (N = 6), or

SCLC-P (N = 1). Our classification did not identify any

SCLC-Y tumors, consistent with minimal expression of YAP1

in SCLC cells. This observation is supported by the relative

expression of canonical transcription factors (Figure 1H), cor-

responding MYC family members (Figure S1G), and matched

immunohistochemistry (IHC) when available (Figure S1H). Un-

like single-gene expression or IHC, our strategy can classify

cases with high expression of both ASCL1 and NEUROD1

(such as Ru1231, classified as SCLC-N) and those with low

expression of both (such as Ru1293, classified as SCLC-N

due to expression of NEUROD2 and NEUROD4). We also
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Figure 1. The single-cell transcriptional landscape of SCLC; LUAD and normal adjacent lung serve as reference tissues

(A) UMAP of iterative subsets of cells from the global level (left, N = 155,098 cells) to the epithelial compartment (middle, N = 64,301 cells) to SCLC cells (right, N =

54,523 cells). Each dot represents a single cell colored by cell type.

(B and C) UMAP of SCLC cells annotated by (B) treatment history and (C) tissue site.

(D and E) Inter-patient heterogeneity within each cell type as measured by Shannon entropy for (D) all samples and (E) treatment-naive samples (Student’s t test,

error bars: 95% confidence intervals; STAR Methods).

DC, dendritic cells; LN, lymph node; Chemo_1L, chemotherapy in first line; ChemoIO_1L, chemotherapy plus immunotherapy in first line; IO_2L, immunotherapy

in second line; later-line therapy, multiple lines of treatment. *p < 0.05, ** p < 0.01, ***p < 0.001.

(F) UMAP of SCLC cells colored by subtype (red, SCLC-A; green, SCLC-N; blue, SCLC-P), based on maximum likelihood computed by our classifier. Sample

RU1108 is labeled as a TP53/RB1 wild-type SCLC-A outlier (STAR Methods).

(G) UMAP of imputed expression of ASCL1, NEUROD1, POU2F3, and YAP1 in the SCLC cohort using MAGIC109 (k = 30, t = 3). Expression in units of log2(X + 1)

where X = normalized counts.

(H) Ternary plot of SCLC subtype probability per cell, calculated by Markov absorption probabilities (STAR Methods). Cell color is assigned by the likelihood of

SCLC-A (red), SCLC-N (green), and SCLC-P (blue).

See also Figures S1 and S2, and Table S1.
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identified intermediate cancer cells along the SCLC-A to

SCLC-N spectrum, suggesting transitional or non-canonical

phenotypes, as well as tumors of admixed subtype and a
non-canonical SCLC phenotype with wild-type TP53/RB1

(see Figures S2A and S2B, Table S2, and STAR Methods for

further details).
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SCLC-N exhibits a pro-metastatic neuronal and
epithelial-mesenchymal transition phenotype
To better define the role of SCLC subtype in tumor progression,

we assessed cell composition and gene expression differences

across subtypes (Figure S2C). We focused on SCLC-A and -N,

as our cohort only included a single SCLC-P case. Consistent

with mouse models (Ireland et al., 2020; Mollaoglu et al., 2017),

SCLC-A is significantly overrepresented in primary tumors,

whereas SCLC-N is enriched in nodal and distant metastases

(Dirichlet regression, p<3.4310�8; FigureS2D;STARMethods).

We also observed greater inter-patient diversity in SCLC-N tu-

mors than in SCLC-A (Figure 1D). These findings are consistent

with preclinical models showing that SCLC-N can derive from

SCLC-A through discrete evolutionary bottlenecks.

We performed differential expression (DE) and pathway anal-

ysis to determine subtype-specific gene programs (Figures 2A

and S2E; Tables S3–S8). We found that SCLC-A is enriched in

expression of genes regulating cell-cycle progression and DNA

repair, as well as EZH2 target genes implicated in SCLC cell-cy-

cle regulation (Hubaux et al., 2013; Poirier et al., 2015) (Fig-

ure S2E). In contrast, SCLC-N tumors exhibit a pro-metastatic

pattern of gene expression, including overexpressed markers

of (1) epithelial-mesenchymal transition (EMT) (Dongre and

Weinberg, 2019), (2) transforming growth factor b (Farabaugh

et al., 2012), (3) bone morphogenetic protein (BMP) signaling

(Choi et al., 2019; Dongre and Weinberg, 2019) (Bach et al.,

2018), (4) signal transducer and activator of transcription

(STAT) (Dongre andWeinberg, 2019), and (5) tumor necrosis fac-

tor alpha-promoted nuclear factor kB signaling (Jiang et al.,

2001; Wu and Zhou, 2010) (Figures 2A, 2B, and S2E).

SCLC-N is also enriched in neuronal differentiation and neuro-

peptide signaling, including ephrins and semaphorins, gene fam-

ilies involved in axonogenic signaling (Pitulescu and Adams,

2010; Yoshida, 2012) (Figures 2A and 2B; Table S3). Previous

studies have shown that the axonogenesis program coordinates

neuronal migration (Zhang et al., 2019a) and is implicated in

SCLCmetastasis (Yang et al., 2019), and ephrin and semaphorin

pathway components are NEUROD1 targets (Borromeo et al.,

2016) or regulators of the NEUROD1high phenotype (Wooten

et al., 2019) (see STAR Methods for an in-depth characterization

of enriched pathways in SCLC-A versus SCLC-N).

We further assessed differentially expressed ligand-receptor

pairs within subtypes (Figure 2C; STAR Methods) and observed

marked enrichment in potential homotypic interactions between

cancer cells in SCLC-N compared with SCLC-A. While one

cannot be certain of any individual hypothesized ligand-receptor

interaction in such analysis, the difference in the number of inter-

actions between subtypes is striking and may reflect differential

interactivity between subtypes. This enrichment is consistent

with how SCLC-A cell lines typically grow as loose floating ag-

gregates and SCLC-N lines grow as a tightly adherent monolayer

in cell culture (Gazdar et al., 1985; Rudin et al., 2019).

A stem-like, pro-metastatic cell cluster recurs across
patients and SCLC subtypes
The transcriptomic diversity of SCLC contrasts with the uni-

formly poor prognosis of patients. We analyzed phenotypes

spanning multiple patients to determine whether any shared

cell types may account for the universal aggressiveness of
1482 Cancer Cell 39, 1479–1496, November 8, 2021
SCLC. Unsupervised clustering of the SCLC malignant cell

compartment identified 25 clusters. Most clusters are specific

to a single tumor, but cluster 22 is strikingly recurrent across

samples (Mann-Whitney p < 2.2 3 10�16) (Figures 3A–3C

and S3A; Table S1; STAR Methods), spanning a range of treat-

ment histories, tissue sites, and predominant subtypes (Fig-

ure 3D). Cluster 22 comprises 166 cells, with 9 of 21 profiled

tumors harboring at least 3% of the cluster. We confirmed

that cells in the recurrent cluster have greater CNV burden

than normal epithelial cells, consistent with a malignant pheno-

type (Figure S3B).

Cells in the recurrent cluster exhibit significantly higher uncer-

tainty in subtype assignment than those in any other cluster

(Mann-Whitney p < 2.2 3 10�16), suggesting a dedifferentiated

phenotype (Figure 3A; STAR Methods). These cells are enriched

in genes and gene programs related to metastasis and neural

stem cells (Figures 3E and 3F; Table S9). In microarray data

from SCLC-A and SCLC-N cell lines in the Cancer Cell Line

Encyclopedia database (N = 54), we confirmed that the gene

signature for the recurrent cluster was significantly positively

correlated with many of the same pathways associated with

metastasis, chemotaxis, and stemness (Figure S3C; STAR

Methods).

Within Cluster 22, phospholipase C gamma 2 (PLCG2) was the

top differentially upregulated gene (Figures 3F and S3D; Tables

S10 and S11). PLCG2 has been previously implicated in Alz-

heimer disease (Castillo et al., 2017; van der Lee et al., 2019)

and its paralog PLCG1 promotes metastasis (Kassis et al.,

1999; Sala et al., 2008). We used knnDREMI (Dijk et al., 2018),

which is well suited to handle data sparsity and rare cell popula-

tions, to explore the full gene program that covaries with PLCG2

(STAR Methods). We grouped results from knnDREMI into three

genemodules corresponding to low (module 1),medium (module

2), and high PLCG2 expression (module 3) (Figure S3E; Table

S12). Candidate genes in module 3 included FGFR1 (implicated

in SCLC through frequent amplifications [Elakad et al., 2020]),

andMTRNR2L8 andMTRNR2L12 (humanin family genes shown

to inhibit apoptosis [Morris et al., 2020], to be neuroprotective in

Alzheimer disease [Kusakari et al., 2018], and to promote tumor

progression in triple-negative breast cancer (TNBC) [Moreno

Ayala et al., 2020]). Among the top 5% of pathways most corre-

lated to module 3 were those related to stemness (including

OCT4 and SOX2 targets), metastatic gene signatures, and pro-

metastatic signalingpathways (includingWnt andBMPsignaling)

(Dongre and Weinberg, 2019) (Figures S3E and S3F; Table S13).

PLCG2 expression is associated with increased stem-
like and pro-metastatic potential
Among the multiple ovexpressed genes in the recurrent SCLC

cluster (Figure 3F), we began by investigating the role of

PLCG2 as a potential driver of progression. Consistent with

the suggested pro-metastatic phenotype of the recurrent clus-

ter, PLCG2 is significantly upregulated in metastatic sites

compared with lung, with highest levels in the liver, the most

common site of SCLC metastasis (Figure 3G). These observa-

tions prompted us to test PLCG2 function directly by overex-

pressing the gene in SCLC cell lines with relatively low PLCG2

expression (SHP-77, SCLC-A; H82 and H446, SCLC-N) and by

knocking it out in PLCG2-high SCLC cell lines (H526, SCLC-P;
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Figure 2. Gene programs and cell-cell interactions enriched in each SCLC subtype

(A) Dot plot showing selected DEGs between each SCLC subtype versus the rest, as well as between SCLC-A versus SCLC-N. DEGs are grouped by enriched

gene pathways as assessed by GSEA (normalized enrichment score [NES] > 1, false discovery rate [FDR] < 0.1) (Tables S3–S8). Dot size, percent of cells ex-

pressing gene; dot color, mean expression scaled from 0 to 1.

(B) Scaled expression of canonical markers or scaled average Z score of select enriched pathways in SCLC-N (y axis) versus SCLC subtype probability (x axis).

Solid lines represent average gene/pathway trend (STAR Methods).

(C) Enrichment of interactions between cancer cells within SCLC-A versus SCLC-N. Significant interactions are assessed using CellPhoneDB (Efremova et al.,

2020). Enrichment of interactions within SCLC-A versus SCLC-N is plotted as significance (–log2 of Fisher’s test) versus frequency. Dashed line corresponds to

nominal p < 0.05.

See also Figure S2 and Table S1.
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Figure 3. A subpopulation with metastatic, stem-like phenotype recurs broadly across SCLC tumors

(A) Boxplot of subtype uncertainty of each SCLC cell stratified by cluster (y axis; measured as entropy of subtype probabilities per cell within each cluster; error

bars span the 25th to 75th percentile), ordered by recurrence across patients (x axis; measured as Shannon entropy of patients per cluster; STAR Methods).

(B) Stacked barplot of sample fraction per cluster, ordered by recurrence across patients, as in (A).

(C) UMAP of SCLC cells with recurrent cluster 22 colored in black.

(D) Proportion of samples comprising the recurrent cluster (9 of 21 profiled tumors harboring >3% of the cluster). The number of cells per sample are indicated in

parentheses for samples with the greatest representation of the recurrent cluster. Outer rings indicate the major intratumoral subtype (outer), tissue site (middle),

and treatment history (inner).

(E) Gene programs significantly enriched in cluster 22. Barplot of NES from GSEA for significantly enriched pathway (FDR < 0.05 and NES > 1; Table S9).

(F) Genes ordered frommost to least recurrently overexpressed along the x axis, with recurrence score plotted on the y axis. The recurrence score is calculated as

follows. Within each sample, DEGs were assessed between the recurrent cluster versus the rest of the tumor. The adjusted p values for DE within each tumor are

combined using Edgington’s method. The recurrence score is the –log2 of the combined p value (Table S11; STAR Methods).

(G) Violin plot with PLCG2 expression among individual cancer cells in our SCLC samples, grouped by tissue site (Bonferroni-adjusted Mann-Whitney test).

Expression is plotted as log2(X+1) where X is the normalized count, imputed using MAGIC (k = 30, t = 3).

See also Figure S3 and Table S1.
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DMS114, SCLC-Y). Exogenous PLCG2 overexpression did not

affect proliferation (data not shown) but did increase

anchorage-independent growth (Figure S3G). In addition,

PLCG2 expression was associated with higher migration and in-

vasion in vitro (Figure 4A) and with higher metastatic potential

in vivo following intracardiac injection (Figures 4B and 4C),

consistent with the pro-metastatic expression profile of the

recurrent cluster. Western blot analyses validated key pheno-

types observed in the single-cell data including (1) increased

b-catenin expression, suggesting higher Wnt signaling, which

was confirmed in a Wnt reporter assay (Figure S3H); (2)

increased SMAD1/5 phosphorylation, consistent with higher

BMP signaling; (3) increased expression of EMT/metastatic

markers and (4) higher levels of stemness-related markers (Fig-

ure 4D). These results suggest that PLCG2 may be partially

driving a stem-like, pro-metastatic phenotype in the recurrent

cluster.

PLCG2 and the recurrent cluster are associated with
reduced overall survival in patients
To determine the clinical significance of PLCG2 expression, we

performed MIBI imaging on a tissue microarray (TMA) repre-

senting an independent cohort of SCLC tumor specimens

(N = 37; Table S14). We optimized cell-type-specific antibodies

(Table S15) in combination with kernel density estimation of

cells (STAR Methods) to identify SCLC, immune, and stromal

cell types (Figure S4A), which were consistent with IHC review

of an adjacent TMA section by a pathologist (data not shown).

Using a monoclonal PLCG2 antibody, we identified a subset of

patient tumors with high fraction of cancer cells expressing

PLCG2, as exemplified by patient MIBI 1 (Figures 4E and 4F;

STAR Methods). Considering only tumors that were ever

extensive-stage (either at initial diagnosis or upon relapse;

N = 27 passing quality control; see STAR Methods), we found
Figure 4. A role for the PLCG2+ recurrent cluster in metastasis and pa

(A) Migration (top) and invasion (bottom) assays for PLCG2-overexpressing cell

(H526, DMS-114) cell lines, measured with a luminometric method in at least thre

change over control condition was calculated (two-tailed Student’s t test; error b

(B) Luminescence imaging of mice at day 31 following intracardiac injection to asse

polyclonal H526 cells.

(C) Barplot showing the percentage of mice with metastasis in in vivo intracardiac

cell lines in mice compared with control conditions (Fisher’s exact test).

(D) Western blots of markers associated with signaling pathways upregulated in c

overexpressing and KO polyclonal cell lines.

(E) Color overlay of PLCG2 (red), NEUROD1 (cyan), and dsDNA (violet) channels in

fraction of PLCG2-positive cancer cells. Error bars: 95% confidence interval.

(F) Same FoV as in (E) now visualized based on segmented cancer cells usingMes

Error bars: 95% confidence interval.

(G) Scatterplot of the percent of PLCG2-positive SCLC cells per sample using M

notated by percent of PLCG2+ SCLC cells >7% (cyan) and deceased patient (t

are shown.

(H) Kaplan-Meier analysis of OS in an independent cohort of SCLC patients (Table

with high PLCG2 staining intensity), as assessed by MIBI-TOF on a TMA. Note th

positive SCLC cells as a continuous rather than dichotomized covariate was also

(I) Scatterplot of the percent of the recurrent SCLC cluster per sample using scR

recurrent cluster >0.75% (cyan) and deceased patients (triangle). Spearman’s co

(J) Kaplan-Meier analysis of OS in patients with detectable PLCG2+ recurrent clu

Note that the adjusted Cox proportional hazards model using the fraction of the

significantly predictive (p = 0.009, STAR Methods).

PLCG2, PLCG2 overexpression; sgPLCG2, CRISPR knockout.

See also Figure S1 and Tables S1, S14, and S16.
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that the presence of PLCG2-expressing cancer cells is nega-

tively correlated with overall survival (Spearman’s correlation

r = �0.34; t test p = 0.04; Figure 4G). Kaplan-Meier analysis re-

vealed worse overall survival in patients with tumors exhibiting

high PLCG2 expression (>7% of SCLC cells with high PLCG2

intensity; p = 0.00062; Figure 4H). An adjusted Cox propor-

tional hazards model confirmed decreased overall survival

(p = 0.041) and showed furthermore that high PLCG2 positivity

is a stronger predictor of worse outcome than treatment

history, presence of metastatic disease, or SCLC subtype (Fig-

ure S4B). The same model, using the fraction of PLCG2-posi-

tive SCLC cells as a continuous rather than dichotomized

covariate, was also significantly predictive (p = 0.012), indi-

cating that the analysis does not depend on selecting a

threshold for PLCG2-positive SCLC cells.

PLCG2 overexpression is just one feature of the recurrent

cluster phenotype. We also assessed whether the prevalence

of this subpopulation has prognostic significance, and found

that the fractional representation of recurrent cluster cells (log

fraction out of all cancer cells in each tumor) is negatively

correlated with overall survival (Spearman’s correlation r =

�0.65; asymptotic t test = 0.009; Figure 4I). Patients for

whom this subpopulation represents >0.75% of total cancer

cells had significantly decreased overall survival relative to

others (p = 0.008; Figure 4J; Table S16). An adjusted Cox pro-

portional hazards model confirmed worse overall survival and

greater hazard ratio than PLCG2 positivity in the MIBI analysis

(44.4 versus 5.47); PLCG2 positivity is a strong predictor, but

less so than the full transcriptional phenotype of the recurrent

cluster (Figure S4C). We repeated this analysis using a recur-

rent cluster fraction as a continuous covariate and confirmed

significantly worse survival without pre-selecting a threshold

(p = 0.009). Taken together, these data support that a small

stem-like, pro-metastatic subpopulation with high PLCG2
tient outcome associated with PLCG2 expression

lines (SHP-77, H446, and H82) and PLCG2-CRISPR knockout (KO) polyclonal

e independent experiments (three technical replicates/experiment). Log2 fold

ars: standard deviation).

ssmetastatic capacity ofPLCG2-overexpressing SHP77 cells andPLCG2-KO

injections of PLCG2-overexpressing SHP-77 and PLCG2-downregulated H526

luster 22 (Wnt and BMP pathways), EMT/metastasis, and stemness in PLCG2-

SCLC tumor MIBI 1 from field of view (FoV) 2 (8003 800 mm), illustrating a high

mer (Greenwald et al., 2021), represented by dots colored by PLCG2 positivity.

IBI-TOF versus overall survival (months) in an independent TMA cohort, an-

riangle). Spearman’s correlation r and example patient MIBI 1 from (E and F)

S14) with high versus low PLCG2 positivity (>7% versus% 7% of SCLC cells

at the adjusted Cox proportional hazards model using the fraction of PLCG2-

significantly predictive (p = 0.012, STAR Methods).

NA-seq (log10 scale) versus overall survival (months), annotated by percent of

rrelation r is indicated.

ster cells by scRNA-seq (>0.75% versus % 0.75% of SCLC cells) (Table S16).

recurrent cluster as a continuous rather than dichotomized covariate was also
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Figure 5. Analysis of therapy and subtype-specific changes in immune phenotype indicate suppressed T cell activity in SCLC-N

(A) Comparison of MIBI images depicting NEUROD1– SCLC tumor MIBI 27 from FoV 2 (left) and NEUROD1+ SCLC tumor MIBI 16 from FoV 1 (right) (each FoV

8003 800 mm), illustrating differences in immune abundance and sequestration. Top: color overlay of NEUROD1 (red), CD3 (green), CD14 (white), CD68 (orange),

(legend continued on next page)
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expression has a remarkably large prognostic impact across

SCLC subtypes.

Immune cells in the SCLC TME are fewer and more
sequestered
SCLC is recognized as a particularly immune-cold cancer (Sa-

bari et al., 2017), and the addition of immune checkpoint

blockade to standard-of-care chemotherapy only modestly im-

proves median survival (Horn et al., 2018; Paz-Ares et al.,

2019). However, recent findings suggest some subtype-depen-

dent heterogeneity in immunogenicity (Best et al., 2020; Dora

et al., 2020; Gay et al., 2021; Owonikoko et al., 2021), including

a non-NE inflamedSCLC subtype (Gay et al., 2021). Understand-

ing the role of subtype in shaping the immune environment will be

key to developing effective interventions. However, a compre-

hensive characterization of the SCLC immune compartment

has not been feasible due to limited biospecimen availability

and the poor accuracy of low-abundance cell type deconvolu-

tion from bulk RNA-seq data.

We aimed to assess the influence of SCLC subtype on the im-

mune TME. Our scRNA-seq dataset could not be used to assess

total immune cell abundance, since we enriched for non-immune

(CD45�) cells by sorting (STAR Methods). Instead, we analyzed

flow cytometry data from this cohort, as well as an independent

SCLC cohort (N = 11; Table S17). Focusing on SCLC-A and

SCLC-N, we confirmed fewer CD45+ cells than LUAD, and found

further reduction specifically in SCLC-N- and NEUROD1-posi-

tive tumors (Figures S4D and S4E), consistent with previous

bulk RNA-seq data suggesting that NEUROD1-positive tumors

express lower levels of immune-related genes (Best et al., 2020).

We next sought to characterize the spatial architecture of the

immune TMEusingMIBI on an independent cohort with available

NEUROD1 staining (N = 33). Following a previous definition of im-

mune-hot tumors as harboring >250 immune cells in an 800 3

800 mm field of view (FoV) (Keren et al., 2018), we found that the

majority of SCLC tumors (20 out of 33) in this cohort were immune

cold. Moreover, significantly more NEUROD1+ SCLC tumors are

immune cold (univariate test, Fisher’s exact p = 0.0066; Figures

5A, 5B, and S4F). To account for possible confounders, we

modeled immune infiltration (hot versus cold) as a logistic regres-

sion that incorporates clinical covariates including NEUROD1

positivity, histology (single versus admixed with adenocarci-

noma), treatment (treated versus naive), and location (primary
CD163 (yellow), and dsDNA (violet) channels. Bottom: FoV from the top panel now

represented by dots colored by cell type (immune, tumor, and stroma).

(B) Boxplot comparing the percent of immune out of total cells between NEUROD

(red) versus cold (blue) where hot is defined as number of immune cells >250 in a

intervals).

(C) The probability distribution of the immune-tumor mixing score in SCLC versus

divided by the number of interactions between immune and non-cancer cells (N

(D) UMAPs of SCLC immune subsets. Tconv, conventional T cell; Treg, regulato

monocyte/macrophage; PMN, neutrophil; cDC, conventional dendritic cell; pDC

(E) Barplot comparing CD8+ Teff/Treg log ratio based on non-negative matrix fa

SCLC-N in our single-cell cohort (N = 19), adjusted for treatment and tissue site

(F) Barplot comparing CD8+ T/Treg log ratio in NEUROD1– versus NEUROD1+ SC

bars: 95% confidence interval).

(G) Select Vectra imaging of NEUROD1– versus NEUROD1+ SCLC (two sample

INSM1/CK7 (epithelial and cancer cells), and DAPI (DNA). CD8 (green) or Foxp3

See also Figures S4 and S5 and Tables S14, S17, and S18.

1488 Cancer Cell 39, 1479–1496, November 8, 2021
versus metastatic). The regression model found that tumor loca-

tion separates predictions of immune infiltration, with immune-

cold tumors represented by all 5 metastases and 15 of 28

primaries. Upon adjusting for all clinical covariates, including tu-

mor location, onlyNEUROD1positivity is a significant predictor of

immune-cold status (Student’s t test p = 0.037; Figure S4G).

To gain potential insights into the extent of immune interac-

tions in SCLC, we quantified the degree of compartmentalization

between immune and tumor cells among immune-hot tumors

(>250 immune cells/FoV). We defined an immune-tumor mixing

score as the ratio of immune-cancer-cell interactions to im-

mune-stromal-cell interactions (defining stroma as all non-can-

cer cells), whereby a larger ratio corresponds to greater mixing

(STARMethods). To benchmark this metric, we leveraged a pub-

lished TNBC dataset (Keren et al., 2018), as no MIBI comparator

is available in LUAD. We found that the distribution of the im-

mune-tumor mixing score among immune-hot SCLC tumors

(N = 13) was significantly lower than in immune-hot TNBC tumors

(N = 34) (Welch’s t test p = 0.026; Figures 5A, 5C, and S4F).

Collectively, we find evidence of (1) decreased immune infiltrate

in SCLC and particularly SCLC-N subtype, and (2) immune

sequestration in SCLC cases that do contain more immune cells.

SCLC-N exhibits greater T cell dysfunction
We next wanted to assess differences in immune subsets within

the SCLC TME at the single-cell level. To this end, we pooled im-

mune cells across the 21 SCLC samples in our cohort (N =

16,475 cells) using immune cells from LUAD (N = 45,535 cells)

and normal adjacent lung (N = 10,934 cells) as a reference (Fig-

ure S5A). We analyzed the myeloid and T cell compartments

separately to facilitate cell type annotation (Figures 5D, S5A–

S5E, S6C–S6F, and S7C; Table S18; STARMethods). Our cohort

is well-balanced with respect to treatment history (seven un-

treated, six treated with chemotherapy and eight with chemo-

therapy and immunotherapy) (Figure S1A).

To assess how SCLC subtype impacts T cell phenotype, we

applied non-negative matrix factorization (Chung et al., 2017;

Puram et al., 2017; Stein-O’Brien et al., 2018), which excels in

settings of continuous phenotypes with uncertain cluster bound-

aries, and identified 30 factors that facilitate cell type annotation

(Figures S6A and S6B; STAR Methods). Of these factors,

seven correspond to T cell phenotypes: CD4+ regulatory (Tregs,

factor 4), CD4+ conventional (Tconv, factors 19 and 23), CD8+
visualized with segmented cancer cells usingMesmer (Greenwald et al., 2021),

1– versus NEUROD1+ SCLC cells. The overlying swarmplot is colored by hot

n 800 3 800 mm FoV (N = 33, Fisher’s exact test; error bars: 95% confidence

TNBC, defined as the number of interactions between immune and cancer cells

= 47, Welch’s t test).

ry T cell; Teff, effector T cell; Tmem, memory T cell; Tgd, gd T cell; Mono/Mf,

, plasmacytoid dendritic cell.

ctorization cell loadings associated with T cell phenotype in SCLC-A versus

(weighted t test; error bars: 95% confidence interval).

LC in an independent cohort with Vectra imaging (N = 12; weighted t test; error

s each). Fluorescent markers include CD8 (cytotoxic T cells), Foxp3 (Tregs),

(pink) positivity of segmented cells are shown.
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Figure 6. SCLC tumors are associated with a pro-fibrotic, immunosuppressive Mono/Mf subset

(A) UMAP of SCLC myeloid cells (N = 2,951 cells) annotated by myeloid cell type (left) and clusters within the SCLC compartment only (right).

(B) Heatmap showing normalized mean expression of select markers from the IPF-associated profibrotic macrophage gene signature (Adams et al., 2020) (N =

143 genes with log fold change > 0.3) perMono/Mf subsets. Expression is imputed usingMAGIC (k = 30, t = 3) and scaled from 0 to 1 across clusters. Left barplot

shows average Z scored gene expression across the entire gene signature per cluster. Clusters (rows) ordered by signature score.

(C) UMAP of SCLC myeloid cells showing gene signature scores for IPF-associated pro-fibrotic macrophages (left) and monocytes (right). Scores are calculated

by taking the average Z score of imputed expression of a given gene set, taken from (Adams et al., 2020).

(D) Heatmaps showing normalized mean imputed expression of IPF-associated pro-fibrotic macrophage (left) and monocytic (right) gene signatures (Adams

et al., 2020) per SCLC Mono/Mf cluster, as described in (B).

(legend continued on next page)
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exhausted (Texh, factor 7), CD8+ memory (Tmem, factor 12),

CD8+ effector (Teff, factor 28), and CD8+ gamma delta T cells

(Tgd, factor 29) (Figure S6C; STAR Methods). A parallel clus-

ter-based phenotyping approach confirmed the annotation of

discrete T cell phenotypes (Figures S6D–S6F; STAR Methods).

To assess whether any T cell phenotypes are enriched by sub-

type, we compared factor loadings between SCLC-A and

SCLC-N while adjusting for treatment and tissue. SCLC-N ex-

hibits significantly higher Treg factor 4 and CD8+ exhausted fac-

tor 7, as well as significantly lower CD8+ effector-like factor 28

and Tgd factor 29 comparedwith SCLC-A (Figure S6G). A low ra-

tio of CD8+ effector to Treg cells has been correlated with poor

prognosis in cancer patients in a variety of contexts (Baras et al.,

2016; Preston et al., 2013; Shang et al., 2015). The ratio of CD8+

effector to Treg factor loadings is significantly lower in SCLC-N

than SCLC-A (p = 0.001; Figure 5E; STARMethods) and is robust

to the number of factors (Figure S6H). This measure of immuno-

suppression is consistent with a parallel cluster-based CD8+

effector/Treg ratio (p = 0.001; Figure S6I; STAR Methods).

We sought to validate these findings by imaging the indepen-

dent SCLC cohort (N = 35 passing quality control). Given the

relatively low T cell representation in SCLC (mean 1.7% of

cells ± SD 4.2% across samples, estimated by MIBI-TOF), we

chose to use Vectra rather than MIBI imaging to assess T cell

abundance, as Vectra has (1) a substantially larger FoV, (2)

greater sensitivity for FOXP3 staining, and (3) access to more

treatment-naive tumors that pass quality control. As a proxy

for SCLC subtype, we divided samples according to NEUROD1

positivity in IHC due to the near absence of any ASCL1-samples

in this cohort. We found a similarly reduced ratio of CD8+ T cells

to Tregs in NEUROD1+ samples (p = 0.009; Figures 5F and 5G;

Table S14; STAR Methods). Our findings identify compositional

differences between SCLC-A and SCLC-N T cell populations,

including relative depletion of cytotoxic T cells and increase in

Tregs in SCLC-N.

Populations resembling fibrosis-associated
macrophages are enriched in SCLC metastases
To examine the myeloid compartment, we reclustered these

cells from SCLC samples in our scRNA-seq dataset (N = 2,951

cells), resulting in 7 monocyte/macrophage (Mono/M4), 4

neutrophil, and 2 dendritic clusters (Figure 6A; STAR Methods;

see Figures S7A and S7B for mapping to the combined SCLC,

LUAD, and normal lung myeloid dataset). SCLCmyeloid clusters

1, 7, 9, and 12 represent a subset of THBS1+ VCAN+ Mono/M4

cells that overexpress genes related to the extracellular matrix

(ECM), including VCAN, FCN1, S100A4, S100A6, S100A8, and

S100A9 (Figures 6A and S7C; Table S19; STAR Methods). This

phenotype resembles monocytic myeloid-derived suppressor

cells (MDSCs) in mice (Gao et al., 2012) and MDSC-like M4-ex-

pressing THBS1+ S100 proteins in human hepatocellular carci-

noma (Zhang et al., 2019b).

Given that clusters 1, 7, 9, and 12 belong to aMono/M4 subset

known to secrete ECM-related proteins, we compared these to
(E) Boxplot showing the proportion of pro-fibroticMono/Mf in each sample of the

which includes SCLC clusters 1 and 7) in different histologies for all samples (N

swarmplot the samples of which are matched to the same patient (Mann-Whitne

See also Figures S6 and S7 and Tables S18 and S19.
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myeloid populations in idiopathic pulmonary fibrosis (IPF)

(Adams et al., 2020). This subset, and clusters 1 and 7 in partic-

ular, closely resemble previously defined IPF-associated macro-

phage populations (Figure 6B). Cluster 1 scores highest for a

profibroticmacrophage signaturewithin IPF, andcluster 7 scores

highest for a monocytic signature within IPF (Figures 6C and 6D).

Unsupervised clustering of the combined myeloid compart-

ment of SCLC, LUAD, and normal lung identified a single cluster

(‘‘combined cluster 6’’), which is comprised of Mono/M4 from

SCLC clusters 1 and 7 (N = 514 cells from 14 SCLC samples)

and from LUAD samples (N = 467 cells from 6 LUAD samples),

but none from normal lung (Figures S7A and S7B). We found

that the fraction of combined cluster 6 cells out of all Mono/M4

cells is significantly higher in primary and metastatic SCLC sam-

ples compared with primary LUAD, whereas these cells are un-

detected in normal lung and metastatic LUAD (Figure 6E). The

enrichment in SCLC is even more striking in untreated samples.

Combined cluster 6 cells are also enriched, but not significantly,

in metastatic compared with primary SCLC.

We sought to characterize the transcriptional profile of SCLC

Mono/M4 cluster 1 resembling profibrotic IPF-associated mac-

rophages. DE (Figure S7D; Table S19) identified cluster 1 as a

CD14+ CD16+ (FCGR3A) CD81+ ITGAX+ CSF1R+ subpopula-

tion that secretes specific profibrotic, pro-metastatic growth fac-

tors involved in ECM deposition and remodeling (Winkler et al.,

2020), including fibronectin 1 (FN1) (Park and Helfman, 2019;

Wang and Hielscher, 2017), cathepsins (CTSB and CTSD) (Ege-

blad and Werb, 2002; Guo et al., 2002), and osteopontin (SPP1)

(Giopanou et al., 2017;Pang et al., 2019). In addition, cluster 1 up-

regulates genes related to immune inhibition, including (1) SPP1,

implicated in T cell suppression and tumor immune evasion in co-

lon cancer (Shurin, 2018) and NSCLC (Lin et al., 2015); (2) CD74,

implicated in both immune suppression in metastatic melanoma

(Figueiredo et al., 2018) and migration inhibitory factor-induced

pulmonary inflammation (Takahashi et al., 2009); and (3) VSIG4,

implicated in macrophage suppression (Li et al., 2017). Collec-

tively, these findings suggest that cluster 1 is a subpopulation

with a profibrotic and immunosuppressive Mono/M4 phenotype

that is selectively increased in SCLC. Further functional analyses

would be required to assess whether this population contributes

to SCLC tumorigenesis or metastasis.

The recurrent PLCG2-high SCLC population is
associated with a profibrotic, immunosuppressive
Mono/M4 subpopulation and CD8+ T cell exhaustion
Wehypothesized that the subset of profibrotic, immunosuppres-

sive Mono/M4 cells might interact with specific cancer subpop-

ulations to facilitate progression.We found that SCLC-A is signif-

icantly correlated with Mono/M4 clusters 2 and 12, whereas

SCLC-N is significantly correlated with clusters 1 and 9 (p <

0.01 and p < 0.01; Figure 7A; STARMethods).We askedwhether

these myeloid clusters are correlated with cancer phenotypes

associated with SCLC-N and found that clusters 1, 7, and 9—

which most closely resemble IPF-associated Mono/M4
combined LUAD andSCLCmyeloid compartment (combinedmyeloid cluster 6,

= 48) and treatment-naive samples (N = 23). We also denote in the overlying

y test; error bars: 95% confidence interval). *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 7. The recurrent PLCG2-high SCLC phenotype is associated with the profibrotic, immunosuppressive Mono/Mf subset and ex-
hausted CD8+ T cells

(A and B) Heatmaps showing covariate-adjusted Spearman’s correlation of SCLC phenotypes with (A) Mono/Mf subsets and (B) coarse immune cell types.

Mono/Mf in (A) are arranged along columns from low to high score for IPF-associatedMono/Mf, as in Figure 6C. Treatment and tissue covariates were adjusted

(STAR Methods). Tumor features in (A) are arranged by hierarchical clustering using Euclidean distance and average linkage. Tumor features in (B) follow the

ordering in (A) for readability. *p < 0.05, **p < 0.01, ***p < 0.001.

(C) Color overlay of SCLC tumorMIBI 12 at FoV 1 (5003 500 mm) showing the co-occurrence of the PLCG2-positive SCLC cells and the putative profibrotic Mono/

Mf. Left: channels dsDNA (violet), vimentin (white), CD8 (yellow), CD31 (orange), CD68 (red), CD163 (red), and FOXP3 (cyan) illustrate the global tumor envi-

ronment structure. Middle: channels PLCG2 (red), CD56 (yellow), and NEUROD1 (cyan) identify PLCG2+ tumor. Right: channels CD14 (orange), CD16 (cyan), and

CD81 (magenta) identify the profibrotic Mono/Mf.

(D) FoV from the (C) now visualized with segmented cancer cells using Mesmer (Greenwald et al., 2021), represented by dots colored by PLCG2+ SCLC cells

versus profibrotic Mono/Mf.

(E) Barplot of covariate-adjusted Spearman’s correlation between the percent of PLCG2+ SCLC cells and the fraction of different cell types/states inMIBI-TOF of

an independent TMA cohort. The following covariates were adjusted: SCLC subtype (NEUROD1+/�), treated versus naive, combined versus single histology and

(legend continued on next page)
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(Figure 6C) —are significantly correlated with EMT in SCLC cells

(p < 0.001, p < 0.01 and p < 0.001, respectively; Figure 7A).

Beyond canonical SCLC subtypes, we tested for associations

with the recurrent PLCG2-high SCLC subpopulation and found

a significant correlation with Mono/M4 clusters 1 and 7 (p <

0.01 and p < 0.01, respectively; Figure 7A). Separately, we found

that Mono/M4 cluster 1 is enriched in samples harboring the

recurrent SCLC cluster and that this enrichment is robust to sam-

pling (p = 0.018; Figures S7E and S7F; STAR Methods). We also

confirmed that the profibrotic Mono/M4 population is signifi-

cantly correlated with PLCG2 and EMT gene signatures in inde-

pendent bulk RNA-seq datasets (N = 81; Figure S7G) (George

et al., 2015; Rudin et al., 2012).

We also assessed whether SCLC phenotypes are correlated

with non-myeloid immune subpopulations. Notably, the PLCG2-

high subpopulation is the only SCLC phenotype that correlates

significantly with exhausted CD8+ T cells (p < 0.0001; Figure 7B;

STAR Methods). We confirmed significant correlation of CD8+

T cell exhaustion to profibroticMono/M4 andPLCG2 in published

bulk RNA-seq datasets (N = 81; Figure S7G).

Finally, we sought to validate the association of PLCG2-posi-

tive SCLC cells with the profibrotic Mono/M4 population using

MIBI-TOF on an independent cohort of SCLC tumors (N = 37).

We used the specific combination of CD14, CD16, and CD81

markers to differentiate the putative profibrotic Mono/M4 cells

from other myeloid cells (STAR Methods) and found that

PLCG2-positive SCLC cells coexist with this population in a

number of patients. For example, in patient MIBI 12, we find a

subset of NEUROD1+SCLC cells with PLCG2 positivity adjacent

to a population of profibroticMono/M4 cells (Figures 7C and 7D).

We see a similar association of NEUROD1+ SCLC cells with

PLCG2 positivity and profibrotic Mono/M4 in patient MIBI 3 (Fig-

ures S7H and S7I). Across the MIBI-TOF cohort, we found that

the fraction of CD14+ CD16+ CD81+ myeloid cells is better

correlated with the fraction of PLCG2+ SCLC cells than all other

tumor and immune cell types and states (adjusted partial Spear-

man’s r = 0.75, Bonferroni-adjusted p = 6.713 10�8; Figures 7E

and 7F; STARMethods). Together, our findings suggest that this

recurrent SCLC subpopulation may exist in an immunosup-

pressed TME characterized by exhausted CD8+ T cells and a

profibrotic, immunosuppressive Mono/M4 population that may

be associated with EMT.

DISCUSSION

SCLC was classically considered a homogeneous disease

based on its highly consistent histology, but more recent ana-

lyses have revealed distinct transcriptomic subtypes (Rudin

et al., 2019) with potential prognostic and therapeutic implica-

tions (Mollaoglu et al., 2017; Saunders et al., 2015). Here, we

expose a level of biological complexity that cannot be described

by bulk-level subtyping, demonstrating that SCLC tumors—

particularly SCLC-N—are more heterogeneous than LUAD and
distant metastasis versus primary (Student’s t test; STAR Methods). PLCG2+ S

shown in blue (r = 0.75, N = 37, Bonferroni-adjusted p = 1 3 10�6; STAR Method

(F) Scatterplot of residuals for the fraction of CD14+ CD16+CD81+myeloid cells o

of PLCG2+ SCLC cells out of all SCLC cells (representing the recurrent PLCG2-hig

in (E). Example patients MIBI 12 from (C) and MIBI 3 from Figure S7H are indicat

1492 Cancer Cell 39, 1479–1496, November 8, 2021
that SCLC has the potential for plasticity and interconversion be-

tween subtypes, particularly SCLC-A and -N.

Despite substantial clinical heterogeneity in patients with

SCLC, we detected a subpopulation that was shared among tu-

mors across subtypes, treatments, and tissue locations, pointing

to a potentially universal characteristic of this malignancy. This

subpopulation demonstrates a pro-metastatic, stem-like pheno-

type marked by profound PLCG2 overexpression. Signaling by

the related phospholipase PLCG1 has been implicated in pro-

moting metastasis in other tumor types (Kassis et al., 1999;

Sala et al., 2008). Direct genetic manipulation validated that

PLCG2 expression promotes pro-metastatic and stem-like fea-

tures. We further found that PLCG2 expression is significantly

higher in metastases and correlates with worse overall survival.

While these results demonstrate the utility of PLCG2 as a single

prognostic marker, tracking the recurrent PLCG2-high subpop-

ulation in our scRNA-seq data demonstrated an even greater

hazard ratio than PLCG2 expression alone, suggesting that addi-

tional factors determine the full phenotype of the recurrent

cluster. Even though the recurrent PLCG2-high SCLC cluster

constitutes a minor fraction of the malignant cells comprising

the tumors under study, this small subpopulation has a strong

correlation with survival, illustrating its prognostic importance

and the value of single-cell analysis.

Analysis of the TME in our data confirmed an immune-cold

phenotype in SCLC, particularly in SCLC-N, notable for more

Tregs and fewer CD8+ T cells than SCLC-A. Analysis of the

myeloid milieu revealed that SCLC is enriched for a subset of

Mono/M4 with an immunosuppressive phenotype resembling

IPF-associatedmacrophages.OnespecificMono/M4clusterdis-

played a profibrotic, immunosuppressive phenotype. Among the

SCLC cohort, we identified a constellation of immune and tumor

phenotypes (exhausted CD8+ T cells and profibrotic Mono/M4)

associated with SCLC-N, EMT, and the recurrent PLCG2-high

phenotype. These associations raise the possibility that CD8+

T cells in the TME of the PLCG2+ SCLC subpopulation are

impeded by immunosuppressive Mono/M4 cells. This same

Mono/M4clustermayalsoprovide the fibrotic substrate that facil-

itatesmobility of thepro-metastaticPLCG2-high subset of cancer

cells. Further investigation into these immune populations may

reveal novel tumor-immune interactions that enable metastasis.

Our findings were facilitated by unbiased, high-throughput

profiling of SCLC phenotypes and the surrounding immune

microenvironment across multiple modalities (scRNA-seq,

MIBI, Vectra, FACS, and published bulk RNA-seq) and indepen-

dent cohorts; yet there are important limitations. A portion of our

samples come from small biopsies, which may not fully repre-

sent the biology of the entire tumor. In addition, our cohort in-

cludes a diversity of treatment histories, tissue locations, and

SCLC subtypes. Nonetheless, we detected the consistent pres-

ence of tumoral and immune subpopulations with potential impli-

cations for SCLC metastasis. Further analyses of expanded

cohorts with more tightly restricted clinical variables will
CLC cells had the highest correlation with CD14+ CD16+ CD81+ Mono/Mf,

s).

ut of all myeloid cells (representing the profibrotic Mono/Mf) versus the fraction

h SCLC phenotype). Residuals correspond to the partial correlation described

ed.
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contribute to further deciphering the role of intratumoral hetero-

geneity in SCLC.

The picture of SCLC that emerges from our atlas is that a

spectrum of subtypes and a PLCG2-high recurrent population

enlist diverse gene programs to define pronounced heteroge-

neity and facilitate metastasis in a profoundly immunosup-

pressed TME. Our dataset has potential implications for the

design of novel targeted therapies and immunotherapeutic

approaches.
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Antibodies

PLCG2 (Western blot) Cell Signaling Technology #3872

Beta-catenin (Western blot) Cell Signaling Technology #8480

pSMAD1/5 (Western blot) Cell Signaling Technology #9576

SMAD1 (Western blot) Cell Signaling Technology #6944

SMAD5 (Western blot) Cell Signaling Technology #12534

N-cadherin (Western blot) Cell Signaling Technology #14215

Vimentin (Western blot) Cell Signaling Technology #5741

Twist (Western blot) Cell Signaling Technology #46702

ZEB (Western blot) Cell Signaling Technology #70512

NFIB (Western blot) Abcam #ab186738

SOX2 (Western blot) Cell Signaling Technology #3579

Nanog (Western blot) Cell Signaling Technology #4903

Actin (Western blot) Cell Signaling Technology #3700

donkey anti-rabbit IRDye 800CW LI-COR #926-32213

donkey anti-mouse IRDye 680LT LI-COR #926-68022

dsDNA (MIBI) Ionpath 708901-100

LAP2 (MIBI) BD Biosciences 611000

PLCG2 (MIBI) CST 55512BF

CD163 (MIBI) Bio-Rad MCA1853

CD4 (MIBI) Ionpath 714301-100

CD11c (MIBI) Ionpath 714401-100

FoxP3-AF488 (MIBI) BD Pharmingen 561181

Anti-Alexa Fluor 488 (MIBI) Invitrogen A11094

CD81 (MIBI) Abcam ab233692

PD-1 (MIBI) Ionpath 714801-100

PD-L1 (MIBI) Abcam ab226766

CD56 (MIBI) Ionpath 715101-100

CD31 (MIBI) Ionpath 715201-100

ki-67 (MIBI) Ionpath 715302-100

CD68 (MIBI) Ionpath 715601-100

CD8 (MIBI) Ionpath 715801-100

CD3 (MIBI) Ionpath 715901-100

CD16 (MIBI) CST 24326BF

TIM3 (MIBI) CST 45208S

CD14 (MIBI) Abcam ab226121

Keratin (MIBI) Ionpath 716501-100

S100A12 (MIBI) Lifespan Biosciences LS-C785701

NULP1-TCF25 (MIBI) Invitrogen PA5-21418

RRBP1 (MIBI) Millipore Sigma HPA009026

VIMENTIN (MIBI) CST 5741BF

ASCL1 (MIBI) Abcam ab240385

ASCL1 (MIBI) Abcam ab251539

HLA-DR (MIBI) Ionpath 717201-100

NeuroD1 (MIBI) Abcam ab226489
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REAGENT or RESOURCE SOURCE IDENTIFIER

CD45 (MIBI) Ionpath 717501-100

HLA I (176) (MIBI) Ionpath 717602-100

ASCL1 (IHC) BD #556604

NEUROD1 (IHC) Abcam #ab205300

POU2F3 (IHC) Santa Cruz #6D1

PLCG2 (IHC) Sigma-Aldrich #HPA020100

Critical commercial assays

Cultrex BME Cell invasion assay kit R&D Systems #3455-096-K

CellTiter-Glo 2.0 assay Promega #G9242

Wnt signaling reporter assay BPS Biosciences #60500

Firefly/Renilla luciferase assay kit Sigma Millipore #SCT152

Deposited data

scRNA-seq and MIBI data HTAN Data Portal [Database]: https://data.

humantumoratlas.org/

Experimental models: Cell lines

H82 ATCC #HTB-175

SHP-77 ATCC #CRL-2195

H526 ATCC #CRL-5811

H446 ATCC #HTB-171

DMS-114 ATCC #CRL-2066

Recombinant DNA

PLCG2 overexpression lentiviral plasmid GeneCopoeia #EX-A8643-Lv201

PLCG2CRISPR knock out lentiviral plasmid Sigma-Aldrich #HSPD0000031727

Software and algorithms

SEQC Azizi, et al., 2018 https://github.com/dpeerlab/seqc

CB2 Ni, et al., 2020 https://github.com/zijianni/scCB2

DoubletDetection Gayoso and Shor, 2018 https://github.com/dpeerlab/

doubletdetection

scanpy (suite of single-cell algorithms,

including UMAP, tSNE, score_genes,

among others)

Wolf, et al., 2018 https://scanpy.readthedocs.io/en/stable/#

PhenoGraph (includes clustering and

Markov absorption modeling)

Levine, et al., 2015 https://github.com/dpeerlab/phenograph

fastMNN (through the batchelor package) Haghverdi, et al., 2018 https://github.com/LTLA/batchelor/blob/

master/R/fastMNN.R

MAGIC and knnDREMI Dijk et al. (2018) https://github.com/dpeerlab/magic

MAST Finak, et al., 2015 https://github.com/RGLab/MAST

Limma Ritchie, et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

fGSEA Korotkevich, et al., 2019 https://bioconductor.org/packages/

release/bioc/html/fgsea.html

Ambient RNA detection Smillie, et al., 2019 https://github.com/cssmillie/

ulcerative_colitis

DirichletReg Maier, 2014 https://cran.r-project.org/web/packages/

DirichletReg/index.html

Cellphonedb Efremova, et al., 2020 https://github.com/Teichlab/cellphonedb

Survival Therneau and Grambsch, 2000 https://cran.r-project.org/web/packages/

survival/index.html

Non-negative matrix factorization in Scikit-

learn v. 20.0

Pedregosa, et al., 2011 https://scikit-learn.org/stable/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Vectra Imaging Processing Pipeline https://github.com/dpeerlab/

Vectra_Imaging_pipeline

MaskRCNN_cell (segmentation for

Vectra image)

https://github.com/dpeerlab/

MaskRCNN_cell

ARK-analysis (MIBI analysis) https://github.com/angelolab/ark-analysis

Mesmer Noah F. Greenwald et al., (2021) https://github.com/vanvalenlab/deepcell-tf

Squidpy Giovanni Palla, et al., 2021 https://github.com/theislab/squidpy/
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RESOURCE AVAILABILITY

Lead contact
Further information should be directed to and will be addressed by the Lead Contact, Charles Rudin (rudinc@mskcc.org).

Materials availability
Requests for resources should be directed to and will be addressed by the Lead Contact.

Data and code availability
Software and tools used for the enclosed data analysis will be provided open source at http://github.com/dpeerlab. In collaboration

with the NIH-funded HTAN Data Coordinating Center (U24), single-cell RNA-seq and MIBI data at time of publication will be down-

loadable and made available as an interactive, online platform for independent visualization and analysis at https://data.

humantumoratlas.org.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohorts
Patients with LUAD or SCLC undergoing a surgical resection or tissue biopsy at Memorial Sloan Kettering Cancer Center (MSKCC)

were identified and biospecimens collected prospectively from 2017 to 2019. All patients from whom biospecimens were obtained

provided informed consent through an Institutional Review Board-approved biospecimen collection and analysis protocol. Clinical,

demographic, pathologic, and molecular data using MSK-IMPACT were identified by retrospective review of the electronic medical

record. Single-cell RNA-seq were performed on 21 clinical specimens with SCLC, 24 clinical specimens with lung adenocarcinoma,

and 4 tumor-adjacent normal lung tissue samples (Table S1). IHC for subtyping TFs was performed on the SCLC samples as previ-

ously described (Baine et al., 2020) and reviewed by a pathologist at MSKCC.

MIBI and Vectra analyses were performed on a TMA constructed with additional independent SCLC cohorts. IHC was also per-

formed on the same TMA for benchmarking. 26 cases were amenable for IHC evaluation and 12 for Vectra analysis (Table S14).

For TMA construction, archival formalin-fixed, paraffin-embedded (FFPE) samples were identified and collected retrospectively

from SCLC and NSCLC cases between 2007 and 2017. Human kidney samples were used as a positive control in both TMAs.

Flow cytometry analysis of CD45 positive cells was performed on an independent cohort of 11 SCLC patients (Table S17) collected

prospectively from 2017 to 2019.

Cell lines
H82 (male), SHP-77 (male), H526 (male), H446 (male) and DMS-114 (male) were purchased from ATCC, authenticated through the

STR characterization method and regularly tested for Mycoplasma. Both cell lines were cultured in RPMI 1640 supplemented with

10% FBS and cultured according to ATCC guidelines.

METHOD DETAILS

Sample handling
Clinical samples were received in the lab immediately after extraction (Median delivery time±SEM, 0.75±0.72 hours) and processed

rapidly (Median±SEM processing time from delivery until 10x protocol started, 1.75±0.27 hours) to ensure high sample viability and

quality for single-cell RNA-seq.

Sample processing: Resection and small biopsies dissociation

Upon delivery to the lab, samples were mechanically/enzymatically dissociated using the tumor dissociation kit (#130-095-929, Mil-

tenyi) and the GentleMACSOcto Dissociator with Heaters (Miltenyi, # 130-096-427). Resection samples were chopped and added to

7.5 mL of enzyme mix in the GentleMACS tube, while core needle biopsies/fine needle aspiration samples were added to 2.5 mL of

enzymemix in the GentleMACS tube. After 15-30minutes dissociation, depending on sample size and consistency, bigger size sam-

ples were filtered with MACS SmartStrainers (70 mm) (Miltenyi, #130-098-462) into 50 mL tubes, and smaller samples were filtered
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with 35 uM stainer cap FACS tube (Corning # 352235). Then, samples were centrifuged (800g, 1 minute) and supernatant was dis-

carded. Pelleted cells were then stained as indicated below.

Sample processing: Pleural effusions cell collection

Upon delivery to the lab, samples were centrifuged at 800g, 10 minutes. The supernatant was discarded, and the pellet resuspended

in 40mL of 1X PBS containing 2.5% FBS. Next, 15 mL of Ficoll Paque (GE healthcare, #17-1440-03) was added per tube to two Sep-

Mate tubes (STEMCELL Technologies, #85450). Then, 20 mL of pleural fluid was added onto each SepMate tube, slowly, drop by

drop, to avoid mixing of the sample and Ficoll, followed by centrifugation at 1200g for 20 minutes at RT. After centrifugation,

15 mL of the upper fluid layer were discarded, and the remaining 5 mL above the dividing plastic surface in the tube were collected,

resuspending the cells located in it. Finally, cells were pelleted by centrifugation at 800g, 2 minutes and stained with anti-CD45 anti-

body and calcein dye as indicated below.

Sample processing: staining for sorting and CD45+ composition analyses

Cell pellet was resuspended in 200-3000 uL of Red Blood Cell Lysis Solution (ACK lysis buffer), depending on the pellet size. After

incubation for 2 minutes at room temperature the ACK buffer was diluted 10-times with 1X PBS containing 2.5% FBS and pelleted

again. Cell pellet was resuspended in 100 uL of 1X PBS + 2.5% FBS, mixed with 5 uL of Human TruStain FcX (Biolegend #422302), 3

uL of PE CD45 antibody (Biolegend # 368510 and 0.1 uL of calcein (1mg/mL, Calcein (Biolegend #425201)), and left for 15 minutes on

ice. Stained samples were washed twice with 2 ml of 1X PBS + 2.5% FBS, and finally resuspended in the same buffer supplemented

with DAPI dye. Using BD FACSAria (BD Biosciences) or Sony MA900 (Sony) flow cytometers, cells were sorted on DAPI-, Calcein+

(FITC+) to select for live cells. In addition, we sorted CD45+ (immune cells) and CD45- (cell population enriched in cancer cells) pop-

ulations into separate tubes, and mixed them back in an artificial ratio to balance the compartmental representation (1:5-1:10 ratio,

depending on cell availability). To define the percentage of immune cells in each sample, we registered the fraction of CD45+ and

CD45- in the live cell (DAPI-, Calcein+) population.

Sample processing: single-cell RNA-seq

FACS-sorted cells were subjected to scRNA-seq protocol using Chromium (10X genomics) instrument and Single Cell 3’ Reagent Kit

(v3). Each sample, containing approximately 3000-8000 cells was encapsulated and barcoded following the manual (CG000183 Rev

B). The viability of samples varied between 58-98% (median 80%), as confirmed with 0.2% (w/v) Trypan Blue staining. The final

sequencing libraries were double-size purified (0.6–0.8X) with SPRI beads and sequenced on Illumina Nova-Seq platform (R1 – 26

cycles, i7 – 8 cycles, R2 – 70 cycles or higher). On average, 3,330 cells per clinical sample (N = 62) were sequenced at a depth

of �42.000 reads per cell (195 million reads per sample). The unique mapping was high, between 79-88%, and a median number

of unique transcripts per cell was 4.393.

PLCG2 overexpression/CRISPR knock out
H82 (male), SHP-77 (male), H526 (male), H446 (male) and DMS-114 (male) were purchased from ATCC, authenticated through the

STR characterization method and regularly tested for Mycoplasma. Both cell lines were cultured in RPMI 1640 supplemented with

10% FBS and cultured according to ATCC guidelines.

Lentiviral plasmids were used for PLCG2 overexpression (GeneCopoeia, #EX-A8643-Lv201) and for PLCG2 CRISPR knock out

(Sigma-Aldrich, #HSPD0000031727). Lentiviral particles were produced by standard protocols, transfecting HEK293T cells using

JetPrime reagent (Polyplus, #114-15) and concentrated viruses using Lenti-X Concentrator (Takara Bio, #631232) and SCLC cells

were transduced at high multiplicity of infection in a spin transduction protocol (Centrifugation of cells at 800xg, 30 minutes with

8ug/mL polybrene).

Immunoblotting
Protein extraction was performed by pelleting cells and resuspending in cold RIPA buffer (ThermoFisher, #89901) supplemented with

phosphatase/protease inhibitors (ThermoFisher, #78446) and incubating for 1 hour on ice. Then, protein extracts were clarified at

14,000 rpm for 10 min in a refrigerated benchtop centrifuge (Eppendorf, #5340 R). Protein lysates were quantified using a micro

BCA protein assay kit (Pierce, #23235) and then diluted with extraction buffer, NuPAGE� LDS sample buffer and reducing reagent

(Life Technologies) prior to resolving on 4-12% Bis-Tris gradient gels. Gels were wet-transferred to 0.45 mm Immobilon-FL PVDF

membrane (Millipore, #IPFL00010). All primary antibodies were incubated overnight withmembranes in TBSOdyssey blocking buffer

supplemented with 0.1% Tween-20 (LI-COR, #927-50000), while secondary antibodies (donkey anti-rabbit IRDye 800CW (LI-COR,

#926-32213) and donkey anti-mouse IRDye 680LT (LI-COR, #926-68022) were incubated at room temperature with agitation for 1

hour in primary blocking buffer supplemented with 0.01% SDS. Membranes were dried at 37�C and protected from light before im-

aging (LI-COR; Odyssey Sa). Antibodies for PLCG2 (#3872, Cell Signaling Technology), Beta-catenin (#8480, Cell Signaling Technol-

ogy), pSMAD1/5 (#9576, Cell Signaling Technology), SMAD1 (#6944, Cell Signaling Technology), SMAD5 (#12534, Cell Signaling

Technology), N-cadherin (#14215, Cell Signaling Technology), Vimentin (#5741, Cell Signaling Technology), Twist (#46702, Cell

Signaling Technology), ZEB (#70512, Cell Signaling Technology), NFIB (#ab186738, Abcam), SOX2 (#3579, Cell Signaling Technol-

ogy), Nanog (#4903, Cell Signaling Technology) and actin (#3700, Cell Signaling Technology) were used. Immunohistochemistry was

performed as previously described16, using antibodies for ASCL1 (#556604, BD), NEUROD1 (#ab205300, Abcam), POU2F3 (Santa

Cruz, #6D1) and PLCG2 (#HPA020100, Sigma-Aldrich).
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In vitro tumorigenic surrogate analyses and reporter assay
Surrogate assays were performed as indicated in (Quintanal-Villalonga et al., 2019). For growth curves, multiple 96-well plates were

seeded with 3,000 cells/well and cell density was quantified using a luminescent assay (CellTiter-Glo 2.0 assay, #G9242, Promega).

Cell proliferation was determined by normalizing to the day 0 cell density measurement. For agar assays, the number of colonies was

counted after a period of 2 weeks to 1 month after seeding. Wnt signaling reporter assay (#60500, BPS Biosciences) was performed

following manufacturer instructions with a Firefly/Renilla luciferase assay kit (#SCT152, Sigma Millipore). Three biological replicates

(independent experiments) were performed for each assay. For each biological replicate, three technical replicates per condition

were carried out.

In vitro metastasis surrogate analyses
Migration and invasion assays were performed using Cultrex BME Cell invasion assay kit (#3455-096-K, R&D Systems), following

manufacturer’s instructions. 50.000 cells were seeded per chamber on day 0 on 0% FBS media, with 10% FBSmedia in the bottom

well, and results were collected on day 4 using a luminescent assay (CellTiter-Glo 2.0 assay, #G9242, Promega). Each experiment

was replicated aminimum of three times in independent assays, and the experimental condition was normalized to control condition,

which was assigned a value of 1. Analysis of invasion/migration capacity was performed by averaging values in the independent rep-

licates and by performing a two-tailed Student’s t-test to assess for statistical significance.

In vivo intracardiac injections
All mice were kept in specific pathogen-free animal facilities at Memorial Sloan Kettering Cancer Center (MSK), and procedures were

performed in accord with the guidelines of MSK Institutional Animal Care and Use Committee under an approved protocol. A total of

0.5 million cells were injected in the left ventricle of anesthetized 6-8 week old athymic female mice (Envigo). Immediately after sur-

gery, and then weekly, animals were injected with D-luciferin (# LUCK-5G, GoldBiotechnology) at 15 mg/Kg retro-orbitally and

photonic emission was imaged using the In Vivo Imaging System (IVIS, Perkin Elmer) with a collection time of 1 minute. Tumor biolu-

minescence was quantified by integrating the photonic flux (photons per second) through a region encircling each tumor as deter-

mined by the LIVING IMAGES software package per manufacturer’s instructions (Perkin Elmer). At day 31 after injection, we counted

the number of mice with or without metastasis and represented the percentages of each group for conditions under assay, for each

cell line. A Chi-Square test was performed tomeasure statistical significance of the differences in percentage for each cell line tested.

Tissue microarray construction for imaging
Tissuemicroarrays (TMAs) were constructed in the pathology core lab of Precision Pathology Center using an automated TMAGrand

Master (3DHistech) and TMAControl software (Version 2.4). TMAswere designed and constructed using archival paraffin-embedded

lung cancer tissue samples (N=54) retrieved from the files of the Department of Pathology, Memorial Sloan Kettering Cancer, New

York, NY. Histology sectionswere reviewed by a pathologist andmost representative areas to be coredwere selected andmarked on

the H&E slides. To obtain better representation of the tumor, 1 mm diameter donor cores were sampled from three tumor regions.

MIBI-TOF imaging
Antibody conjugation

BSA and protein carrier free antibodies were obtained and optimized using standard immunohistochemical staining on the Leica

Bond RX automated research stainer with DAB detection kit (Leica Bond Polymer Refine Detection DS9800). Using 4 mm

formalin-fixed, paraffin-embedded multi-tissue control sections and serial antibody titrations, the optimal antibody concentration

was determined by MSKCC pathologist (TH). All primary antibodies (except Foxp3) were conjugated using the Ionpath MIBItag kit

per manufacturer’s instructions. Conjugated antibody was diluted in Candor PBS Antibody Stabilizer (Candor Bioscience GmbH,

#131125) to 0.5mg/ml final concentration and stored long-term at 4�C. Prior to the assay, post conjugation antibody concentrations

were determined by testing serial dilutions on the MIBIscope to obtain equivalency with standard DAB sensitivity. For FOXP3 protein

detection, tissue stainingwas performed using a Foxp3-AF488 primary antibodywith detection using anti-AF488 secondary antibody

conjugated with Nd146.

A summary of antibodies, MIBItag, and concentrations can be found in Table S15.

IHC staining

Tissue sections (4mm)werecut fromFFPE tissueblocks of thenon-small cell carcinoma tissuemicroarray (TMA) ormulti-tissue control

block using a Leicamicrotome (Leica, RM2255), mounted on Ionpath slides (Ionpath, #567001) for MIBI SCOPE staining. Slide-tissue

sections were baked at 62�C for 1 hour. Slide sections were deparaffinized with xylene(2x) (Sigma-Aldrich, #534056-4L) and then re-

hydrated with successive incubated with ethanol 100% (2x) (Sigma-Aldrich, # R8382), 95% (2x) (Sigma-Aldrich, # R3404), 70% (1x)

(Sigma-Aldrich, # R3154), and distilled water. The sections were then immersed in epitope retrieval buffer (Target Retrieval Solution,

pH9,DAKOAgilent, SantaClara, CA) and incubated at 97�C for 40min and cooled down to 65�Cusing Lab visionPTmodule (Thermo-

fisher Scientific, Waltham, MA). Slides were washed with a wash buffer made with TBS (pH 7.4) (Ionpath, # 567005). 5%(v/v) Donkey

serum (Sigma-Aldrich, #D9663) with TBS wash buffer was applied to block the nonspecific staining for 30min. A metal-conjugated

antibody cocktail including the Foxp3-AF488 antibodywasprepared in 5% (v/v) donkey serumwith TBSwashbuffer and filtered using

centrifugal filter, 0.1 mmPVDFmembrane (Ultrafree-MC,MerckMillipore, TullagreenCarrigtowhill, Ireland). The antibody cocktail was

incubated overnight at 4�C in humid chamber. After overnight incubation, slides werewashedwith TBSwash buffer three times, 2min
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for each.Nd146 conjugated anti-AF488 secondary antibodywasprepared in 5% (v/v) donkey serumwith TBSwashbuffer and filtered

using centrifugal filter, 0.1 mmPVDFmembrane as before, applied on the slide and incubated 2 hours at RT. Slides were then washed

twice5min inTBSwashbuffer andfixed for 5min indiluted2%glutaraldehyde solution (ElectronMicroscopySciences,Hatfield,PA) in

PBS-lowbarium(Ionpath, #567004). Slideswere then rinsedbriefly in TBSwashbuffer and thendehydratedwith successivewashesof

Tris 0.1M (pH8.5), (3x) (Ionpath, #567003 ), distilledwater (2x), andethanol 70%(1x), 80%(1x), 95% (2x), 100% (2x). Slideswere imme-

diately dried in a vacuum chamber for at least 1 h prior to imaging.

Imaging Acquired with MIBI SCOPE

Quantitative imagingwas performed usingMIBI SCOPE (Ionpath) with the following settings: 2048x2048 resolution, 1msDowell time,

‘‘fine’’ mode for imaging acquisition, and 800mm FOV size.

Vectra imaging
Multiplex tissue staining and imaging

Primary antibody staining conditions were optimized using standard immunohistochemical staining on the Leica Bond RX automated

research stainer with DAB detection (Leica Bond Polymer Refine Detection DS9800). Using 4 mm formalin-fixed, paraffin-embedded

tissue sections and serial antibody titrations, the optimal antibody concentration was determined by a pathologist (TH) followed by

transition to a seven-color multiplex assay with equivalency. Multiplex assay antibodies and conditions are described in the

following table:
Antigen Antibody Clone Manufacturer Concentration Detection Dye (cycle)

CD8 C8/114B Cell Signaling 0.125 mg/ml Opal 520 (1)

FoxP3 236A/E7 Biocare mg/ml Opal 540 (2)

CTLA4 BSB88 BioSB 1.34 mg/ml Opal 570 (3)

Perforin 5B10 Leica 0.267 mg/ml Opal 620 (4)

CD56 MRQ-42 Cell Marque 0.110 mg/ml Opal 650 (5)

INSM1 A-8 Santa Cruz 0.800 mg/ml Opal 690 (6)

CK7 OV-TL-12/30 Abcam 0.250 mg/ml Opal 690 (6)
Seven-color multiplex imaging assay

4 mm FFPE tissue sections were baked for 3 hrs. at 62�C in vertical slide orientation with subsequent deparaffinization performed on

the Leica Bond RX followed by 30 minutes of antigen retrieval with Leica Bond ER2 followed by 6 sequential cycles of staining with

each round including a 30-minute combined block and primary antibody incubation (PerkinElmer antibody diluent/block ARD1001).

Detection of all primary antibodies was performed using a goat anti-mouse Poly HRP secondary antibody or goat anti-rabbit Poly

HRP secondary antibody (Invitrogen B40961/2; 10-minute incubation). The HRP-conjugated secondary antibody polymer was de-

tected using fluorescent tyramide signal amplification using Opal dyes 520, 540, 570, 620, 650 and 690 (Akoya FP1487001KT,

FP1494001KT, FP1488001KT, FP1495001KT, FP1496001KT, FP1497001KT). The covalent tyramide reaction was followed by

heat induced stripping of the primary/secondary antibody complex using Perkin Elmer AR9 buffer (AR900250ML) and Leica Bond

ER2 (90% ER2 and 10% AR9) at 100�C for 20 minutes preceding the next cycle. After 6 sequential rounds of staining, sections

were stained with Hoechst (Invitrogen 33342) to visualize nuclei and mounted with ProLong Gold antifade reagent mounting medium

(Invitrogen P36930).

Multispectral imaging, spectral unmixing and cell segmentation

Seven color multiplex-stained slides were imaged using the Vectra Multispectral Imaging System version 3 (Perkin Elmer). Scanning

was performed at 20X (200X final magnification). Filter cubes used for multispectral imaging were DAPI, FITC, Cy3, Texas Red and

Cy5. A spectral library containing the emitted spectral peaks of the fluorophores in this study was created using the Vectra image

analysis software (Perkin Elmer). Using multispectral images from single-stained slides for each marker, the spectral library was

used to separate each multispectral cube into individual components (spectral unmixing) allowing for identification of the seven

marker channels of interest using Inform 2.4 image analysis software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of in vitro and in vivo experiments
Quantitative analyses of in vitro and in vivo experiments include two-tailed Student’s t test with unequal variance. When possible, all

experiments were reproduced a minimum of three times (independent biological replicates). Sample sizes were in line with previous

literature and our laboratories’ standard practices. Statistical parameters can be found in the figure legends and/or METHOD DE-

TAILS section above.
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Pre-processing of scRNA-seq data
Pre-processing steps of scRNA-seq are illustrated in Figure S1C and detailed as follows. Fastq files from patient samples were indi-

vidually processed using the SEQC pipeline (Azizi et al., 2018) based on the hg38 human genome reference and default parameters

for the 10x single-cell 3’ library. The SEQC pipeline performs read alignment, multi-mapping read resolution, as well as cell barcode

andUMI correction to generate a count matrix (cells x genes). The pipeline then performs the following initial cell filtering steps: 1) true

cells are distinguished from empty droplets based on the cumulative distribution of total molecule counts; 2) cells with a high fraction

of mitochondrial molecules are filtered (> 20%); and 3) cells with low library complexity are filtered (cells that express very few unique

genes). In addition, we perform additional filtering of empty droplets using the CB2 package with parameter ‘‘lower’’ set at 100 to

estimate the background distribution of ambient RNA and an FDR threshold of 0.01 for calling real cells (Ni et al., 2020). Putative dou-

blets were removed using the DoubletDetection package (https://doi.org/10.5281/zenodo.2658729). Genes that were expressed in

more than 10 cells were retained for further analysis. Combining samples in the entire cohort of samples from SCLC, LUAD, and

normal adjacent lung yielded a filtered count matrix of 155,098 cells by 23,628 genes, with a median of 5,654 molecules per cell

and a median of 3,041 cells per sample. The count matrix was then normalized by library size, scaled by median library size, and

log2-transformed with a pseudocount of 0.1 for analysis of the combined dataset. Principal component analysis (PCA) was per-

formed with the top 50 principal components (PCs) retained with 42% variance explained.

Batch correction of the combined dataset
We performed batch correction in the combined dataset of clinical samples–including SCLC, LUAD, and normal adjacent lung–using

fastMNN with cosine distance applied to the log2 transform of the library-size normalized count matrix with pseudocount of 1,

reduced to the top 50 PCs. We favored fastMNN due to the ability to perform hierarchical merging among samples first from the

same patient, then from the same histology, with samples containing a greater number of cells merged first. To evaluate the effect

of batch correction, we used an entropy-based measure that quantifies how much normalized expression mixes across patients

(Azizi et al., 2018). We constructed a k-nearest neighbors graph (k=30) from the normalized dataset using Euclidean distance and

computed the fraction of cells qT derived from each tumor sample T in the neighborhood of each cell j. We then calculated the Shan-

non entropy Hj of sample frequencies within each cell’s neighborhood as:

Hj =
X
T

� qT log qT

High entropy indicates that the most similar cells come from a well-mixed set of tumors, whereas low entropy indicates that most

similar cells derive from the same tumor. This sample entropy was projected on the UMAP (Figure S1B). As expected, immune cells

generally had the highest entropy consistent with shared phenotypes across tumors, whereas SCLC and LUAD cells had the lowest

entropy consistent with increased inter-tumoral diversity. These results indicate a good trade-off that corrects for batch effect while

maintaining true biological heterogeneity. Importantly, we did not perform downstream batch correction in subsetted compartments

of coarse cell types out of concern of over-correcting tumor phenotypes.

Gene imputation
Given the sparse nature of scRNA-seq that arises from gene dropout, we used gene imputation using MAGIC (knn = 30, t=3)(Dijk

et al., 2018) when performing knnDREMI calculations (described in section ‘‘Identifying the PLCG2-related gene module’’) and for

visualizing gene expression on both UMAPs and heatmaps (Figures 1G, S1G, S2B, S2C, and S3E).

Visualization of single-cell RNA-seq
Visualization of different cell type compartments

To visualize single cells of the global atlas as well as epithelial, SCLC, immune, T-cell, and myeloid subsets, we used UMAP projec-

tions(McInnes et al., 2018) to generate lower dimensional representations using knn = 15, min_dist = 0.3-0.5, and init_pos = ‘paga’

(Figures 1A–1C, 1G, 1H, 3C, 5D, 6A, 6C, S1B, S1G, S2B, S3A, S5A, S5B, S7A, and S7B). The initialization for the UMAPs were based

on partition-based graph abstraction (PAGA) implemented in the scanpy package using Phenograph clusters (except for cell type

annotation in the T-cell compartment).

Visualizing phenotypic changes along the SCLC-A vs SCLC-N spectrum

For better visualization of cancer cells along the SCLC-A vs SCLC-N spectrum (Figure 2B), we excluded SCLC-P cells and renormal-

ized the Markov absorption probabilities of SCLC-A and SCLC-N (described in section ‘‘Subtype classification and deconvolution in

the SCLC tumor compartment’’). We ordered the cells by these probabilities from SCLC-A to SCLC-N along the X-axis and colored

the corresponding subtype probability on the horizontal color bar. We rescaled marker expression or pathway scores from 0 to 1

along the Y-axis and plotted this value for each cell (grey dots) as subtype probability along the X-axis increasing from SCLC-A to

SCLC-N. We calculated pathway scores as the average of Z-scored expression of genes belonging to a pathway. The average trend

for each gene marker or pathway was computed by a generalized additive model of 8 splines with spline order 3 using the python

package pyGAM (https://doi.org/10.5281/zenodo.1208723).
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Differential expression
Differential expression in bulk reference datasets

To facilitate annotation of our single cells by tumor histology and SCLC subtype, we used available reference RNA-sequencing of bulk

tumors. These datasets included SCLC subtypes (SCLC-A, SCLC-N, SCLC-P, and SCLC-Y from George et al. (George et al., 2015)

andRudin et al. (Rudin et al., 2012).We performed differential expression using limma(Ritchie et al., 2015) based on log transcripts per

million (TPM) counts (Tables S20–S23).We considered only DEGswith absolute value of log2 fold-change > 1.5 and Benjamini-Hoch-

berg adjusted p-values < 0.05.

Differential expression of tumor and immune subsets in scRNA-seq

We performed differential expression for the following comparisons: 1) each SCLC subtype vs rest (Tables S4–S6), 2) SCLC-A vs

SCLC-N cells (Table S3), and 3) each unsupervised cluster vs rest (Tables S10 and S24). All differential expression was performed

usingMAST (version 1.8.2) (Finak et al., 2015), which provides a flexible framework for fitting a hierarchical generalized linearmodel to

the expression data. We used a regression model that adjusts not only for cellular detection rate (cngeneson, or number of genes

detected per sample), but also tissue status (primary vs LN vs distant metastasis) and treatment status (naive vs most recently

chemo-treated vs most recently immunotherapy-treated):

Y_i,j � condition + tissue + treatment + cngeneson

where condition represents the condition of interest and Yi is the expression level of gene i in cells in cluster j, transformed by natural

logarithm with a pseudocount of 1. To homogenize cell sampling per batch, we downsampled such that the cell complexity (i.e. the

number of genes per cell) was evenly matched across groups. In particular, we partitioned cells from each cluster into 10 equally-

sized bins based on cell complexity and subsampled from each bin to match cell complexity distribution across samples. We down-

sampled to at most k cells per sample, where k is the median sample size. We verified that the mean expression levels from the full

and downsampled datasets were strongly correlated.We considered genes to be significantly differentially expressed for Bonferroni-

adjusted p-value < 0.05 and absolute log fold-change > 0.3.

Filtering ambient RNA from differential expression in scRNA-seq

Following the approach first demonstrated in (Smillie et al., 2019) to remove candidate DEGs that likely represent ambient RNA, we

follow a stepwise, regression-based approach that identifies likely contaminant genes per cell type (Smillie et al., 2019). For each

general cell type (ingroup), expression of each gene is plotted against the expression of that gene in all other cells (outgroup). An initial

Loess regression is fitted to the entire dataset. Genes are then binned by expression (number of bins = 25), and the 50 genes with the

most negative residuals per bin are then assessed. A second linear regression is fit to genes with negative residuals. Finally, those

genes with residuals for the second regression that are < 2 are considered ambient RNA. Likely ambient RNA is colored in red, with

known specific markers of other cell types highlighted in red boxes. For instance, PTPRC detected in epithelial cells is highly likely to

be contaminant RNA from lysed immune cells. We excluded any genes representing ambient RNA from DEGs per cluster or SCLC

subtype.

Identifying enriched gene pathways in single-cell data
Enriched gene pathways were identified using pre-ranked GSEA, as implemented by the R package fGSEA (Korotkevich et al., 2016)

using 10,000 permutations. Gene ranks were calculated using -log(p-value)*log fold change based on MAST(Finak et al., 2015) dif-

ferential expression (described in section ‘‘Differential expression of tumor and immune subsets in scRNA-seq’’). To assess enriched

pathways in SCLC subtypes and clusters, we used a curated set of pathways fromMSigDB v 7.1 (Data S1) (Subramanian et al., 2005).

To assess enriched pathways in myeloid clusters, we used IPF-related gene sets (see Data S2) in addition to HALLMARK and KEGG

subset of Canonical Pathways in MSigDB v 7.1 (Subramanian et al., 2005). Using the same cutoff as in the original GSEA paper, we

considered pathways with Benjamini-Hochberg adjusted p-values < 0.1 to be significant.

Cell type annotation
Coarse cell type identification and subsetting

We used a hierarchical strategy to identify cell types, starting at coarse resolution (epithelial versus immune) and then fine resolution

(basal versus NE cell). At the global level, we first performed unsupervised clustering on the batch-corrected count matrix (described

in section ‘‘Batch correction of the combined dataset’’) to identify 58 clusters. Similar to other single-cell studies in lung(Travaglini

et al., 2019), we annotated clusters by coarse cell type based on expression of tissue compartment markers (for example, PTPRC

for immune cells, EPCAM for epithelial cells, COL1A1 for fibroblasts, and CLDN5 for endothelial cells) (Figure 1A, Data S2). We sub-

setted the data based on these coarse cell types for downstream analysis (Figure S1C).

Cell type annotation of the epithelial compartment

We subsetted the EPCAM+ epithelial cells (N=64,301 cells). We projected normalized counts without log transform onto the first 45

PCs selected by detecting the knee-point (minimum radius of curvature in eigenvalues), corresponding to 85.3% variance explained.

We identified 38 Phenograph clusters. We considered a cell cluster to be neuroendocrine based on expression of canonical markers

(CHGA, CHGB, NCAM1, SYP, ASCL1, ASCL2, BEX1, also see Data S2). Using this classification, we further divided the epithelial

compartment into a neuroendocrine subset restricted to SCLC tumors (N=54,523 cells) and a non-neuroendocrine subset

(N=9,778 cells). As expected, samples with the highest abundance of cells expressing neuroendocrine markers were those tumors

identified as SCLC tumors on pathology.
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Cell type annotation of the non-neuroendocrine epithelial compartment

We subsetted the non-neuroendocrine epithelial cells. We projected the normalized counts without log transform onto the first 30

PCs selected by knee-point detection, corresponding to 90.5% variance explained. We then curated multiple recent publications

for specific canonical markers for a range of cell types, including epithelial lineages in the lung (Laughney et al., 2020; Montoro

et al., 2018; Travaglini et al., 2019), and liver (Aizarani et al., 2019) (see Data S2). Using these cell type-specific gene sets, we first

transformed the data by z-score and calculated the average expression of each curated gene set per cell type subtracted from

the average expression of a reference set of genes using the score_genes function in scanpy. The subsequent cell type scores

were transformed again by z-score, with cell types ultimately annotated by maximum cell type score (Figure 1A). These cell types

include alveolar epithelial cells type 1 (AE1) and type 2 (AE2) cells, basal cells, ciliated cells, club cells, hepatocytes, ionocytes,

mucinous cells, and tuft cells.

Cancer cell identification using single-cell SNV and CNV calls

We identify cancer cells in the epithelial compartment by applying several criteria:

1) First, we ensure that all putative cancer subpopulations cluster separately from cells derived from normal lung samples.

2) Additionally, we identify cancer cells harboring genomic mutations including single nucleotide variants (SNVs) and copy num-

ber variants (CNVs) based on matched bulk DNA-sequencing from MSK IMPACT, downloaded from cBioPortal.

To account for the sparsity of scRNA-seq, as well as confounding gene fragments from lysed cancer cells that contaminate normal

single-cell droplets, we consider cell clusters to be cancer if they are enriched in reads calling SNVs compared to immune and

mesenchymal cells as a negative control, based on Fisher’s p-value adjusted by Bonferroni calculation for multiplicity with a

threshold of < 0.05. We reasoned that any cluster with a significant enrichment of variant alleles above a null distribution of normal

immune and mesenchymal cells likely represents a cluster of cancer cells.

We also identify CNVs at the single-cell level using InferCNV (Anoop et al., 2014) using a sliding window of 200 genes, with a diploid

mean and standard deviation determined by available normal adjacent tumor samples. We considered any deviations from the

diploid mean of at least two standard deviations to be a copy number change.

We noted that the fraction of the genome altered by CNV followed a bimodal distribution across cells, consistent with normal and

malignant cells having low and high CNV burden, respectively. We noted that CNV burden was higher in SCLC tumors compared to

LUAD (Figures S1F), consistent with SCLC having a higher tumor mutation burden (Yarchoan et al., 2019). We use two different mea-

sures of CNV burden: fraction of the genome changed and Pearson’s correlation between single-cell and bulk CNV profiles, both of

which have a bimodal distribution in tumor samples, with a lower peak corresponding to normal stromal cells and a higher peak cor-

responding to mutated cancer cells. On the other hand, the normal samples have a unimodal distribution that coincides with the

normal stromal peak in tumor samples. Based on the bimodal distribution, we identify cancer cells using a threshold of >10% fraction

of genome altered andPearson’s correlation to bulk CNVprofile rho >0.2. Of the epithelial cell compartment (N=64,301 cells), clusters

that were identified as both tumor and neuroendocrine were therefore subsetted as the SCLC tumor compartment (N=54,523 cells).

Epithelial cell clusters identified as tumor but not neuroendocrine (N=7,635 cells) were considered LUAD. These tumor-type calls

were consistent with the histology read of the tumor by clinical pathology.

Cell type annotation in the immune compartment

We subsetted the CD45+ immune cells from all SCLC patients (N=16,098 cells). We projected the log2-transformed, normalized

counts onto the first 40 PCs based on knee-point detection, corresponding to 26% variance explained. Using Phenograph with

k = 30 nearest neighbors, we identified 21 clusters, annotated as B/plasma, T, Myeloid and NK cells using marker genes curated

frommultiple publications for canonical markers for major immune cell types (including CD79A, CD3D, CD3E, CD14, ITGAM, ITGAX,

MS4A2, SDC1, FCGR3A; also see Data S2). Using these cell type-specific gene sets, we transformed the data by z-score and calcu-

lated the average expression of each curated gene set per cell type subtracted from the average expression of a reference set of

genes using the score_genes function in scanpy. The subsequent cell type scores were transformed again by z-score and cells an-

notated by maximum cell type score. Cell type labels were smoothed by cluster after manual inspection to ensure accurate separa-

tion of cells (Figure S5D).

Cell type annotation in the T-cell compartment

Defining SCLC T-cell subsets was complicated by the relatively lower T-cell infiltrate in SCLC and lower average library size of T-cells

in general, both of which can prevent clean separation of subsets based on poorly captured markers like CD4 and CD8. First, to gain

more power by boosting the number of T-cells in our analysis, we added the T-cells from LUAD and normal lung samples, resulting in

n=46,140 cells. Second, to enhance the gene-based signal, we z-scored the log2-transformed, normalized counts of each gene, pro-

jected onto the first 65 PCs based on knee-point detection, corresponding to 7% variance explained (the relatively lower explained

variance is expected given the z-score and log transformation). We then performed annotation of T-cell phenotypes using two

following parallel approaches, which converged to similar annotation.

Non-negativematrix factorization. Gene factor analysis viamatrix factorization has been previously used in single-cell analysis (Lev-

itin et al., 2019; Puram et al., 2017) and excels in settings of continuous phenotypeswhich are less amenable for robust partitioning by

clustering. In this class of methods, cells and genes are projected into the same lower-dimensional space. The resulting latent factors

are associated with weights or loadings for each cell and each gene. These cell and gene loadings can be used to associate gene

programs to different cells.
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We used non-negative matrix factorization (NMF) implemented in scikit-learn (version 20.0) with default parameters except for

tolerance for stopping condition 10-4, maximum number of iterations 500, and number of factors k = 30, as selected by calculating

the kneepoint of the log2 reconstruction error over the number of factors (Figure S6A). We ensured that NMF factors were robust over

a range of k=24-36 based on correlation (Figure S6B, described in section ‘‘Robustness analysis of clustering and factor analysis’’).

To facilitate comparison across factors, gene loadings were first scaled by standard deviation across genes, then z-scored across

factors. Each factor was then annotated by genes with the highest loadings. By comparing to a reference set of gene markers (Data

S2), we annotated 7 factors with T-cell phenotypes (2 Tconv, 1 Treg, 1 effector-like, 1 memory-like, 1 exhausted, and 1 Tgd factor).

The complete set of NMF loadings are provided in an adata file made available for download at https://data.humantumoratlas.org/.

Cluster-based approach. In parallel to our factor-based approach, we also performed a cluster-based approach to annotating

T-cell phenotypes, similar to our strategy in other cell type compartments. However, given the challenges of T-cell clustering, we

performed an additional test of robustness. In addition to confirming robustness of clusterings by adjusted Rand index (described

in section ‘‘Robustness analysis of clustering and factor analysis’’), we also ensured that clustering was not driven by individual sam-

ples. To this end, we repeated clustering with each sample left out and confirmed that the ultimate clustering was robust to dropping

samples based on rand index. With these steps, we used Phenograph with k=40 (selected based on section ‘‘Robustness analysis of

clustering and factor analysis’’), which identified 34 clusters of T-cells pooled from SCLC, LUAD, and normal lung.

We then performed differential expression between each cluster and the rest (described in section ‘‘Differential expression of tumor

and immune subsets in scRNA-seq’’) and compared DEGs to curated markers of T-cell phenotype (Data S2) (Figures S6C and S6D).

Finally, we confirmed agreement of our cluster-based cell typing with NMF factors, by calculating the mean cell loadings of each T-

cell annotated factor within each cluster-based cell type (Figure S6E). Having successfully identified T-cell subsets at the combined

level, we confirmed that these annotations restricted to SCLC were also consistent with known gene markers (Data S2).

Cell type annotation in the myeloid compartment

We subsetted the myeloid cells from SCLC patients (N=2,951 cells). We projected the log2-transformed, normalized counts onto the

first 50 PCs based on knee-point detection, corresponding to 30% variance explained. We identified 13 clusters, including 7 clusters

of monocyte-derived myeloid cells, 4 clusters of granulocyte-derived myeloid cells, and 2 clusters of dendritic cells (Figure 6A). To

annotate myeloid subsets, we identified DEGs between each cluster vs the rest and compared these genes to curated markers of

each myeloid subset (Data S2). We show select DEGs that characterize each of the myeloid clusters in Figure S7C.

Robustness analysis of clustering and factor analysis
In all cell type compartments, we performed Phenograph clustering (Levine et al., 2015) over a range of values for the parameter k

(number of neighbors in the knn-graph) to ensure that subsequent cell typing is consistent. To ensure robustness, we used the

adjusted Rand index to evaluate the consistency of clusterings across different k (from 5 up to 100). We then chose k from the window

where the Rand index is consistently highest, indicating stable clusterings. Ultimately, we chose k = 30 for clustering in all cell com-

partments, with the exception of the T-cell compartment where we used k = 40 (described in section ‘‘Cell type annotation in the T-

cell compartment’’).

For T-cells, we also performed NMF for cell typing (described in section ‘‘Cell type annotation in the T-cell compartment’’). We

performed NMF over a range of k number of components from 5 to 100 and selected k=30 based on the kneepoint of the reconstruc-

tion error, defined as the Frobenius norm of the matrix difference between the observed gene expression matrix and the recon-

structedmatrix (Figure S6A).We ensured the robustness of our NMF factors to the choice of k by generating NMF factors over a range

of k = 24-36 and computing the Pearson’s correlation between the cell loadings of each factor with those obtained using k=30 (Fig-

ure S6B). In general, for each comparison between cell loadings based on ka and our final choice of k=30, we were able to identify a

subset of min(ka,30) factors showing 1-to-1 correspondence across ka and k based on max correlation. We further validated the

robustness of our T-cell analysis over values of k. Specifically, we performed a weighted t-test on the ratio of CD8+ T-cells/Treg fac-

tors in SCLC-A vs SCLC-N over a range of k = 24-36 and ensured that the ratio was significantly higher in SCLC-A for all values of k.

Measuring inter-patient heterogeneity per cell type
We used an entropy-based measure of inter-patient diversity for each cell type. Here, we use the PhenoGraph clusters within each

coarse cell type compartment created without batch correction (described in ‘‘Cell Type Annotation’’), where each cluster C repre-

sents a discrete phenotype of a given cell type, including epithelial, myeloid, lymphoid, fibroblast, endothelial, LUAD, SCLC-A and

SCLC-N. We did not consider SCLC-P, as we cannot quantify inter-patient heterogeneity for a single sample. To account for differ-

ences in the number of cells per cluster and cell type, we subsampled 100 cells from each cluster 100 times with replacement and

calculated the Shannon entropy of patient frequencies P in each subsample HC as:

HC =
X
P

� qP log qP

We then compared the distribution of Shannon entropies bootstrapped from clusters between cell types using Bonferroni-adjusted

two-sample t-test (Figures 1D and 1E).
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Characterizing canonical SCLC subtypes
Subtype classification and deconvolution in the SCLC tumor compartment

Weaimed to characterize inter-patient tumor heterogeneity of the SCLC tumor compartment within the context of canonical and non-

canonical subtypes. To focus our analysis on the features that would best discriminate known SCLC subtypes, we considered a

limited set of biologically relevant genes (feature selection). We performed feature selection on bulk DEGs between each SCLC-sub-

type (SCLC-A, SCLC-N, SCLC-P, SCLC-Y) vs rest (described in section ‘‘Differential expression in bulk reference datasets’’, Tables

S20–S23), and excluded genes from cell cycle, hypoxia, and apoptosis pathways that are non-specific to SCLC subtype and

might confound classification. These filtered genes included pathways from REACTOME_CELL_CYCLE_MITOTIC, REACTOME_

MITOTIC_G1_G1_S_PHASES, HALLMARK_G2M_CHECKPOINT, HALLMARK_HYPOXIA, HALLMARK_APOPTOSIS downloaded

from MSigDB. We used these features to subset the count matrix and then projected the normalized counts without log transform

onto the first 56 PCs selected by knee-point detection, corresponding to 78.8% variance explained.

We then consider the following semi-supervised classification problem of assigning SCLC subtype. ForN cells where a subset of L

cells has known subtype (training data), we must assign the remaining N-L cells (test data) the probability of represents subtype S ε

{s1,s2,s3} = {SCLC-A, SCLC-N, and SCLC-P}. We excluded SCLC-Y, as we did not identify any YAP1-expressing cancer cells in our

SCLC cohort (Figure 1H). We want an approach that not only assigns probabilities of each subtype per cell, but is able to deconvolve

the phenotype of cancer cells residing on a continuum between different SCLC subtypes.

We solve this problem by using the probabilistic knn graph-based Phenograph classifier as implemented in the Phenograph pack-

age80 and has been shown to be highly successful in cases of mixed phenotypes which are frequently observed in cancer (Laughney

et al., 2020). As input, we provide representative labeled cells for each known cell type. As output, each unlabeled cell is assigned a

probability of belonging to each known cell type (termedMarkov absorption probability). In caseswhere the probability for a given cell

type is close to 1, we can annotate the cell with that cell type. In cases where the cell-type probability distribution is spread evenly

across all cell types, we can consider these cells to represent a mixed phenotype.

To implement this method, we first must have labeled training data available. To this end, we identify cells that can be confidently

assigned to each subtype prior to calculating Markov absorption probabilities. Using reference RNA-sequencing of bulk tumors

comparing SCLC subtypes (described in section ‘‘Differential expression in bulk reference datasets’’), we used the top 30 overex-

pressed DEGs per SCLC subtype and calculated the average Z-score over this gene set for each cell. The top 100 highest scoring

cells were then used as training examples for each cell type.

Next, we constructed aMarkov graph from the dataset. We first constructed a diffusionmap based on the first 56 PCs to obtain the

first 15 diffusion components (DCs) retained by eigengap. Using the Phenograph package, we transformed this diffusion graph addi-

tionally into a Jaccard graph between k-neighborhoods, which has been shown to be more robust to noise. The resulting graph rep-

resents a Markov chain where we can therefore calculate the Markov absorption probabilities for each unlabeled cell to reach a

labeled cell of a given subtype. Based on the resulting probabilities for each subtype, we can then perform a hard classification of

SCLC subtype bymaximum likelihood, or consider the per-cell probabilities of SCLC-A, SCLC-N, and SCLC-P to be a deconvolution

of mixed phenotype that can be readily represented by a 3-coordinate ternary graph, as implemented in the ggtern package (Ham-

ilton and Ferry, 2018)(Figure 1F).

Of note, hard classification of SCLC subtypes on the UMAP shows that our feature selection facilitates a visualization that shows

separation of cells based on canonical SCLC subtype while demonstrating inter-patient diversity (Figures 1A and 1G). This visuali-

zation stands in contrast to a previously published visualization of SCLC circulating tumor cell-derived xenograft cells where discrete

clusters of cells represent different patients consistent with inter-patient diversity but without demonstrating clear relationship be-

tween patients (Stewart et al., 2020).

Continuity of mixed phenotypes between SCLC-A and SCLC-N

The vast majority of tumors were predominantly composed of a single SCLC subtype (Figure S2A). However, among predominantly

SCLC-A or SCLC-N tumors, we observed that whilemost cells were strongly associatedwith either SCLC-A or SCLC-N, a substantial

minority of cells comprised a relatively continuous spectrum of cells from SCLC-A to SCLC-N (Figure 1F). This minority (8.9% of cells

drawn from 20 samples have <95% probability of representing SCLC-A and <95% probability of representing SCLC-N) comprised a

relatively uniform continuum of mixed cell-states with almost any proportion of SCLC-A/N probability. In comparison, cells from our

single SCLC-P did not contain any such mixed phenotypes with either SCLC-A or SCLC-N (0.37% of cells). Our analysis indicates

cells in apparent transition between SCLC-A and SCLC-N, which may represent non-canonical phenotypes or intermediate subtype

states. These findings are consistent with our previous report of ASCL1+/NEUROD1+ cells in SCLC clinical samples (Baine et al.,

2020; Ireland et al., 2020).

Establishing clonality in the biphenotypic tumor with SCLC-A and SCLC-N components

One sample (Ru1215) harbored two discrete SCLC-A and SCLC-N subpopulations within the same tumor (Figure S2B). We sought to

establish the clonality between the SCLC-A and SCLC-N subpopulations of the biphenotypic tumor Ru1215. Similar to our method of

calling cancer cells using SNV detection, we leveraged bulk targeted DNA sequencing using theMSK IMPACT platform (Cheng et al.,

2015) that was previously performed on a patient-derived xenograft (PDX) derived from a different tumor sample from the same pa-

tient. We leveraged this mutational information to assess for variants detected within the SCLC-A and SCLC-N subpopulations. We

considered only variant calls that significantly exceeded the rate of variant detection in ambient RNA, estimated in normal non-epithe-

lial cells within Ru1215. We used a Poisson model with k = number of variant calls in the tumor subpopulation and l = expected num-

ber of variant calls given ambient rate of detection a. Here, we define ambient rate a of detecting variants to be the number of variant
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calls in the normal non-epithelial compartment divided by the number of normal non-epithelial cells. We considered only variants with

a Benjamini-Hochberg adjusted FDR < 0.05. Of the 16 SNVs detected in SCLC-A and the 123 variants detected in SCLC-N, we found

15 variants shared between the SCLC-A and SCLC-N subpopulations (Table S2), confirming shared ancestry.

There are several caveats to this analysis. First, there is decreased sensitivity of scRNA-seq for calling variants due to read

coverage dependent on gene expression and variant position near the 3’ end. Second, because we need to boost read depth by

pooling cells within the same cluster, our sensitivity to call variants is dependent on cluster size and therefore cell sampling. The latter

caveat suggests that we observe a greater number of SNVs in SCLC-N due to a greater number of captured cells (61 SCLC-A cells vs

3,862 SCLC-N cells), though increased genetic diversity in SCLC-N cannot be excluded. Regardless, any overlapping variants called

in both SCLC-A and SCLC-N is sufficient to establish clonality. These findings are consistent with other reports showing SCLC-A to

SCLC-N transitions upon disease progression in SCLC preclinical models (Ireland et al., 2020; Mollaoglu et al., 2017).

Molecular characterization of canonical subtypes in the SCLC cohort

To characterize the canonical subtypes in our SCLC cohort, we performed DE analysis between each subtype vs the rest, as well as

between the predominant subtypes in our cohort SCLC-A vs SCLC-N, usingMAST on the non-imputed count matrix (Tables S3–S6).

We then performed pathway analysis using GSEA to determine subtype-specific gene programs (Figures 2A and S2E; and Tables S7

and S8). To visualize the gene signatures characterizing each subtype, we plotted the heatmap, following hierarchical clustering of

imputed gene expression (Figure S2C). Expression values are imputed usingMAGIC (k=30, t=3). We found typical markers for SCLC-

A (ASCL1, SOX4, STMN2, DOC, STMN2), SCLC-N (NEUROD1, ADCYAP1, NRXN1, SSTR2, ID1, ID3, SST, DLK1), and the one SCLC-

P sample (POU2F3, ASCL2, CD44, MYC, KIT, YBX1).

We found that SCLC-A is enriched in expression of genes regulating cell cycle progression and DNA repair, as well as EZH2 target

genes implicated in SCLC cell cycle regulation(Hubaux et al., 2013; Poirier et al., 2015) (Figure S2E). In contrast, SCLC-N tumors

exhibit a pro-metastatic pattern of gene expression including overexpressed markers of epithelial-mesenchymal transition (EMT)

(VIM, ZEB1 and TWIST1)(Dongre and Weinberg, 2019) and hypoxia and angiogenesis (HIF1A, VEGFA or FOXO3) (Figures 2A, 2B,

and S2E). SCLC-N also overexpressed metastasis-related signaling pathways, including (1) TGF-b (Farabaugh et al., 2012) (upregu-

lation of TGFB1 and TFGBR1/3); (2) BMP signaling (Choi et al., 2019; Dongre and Weinberg, 2019) (upregulation of ligands BMP2/7

and receptorsBMPR1A/2) (Bach et al., 2018); (3) STAT signaling (upregulation ofSTAT3, IL6R, IL11RA) (Dongre andWeinberg, 2019);

and (4) TNFa-promoted NFkB signaling (upregulation of TNF, SMAD3, PHLDA1) (Jiang et al., 2001; Wu and Zhou, 2010) (Figures 2A,

2B, and S2E).

SCLC-N displayed a neuronal differentiation phenotype, with high expression of the key neurogenesis factor TCF4( Chen et al.,

2016; Schmidt-Edelkraut et al., 2014) involved in BMP signaling and metastasis (Hrckulak et al., 2018; Zhao et al., 2004), as well

as a neuropeptide signaling signature (SSTR2, SST and MARCKS) (Figures 2A and 2B and Table S3). SCLC-N was enriched in

two main axonogenic signaling pathways: ephrin (EFNB1 and EPHB2, among others) (Pitulescu and Adams, 2010) and semaphorin

(SEMA6A and NRP2, among others) (Yoshida, 2012). Consistent with these results, prior studies have shown that the axonogenesis

program coordinates cell polarity with neuronal migration (Zhang et al., 2019a) and is implicated in SCLC metastasis (Yang et al.,

2019), and ephrin and semaphorin pathway components are NEUROD1 targets (Borromeo et al., 2016) or regulators of the NEURO-

D1high phenotype (Wooten et al., 2019). We have shown that LUAD hijacks endodermal developmental pathways in metastasis

(Laughney et al., 2020); similarly, our findings here suggest that SCLC-Nmay adopt a neuronal developmental phenotype to achieve

a metastatic state.

Modeling cell fraction of SCLC subtypes in primary vs metastatic sites

We used several approaches to compare the fraction of cancer cells of different SCLC subtypes in primary lung vs lymph node vs

distant metastasis (Figure S2D). We performed Dirichlet regression using the DirichletReg R package using common parameteriza-

tion to adjust for treatment status (naive vs most recently chemo-treated vs most recently immunotherapy-treated) and tissue status

(primary vs regional lymph node vs distant metastasis). This method tests for differences in cell type composition between groups

while accounting for proportions of all other cell subsets. In addition to the multivariate Dirichlet regression, we also used univariate

Mann-Whitney as a parallel statistical test to ensure consistency.

Characterizing non-canonical SCLC phenotypes
Identifying the recurrent PLCG2+ tumor subclone

Beyond canonical SCLC subtypes, a central question is whether any novel tumor phenotypes are shared across patients. We iden-

tified 25 clusters corresponding to distinct SCLC phenotypes. We first assessed whether any of these clusters poorly matched

canonical SCLC subtypes and could therefore represent a novel tumor phenotype. Having assigned probabilities for each SCLC sub-

type s for each cell j using Markov absorption probabilities psj (described in section ‘‘Subtype classification and deconvolution in the

SCLC tumor compartment’’), we identified cells with high uncertainty for any SCLC subtype by calculating the entropy over the cell

probabilities for each subtype Uj = Ss pj(s) log pj(s). Cells that have high entropy do not bear obvious similarity to any SCLC subtype.

We compared the distribution of subtype uncertainties per cluster and found that cluster 22 had significantly higher subtype uncer-

tainties than all other clusters by Mann-Whitney U test, suggesting a non-canonical subtype.

Having identified a possibly non-canonical SCLC phenotype, we next assessed if it arose beyond a single patient. We used a

similar approach to assessing inter-patient diversity per cell type (described in section ‘‘Measuring inter-patient heterogeneity per

cell type’’), but instead of stratifying the bootstrapped entropies of patient labels from each cluster by cell type, we directly compared
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the bootstrapped entropies of each cluster versus the rest using Bonferroni-adjusted Mann-Whitney U test. We again identified clus-

ter 22 as the most highly recurrent cluster across patients (Figures 3A and 3B).

Recurrent gene markers of the PLCG2+ tumor subclone

To assess the gene program of the recurrent PLCG2+ tumor subclone, we performed differential expression of cluster 22 vs the rest

of the cancer cells usingMAST (Table S10). To assess for recurrence of overexpressed genes across samples harboring the recurrent

subclone, we consider 7 samples that have an unsupervised cluster, at least 10% of which belongs to the recurrent subclone. For

each of these samples, we perform differential expression between the cluster and the outgroup. For each gene, we have an adjusted

FDR of differential expression, and we calculate a combined p-value p by the Edgington’s method to score the recurrence of

each gene. In this way, we can avoid pseudoreplication bias that emerges from a variably sequenced number of cells per sample

(Sungnak et al., 2020; Zimmerman et al., 2020). We rank the recurrence of each gene by significance -log(p) and find PLCG2 to

be the most highly recurrent DEG (Table S11).

Identifying the PLCG2-related gene module

To better characterize the PLCG2 pathway in the context of SCLC, we used knnDREMI (conditional-Density Resampled Estimate of

Mutual Information) (Dijk et al., 2018) to estimate the functional relationship of PLCG2 expression to other genes across the dynamic

range of expression. To this end, knnDREMI estimatesmutual information between two genes by using conditional density instead of

joint density. The key feature of knnDREMI is replacing the heat diffusion based kernel-density estimator (KDE) (Botev et al., 2010)

with a knn-based density estimator (Sricharan et al., 2012), which is robust and scales well in sparse, high-dimensional data. For two

genes x and y, knnDREMI performs a coarse-grained mutual information calculation on a KDE of p(x,y).

First, the KDE is calculated by constructing a knn graph from a fine-grained grid of points. The density at each grid point is

computed as:

k

N � Vðr;dÞ
Where N is the total number of data points, k is the number of nearest neighbors, and r is the distance to the kth nearest neighbor.

V(r,d) is then the volume of a d-dimensional ball of radius r:

Vðr;dÞ =
pd=2 � rd

G

�
d
2
+ 1

�

Here, we use d = 2 for considering pairwise relationships between genes and k = 10 to be robust against outliers.

Second, we coarse-grain the KDE to calculate discretemutual information.While KDE is calculated at fine resolution to smooth and

fill in gaps in sparse data, mutual information is calculated over a coarse scale for robustness to noise and any irregularities in par-

titioning. The conditional density estimate, which is a column-normalized joint density estimate, better captures the functional rela-

tionship across the entire dynamic range of expression robust to density sampling.

Finally, we calculate mutual information for gene expression x and y based on the conditional density estimate. In general, mutual

information is defined as

I (x : y) = H(y) - H(y|x)

where H(y) is Shannon entropy:

HðyÞ =
X

�pðyÞ log pðyÞ

and H(y|x) is conditional Shannon entropy:

HðyjxÞ =
X

�pðyjxÞ log pðyjxÞ

On the other hand, knnDREMI uses the conditional density estimate to calculate mutual information above, which effectively adds

another level of conditioning:

knnDREMI(X : Y) = H(y|x) - H(y|x|x)

In the SCLC cohort, we identify genes functionally related toPLCG2 by calculating knnDREMI of each gene y conditioned on x fixed

as PLCG2 expression. knnDREMI is best applied on imputed data. We therefore usedMAGIC (Dijk et al., 2017) using parameters t=3

and k=10 to impute a count matrix. We applied knnDREMI to the imputed count matrix and identified genes with the highest

knnDREMI > 1. We plotted the z-scored expression of the genes with the highest knnDREMI on a heatmap, ordering columns by

PLCG2 expression (top row) (Figure S3E). We then performed hierarchical clustering to find three gene modules corresponding to

low, intermediate, and high PLCG2 (Table S12).

To identify other pathways associated with the PLCG2-high gene modulem, we calculated for each cell x a score Zm, which is the

average Z-score of expression for all genes within the PLCG2-high gene module. We similarly calculated for each cell a score Zn the

average Z-score of expression for all genes in each pathway n from a curated set of MSigDB. We then calculated Pearson’s corre-

lation between Zm and each Zn to identify gene pathways that correlate with the PLCG2-high genemodule. We considered pathways
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among the top 5% correlated, corresponding to a minimum correlation threshold of r = 0.341 (Figure S3F, Table S13). The remaining

set therefore represents candidate gene pathways that are also increased in cells that have increased expression of the PLCG2-high

gene module.

Molecular characterization of the RB1/TP53-wildtype SCLC sample

Interestingly, sample Ru1108 had a strong subtype probability for SCLC-A but was transcriptionally distinct from the rest of the

SCLC-A group (Figures 1G and S2C). This sample with wild type TP53 and RB1 had high expression of ASCL1, DLL3 and neuroen-

docrine markers consistent with SCLC-A subtype, but also overexpressed CDK4 consistent with a previous report (Sonkin et al.,

2019) and a NSCLC gene signature (average Z-score of the differentially overexpressed genes in NSCLC vs SCLC cell lines from

the CCLE database, not shown). Together, our subtype classification demonstrated tumor diversity in canonical SCLC subtypes,

but also identified additional non-canonical phenotypes in our cohort, including this TP53/RB1 wild-type SCLC.

Survival analysis
To assess the prognostic impact of the recurrent PLCG2+ subpopulation, we performed survival analyses in our single-cell SCLC

cohort and validated these findings in an independent cohort with MIBI-TOF staining for PLCG2. Both cohorts were balanced for

different covariates, including treatment history and tissue type (Tables S14 and S16). For both analyses, we considered samples

with extensive-stage ES-SCLC or limited-stage LS-SCLC that recurred (ever had extensive-stage disease). OS was defined as

the time of biopsy to death or censoring. For our validation cohort with MIBI-TOF, samples were divided based onNEUROD1 protein

expression into ASCL1+ NEUROD1- and ASCL1(+/-) NEUROD1+ subgroups, due to the minimal number of ASCL1- NEUROD1+

samples and no ASCL1- NEUROD1- samples in the cohort.

We then performed Kaplan-Meier (univariate) and Cox proportional hazards (multivariate) survival analysis using the survival R

package (Therneau and Grambsch, 2000). We separated cohorts under analyses into two subgroups using thresholds on the pre-

dictor variable using maximally selected rank statistics as determined by the surv_cutpoint function in the survminer R package

(https://cran.r-project.org/web/packages/survminer/index.html). We used a threshold of (1) at least 0.75% of SCLC cells comprising

the recurrentPLCG2+ subpopulation as assessed by scRNAseq, (2) >7%of SCLC cells exhibiting positivePLCG2 protein expression

on MIBI-TOF (see below) or (3) >15% of SCLC cells exhibiting high PLCG2 protein expression (Intensity 3) on PLCG2 as assessed by

a pathologist. To ensure that our results are robust to threshold selection, we also performed a Cox regression using a continuous

predictor variable that confirmed similar significant results. In the Cox proportional hazards model, we adjusted for presence of clas-

sical vs variant SCLC subtype, treatment, and distant metastasis vs primary/regional lymph node. For theMIBI-TOF data, we consid-

ered treated vs naive as a covariate, as all treated patients received chemotherapy alone. In our scRNA-seq dataset on the other

hand, treated patients received either chemotherapy alone or chemotherapy with immunotherapy added either in first or second

line. Three patients were treated with later-line chemotherapies including temozolomide (Figure S1A and Table S1). We therefore

considered most recently chemo-treated without immunotherapy and most recently immunotherapy-treated covariates. Our

adjusted covariates were dichotomized to ensure a stable fit for the adjusted Cox regression. In general, the corresponding Schoen-

feld residuals were invariant to time, but for completeness, our Kaplan-Meier univariate analysis is independent of the proportional

hazards assumption. p-values were calculated using Wald test and were also consistent with bootstrapped p-values.

Cell-cell interaction analysis
We sought to identify cell-cell interactions among tumor subclones of the same SCLC subtype and between tumor subclones of

different subtype. For this analysis, we used CellPhoneDB (Efremova et al., 2020), which efficiently identifies outlying co-expression

of ligand-receptor (L-R) pairs compared to a null distribution generated from permuted cell type labels. While this method in no way

indicates the existence of the interaction, it does identify candidate interactions in the data. We first considered whether tumor-tumor

L-R interactions are enriched in SCLC-A vs SCLC-N. Given a list of significant interactions based on CellPhenoDB, we assessed

enrichment of interactions using Fisher’s exact test and found that all significant interactions were found in SCLC-N rather than

SCLC-A (Figure 2C). While we have limited confidence in any individual interaction represented in this figure, the sheer difference

between 20 significant interactions found in SCLC-N versus no significant interaction SCLC-A suggests interactions between

SCLC-N cells, consistent morphological descriptions of SCLC-N as tightly adherent cells in contrast to SCLC-A.

Comparing T-cell phenotype between SCLC-A vs SCLC-N
Assessing changes in NMF loadings between SCLC subtypes

To analyze the phenotypic shifts in T cell compartment across SCLC subtypes, we considered NMF factors associated with T-cell

phenotype (described in section ‘‘Cell type annotation in the T-cell compartment’’). Using NMF, we compared the distribution of fac-

tor loadings across T cells in SCLC-A and SCLC-N. To ensure that factors are assessed on the same scale, we first log2-transformed

cell loadings with a pseudocount of 0.0001, shifted the minimum of each factor to 0, and scaled each factor by standard deviation

across cells. We accounted for the effect of treatment and tissue site by fitting a linear model between the factor loadings and the

treatment and tissue status of cells. We then performed a Bonferroni-adjusted two-sample t-test on the residuals of the factor load-

ings (Figure S6G). We used tissue status (primary vs LN vs distant metastasis) and treatment status (naive vs most recently chemo-

treated vs most recently immunotherapy-treated) as covariates in the model.
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Analysis of CD8+ T cell/Treg ratio in SCLC subtypes

As a measure of immune response in tumor-infiltrating lymphocytes that can be readily calculated from both scRNA-seq and Vectra

imaging platforms and has demonstrated prognostic value in a variety of contexts in cancer (Baras et al., 2016; Preston et al., 2013;

Shang et al., 2015), we used the ratio of CD8+ T-cells to Tregs in SCLC-A versus SCLC-N. We first compared the ratio of CD8+ T

effector/Tregs phenotypes using NMF factors (described in section ‘‘Assessing changes in NMF loadings between SCLC subtypes’’).

Specifically, we compared the ratio of the averaged loadings of factor 28 (effector-like) and factor 4 (Tregs) across T cells per sample

in SCLC-A and SCLC-N.We accounted for the effect of treatment and tissue site by fitting a linear model between the ratio of CD8+ T

effector factor loading/Treg factor loading and the treatment status and tissue site of the samples (similar to correlation analysis

described in section ‘‘Correlation analysis of immune subset abundance and tumor phenotypes’’) and comparing the model resid-

uals. We accounted for the difference in numbers of cells collected per sample using a weighted one-sided t-test (as implemented by

ttest_ind in the python library statsmodels (Seabold and Perktold, 2010)). Within each SCLC subtype, the weight of the i-th sample

was given by:

ni � P
,XP

j = 1

nj

With nj denoting the total number of T cells in patient i and P being the total number of patients in that group (SCLC-A or SCLC-N).

We calculated FDR by generating a null distribution using a permutation test on cell type labels. We also performed Goodman-Krus-

kal’s test as a parallel statistical test to ensure consistency. To ensure the results are not driven by individual samples, we performed

leave-one-sample-out cross-validation and verified that the result remains significant for every case. To ensure the results are not

driven by the choice of k for NMF, we also verified that the result remains significant over a range of k=24-36 (Figure S6H).

We verified the same difference in factor-based ratio of CD8+ T-cell/Treg abundances between SCLC-A vs SCLC-N using several

approaches. We first performed the same analysis by using cells labeled with cluster-based T-cell phenotyping (described in section

‘‘Cell type annotation in the T-cell compartment’’), which also showed decreased CD8+ T-cell/Treg ratio in SCLC-N.

Finally, we used Vectra imaging (see ‘‘Vectra analysis’’) to validate these findings. We restricted analysis to 12 treatment-naive,

primary SCLC samples. We then compared the ratio of CD8+ T cells/Tregs in NEUROD1- and NEUROD1+ subtypes to quantify

the immune response of tumor-infiltrating lymphocytes.

Detailed characterization of pro-fibrotic Mono/M4 cluster 1
We noted high expression of ECM-related genes in Mono/M4 cluster 1, we compared our dataset to gene signatures from a single-

cell atlas of IPF (Adams et al., 2020) and found that cluster 1 stood out as having an outlying pro-fibrotic signature aswell as increased

inflammatory macrophage signature (Figures 6C–6E). Differential expression using MAST (see ‘‘Differential expression of tumor and

immune subsets in scRNA-seq’’) (Figure S7D) identifies cluster 1 as a CD14+ ITGAX+ CSF1R+ subpopulation. Cluster 1 expressed

monocytic features that include VCAN, FCN1, and S100 proteins. At the same time, it also overexpressed scavenger receptor

(MARCO, MSR1, CD36, CD68, CD163) and scavenger binding protein (APOE, APOC1) genes, suggesting that cluster 1 represents

a monocyte-derived but tissue-enriched myeloid subset. In addition, cells from this cluster express secrete pro-fibrotic, pro-meta-

static growth factors involved in ECM deposition and remodeling (Winkler et al., 2020), including FN1 (Park and Helfman, 2019; Wang

and Hielscher, 2017), cathepsins (CTSB and CTSD) (Egeblad and Werb, 2002; Guo et al., 2002), and SPP1(Giopanou et al., 2017;

Pang et al., 2019), suggesting a role in promotingmetastasis. In addition, cluster 1 overexpressed genes related to immune inhibition,

including (1) SPP1 (Shurin, 2018) and NSCLC (Lin et al., 2015)]; (2) CD74 (Figueiredo et al., 2018; Takahashi et al., 2009); and (3) VSI-

G4(Li et al., 2017).

Correlation analysis of immune subset abundance and tumor phenotypes
We aimed to identify significant partial correlations between any immune subset and tumor phenotype in SCLC while adjusting for

any clinical covariates. To this end, we first consider cell abundance X and cell abundance Y of interest, as well as clinical covariates

Z.We fit separate multivariate linear regression models between X and Z, and between Y and Z using the numpy.linalg package (Har-

ris et al., 2020). We then compute the Spearman’s rank correlation betweenmodel residuals of X and Y. For this analysis, we adjusted

for tissue status (primary vs lymph node vs distant metastasis) and treatment status (naive vs most recently chemo-treated vs most

recently immunotherapy-treated). We verified the false discovery rate (FDR) remains significant by generating a null distribution using

a permutation test on the cell type labels for 2000 times. To test robustness, we performed a leave-one-sample-out validation and

confirmed that the result remains significant even after excluding any sample.

Validation using independent bulk datasets
Validating enriched pathways in the recurrent PLCG2-high cluster in the microarray dataset of SCLC cell lines

We validate gene signatures enriched in the recurrent cluster using a bulk microarray dataset of 54 SCLC-A and SCLC-N cell lines

from the Cancer Cell Line Encyclopedia (Barretina et al., 2012).We consider the bulk expressionmatrix of dimension S xG,where S is

the set of SCLC-A and SCLC-N cell lines and G is the set of genes. For each sample s ˛ S, we calculate a score Zm for the gene

signature of the recurrent PLCG2-high SCLC cluster. To calculate this score Zm, we consider the set of recurrent DEGs m of the

PLCG2-high SCLC cluster identified in our scRNA-seq analysis, where m 3 G (Table S11). We then calculate the average Z-score
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of expression for these DEGs across samples. Similarly, we calculated for each sample a score Zn for the gene signature of each

pathway found to be significantly enriched in the PLCG2-high cluster using GSEA in our scRNA-seq analysis, detailed in section

‘‘Identifying enriched gene pathways in single-cell data’’. To calculate score Zn for each pathway, we consider the leading-edge

genes n 3 G identified by GSEA for each pathway. We then calculate the average Z-score expression for the leading-edge genes

in each pathway n. We then computed the Spearman’s correlation between Zm and each Zn to identify gene pathways that correlate

with the PLCG2-high recurrent cluster in the bulk samples.

Validating tumor phenotypes correlated with the profibrotic Mono/M4 subset in bulk RNA-seq

Similarly, we validate gene signatures correlated with the profibrotic myeloid population using an independent bulk-RNA seq cohort

of 81 SCLC-A and SCLC-N patient tumors collected from George et al. (George et al., 2015) and Rudin et al. (Rudin et al., 2012). For

each sample s, we calculate a score Zx, which is the average Z-score of expression for DEGs in the profibrotic myeloid population

(Table S19). We then calculate Zy for each pathway enriched in the profibrotic myeloid population based on GSEA. We calculate the

average Z-scored expression for the leading-edge genes in each pathway y. We then compute the Spearman’s correlation between

Zx and each Zy to identify gene pathways that correlate with the profibrotic myeloid signature in bulk samples.

Marker selection for MIBI-TOF panel
To validate the recurrent PLCG2-high SCLC cluster and its association with the profibrotic Mono/M4 subset, we built a validation

experiment based on applying MIBI-TOF on fresh frozen paraffin-embedded (FFPE) samples. We took this direction because (1)

SCLC is rare, and we had more SCLC samples available in FFPE, which is not amenable to scRNA-seq. (2) This approach provides

a spatial context to assess the statistical correlations found in Figures 7A and 7B.

To detect the recurrent PLCG2-high SCLC cluster, we optimized a monoclonal antibody for PLCG2 to be used in MIBI-TOF, which

was consistent with both monoclonal and polyclonal antibodies for PLCG2 previously used in IHC for the same TMA. We sought to

obtain a specific set of 3markers to identify the profibrotic myeloid subset. We considered all combinations of 3 genes from the list of

DEGs between cluster 1 vs other myeloid cells in our scRNA-seq dataset. We then used support vector classification using the

sklearn.svm package to calculate for each combination of markers the F1 score for differentiating cluster 1 vs other Mono/M4.

Among the highest ranking F1 scores, the combination of CD14, CD16, and CD81 was highly specific for the profibrotic Mono/

M4. We had a previously optimized antibody for CD14 by Ionpath but optimized antibodies for CD16 and CD81. A full table of the

MIBI-TOF marker panel is included in Table S15, including those that were not included in final analysis due to failure to pass quality

control.

MIBI-TOF analysis
Image segmentation

Single-cell segmentation was performed with Mesmer (Greenwald et al., 2021), a deep learning algorithm pretrained on TissueNet

(Basha et al., 2017). We used the dsDNA channel as a nuclear marker. To define the membrane, we used the combination of

LAP2, CD45, CD3, CD14 channels with each scaled by the 80th percentile in non-zero intensity values with a cap at 10. We con-

strained the minimum area of a cell to be 25 pixels, with an additional one-pixel expansion to account for cells whose membrane

marker is not included in the input membrane channel. We excluded any calls for segmented cells greater than 1600 pixels.

Expression pre-processing

We normalized the sum of the total marker expression within each segmented cell by the cell area to obtain the average marker in-

tensity per cell. We further scaled marker expression per cell by clipping the 1st and 99th percentile and performedmin-max normal-

ization. Finally, following (Greenwald et al., 2021) all expression values underwent arcsinh transformation and were normalized by

standard deviation.

Cluster-based cell typing

To differentiate cell types, we first performed coarse clustering of the arcsinh-transformed expression of immune markers (CD11c,

CD14, CD16, CD163, CD3, CD4, CD45, CD68, CD8, FoxP3, HLA-DR), epithelial markers (Keratin, NeuroD1, CD56), and endothelial

markers (CD31). We then performed Leiden clustering (Traag et al., 2019) with knn=30 and resolution=1. Of note, IHC of the adjacent

slice of the TMA confirmed that no epithelial stromal cells were present, and therefore any cells positive for epithelial markers repre-

sent SCLC cells. Cells with total summed expression below 0.1 were removed prior to clustering. Based on marker expression, we

therefore classified cells into immune, endothelial, SCLC (with positive epithelial markers), and others (without any positive markers).

To subtype the immune population, we used the average intensity expression matrix using markers CD11c, CD14, CD16, CD163,

CD3, CD4, CD45, CD68, CD8, and FoxP3. After subsetting to the immune population, we used Phenograph with k=30 to identify 23

clusters. Based on the marker expression, we merged fine clusters into DC (CD11c+), Mono/M4 (CD14+, CD16+, CD68+, or

CD163+), T-cells (CD3+) subdivided into CD4+ and CD8+ T-cell, Tregs (FoxP3+), Other Immune, and Others (clusters negative for

any immune marker). We show the relative frequency of each cell type per sample in Figure S4A. Our cell typing was consistent

with cell morphology and subcellular marker distribution.

Tumor region detection

Because SCLC typically presents as large sheets of tightly packed small cells, we used cell density as a feature in addition to cluster-

based cell typing (described above in section ‘‘Cluster-based cell typing’’) to increase sensitivity for identifying SCLC cells. In an

adjacent cut of the TMA that underwent IHC, we confirmed by pathological review that all epithelial cells present were cancer cells.

Additionally, we confirmed that the TMA did not include any NSCLC even in samples of combined histology, and that any putative
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cancer cells are unlikely to be of any other lineage than SCLC. We therefore created a mask of the tumor region by calculating the

kernel density of non-immune and non-endothelial cells in each core with scipy gaussian_kde function (Virtanen et al., 2020) over a

grid of 500x500 pixels and bw_method=0.05. We then set the threshold density as 2 x 10-7 and excluded disconnected putative tu-

mor regions of small area <2500 pixels. Finally, we considered SCLC cells to be 1) non-immune and non-endothelial cells captured in

the mask region of high cell density, or 2) cells belonging to clusters positive for Keratin, NeuroD1, or CD56 that had been previously

assigned to SCLC cell type in the section ‘‘Cluster-based cell typing’’.

Batch normalization

To account for systematic differences in intensity due to periodic ion detector adjustments, we performed batch correction using

LAP2 expression, which is universally expressed across all cell types but at different levels depending on cell type. We therefore

normalized all marker expressions in each core based on the median LAP2 expression within cancer cells for subsequent analysis.

Cell state assignment

To identify an appropriate threshold for calling PLCG2 positivity in cancer cells, we compared PLCG2 expression in cancer cells using

MIBI-TOF to IHC staining PLCG2 in an adjacent cut of the same TMA. We found that a minimum threshold of 0.2 for batch-corrected

PLCG2 average intensity matched the parallel IHC assessment best. Similarly, to define pro-fibrotic Mono/M4, we used markers

CD14, CD16, and CD81, and set the minimum threshold as 0.2 for the batch-corrected average intensity.

Accounting for boundary-dependent intensity dropoff

In our tissuemicroarray, we noted an edge-dependent dropoff in signal intensity for lowly expressedmarkers like PLCG2 at the edges

of each field of view across samples. We sought to create a mask of these low-intensity regions to exclude from analysis. First, we

applied radial basis function interpolation to PLCG2 intensity based on the scipy.interpolate.Rbf package (Virtanen et al., 2020) using

multiquadric functions with smooth = 100 and epsilon = 100. Any region with PLCG2 intensity less than 0.07 was removed for quan-

tifying PLCG2+ SCLC cells. Additionally, we excluded any cell within 50 pixels from any edge of the FoV.

Assessing immune hot vs cold tumors and immune compartmentalization vs mixing

We sought to study the immune spatial architecture in relation to the tumor in our SCLC cohort. Following Keren et al. (Keren et al.,

2018), we considered samples with less than 250 immune cells in a 800 mm by 800 mm FoV to be immune-cold tumors.

For tumors that were not considered immune-cold, we considered the degree that immune cells were compartmentalized from vs

intermixed with the SCLC cells. To quantify the degree of immune-tumor mixing, we calculated a score as follows. First, we built a

cell-cell neighborhood graph from Delaunay triangulation and assessed interaction between tumor, immune, and other stromal cells

with Squidpy (Palla et al., 2021). We then calculated the immune-tumor mixing score as the number of immune-tumor interactions

divided by the number of immune-stromal interactions, where we consider the stroma to correspond to all non-cancer cells, including

immune. In calculating the immune-tumormixing score, we excluded small contiguous tumor cell regions from analysis, aswe sought

to quantify the extent of immune cell infiltration of the main SCLC tumor region. Moreover, we reasoned that small SCLC tumor re-

gionsmay be 1) the product of an oblique slice of a larger tumor region or 2) budding SCLC cells in transit that should not contribute to

a mixing score measuring the extent of immune infiltration. We therefore excluded any contiguous tumor cell regions less than 2500

pixels based on the tumor cell density mask (see section ‘‘Tumor region detection’’). To provide a baseline comparison for our mea-

sure of immune-tumor mixing in SCLC, we performed the same analysis on TNBC MIBI data, downloaded from https://www.

angelolab.com/mibi-data. Cell segmentation, cell type annotation from the original dataset were used for our analysis.

Correlation analysis

Using a similar approach to the section ‘‘Correlation analysis of immune subset abundance and tumor phenotypes,’’ we calculated

the partial Spearman’s correlation between PLCG2+ SCLC cells and other immune and SCLC subpopulations (Figure 7E). We

adjusted for the following clinical covariates: distant metastasis vs primary, chemotherapy-treated vs untreated, combined vs single

histology, and SCLC subtype based on NEUROD1 positivity as estimated from IHC (Table S14).

Vectra analysis

To assess differences in T-cell subsets between SCLC-A vs SCLC-N using spatial imaging, we opted to use the Vectra platform over

MIBI-TOF because Vectra has (1) a substantially larger field of view, (2) increased sensitivity for FOXP3 staining, and (3) a greater

number of treatment-naive tumors available following quality control. The first two points were particularly important because of

the relatively lower T-cell abundance in SCLC. To study the result from Vectra images, we developed a pipeline for multiplexed im-

aging quality control and processing (https://github.com/dpeerlab/Vectra_Imaging_pipeline). We describe the analysis process

below and code, notebook tutorials are available in the GitHub.

Batch normalization

To compare different markers across samples, we normalized intensity values of eachmarker.We first applied aGaussian kernel with

s=3 to smooth intensity over the target image. We considered the maximum intensity value M of a marker in a given sample to be an

initial value for intensity normalization. We then assessed the distribution of maximum intensity values of each marker across sam-

ples, which generally follows a bimodal distribution. This bimodal distribution allows for an intensity threshold that readily separates

signal from noise. We therefore considered the filtered distribution of intensities greater than this threshold. Finally, we constrained

the value for intensity normalization M to be greater than the minimum but less than the maximum of the filtered intensity values

across samples.

Noise removal

We used the following procedure to remove noise introduced by non-specific staining in our fluorescence multiplexed imaging data.

First, we applied amedian filter with size 2 to remove outliers, and then a Gaussian kernel with s=1 was applied to smooth the image.
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We automated remaining noise removal using either Otsu or Triangle thresholding. For a specific channel, if the 80th percentile in-

tensity isn5, we use theOtsumethod. Otherwise we used the Trianglemethod. To guide automatic noise removal, wemanually set a

lower boundary (to remove obvious noise) and an upper boundary (to retain obvious signal) per sample. We then combine batch

normalization and noise removal to generate a quality check report to further guide preprocessing. This initial automation facilitates

manual correction of parameters for image processing.

Single-cell instance segmentation

To obtain single-cell information, we developed a segmentation toolbox based on Mask R-CNN (https://github.com/dpeerlab/

MaskRCNN_cell), a deep learning framework for object instance segmentation to perform cell instance segmentation on our multi-

plexed imaging data. This model generates bounding boxes and segmentationmasks for each instance of an object in the image.We

optimized the parameters of this framework for the single-cell segmentation task, characterized by high object density, small but

consistent object size. To avoid cropping TMA images into small pieces and cutting cells overlying boundaries into two, we devel-

oped seamless stitching features that allow segmentation on very large images. To generate the training data, wemanually annotated

24 sample images with nuclear and cell membrane markers (DAPI, CD8, FOXP3, INSM1 et al.). Training images were augmented by

random horizontal flips, random vertical flips, random rotation, random gaussian blur, random zoom in and zoom out, random bright-

ness changes, and random shear. Training was performed using a step per epoch of 1000 andwas run for 10 epochs for heads layers

and 30 epochs on all layers. To segment images of interests, we visualize the images with the same color pattern that was used in

training.

Cell typing

Segmentation, normalization, and noise-removal of the image dataset as described above yielded a 7-dimensional single-cell protein

marker expression profile with sum of marker expression, expression area, cell size et al. information. Cells with low nuclear area

(lower than 16 pixels) were removed prior to analysis. A marker was considered positive when the average expression (total expres-

sion divided by cell size) is above 0.1 (0.06 only for FOXP3, which s lowly expressed) and expression area is above 4 pixels. For

markers that do not co-express, we classified cells into double-negative, 1 marker positive only and 2 markers positive only, based

on the distribution of average expression.

ADDITIONAL RESOURCES

Raw and processed data from this paper are publicly available on the Human Tumor Atlas Network (HTAN) data portal at https://data.

humantumoratlas.org/.
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