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1. Introduction

Let s = σ + it be a complex variable, and let

ζ(s) =
∞

∑
m=1

1
ms , σ > 1,

be the Riemann zeta-function having the meromorphic continuation to the whole complex
plane with the unique simple pole at the point s = 1. In [1], Voronin discovered the
universality of the function ζ(s), on the approximation of analytic functions by shifts
ζ(s + iτ), τ ∈ R. More precisely, he proved that if 0 < r < 1/4, f (s) is a continuous
non-vanishing function on |s| 6 r, and analytic on |s| < r, then, for every ε > 0, there exists
a number τ = τ(ε) ∈ R such that

max
|s|6r

∣∣∣∣ζ(s +
3
4
+ iτ

)
− f (s)

∣∣∣∣ < ε.

Various authors, among them Gonek, Reich, Bagchi, Laurinčikas, Matsumoto, Macaitienė,
Kačinskaitė, Pańkowski, Steuding and others, improved and extended the above Voronin
theorem. Let D = {s ∈ C : 1/2 < σ < 1}, K be the class of compact subsets of the strip D,
and let H0(K), K ∈ K, denote the class of continuous non-vanishing functions on K that
are analytic in the interior of K. Then the modern version of the Voronin theorem, see, for
example [2], says that if K ∈ K, f (s) ∈ H0(K), then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0,

where measA denotes the Lebesgue measure of a measurable set A ⊂ R. The latter
inequality shows that the set of shifts ζ(s + iτ) approximating a given function f (s) ∈
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H0(K) has a positive lower density. In [3], it was obtained that the above set has a positive
density for all but at most countably many ε > 0. The discrete versions of the mentioned
results on the approximation by shifts ζ(s + ikh), h > 0, k = 0, 1, . . . , were studied in [4–7],
see also [8].

Our investigation object is the periodic zeta-functions. Let a = {am : m ∈ N} be a
periodic sequence of complex numbers. The periodic zeta-function ζ(s; a) is defined, for
σ > 1, by the Dirichlet series

ζ(s; a) =
∞

∑
m=1

am

ms ,

and has analytic continuation to the whole complex plane, except for a simple pole at the
point s = 1. This follows from the representation

ζ(s; a) =
1
qs

q

∑
l=1

alζ

(
s,

l
q

)
, σ > 1,

where ζ(s, α), 0 < α 6 1, is the classical Hurwitz zeta-function, and q ∈ N is a minimal
period of the sequence a.

Universality of the function ζ(s; a), i.e., approximation of a wide class of analytic
functions by shifts ζ(s + iτ; a), τ ∈ R, was studied by various authors. Among them,
Bagchi [5], Steuding [9,10], Kaczorowski [11], and others. In [12], an universality theorem
for ζ(s; a) with multiplicative sequence a has been obtained. We recall that the sequence a is
called multiplicative if a1 = 1 and am1m2 = am1 am2 for all coprime m1 and m2. More general
is the joint universality for collections of zeta-functions. In this case, a collection of analytic
functions simultaneously is approximated by a collection of shifts of zeta-functions. The
first joint universality result was also obtained by Voronin in [13] for Dirichlet L-functions
with pairwise non-equivalent Dirichlet characters, see also [14]. Joint universality theorems
involving the function ζ(s, α) were studied in [15–20]. The papers [21,22] are devoted to
joint approximation of analytic functions by generalized non-linear shifts of periodic zeta-
functions. The aim of this paper is universality theorems for compositions of collections of
periodic zeta-functions studied in [22].

Let H̃(D) denote the space of analytic functions on D endowed with the topology
of uniform convergence on compacta. The first universality theorems for compositions
F(ζ(s)), where F : H̃(D)→ H̃(D) is a certain operator, were proved in [23,24]. Later, uni-
versality for compositions of other zeta-functions was obtained; for example, the paper [25]
is devoted to compositions of zeta-functions of normalized Hecke cusp forms.

Now we recall the main result of [22]. For j = 1, . . . , r, let aj = {ajm : m ∈ N} be
a periodic sequences of complex numbers, and let ζ(s; aj) be the corresponding periodic
zeta-function. In [22], for shifts of ζ(s; aj), the sequence {γk : k ∈ N, γk > 0} of imaginary
parts of non-trivial zeros of the Riemann zeta-function is used. Moreover, it was required
that the estimate

∑
γk ,γl6T

|γk−γl |<c/ log T

1� T log T, T → ∞, (1)

with c > 0 should be satisfied. (Note that (1) follows from the Montgomery pair correlation
hypothesis [26]). Then the main result of [22] is the following statement. Let #A denote the
cardinality of the set A, and N runs over the set of natural numbers N.

Theorem 1. Suppose that the estimate (1) is true, h1, . . . , hr are positive algebraic numbers linearly
independent over the field of rational numbers Q. For j = 1, . . . , r, let aj be multiplicative, Kj ∈ K
and f j(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
N→∞

1
N

#

{
1 6 k 6 N : sup

16j6r
sup
s∈Kj

|ζ(s + ihjγk; aj)− f j(s)| < ε

}
> 0.
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Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

The sequence {γk} satisfying estimate (1) was used for the first time in the theory
of universality in [27] in the case of the Riemann zeta-function. Recall that the Riemann
hypothesis (RH) asserts that all non-trivial zeros of ζ(s) lie on the critical line σ = 1/2. A
similar result under RH was obtained in [28] by using moment estimates of [29]. Univer-
sality of the Hurwitz zeta-function with the sequence {γk} satisfying (1) was considered
in [30,31]. A version of the Mishou theorem with the sequence {γk} satisfying estimate (1)
was proved in [32].

Let
H̃r(D) = H̃(D)× · · · × H̃(D)︸ ︷︷ ︸

r

.

Define some classes of operators F : H̃r(D) → H̃(D). For brevity, denote g =

(g1, . . . , gr) ∈ H̃r(D), and α = (α1, . . . , αr) ∈ (R+)r, where R+ is the set of all positive real
numbers.

We say that the operator F : H̃r(D)→ H̃(D) belongs to the class Lip(α) if:
1◦ For every polynomial p = p(s) and sets K1, . . . , Kr ∈ K, there exists an element

g ∈ F−1{p} ⊂ H̃r(D) such that gj(s) 6= 0 on Kj, j = 1, . . . , r.
2◦ For every K ⊂ K, there exists a constant c > 0 and the sets K1, . . . , Kr ∈ K such that

sup
s∈K

∣∣∣F(g
1
)− F(g

2
)
∣∣∣ 6 c sup

16j6r
sup
s∈Kj

∣∣g1j(s)− g2j(s)
∣∣αj

for all g
1
, g

2
∈ H̃r(D).

For brevity, we say that the statement A(a, h, (1)), a = (a1, . . . , ar), h = (h1, . . . , hr),
holds if the sequences a1, . . . , ar are multiplicative, h1, . . . , hr are positive algebraic numbers
linearly independent over Q, and estimate (1) is valid. Moreover, let

ζ(s + ihγk; a) = (ζ(s + ih1γk; a1), . . . , ζ(s + ihrγk; ar)).

For example, we may take a = (χ1(m), . . . , χr(m)), where χ1(m), . . . , χr(m) are Dirich-
let characters modulo q, and h = (

√
2, 3
√

2, . . . , r+1
√

2) because it is well known that Dirichlet
characters are periodic and multiplicative, and the algebraic numbers

√
2, 3
√

2, . . . , r+1
√

2 are
linearly independent over Q.

Denote by H(K), K ∈ K, the class of continuous functions on K that are analytic in the
interior of K.

Theorem 2. Suppose that A(a, h, (1)) is valid, and the operator F : H̃r(D)→ H̃(D) belongs to
the class Lip(α). Let K ∈ K and f (s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1
N

#

{
1 6 k 6 N : sup

s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− f (s)

∣∣∣ < ε

}
> 0. (2)

For example, the operator

F(g1, . . . , gr) = c1g1 + · · ·+ crgr, g1, . . . , gr ∈ H̃(D),

with complex cj 6= 0, j = 1, . . . , r, belongs to the class Lip(1). Actually, if p(s) is a
polynomial and K1, . . . , Kr ∈ K, then there exists a ∈ C such that p(s)− a− (c1 + · · ·+
cr−2) 6= 0 on Kr. Therefore taking

g1(s) = 1, . . . , gr−2(s) = 1, gr−1(s) =
a

cr−1
, gr(s) =

p(s)− a− (c1 + · · ·+ cr−2)

cr
,
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we obtain that F(g1, . . . , gr) = p(s). Thus, hypothesis 1◦ of the class Lip(1) is satisfied.
Hypothesis 2◦ follows from the integral Cauchy formula.

Now we state universality theorems for other classes of operators F : H̃r(D)→ H̃(D).
In their definitions, the set

S
de f
= {g ∈ H̃(D) : g(s) 6= 0 for all s ∈ D or g(s) ≡ 0}

is involved.

Theorem 3. Suppose that A(a, h, (1)) is valid, and F : H̃r(D)→ H̃(D) is a continuous operator
such that, for every open set G ⊂ H̃(D), the intersection (F−1G) ∩ Sr is non-empty. Let K ∈ K
and f (s) ∈ H(K). Then the inequality (2) is valid. Moreover, limit

lim
N→∞

1
N

#

{
1 6 k 6 N : sup

s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− f (s)

∣∣∣ < ε

}
> 0 (3)

exists for all but at most countably many ε > 0.

Theorem 3 can be applied for the following statement with a modified hypothesis
(F−1G) ∩ Sr 6= ∅.

Theorem 4. Suppose that A(a, h, (1)) is valid, and F : H̃r(D)→ H̃(D) is a continuous operator
such that, for every polynomial p = p(s), the intersection (F−1{p})∩ Sr is non-empty. Let K ∈ K
and f (s) ∈ H(K). Then the inequalities (2) and (3) are valid.

For some classes of approximated function, the set K ∈ K can be replaced by arbitrary
compact set.

Theorem 5. Suppose that A(a, h, (1)) is valid, and F : H̃r(D)→ H̃(D) is a continuous operator.
Let K ⊂ D be a compact set, and f (s) ∈ F(Sr). Then the assertion of Theorem 4 is true.

It is not easy to deal with the set F(Sr). The problem becomes more complicated when
it is known a certain simple set lying in F(Sr). For distinct complex numbers c1, . . . , cm,
define the set

H̃c1,...,cm(D) = {g ∈ H(D) : g(s) 6= cj for all s ∈ D, j = 1, . . . , m}.

Theorem 6. Suppose that A(a, h, (1)) is valid, and F : H̃r(D)→ H̃(D) is a continuous operator
such that H̃c1,...,cm(D) ⊂ F(Sr). For m = 1, let K ⊂ K, f (s) ∈ H(K) and f (s)− c1 ∈ H0(K).
For m > 2, let K ⊂ D be arbitrary compact set, and f (s) ∈ H̃c1,...,cm(D). Then the assertion of
Theorem 4 is true.

We give an example. Let

F(g1, . . . , gr) = b1g1 + · · ·+ brgr, g1, . . . , gr ∈ H̃(D),

and non-zero complex numbers b1, . . . , br. Then we have the inclusion H̃c1(D) ⊂ F(Sr).
Actually, if g ∈ H̃c1(D), then (g− c1)/b1 ∈ S. Consequently, by the definition of F,

F
(

g− c1

b1
,

c1

b2
, 0, . . . , 0

)
= g.

This shows that g ∈ F(Sr).
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Similarly we obtain that H0(D) ⊂ F(Sr), where

F(g1, . . . , gr) = (g1 + · · ·+ gr)
n

with n ∈ N.

2. Proof of Theorem 2

We will derive Theorem 2 from Theorem 1 and the Mergelyan theorem on the ap-
proximation of analytic functions by polynomials [33]. For convenience, we state the latter
theorem as the following lemma.

Lemma 1. Let K ⊂ C be a compact set with connected complement, and g(s) is a continuous on
K function which is analytic in the interior of K. Then, for every ε > 0, there exists a polynomial
pε(s) such that

sup
s∈K
|g(s)− pε(s)| < ε.

Proof of Theorem 2. The function f (s) is continuous on K ⊂ K and analytic in the interior
of K. Therefore, by Lemma 1, there exists a polynomial pε = pε(s) such that

sup
s∈K
| f (s)− pε(s)| <

ε

2
. (4)

Now we will apply the properties of the class Lip(α). In view of hypothesis 1◦, we
find an element g ∈ F−1{pε} such that gj(s) 6= 0 on a given set Kj ∈ K, j = 1, . . . , r.
Let α = min16j6r αj, and the sets K1, . . . , Kr ∈ K correspond the set K in hypothesis 2◦.
Suppose that k ∈ N satisfies the inequality

sup
16j6r

sup
s∈Kj

∣∣ζ(s + ihjγk; aj)− gj(s)
∣∣ < c−1/α

( ε

2

)1/α
.

Then, by hypothesis 2◦ of the class Lip(α), for such k,

sup
s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− pε(s)

∣∣∣ = sup
s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− F(g1(s), . . . , gr(s))

∣∣∣
6 c sup

16j6r
sup
s∈Kj

∣∣ζ(s + ihjγk; aj)− gj(s)
∣∣αj

6 c c−1 ε

2
=

ε

2
.

In view of Theorem 1, the set of k ∈ N satisfying the above inequality has a positive
lower density. Therefore, the set of k ∈ N satisfying the inequality

sup
s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− pε(s)

∣∣∣ < ε

2

has a positive lower density as well. Thus, taking into account inequality (4), we obtain the
assertion of Theorem 2.

Unfortunately, Theorem 1 does not imply a version of Theorem 2 with “lim” in place
of “lim inf”.

For the proof of Theorems 3–6, a limit theorem in the space H̃(D) plays a crucial role.
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3. Probabilistic Background

We start with a limit theorem for probability measures in the space H̃r(D). Denote by
B(X) the Borel σ-field of the space X, and by P the set of all prime numbers. Define the set

Ω = ∏
p∈P

γp,

where γp = {s ∈ C : |s| = 1} for all p ∈ P. Let

Ωr = Ω1 × · · · ×Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then Ωr is a compact topological Abelian group,
therefore, on (Ωr,B(Ωr)), the probability Haar measure mr

H exists, and we have the
probability space (Ωr,B(Ωr), mr

H). Denote by ωj(p) the pth component of the element
ωj ∈ Ωj, p ∈ P, j = 1, . . . , r, and by ω = (ω1, . . . , ωr) the elements of Ωr. On the probability
space (Ωr,B(Ωr), mr

H) define the H̃r(D)-valued random element

ζ(s, ω; a) = (ζ(s, ω1; a1), . . . , ζ(s, ωr; ar)),

where

ζ(s, ωj; aj) = ∏
p∈P

(
1 +

∞

∑
l=1

ωl
j(p)apl

pls

)
, j = 1, . . . , r.

Let Pζ be the distribution of ζ(s, ω; a), i.e.,

Pζ(A) = mr
H

{
ω ∈ Ωr : ζ(s, ω; a) ∈ A

}
, A ∈ B(H̃r(D)).

For A ∈ B(H̃r(D)), define

PN(A) =
1
N

#
{

1 6 k 6 N : ζ(s + ihγk; a} ∈ A
}

.

Then Theorem 6 of [22] is the following statement.

Lemma 2. Suppose that A(a, h, (1)) is valid. Then PN converges weakly to Pζ as N → ∞.

Let P be a probability measure on (X,B(X)), and u : X → Y be a (B(X),B(Y))-
measurable mapping. Then the measure P induces on (X,B(Y)) the unique probability
measure Pu−1 defined by

Pu−1(A) = P(u−1 A), A ∈ B(Y).

Now we recall an useful lemma on a preservation of weak convergence under contin-
uous mappings [34].

Lemma 3. Suppose that P and Pn, n ∈ N, are probability measures on (X,B(X)), Pn converges
weakly to P as n→ ∞, and u : X→ Y is a continuous mapping. Then Pnu−1 converges weakly to
Pu−1 as n→ ∞.

For F : H̃r(D)→ H̃(D), define

PN,F(A) =
1
N

#
{

1 6 k 6 N : F
(

ζ(s + ihγk; a)
)
∈ A

}
, A ∈ B(H̃(D)).

Then Lemmas 2 and 3 imply the following statement.
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Lemma 4. Suppose that F : H̃r(D) → H̃(D) is a continuous operator, and that A(a, h, (1)) is
valid. Then PN,F converges weakly to Pζ F−1 as N → ∞.

For the proof of universality, the support of limit measures in limit theorems in
the space of analytic functions plays a crucial role: it defines the class of approximated
functions. We recall that the support of a probability measure P on (X,B(X)), where X is a
separable space, is a minimal closed set SP such that P(SP) = 1. The set SP consists of all
elements x ∈ X such that, for every open neighborhood G of x, the inequality P(G) > 0 is
satisfied.

Lemma 5. Suppose that A(a, h, (1)) is valid. Then the support of the measure Pζ is the set Sr.

Proof of the lemma is given in [22], Lemma 9.

4. Proof of Theorems 3–6

For convenience, we recall the equivalents of weak convergence of probability mea-
sures that will be used in the proofs of universality theorems.

Lemma 6. Let P and Pn, n ∈ N, be the probability measures on (X,B(X)). Then the following
assertions are equivalent:

(i) Pn converges weakly to P as n→ ∞;
(ii) For every open set G ⊂ X,

lim inf
n→∞

Pn(G) > P(G);

(iii) For every continuity set A of P (P(∂A) = 0, where ∂A is the boundary of A),

lim
n→∞

Pn(A) = P(A).

The lemma is a part of Theorem 2.1 from [34].

Proof of Theorem 3. First of all, we will show that, under hypotheses of Theorem 3, the
support of the measure Pζ F−1 is the whole space of H̃(D).

Let g be an arbitrary element of H̃(D), and G is an open neighborhood of g. Then
the set F−1G is open as well. By the hypothesis (F−1G) ∩ Sr 6= ∅, there exists an element
g1 ∈ F−1G lying in Sr. Therefore, by Lemma 5, the set F−1G is an open neighborhood of
an element of the support of the measure Pζ . Hence, Pζ(F−1G) > 0. Therefore,

Pζ,F(G) = Pζ F−1(G) = Pζ(F−1G) > 0.

Since g and G are arbitrary, we have that the support of Pζ F−1 is the space H̃(D).
For a polynomial p(s), define the set

Gε =

{
g ∈ H̃(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Since p(s) ∈ H̃(D), the set Gε is an open neighborhood of the support of the measure
Pζ,F. Therefore, by a property of a support,

Pζ,F(Gε) > 0. (5)

Thus, by Lemmas 4 and 6 ((i) and (ii)), we have

lim inf
N→∞

PN,F(Gε) > Pζ,F(Gε) > 0.
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Hence, the definitions of PN,F and Gε yield

lim inf
N→∞

1
N

#

{
1 6 k 6 N : sup

s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− p(s)

∣∣∣ < ε

2

}
. (6)

Now, using Lemma 1, we choose the polynomial p(s) satisfying

sup
s∈K
| f (s)− p(s)| < ε

2
. (7)

Suppose that k ∈ N satisfies

sup
s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− p(s)

∣∣∣ < ε

2
.

Then, in view of (7), for such k,

sup
s∈K

∣∣∣F(ζ(s + ihγk; a)
)
− f (s)

∣∣∣ < ε.

This remark together with (6) proves the inequality (2).
To prove inequality (3), define the set

Gε =

{
g ∈ H̃(D) : sup

s∈K
|g(s)− f (s)| < ε

}
.

Then the boundary ∂Gε lies in the set{
g ∈ H̃(D) : sup

s∈K
|g(s)− f (s)| = ε

}
,

therefore, Gε1 ∩ Gε2 = ∅ for positive ε1 6= ε2. Hence it follows that Gε is a continuity set of
the measure Pζ,F for all but at most countably many ε > 0. Therefore, by Lemmas 4 and 6
((i) and (iii)), it follows that

lim
N→∞

PN,F(Gε) = Pζ,F(Gε) (8)

for all but at most countably many ε > 0. Therefore, by (5), the right-hand side of (8) is
strictly positive. The theorem is proved.

Proof of Theorem 4. We will show that the hypothesis of the theorem (F−1{p}) ∩ Sr 6= ∅
for every polynomial p = p(s) implies that of Theorem 3. Let G be an arbitrary non-empty
open set of H̃(D). Then, by Lemma 1, there exists a polynomial p = p(s) lying in G. Thus,
F−1{p} ⊂ F−1G. Therefore, (F−1G) ∩ Sr ⊃ (F−1{p}) ∩ Sr 6= ∅.

Proof of Theorem 5. It is not difficult to see that the support of the measure Pζ,F is the set
F(Sr). Actually, let g be an arbitrary element of F(Sr) and G be its any open neighborhood.
Then F−1{g} ∈ Sr, and lies in the open set F−1G. Thus, by Lemma 5, Pζ(F−1G) > 0.
Hence,

Pζ,F(G) = Pζ F−1(G) = Pζ(F−1G) > 0.

Moreover,
Pζ,F(F(Sr)) = Pζ F−1(F(Sr)) = Pζ(F−1F(Sr)) = Pζ(Sr) = 1.

Since g is an arbitrary element of F(Sr), we have that the support of Pζ,F is the set F(Sr).
Let Gε be the same set as in the proof of Theorem 3. Since f (s) ∈ F(Sr), by the above

remark, Pζ,F(Gε) > 0. Therefore, by Lemmas 4 and 6 ((i) and (ii)), we have

lim
N→∞

PN,F(Gε) > Pζ,F(Gε) > 0,
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and the definitions of PN,F and Gε give inequality (2).
Inequality (3) is obtained in the same way as in the proof of Theorem 3.

Proof of Theorem 6. By a proof of Theorem 5 and the inclusion F(Sr) ⊃ H̃c1,...,cm(D), we
have that the support of Pζ,F contains the set H̃c1,...,cm(D). Since the support is a closed set,

hence, the support of Pζ,F contains the closure of H̃c1,...,cm(D).
We consider two cases.
(1) m = 1. Since the function f (s) 6= c1 on K, the function f1(s) = f (s)− c1 6= 0 on

K. Therefore, the principal branch of logarithm log f (s) satisfies on K the hypotheses of
Lemma 1. Thus, for every ε1 > 0, there exists a polynomial p(s) such that

sup
s∈K
|log f1(s)− p(s)| < ε1.

Hence, after a corresponding choosing of ε1 = ε1(ε) we find

sup
s∈K

∣∣∣ f1(s)− ep(s)
∣∣∣ = sup

s∈K

∣∣∣elog f (s) − ep(s)
∣∣∣ < ε

2
. (9)

Obviously, f2(s) = c1 + ep(s) ∈ H̃c1(D). Therefore, by the above remark, f2(s) is an element
of the support of the measure Pζ,F. Hence, putting

Ĝε =

{
g ∈ H̃(D) : sup

s∈K
|g(s)− f2(s)| <

ε

2

}
,

we have
Pζ,F(Ĝε) > 0. (10)

Moreover, for g ∈ Ĝε,

sup
s∈K
|g(s)− f (s)| 6 sup

s∈K
|g(s)− f2(s)|+ sup

s∈K

∣∣∣ f1(s)− ep(s)
∣∣∣ < ε.

Thus, Ĝε ⊂ Gε, where Gε is the same as in the proof of Theorem 3. This, Lemmas 4 and 6
((i) and (ii)), and (10) prove inequality (2). Inequality (3) is obtained analogically as in the
proof of Theorem 3.

(2) Suppose that m > 2. Since f (s) ∈ H̃c1,...,cm(D), we have that f (s) is an element of
the support of the measure Pζ,F. Therefore, Pζ,F(Gε) > 0, and it remains to apply Lemmas 4
and 6.

5. Conclusions

By the Linnik-Ibragimov conjecture, see for example [10], all functions defined in some
half-plane by Dirichlet series and having a natural growth of their analytic continuation are
universal in the sense of approximating of analytic functions. Unfortunately, this conjecture
is very general and, at this moment, the authors are able to consider the universality of
some classes of Dirichlet series only. On the other hand, the universality, as a phenomenon
of Dirichlet series, goes beyond the Linnik-Ibragimov conjecture. This is also confirmed by
using of generalized shifts, in particular, involving the very mysterious sequence {γk}. The
universality of certain compositions F(ζ(s; a)) for some classes of continuous operators F :
H̃r(D)→ H̃(D) obtained in the paper, shows that the class of universal functions is quite
wide. For example, Theorem 6 implies the universality of F(g1, . . . , gr) = cos(g1 + · · ·+ gr).
Actually, if f ∈ H̃−1,1(D), then the equation

eig + e−ig

2
= f

shows that g ∈ S. Hence, F(g, 0, . . . , 0) = f , thus, f ∈ F(Sr), and H̃−1,1(D) ⊂ F(Sr).
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21. Laurinčikas, A.; Tekorė, M. Joint universality of periodic zeta-functions with multiplicative coefficients. Nonlinear Anal. Model.

Control 2020, 25, 860–883.
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