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Chapter 1

Introduction

In this chapter, we present our research topic, aim and applied methods,
novelty of main results, the list of published papers, and the list of
conferences where our results were presented.

1.1 Research topic

We are interested in first- and second-order weak approximations for the
Chan–Karolyi–Longstaff–Sanders (CKLS) model [7]

dXt = (θ − β Xt) dt+ σXγ
t dBt, X0 = x ≥ 0, (1.1.1)

with parameters (θ, β, σ, γ) ∈ R+×R×R+×[1/2, 1), where R+ := (0,∞)
and R+ := [0,∞). In particular, when θ = 0 and β < 0, we have the
constant elasticity of variance (CEV) model [8]; when γ = 1/2 and
β ≥ 0, we have the well-known Cox–Ingersoll–Ross (CIR) model [9];
when γ = 0, it becomes the Vaš́ıček model; when γ = 0 and θ = 0, we
have a geometric Brownian motion.

It is well known that equation (1.1.1) has a unique nonnegative so-
lution, and if x > 0 and γ > 1/2, then Xt > 0 for all t ≥ 0 almost
surely [35].

1.2 Aim and difficulties

The aim of research was to construct simple and effective first- and
second-order weak approximations for the solution of the CKLS model
which would use only generation of discrete random variables at each
approximation step. Also, it was important to provide proofs of accuracy
order.

The main problem in developing numerical methods for such a dif-
fusion equation/model is that the diffusion coefficient has unbounded

1



derivatives near zero, and therefore standard methods (see, e.g., Milstein
and Tretyakov [36]) are not applicable: discretization schemes that (ex-
plicitly or implicitly) involve the derivatives of the coefficients usually
lose their accuracy near zero, especially, for large σ. This problem for
the CIR processes was solved by modifying the scheme considered by
switching near zero to another scheme, which (i) is sufficiently regular
and (ii) enough accurate near zero; we refer, for example, to [2, 31, 33]
and references therein.

Lan, Hu and Zhang studied the relation between CKLS model and
CIR model in [22]. They proved that under a suitable transformation,
any CKLS model of order 1/2 < γ < 1 or γ > 1 corresponds to the CIR
model under a new probability measure. Moreover, they get an explicit
solution and the precise distribution of the CKLS model at any time
t under the new probability measure. However, such a transformation
cannot be applied to reducing weak approximations of CKLS processes
to those of CIR processes.

1.3 Methods

Methods of calculus, stochastic calculus, probability theory, statistics,
and functional analysis are applied in the thesis. Numerical experiments
were simulated using the programming language C++. The figures were
generated using computing environment Maple. The same software also
was used for solving equalities and inequalities.

1.4 Actuality and novelty

Typically, a first-order approximation near zero is constructed by dis-
crete random variables matching two or three moments with those of the
solution. Our construction of the same order has an important change
in this procedure: there is no need to know these moments.

Our construction method for second-order weak approximations is
significantly different from that of the first-order approximation. An-
other novel feature of the same order weak approximations is that in
our schemes, no switching between schemes near zero is used, in con-
trast to [2, 33]. This simplifies the implementation of approximations.

The same techniques that were used in this research can be used
for constructing discretization schemes for other models with singular
diffusion coefficients.

2



1.5 Main results

We managed to construct simple and effective first-order and second-
order weak approximations for the solution of the CKLS model. These
discretization schemes use only generation of discrete random variables
at each approximation step. They are presented in the theorems below.1

Theorem 1.1. Let

Dx
t = D(x, t) :=

{
xe−βt + θ

β (1− e−βt), β 6= 0,

x+ θt, β = 0,
(1.5.1)

and let the random variables Ŝxh (Ŝ0
h = 0) take the values{

x1 = x+ x2γ−1σ2h−
√

(x2γ + x2(2γ−1)σ2h)σ2h > 0, x > 0,

x2 = x+ x2γ−1σ2h+
√

(x2γ + x2(2γ−1)σ2h)σ2h > 0, x > 0,

with probabilities

P{Ŝxh = x1,2} = p1,2 =
x

2x1,2
, x > 0.

Then the one-step approximation X̂x
h defined by the composition

X̂x
h := D(Ŝxh , h), x ≥ 0, h > 0,

defines a strongly potential first-order discretization scheme for the CKLS
equation (1.1.1).

Theorem 1.2. Let Dx
t = D(x, t) be defined in (1.5.1), and let the ran-

dom variables Ŝxh = Ŝ(x, h) (Ŝ0
h = 0) take the values

x1,3 =x+ (A+ 3
4)σ2h∓

√(
3x+ (A+ 3

4)2σ2h
)
σ2h,

x2 =x+Aσ2h, A ∈ [3/4, 3/2],

with probabilities

p1 =
m1x2x3 −m2(x2 + x3) +m3

x1(x3 − x1)(x2 − x1)
,

p2 =
m2(x1 + x3)−m1x1x3 −m3

x2(x2 − x1)(x3 − x2)
, (1.5.2)

p3 =
m1x1x2 −m2(x1 + x2) +m3

x3(x3 − x2)(x3 − x1)
.

1For definitions, see Chapter 3.
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Let the one-step approximations X̂x
h be defined by the composition

X̂h(x, h) :=

{
D
(
Ŝ
(
D(x, h/2), h

)
, h/2

)
, h > 0,

x, h = 0,
(1.5.3)

then X̂x
h defines a strongly potential second-order discretization scheme

for the CIR equation.

We have also constructed a one-step approximation Ŝxh taking four
values that defines a potential third-order weak approximation of the
stochastic part dSxt = σ

√
Sxt dBt of the CIR equation.

Theorem 1.3. Let X̂x
h be the one-step discretization scheme defined by

composition (1.5.3), where Dx
t = D(x, t) is defined in (1.5.1).

Let Ŝxh take the values

x1,3 = x+ 5
2 x

1/2σ2h+ 15
64 (σ2h)2

∓
√(

3x3/2 + 103
16 xσ

2h+ 75
64 x

1/2(σ2h)2 + 225
4096 (σ2h)3

)
σ2h,

x2 = x+ 11
8 x

1/2σ2h+ 15
64 (σ2h)2

in the case γ = 3/4 or

x1,3 = x+ 3
2 x

2/3σ2h+ 485
816 x

1/3(σ2h)2 + 1681
22032 (σ2h)3

∓
(
(3x5/3 + 2077

612 x
4/3σ2h+ 125695

66096 x(σ2h)2 + 1162907
1997568 x

2/3(σ2h)3

+ 815285
8989056 x

1/3(σ2h)4 + 2825761
485409024(σ2h)5)σ2h

)1/2
,

x2 = x+ 1
4 x

2/3σ2h+ 5
72 x

1/3(σ2h)2 + 1
72(σ2h)3

in the case γ = 5/6 with probabilities p1, p2, and p3 defined in (1.5.2)
(Ŝ0
h = 0). Then X̂x

h defines a strongly potential second-order discretiza-
tion scheme for the CKLS equation with γ = 3/4 or γ = 5/6, respec-
tively.

1.6 Publications

1. G. Lileika and V. Mackevičius, Weak approximation of CKLS and
CEV processes by discrete random variables. Lithuanian Mathe-
matical Journal 60: 208–224 (2020).

2. G. Lileika and V. Mackevičius, Second-order weak approximations
of CKLS and CEV processes by discrete random variables. Math-
ematics, 9(12), 1337 (2021).
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1.7 Conferences

The results of the thesis-related studies were presented in the following

conferences:

• 12th International Vilnius Conference on Probability Theory and

Mathematical Statistics, Vilnius, Lithuania, 2018–07–03.

• 58th Conference of Lithuanian Mathematical Society (LMS),

Vilnius, Lithuania, 2017–06–21.

• 59th Conference of LMS, Kaunas, Lithuania, 2018–06–19.

• 60th Conference of LMS, Vilnius, Lithuania, 2019–06–19.

• 61st Conference of LMS, Šiauliai, Lithuania, 2020–12–04.

• 62nd Conference of LMS, Vilnius, Lithuania, 2021–06–16.

1.8 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we give an overview of

related results obtained by other authors. Preliminaries and definitions

are provided in Chapter 3. In Section 4.2, we discuss a general construc-

tion for potential first-order approximations of the stochastic part. In

Section 4.3, we construct a strongly potential first-order weak approxi-

mation of the CKLS model, and in Sections 5.2 and 5.4, we construct a

strongly potential second-order weak approximation of the CKLS model.

We summarize the constructed algorithms of first- and second-order in

Sections 4.4 and 5.5, respectively. In Sections 4.5 and 5.6, we illustrate

the accuracy of the first- and second-order schemes by numerical simu-

lation results. We provide conclusions of the thesis in Chapter 6, and in

the Appendix (Chapter 7), we provide additional calculations.
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Chapter 2

A short historical overview

In this chapter, we discuss the importance of the CKLS model and

various attempts to construct discretization schemes for the solution of

the CKLS model, mostly the CIR model.

There are only few works where approximations for the CKLS model

were considered, and they consider pathwise approximations only. The

first and simplest method uses modifications of the Euler–Maruyama

discretization scheme. In the literature, we can find many results and

ad hoc methods on weak approximations for the CIR equation. We use

some their ideas for construction of weak approximations of the CKLS

equations. To the best of our knowledge, for the CKLS equations (with

γ > 1/2), no weak approximations were constructed before.

In this chapter, σ > 0 is a constant.

2.1 The need to approximate the CKLS
equation

Contradicting the intuition, an interest rate is assumed to be a constant

in the Black–Scholes model and in many other models. In 1975, one of

the first attempts to use a stochastic process modeling asset prices Xt

and to make assumptions more realistic, was suggested by Cox [8]:

dXt = β Xt dt+ σXγ
t dBt, X0 = x ≥ 0,

7



where Bt is a Brownian motion, β ∈ R+, γ ≥ 1/2, and σ ∈ R+. The

model is called the constant elasticity of variance (CEV) model, and it

is capable of reproducing the volatility smile observed in the empirical

data: the model incorporates a variance adjustment that causes the

absolute level of the variance to decline as the stock price rises and to

rise as the stock price declines.

In 1977, another mean-reverting process, where EXt → θ as t→∞,

was proposed by Vaš́ıček [41] for interest rate modeling:

dXt = β (θ −Xt) dt+ σ dBt

with β, θ, and σ ∈ R+. The solution of this equation is called an

Ornstein– Uhlenbeck stochastic process. It is known in an explicit form,

and this fact attracts researchers to use this model widely. but there is

a serious drawback for interest rate modeling: it takes negative values

with nonzero probability.

In 1985, John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross

presented a square-root model, usually called the CIR model ((1.1.1)

with γ = 1/2),

dXt = (θ − β Xt) dt+ σ
√
Xt dBt, X0 = x ≥ 0,

θ ∈ R+ and β, σ ∈ R+, which is widely used for modeling of interest rate

or as an alternative to geometric Brownian motion that occurs in the

Black–Scholes model of dynamic asset pricing in mathematical finance.

In this model, the process never becomes negative if it starts from a

nonnegative value (different boundary behavior at 0 depending on the

values of θ and σ), and it has the main advantage of the Vaš́ıček model

that it is a mean-reverting. The process has a unique solution, which is

not known in an explicit form.

In 1992, K. C. Chan, G. A. Karolyi, F. A. Longstaff, and A. B.

Sanders suggested the generalization of the CIR equation for modeling

the behavior of the instantaneous interest rate, the so-called the CKLS

model [7]

dXt = (θ − β Xt) dt+ σXγ
t dBt, X0 = x ≥ 0,

8



where B is a Brownian motion, θ ∈ R+, β ∈ R+, γ ≥ 1/2, and σ ∈ R+.

Finally, in 1993, Heston [17] extends the CIR model to a stock price

model with a second source of randomness and assuming that not only

underlying asset, but also its volatility is controlled by the CIR process:
dSt = rSt dt+

√
YtSt dB̃t, S0 = s ≥ 0,

dYt = β(θ − Yt) dt+ σ
√
Yt dBt, Y0 = y ≥ 0,

dBt dB̃t = ρdt.

where B and B̃ are (possibly, dependent, with correlation coefficient

ρ) standard Brownian motions, with parameters θ, β, and σ ∈ R+. In

his model, Heston introduces the dynamics of the underlying asset, the

asymmetry and excess kurtosis, which are typically observed in financial

assets returns. The model was an instant success. One of the main

reasons was the fact that European vanilla call (and put) option price

is known in the (quasi)closed form.

Applications of numerical methods for the Heston model possesses

the same difficulties as approximations of the CIR equation have: the

volatility in the Heston model is controlled by the CIR process. In the

Heston model, square roots are used not only controlling the volatility

but also in the expression of volatility itself.1 For more information

about problems and their solutions applying Heston model, see [3, 10,

14,23–25,39].

2.2 One-step approximations

Modifications of the Euler–Maruyama scheme

Having a fixed time interval [0, T ], consider an equidistant time dis-

cretization ∆h = {hi = ih, i = 0, 1, . . . , n := bT/hc, h ∈ (0, T ]}, where

bac is the integer part of a. The first and simplest idea is to use

the Euler–Maruyama scheme for CKLS (1.1.1), where γ ∈ [1/2, 1) and

β ≥ 0. The scheme has form

X̂n
hi+1

= X̂n
hi

+ (θ − β X̂n
hi

)
T

n
+ σ(X̂n

hi
)γ(Bhi+1

−Bhi)
1For more detail, see [26]
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with X̂n
h0

= x ≥ 0 and Bhi is a value of Brownian motion at the time

moment hi. Unfortunately, although the process itself is guaranteed

to be nonnegative, this discretization scheme has a nonzero probability

of becoming negative in the next time step, regardless of the size of

the time step. Practitioners solved this problem by either setting the

process equal to 0 when it obtains a negative value or by reflecting it

to the origin and starting again from this point. Such fixes are often

referred to as absorption and reflection respectively, see e.g. Gatheral

[15]. Lord, Koekkoek and Van Dijk [28] note that this terminology is

somewhat at odds with the terminology used to classify the boundary

behavior of stochastic processes, see Karlin and Taylor [20]. They think

that in that respect the absorption fix is much more similar to reflection

in the origin for a continuous stochastic process, whereas absorption as

a boundary classification means that the process stays in the absorbed

state for the rest of time.

Deelstra and Delbaen [11] (Glasserman [16] uses this scheme for the

CIR process) proposed to modify this model for γ = 1/2 and suggested

partial truncation

X̂n
hi+1

= X̂n
hi

+ (θ − β X̂n
hi

)
T

n
+ σ

√
X̂n
hi

1X̂n
hi
>0(Bhi+1

−Bhi).

Lord et al. [28] proposed full truncation modification for γ = 1/2

X̂n
hi+1

= X̂n
hi

+ (θ − βX̂n
hi

1X̂n
hi
>0)

T

n
+ σ

√
X̂n
hi

1X̂n
hi
>0(Bhi+1

−Bhi).

Diop [12] proposed another modification for γ = 1/2

X̂n
hi+1

=
∣∣∣X̂n

hi
+ (θ − β X̂n

hi
)
T

n
+ σ

√
X̂n
hi

(Bhi+1
−Bhi)

∣∣∣.
Bossy and Diop [5] proposed, and Berkaoui, Bossy, and Diop [4] analyzed

X̂n
hi+1

=
∣∣∣X̂n

hi
+ (θ − β X̂n

hi
)
T

n
+ σ(X̂n

hi
)γ(Bhi+1

−Bhi)
∣∣∣, γ ∈ [1/2, 1).

Higham and Mao [18] suggested for γ = 1/2

X̂n
hi+1

= X̂n
hi

+ (θ − β X̂n
hi

)
T

n
+ σ

√∣∣∣X̂n
hi

∣∣∣(Bhi+1
−Bhi).

10



Lord et al. [28] unifies all of these Euler–Maruyama schemes in a single

general framework:

X̃n
hi+1

= f1

(
X̃n
hi

)
−
(
f2

(
X̃n
hi

)
− θ
)
β
T

n
+ σf3

(
X̃n
hi

)γ (
Bhi+1

−Bhi
)
,

Xn
hi+1

= f3

(
X̃n
hi+1

)
with Xn

h0
= X̃n

h0
and the functions fi, i = 1, 2, 3, satisfying:

• fi(x) = x for x ≥ 0 and i = 1, 2, 3;

• fi(x) ≥ 0 for x ∈ R+ and i = 1, 2, 3.

The schemes considered so far then in the literature are summarized in

Table 2.1 (for γ = 1/2). Lord et al. [28] also considered the behavior

Table 2.1: Overview of Euler schemes known in the literature.

Scheme Paper f1(x) f2(x) f3(x)

Absorption Unknown 1{x>0} 1{x>0} 1{x>0}

Reflection Diop [12], Bossy and |x| |x| |x|
Diop [5], Berkaoui
et al. [4]

Higham and Higham and Mao [18] x x |x|
Mao

Partial Deelstra and x x 1{x>0}
truncation Delbaen [11]

Full Lord, Koekkoek, x 1{x>0} 1{x>0}
truncation and Van Dijk [28]

of schemes fixing negative variances. The origin of the true process is

strongly reflecting: if it is obtained, in the sense that when the trajectory

touches 0, it leaves the origin again immediately. They considered the

case where an Euler–Maruyama discretisation causes the variance to go

negative, X̂n
hi

= −δ < 0, whereas the true process would stay positive

and close to zero, Xn
hi

= ε ≥ 0. In Table 2.2 we provide results of their

analysis: what would be the new starting point f1

(
X̃n
hi

)
, the effective

variance (by this they mean the instantaneous variance of the stock

price) f3

(
X̃n
hi

)
, and the drift for all fixes as well for the true process.
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Table 2.2: Analysis of the dynamics when discretization equals X̂n
hi+1

=
−δ < 0 but Xn

hi+1
= ε ≥ 0.

Scheme New starting Effective Drift
point variance

True process ε ε β (θ − ε)
Absorption 0 0 β θ

Reflection δ δ β (θ − δ)
Higham and Mao -δ δ β (θ + δ)

Partial truncation -δ 0 β (θ + δ)

Full truncation -δ 0 β θ

Brigo and Alfonsi [6] define, at least when the time step is small enough,

for γ = 1/2,

X̂n
hi+1

= X̂n
hi

+ (θ − σ2

2
− β X̂n

hi+1
)
T

n
+ σ

√
X̂n
hi+1

(Bhi+1
−Bhi).

If X̂n
hi
≥ 0 and T

n ≤ 1/β−, where y− = max{−y, 0}, they define

X̂n
hi+1

=

((√
σ2
(
Bhi+1

−Bhi
)2

+ 4

(
X̂n
hi

+

(
θ − σ2

2

)
T

n

)(
1 + β

T

n

)

+ σ
(
Bhi+1

−Bhi
))/

2

(
1 + β

T

n

))2

.

Schemes employing the properties of variance

The Ninomiya and Victoir scheme [39] for the CIR equation described

in [2] X̂x
h = ϕ(x, h,

√
hN), where N ∼ N (0, 1), and

ϕ(x, h, ω) = e−
βh
2

(√
(θ − σ2/4)ψβ(h/2) + e−

βh
2 x+

σ

2
ω

)2

+
(
θ − σ2/4

)
ψβ(h/2), (2.2.1)

ψβ(h) =
1− e−βh

β
, β 6= 0, and ψ0(h) = h, β = 0.

Unfortunately, the scheme only solves the problem of negative values for

σ2 ≤ 4 θ.

Alfonsi in [2, Theorem 2.8.] modifies the previous scheme and suggests

12



Figure 2.1: Scheme switching near zero.

a second-order weak approximation that is well defined without restric-

tion on the parameters. Problem of unbounded derivatives near zero:

discretization scheme loses its accuracy near zero and might obtain nega-

tive values, especially, for large σ, was solved by modifying the Ninomiya

and Victoir scheme by switching near zero to another scheme, which (1)

is sufficiently regular and (2) sufficiently accurate near zero. Visual

representation of this idea is given in Figure 2.1. The algorithm of dis-

cretization scheme is presented in Figure 2.2, and the threshold K2(h),

three-valued random variable Y , and the first two moments ũ1(h, x),

ũ2(h, x) of the CIR equation are defined as

K2(h) = 1{σ2>4θ}e
βh
2

((
σ2

4
− θ
)
ψβ(h/2)

+

[√
e
βh
2

[(
σ2/4− θ

)
ψβ(h/2)

]
+
σ

2

√
3h

]2)
,
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Figure 2.2: Algorithm computing the value at the next time-step of the
2nd-order scheme of the CIR with a timestep t = h, U (resp., Y ) being
sampled uniformly from [0, 1].

Figure 2.3: Algorithm computing the 3rd-order scheme next value, start-
ing from x with a timestep t = h. Here U is sampled uniformly from
[0, 1].

P(Y = ±
√

3) = 1
6 , P(Y = 0) = 2

3 ,

ũ1(h, x) = xe−βh + θψβ(h), (2.2.2)

ũ2(h, x) = ũ1(h, x)2 + σψβ(h)[xe−βh + θψβ(h)/2], (2.2.3)

and ϕ(x, h,
√
hY ) is defined in (2.2.1).

Alfonsi [2, Theorem 3.7.] also suggests a third-order weak approxi-

mation that is well defined without restriction on the parameters. The

algorithm of discretization scheme is presented in Figure 2.3, and the

threshold K3(h), four-valued random variable Y , discretization scheme

X̂x,β=0
h , and the third moment ũ3(h, x) of the CIR equation are defined
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as

K3(h) =

[
1{4θ/3<σ2<4θ}

(√
σ2

4
− θ +

σ√
2

√
θ − σ2

4
+
σ

2

√
3 +
√

6

)2

+ 1{σ2≤4θ/3}
σ√
2

√
θ − σ2

4

+ 1{4θ<σ2}

[
σ2

4
− θ +

(√
σ√
2

√
σ2

4
− θ +

σ

2

√
3 +
√

6

)2]]
× ψ−β(h),

P
(
Y = ±

√
3 +
√

6

)
=
√

6−2
4
√

6
, P

(
Y = ±

√
3−
√

6

)
= 1

2 −
√

6−2
4
√

6
,

X̂x
h = e−βhX̂x,β=0

ψ−β(h),

where for σ2 ≤ 4θ (σ2 > 4θ ),

X̂x,β=0
h =



X̃(εh,XCIR
0 (h,XCIR

1 (
√
hY, x)))

(resp. X̃(εh,XCIR
1 (
√
hY,XCIR

0 (h, x)))) if ζ = 1,

XCIR
0 (h, X̃(εh,XCIR

1 (
√
hY, x)))

(resp. XCIR
1 (
√
hY, X̃(εh,XCIR

0 (h, x)))) if ζ = 2,

XCIR
0 (h,XCIR

1 (
√
hY, X̃(h, x)))

(resp. XCIR
1 (
√
hY,XCIR

0 (εh, X̃(εh, x)))) if ζ = 3,

X̃(h, x) = x+ h
σ√
2

√∣∣∣θ − σ2

4

∣∣∣,
XCIR

0 (h, x) = xe−βh +

(
θ − σ2

4

)
ψβ(h),

XCIR
1 (h, x) =

((√
x− σ

2
h
)+
)2

,

ũ3(h, x) =ũ1(h, x)ũ2(h, x)

+ σ2ψβ(h)[2x2e−2βh + ψβ(h)(θ +
σ2

2
)(3xe−βh + θψβ(h))],

where ε and ζ are respectively independent uniform random variables

on {−1, 1} and {1, 2, 3}. The first two moments ũ1(h, x) and ũ2(h, x)

are defined in (2.2.2) and (2.2.3), respectively.
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Split-step schemes

Mackevičius [33, Theorem 3] proves that the Alfonsi scheme [2, Proposi-

tion 2.7], used for approximation of the CIR equation ((1.1.1), γ = 1/2 )

in a neighborhood of 0 is actually a first-order approximation on [0,+∞)

for f ∈ C∞pol(R) without scheme switch:

X̂h(x, h) = D
(
Ŝ(x, h), h

)
, h > 0, X̂h(x, 0) = x, a := σ2,

where

Dx
t = D(x, t) :=

{
xe−βt + θ

β (1− e−βt), β 6= 0,

x+ θt, β = 0,
(2.2.4)

Ŝxh = Ŝ(x, h), Ŝ0
h := 0, (2.2.5)

x1,2 = x1,2(x, h) = x+ ah∓
√

(x+ ah)ah > 0, x ≥ 0,

P{Ŝxh = x1,2} = p1,2 =
x

2x1,2
, x > 0.

In the same paper, Mackevičius (see Theorem 4) suggested a second-

order weak approximation for the CIR equation:

X̂h(x, h) = D
(
Ŝ
(
D(x, h/2), h

)
, h/2

)
, h > 0, X̂h(x, 0) = x, a := σ2,

where Dx
t is defined in (2.2.4), and the values of the random variables

Ŝxh = Ŝ(x, h) are defined as follows.

If x ≥ 2ah, then

x1,2 := x+
s∓
√

∆

2
, x0 = x, p1,2 :=

2xah√
∆(
√

∆∓ s)
,

where

p0 = 1− p1 − p2, s =
3 ah

2
, ∆ =

21

4
(ah)2 + 12xah.

If 0 ≤ x < 2ah, then

x1,2 =
s∓
√

∆

2
, x0 = 0, p1,2 =

x(2 ah+ 2x− s∓
√

∆)√
∆(
√

∆∓ s)
,

where

p0 = 1− p1 − p2, s =
4x2 + 9xah+ 3 (ah)2

2x+ ah
,
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∆ =
ah (16x3 + 33x2ah+ 18x(ah)2 + 3 (ah)3)

(2x+ ah)2
.

If 0 ≤ x < 2ah, and we substitute expressions s and ∆ into x1,2 and

p1,2, then we get

x1,2 =
3 (ah)2 + 9 ahx+ 4x2

2 (ah+ 2x)

∓
√
ah(3 (ah)3 + 18x(ah)2 + 33x2ah+ 16x3)

2 (ah+ 2x)
,

x0 = 0, p1 =
x(x2 − (ah+ x))

x1(x2 − x1)
, p2 =

x((ah+ x)− x1)

x2(x2 − x1)
,

p0 = 1− p1 − p2.

If we accept that E(Ŝxh)i − E(Sxh)i = O(h3), i = 1, 2, 3, 4, then the

expressions of x1,2 can be significantly simplified:

x1,2 = x+
7

4
ah∓ 1

4

√
(16x+ 17 ah) ah.
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Chapter 3

Preliminaries

In this chapter, we provide all definitions and describe techniques used

to construct discretization schemes.

3.1 Preliminaries and definitions

In this section, we give some definitions for the general one-dimensional

stochastic differential equation

Xx
t = x+

t∫
0

b(Xx
s ) ds+

t∫
0

σ̃(Xx
s ) dBs, t ≥ 0, x ∈ D ⊂ R. (3.1.1)

To avoid ambiguity, we indicate functions with the supplementary sym-

bol˜if the same letter is used for a function and a constant, for example,

we denote by σ̃ the diffusion coefficient in the general equation (3.1.1)

and by σ the constant in the CKLS equation (1.1.1).

We assume that the equation has a unique weak solution Xx
t such

that P(Xx
t ∈ D, t ≥ 0) = 1 for all x ∈ D. For example, for Eq. (1.1.1),

we can take D = R+.

Having a fixed time interval [0, T ], consider an equidistant time dis-

cretization ∆h = {ih, i = 0, 1, . . . , bT/hc, h ∈ (0, T ]}, where bac is the

integer part of a. By a discretization scheme of Eq. (3.1.1) we mean a

family of discrete-time homogeneous Markov chains X̂h = {X̂h(x, t), x ∈
D, t ∈ ∆h} with initial values X̂h(x, 0) = x and one-step transition

probabilities ph(x,dz), x ∈ D. For convenience, we only consider steps

19



h = T/n, n ∈ N. We shortly write X̂x
t or X̂(x, t) instead of X̂h(x, t).

Note that because of the Markovity, a one-step approximation X̂x
h of

the scheme completely defines the distribution of the whole discretiza-

tion scheme X̂x
t , so that we only need to construct the former.

We denote by C∞(D) the space of C∞ functions f : D → R, by

C∞0 (D) the functions f ∈ C∞(D) with compact support in D, and by

C∞pol(D) the functions f ∈ C∞(D) such that

|f (n)(x)| ≤ Cn(1 + |x|kn), x ∈ D, n ∈ N0 := {0, 1, 2, . . . },

for some sequence (Cn, kn) ∈ R+×N0. Following Alfonsi [2], we say that

such a sequence {(Cn, kn), n ∈ N0} is a good sequence for f .

We will write g(x, h) = O(hn) if for some C > 0, k ∈ N, and h0 > 0,

|g(x, h)| ≤ C(1 + |x|k)hn, x ≥ 0, 0 < h ≤ h0.

If, in particular, the function g is expressed in terms of another

function f ∈ C∞pol(R) and the constants C, k, and h0 only depend on a

good sequence for f , then we will write, instead, g(x, h) = O(hn).

Definition 3.1. A discretization scheme X̂h is a weak νth-order ap-

proximation for the solution (Xx
t , t ∈ [0, T ]) of Eq. (3.1.1) if for every

f ∈ C∞0 (D), there exists C > 0 such that

|Ef(Xx
T )− Ef(X̂x

T )| ≤ Chν , h > 0.

Definition 3.2. Let Lf = bf ′+ 1
2 σ̃

2f ′′ be the generator of the solution

of Eq. (3.1.1). Suppose Lf ∈ C∞pol(D) for all f ∈ C∞pol(D), that is,

b, σ̃2 ∈ C∞pol(D). The νth-order remainder of a discretization scheme X̂x
t

for Xx
t is the operator Rhν : C∞pol(D)→ C(D) defined by

Rhνf(x) := Ef(X̂x
h)−

[
f(x) +

ν∑
k=1

Lkf(x)

k!
hk
]
, x ∈ D, h > 0. (3.1.2)

A discretization scheme X̂x
t is a local νth-order weak approximation of

Eq. (3.1.1) if

Rhνf(x) = O(hν+1), h→ 0,

for all f ∈ C∞pol(D) and x ∈ D.
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Remark 3.1. Iterating the Dynkin formula

Ef(Xx
h) = f(x) +

h∫
0

ELf(Xx
s )ds,

we have

Ef(Xx
h) = f(x) +

ν∑
k=1

Lkf(x)

k!
hk

+

h∫
0

s1∫
0

· · ·
sν∫

0

ELν+1f(Xx
sν+1

)dsν+1 · · · ds2ds1, (3.1.3)

which motivates Definition 3.2: If Lν+1f behaves “well” (e.g., b, σ̃2, f ∈
C∞0 (D), and ELν+1f is bounded), then for the “one-step” νth-order

weak approximation scheme X̂x
h , we have

|Ef(Xx
h)− Ef(X̂x

h)| = O(hν+1), h→ 0. (3.1.4)

We may expect that in “good” cases, a local νth-order weak discretiza-

tion scheme is a νth-order (global) approximation. Rigorous statements

require certain uniformity of (3.1.4) with respect to f and regularity of

L.

Definition 3.3. A discretization scheme X̂x
t is a potential νth-order

weak approximation for Eq. (3.1.1) if for every f ∈ C∞pol(D),

|Rhνf(x)| = O(hν+1).

Definition 3.4. A discretization scheme X̂x
t = X̂h(x, t), h > 0, has

uniformly bounded moments if there exists h0 > 0 such that

sup
0<h≤h0

sup
t∈∆h

E(|X̂h(x, t)|n) < +∞, n ∈ N, x ∈ D.

We say that a potential νth-order weak approximation is a strongly

potential νth-order weak approximation if it has uniformly bounded

moments.

Remark 3.2. Typically, a strongly potential νth-order discretization is

a νth-order weak approximation in the sense of Definition 3.1. At least,

we do not know any counterexample. A rigorous proof for the CIR

equation is given by Alfonsi [1] (see also [34]).

21



3.2 Split-step technique for SDE

The general idea of a split-step (also called a splitting-step) method,

which is based on the idea in [40] (see also [13, 37]), is described by

Moro and Schurz [38]. Their approach heavily relies on the exploitation

of the specific structure of the original system (3.1.1), which allows a

natural splitting into explicitly known parts of the underlying dynam-

ics with well-known boundary behavior and the remaining parts to be

treated numerically with naturally incorporated boundary behavior (or

even without restrictions). The method is especially efficient at approxi-

mating solution of SDE (3.1.1), where boundary conditions are naturally

inherent. Suppose that the equation has form

dXx
t = [α(Xx

t ) + β̃(Xx
t )]dt+ σ̃(Xx

t ) dBt. (3.2.1)

They decompose the above equation into the two equations

dSxt = α(Sxt )dt+ σ̃(Sxt ) dBt, (3.2.2)

dDx
t = β̃(Dx

t )dt, (3.2.3)

where the splitting is done assuming that one knows the exact strong

solution for Sxt or the conditional probability P(Sxt ). They suggest ap-

proximating the solution of (3.2.1) by a stochastic process X̂x
t along

time intervals [t, t+ h] for each h using two-step algorithm:

1. Knowing the value of x they obtain an intermediate value Sxh

through the exact integration of (3.2.2).

2. Then Sxh is used as the initial condition for (3.2.3) which is now

integrated using any converging deterministic numerical algorithm

to get D
Sxh
h (at least of deterministic order 1). Then X̂x

t+h = D
Sxh
h .

The advantage of this split-step technique for SDE subject to bound-

ary conditions is that if (3.2.2) is simple enough and we know the solu-

tion Sxh of (3.2.2), then the stochastic part of the problem can be handled

correctly.
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A different kind of splitting technique has been suggested by Higham

et al. [19] and reviewed in [38]. Their algorithm, called the split-step Eu-

ler method, is related to another subclass of splitting of SDE and their

resulting split-step algorithm is of lower order 0.5 of mean square con-

vergence, which is restricted by their use of the (drift-implicit) backward

Euler method. Their method indirectly refers to the splitting

dDx
t = [α(Dx

t ) + β̃(Dx
t )]dt,

dSxt = σ̃(Sxt ) dBt,

where both equations for D and S are numerically integrated in a sep-

arated fashion.

3.3 Split-step technique for the CKLS model

We use approach described in [38] and decompose Eq. (1.1.1) into equa-

tions

dDx
t = (θ − βDx

t )dt, Dx
0 = x ≥ 0,

and

dSxt = σ(Sxt )γ dBt, Sx0 = x ≥ 0, (3.3.1)

and assign names the deterministic part and the stochastic part, respec-

tively, with some loss of accuracy.

The solution of the deterministic part is positive for all (x, t) ∈ R+×
(0, T ], namely:

Dx
t = D(x, t) =

{
xe−βt + θ

β (1− e−βt), β 6= 0,

x+ θt, β = 0.
(3.3.2)

The solution of the stochastic part is not explicitly known. The

following theorem allows us to reduce the construction of a weak second-

order approximation to that of the stochastic part. Let Ŝxt = Ŝ(x, t) be

a discretization scheme for the stochastic part (3.3.1).
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Theorem 3.3. (see [2, Thm. 1.17]) Let Ŝxt be a potential first-order

weak approximation of the stochastic part (3.3.1) of Eq. (1.1.1). Then

the split-step composition

X̂x
h := D(Ŝxh , h), x ≥ 0, h > 0, (3.3.3)

defines a potential first-order weak approximation of Eq. (1.1.1).

Theorem 3.4. (see [2, Thm. 1.17]) Let Ŝxt be a potential second-order

weak approximation of the stochastic part (3.3.1) of Eq. (1.1.1). Then

the (split-step) composition

X̂h(x, h) :=

{
D
(
Ŝ
(
D(x, h/2), h

)
, h/2

)
, h > 0,

x, h = 0,
(3.3.4)

defines a potential second-order weak approximation of Eq. (1.1.1).

Corollary 3.5. If Ŝxt is a strongly potential first-order weak approxima-

tion of the stochastic part (3.3.1) of Eq. (1.1.1), then composition (3.3.3)

is a strongly potential first-order weak approximation of Eq. (1.1.1).

Corollary 3.6. If Ŝxt is a strongly potential second-order weak ap-

proximation of the stochastic part (3.3.1) of Eq. (1.1.1), then compo-

sition (3.3.4) is a strongly potential second-order weak approximation of

Eq. (1.1.1).

The theorems and corollaries allow us to restrict ourselves, with-

out loss of generality, on the strongly potential first-order and second-

order weak approximations of the stochastic part dSxt = σ(Sxt )γ dBt of

Eq. (1.1.1).

3.4 Moment matching technique for the CKLS
model

Let Ŝxh be any discretization scheme. Using Taylor’s formula for f ∈
C4(R), we have

Ef(Ŝxh) = f(x) + f ′(x)E(Ŝxh − x) +
f ′′(x)

2
E(Ŝxh − x)2
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+
f ′′′(x)

6
E(Ŝxh − x)3 +

1

6
E

Ŝxh∫
x

f (4)(s)(Ŝxh − s)3ds.

It is worth noting that further technical calculations were mainly

made by using MAPLE software.

For brevity, we denote z := ah = σ2h. Since the generator of the

stochastic part dSxt = σ(Sxt )γdBt is (see Definition (3.2))

L0f(x) =
1

2
ax2γf ′′(x),

where the subscript 0 indicates that b = 0, the first-order remainder for

Ŝxh is

Rh1f(x) = Ef(Ŝxh)−

[
f(x) + L0f(x)h

]

= f ′(x)E(Ŝxh − x) +
f ′′(x)

2
[E(Ŝxh − x)2 − x2γz] (3.4.1)

+
f ′′′(x)

6
E(Ŝxh − x)3 + r1(x, h), x ≥ 0, h > 0,

where

|r1(x, h)| = 1

6

∣∣∣∣∣E
Ŝxh∫
x

f (4)(s)(Ŝxh − s)3ds

∣∣∣∣∣
≤ 1

24
E

[
max

0≤s≤Ŝxh
|f (4)(s)|(Ŝxh − x)4

]
.

By the above expression of the remainder Rh1f(x) the discretization

scheme Ŝxh is a potential first-order approximation of the stochastic part

(3.3.1) if

E(Ŝxh − x) = O(h2), x ≥ 0, (3.4.2)

E(Ŝxh − x)2 = x2γz +O(h2), x ≥ 0, (3.4.3)

|E(Ŝxh − x)3| = O(h2), x ≥ 0, (3.4.4)

E
[

max
0≤s≤Ŝxh

|f (4)(s)|(Ŝxh − x)4
]

= O(h2). (3.4.5)

25



We easily convert conditions (3.4.2)–(3.4.3) for the central moments

of Ŝxh into conditions for the noncentral moments:

E(Ŝxh)i = 1m̂i +O(h2), i = 1, 2, (3.4.6)

where the “moments” (further we call them approximate moments; to in-

dicate the accuracy of an approximate moment, we will write a subscript

k: E(Ŝxh)i = km̂i + O(hk+1), k, i ∈ N) 1m̂i = 1m̂i(x, h), x ≥ 0, h > 0,

i = 1, 2, are defined as

1m̂1 =x,

1m̂2 =x2γz + x2.
(3.4.7)

Using Taylor’s formula for f ∈ C6(R), we get

Ef(Ŝxh) = f(x) + f ′(x)E(Ŝxh − x) +
f ′′(x)

2
E(Ŝxh − x)2

+
f ′′′(x)

6
E(Ŝxh − x)3 +

f (4)(x)

4!
E(Ŝxh − x)4

+
f (5)(x)

5!
E(Ŝxh − x)5 +

1

5!
E

Ŝxh∫
x

f (6)(s)(Ŝxh − s)5ds.

Since the square of the generator of stochastic part (3.3.1) is (see

Definition 3.2)

L2
0f(x) = 1

2 ax
2γ
(

1
2 ax

2γf ′′(x)
)′′

= 1
4 a

2x2γ
(
2 γx2γ−1f ′′(x) + x2γf ′′′(x)

)′
= γ(γ − 1

2) a2x4γ−2f ′′(x) + γa2x4γ−1f ′′′(x) + 1
4 a

2x4γf (4)(x),

the second-order remainder for Ŝxh is

Rh2f(x) = Ef(Ŝxh)−

[
f(x) + L0f(x)h+ L2

0f(x)
h2

2

]
= f ′(x)E(Ŝxh − x)

+
f ′′(x)

2
[E(Ŝxh − x)2 − (1 + γ(γ − 1

2
)x2(γ−1)z)x2γz]

+
f ′′′(x)

6
[E(Ŝxh − x)3 − 3 γx4γ−1z2]

+
f (4)(x)

4!
[E(Ŝxh − x)4 − 3x4γz2]
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+
f (5)(x)

5!
E(Ŝxh − x)5 + r2(x, h), x ≥ 0, h > 0,

where

|r2(x, h)| = 1

5!

∣∣∣∣∣E
Ŝxh∫
x

f (6)(s)(Ŝxh − s)5ds

∣∣∣∣∣
≤ 1

6!
E

[
max

0≤s≤Ŝxh
|f (6)(s)|(Ŝxh − x)6

]
.

By the above expression of the remainder Rh2f(x) the discretization

scheme Ŝxh is a potential second-order approximation of the stochastic

part (3.3.1) if

E(Ŝxh − x) = O(h3), x ≥ 0, (3.4.8)

E(Ŝxh − x)2 = (1 + γ(γ − 1

2
)x2(γ−1)z)x2γz +O(h3), x ≥ 0, (3.4.9)

E(Ŝxh − x)3 = 3γx4γ−1z2 +O(h3), x ≥ 0, (3.4.10)

E(Ŝxh − x)4 = 3x4γz2 +O(h3), x ≥ 0, (3.4.11)

|E(Ŝxh − x)5| = O(h3), x ≥ 0, (3.4.12)

E
[

max
0≤s≤Ŝxh

|f (6)(s)|(Ŝxh − x)6
]

= O(h3). (3.4.13)

Initially, for constructing our approximations, instead of (3.4.13), we

will require a slightly weaker condition

E(Ŝxh − x)6 = O(h3). (3.4.13a)

Later we will see that, actually, all our approximations satisfy the re-

quired stronger condition (3.4.13).

We convert conditions (3.4.8)–(3.4.12) and (3.4.13a) for the central

moments of Ŝxh into conditions for the noncentral moments:

E(Ŝxh)i = 2m̂i +O(h3), i = 1, 2, . . . , 6, (3.4.14)
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where the approximate moments 2m̂i = 2m̂i(x, h), x ≥ 0, h > 0, i =

1, 2, . . . , 6, are defined as

2m̂1 =x,

2m̂2 =γ(γ − 1
2)x2(2γ−1)z2 + x2γz + x2,

2m̂3 =3
2γ(1 + 2γ)x4γ−1z2 + 3x1+2γz + x3,

2m̂4 =3(1 + γ)(1 + 2γ)x4γz2 + 6x2(1+γ)z + x4,

2m̂5 =5(3 + 2γ)(1 + γ)x1+4γz2 + 10x3+2γz + x5,

2m̂6 =15
2 (2 + γ)(3 + 2γ)x2(1+2γ)z2 + 15x2(2+1γ)z + x6.

(3.4.15)

Using Taylor’s formula for f ∈ C8(R), we get

Ef(Ŝxh) = f(x) + f ′(x)E(Ŝxh − x) +
f ′′(x)

2
E(Ŝxh − x)2

+
f ′′′(x)

6
E(Ŝxh − x)3 +

f (4)(x)

4!
E(Ŝxh − x)4

+
f (5)(x)

5!
E(Ŝxh − x)5 +

f (6)(x)

6!
E(Ŝxh − x)6

+
f (7)(x)

7!
E(Ŝxh − x)7 +

1

7!
E

Ŝxh∫
x

f (8)(s)(Ŝxh − s)7ds.

Since the third power of the generator of stochastic part (3.3.1) is

(see Definition 3.2)

L3
0f(x) =L0L

2
0f(x) = 1

2 ax
2γ
(

1
2 ax

2γ
(

1
2 ax

2γf ′′(x)
)′′)′′

= 1
2 γa

3x2γ
(
(γ − 1

2)x4γ−2f ′′(x) + x4γ−1f ′′′(x)
)′′

+ 1
8 a

3x2γ
(
x4γf (4)(x)

)′′
= 1

2 γa
3x6 γ−3

(
(2 γ − 1)2 f ′′(x) + 1

2 (10 γ − 3)xf ′′′(x)
)

+ 1
2 a

3x2γ
(

2 γx4 γ−1f (4)(x) + 1
4 x

4 γf (5)(x)
)′

= 1
2 γ(4γ − 3)(2γ − 1)2 a3x2(3γ−2)f ′′(x)

+ 2γ(3γ − 1)(2γ − 1) a3x3(2γ−1)f ′′′(x)

+ 1
4 γ(26γ − 7) a3x2(3γ−1)f (4)(x) + 3

2 γ a
3x6γ−1f (5)(x)

+ 1
8 a

3x6γf (6)(x),
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the third-order remainder for Ŝxh is

Rh3f(x) = Ef(Ŝxh)−

[
f(x) + L0f(x)h+ L2

0f(x)
h2

2
+ L3

0f(x)
h3

6

]
= f ′(x)E(Ŝxh − x)

+
f ′′(x)

2
[E(Ŝxh − x)2 − (1 + γ(γ − 1

2)x2(γ−1)z

× (1 + 8
3(γ − 3

4)(γ − 1
2)x2(γ−1)z))x2γz]

+
f ′′′(x)

6
[E(Ŝxh − x)3

− 3γ(1 + 4(γ − 1
3)(γ − 1

2)x2(γ−1)z)x4γ−1z2]

+
f (4)(x)

4!
[E(Ŝxh − x)4 − (3 + γ(26γ − 7)x2(γ−1)z)x4γz2]

+
f (5)(x)

5!
[E(Ŝxh − x)5 − 30γx6γ−1z3]

+
f (6)(x)

6!
[E(Ŝxh − x)6 − 15x6γz3]

+
f (7)(x)

7!
E(Ŝxh − x)7 + r3(x, h), x ≥ 0, h > 0,

where

|r3(x, h)| = 1

7!

∣∣∣∣∣E
Ŝxh∫
x

f (8)(s)(Ŝxh − s)7ds

∣∣∣∣∣
≤ 1

8!
E

[
max

0≤s≤Ŝxh
|f (8)(s)|(Ŝxh − x)8

]
.

By the above expression of the remainder Rh3f(x) the discretization

scheme Ŝxh is a potential third-order approximation of the stochastic part

(3.3.1) if

E(Ŝxh − x) = O(h4), x ≥ 0, (3.4.16)

E(Ŝxh − x)2 = (1 + γ(γ − 1
2)x2(γ−1)z

× (1 + 8
3(γ − 3

4)(γ − 1
2)x2(γ−1)z))x2γz (3.4.17)

+O(h4), x ≥ 0,

E(Ŝxh − x)3 = 3γ(1 + 4(γ − 1
3)(γ − 1

2)x2(γ−1)z)x4γ−1z2

+O(h4), x ≥ 0, (3.4.18)
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E(Ŝxh − x)4 = (3 + γ(26γ − 7)x2(γ−1)z)x4γz2 +O(h4), x ≥ 0, (3.4.19)

E(Ŝxh − x)5 = 30γx6γ−1z3 +O(h4), x ≥ 0, (3.4.20)

E(Ŝxh − x)6 = 15x6γz3 +O(h4), x ≥ 0, (3.4.21)

|E(Ŝxh − x)7| = O(h4), x ≥ 0, (3.4.22)

E
[

max
0≤s≤Ŝxh

|f (8)(s)|(Ŝxh − x)8
]

= O(h4). (3.4.23)

We convert conditions (3.4.16)–(3.4.21) for the central moments of

Ŝxh into conditions for the noncentral moments:

E(Ŝxh)i = 3m̂i +O(h4), i = 1, 2, . . . , 6, (3.4.24)

where the approximate moments 3m̂i = 3m̂i(x, h), x ≥ 0, h > 0, i =

1, 2, . . . , 6, are defined as

3m̂1 = x,

3m̂2 = 8
3γ(γ − 1

2)2(γ − 3
4)x2(3γ−2)z3

+ γ(γ − 1
2)x2(2γ−1)z2 + x2γz + x2,

3m̂3 = γ(1 + 2γ)(γ − 1
2)(4γ − 1)x3(2γ−1)z3

+ 3
2γ(1 + 2γ)x4γ−1z2 + 3x1+2γz + x3,

3m̂4 = 2γ(4γ − 1)(1 + 2γ)(1 + γ)x2(3γ−1)z3

+ 3(1 + γ)(1 + 2γ)x4γz2 + 6x2(1+γ)z + x4,

3m̂5 = 10
3 γ(3 + 2γ)(1 + 4γ)(1 + γ)x6γ−1z3

+ 5(3 + 2γ)(1 + γ)x1+4γz2 + 10x3+2γz + x5,

3m̂6 = 5
2(3 + 2γ)(1 + 2γ)(1 + 4γ)(2 + γ)x6γz3

+ 15
2 (2 + γ)(3 + 2γ)x2(1+2γ)z2 + 15x2(2+1γ)z + x6.

(3.4.25)

Remark 3.7. We noticed expressing Rh1f(x), Rh2f(x), and Rh3f(x) that

(3.1.2) can be used finding E(Sxh)i, i ∈ N0, with desired accuracy for

more general b and σ̃. Indeed, let us find an expression of 3m̂2 such that

E(Sxh)2 − 3m̂2 = O(h4). (3.4.26)

From Rh3f(x) we see that to eliminate the member with f ′′(x)/2 and to

reach the desired accuracy, we need to force a coefficient at f ′′(x)/2 to
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be equal O(h4). Since we are looking for Ef(Sxh), it is obvious that the

coefficient at f ′′(x)/2 equals O(h4) if

E(Ŝxh − x)2 − E(Sxh − x)2 = O(h4).

We use this remark to find 3m̂2. Since the first, second, and third

powers of the generator of the stochastic part of (3.1.1) are (see Defini-

tion 3.2)(the subscript 0 indicates that b = 0)

L0f = 1
2 σ̃

2f ′′,

L2
0f = 1

2 σ̃
2
(

1
2 σ̃

2f ′′
)′′

= 1
2 σ̃

2
(

1
2 σ̃

2f ′′′ + σ̃σ̃′f ′′
)′

= 1
4 σ̃

4f (4) + σ̃3σ̃′f ′′′ + 1
2 σ̃

2
(
σ̃σ̃′′ +

(
σ̃′
)2)

f ′′,

L3
0f = L0L

2
0f = 1

2 σ̃
2
(

1
4 σ̃

4f (4) + σ̃3σ̃′f ′′′ + 1
2 σ̃

2
(
σ̃σ̃′′ +

(
σ̃′
)2)

f ′′
)′′

= 1
8 σ̃

2
(
σ̃
(
σ̃3f (5) + 8 σ̃2σ̃′f (4) + 2 σ̃

(
3 σ̃σ̃′′ + 7 (σ̃′)2

)
f ′′′
))′

+ 1
4 σ̃

2
(
σ̃
(

5 σ̃σ̃′σ̃′′ + σ̃2σ̃′′′ + 2
(
σ̃′
)3)

f ′′
)′

= 1
8 σ̃

6f (6) + 3
2 σ̃

5σ̃′f (5) + 1
4 σ̃

4
(

7 σ̃σ̃′′ + 19
(
σ̃′
)2)

f (4)

+ σ̃3
(
σ̃2σ̃′′′ + 7 σ̃σ̃′σ̃′′ + 4

(
σ̃′
)3)

f ′′′

+ 1
4 σ̃

4
(
σ̃σ̃(4) + 5

(
σ̃′′
)2

+ 8 σ̃′σ̃′′′
)
f ′′

+ 1
2 σ̃

2
(
σ̃′
)2 (

8 σ̃σ̃′′ +
(
σ̃′
)2)

f ′′,

we collect the coefficients of f ′′ in these expressions and sum them:

E(Sxh − x)2 = 2
3∑

k=1

(coefficient at f ′′ in Lk0f)

k!
hk +O(h4)

= σ̃2h+ 1
2 σ̃

2
(
σ̃σ̃′′ +

(
σ̃′
)2)

h2

+ 1
12 σ̃

4
(
σ̃σ̃(4) + 5

(
σ̃′′
)2

+ 8 σ̃′σ̃′′′
)
h3

+ 1
6 σ̃

2
(
σ̃′
)2 (

8 σ̃σ̃′′ +
(
σ̃′
)2)

h3 +O(h4).

We know that

E(Sxh)2 = E(Sxh − x)2 + (E(Sxh))2.

From this and the expression of E(Sxh − x)2 we get

3m̂2 =x2 + σ̃2h+ 1
2 σ̃

2
(
σ̃σ̃′′ +

(
σ̃′
)2)

h2
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+ 1
12 σ̃

4
(
σ̃σ̃(4) + 5

(
σ̃′′
)2

+ 8 σ̃′σ̃′′′
)
h3

+ 1
6 σ̃

2
(
σ̃′
)2 (

8 σ̃σ̃′′ +
(
σ̃′
)2)

h3.

This means that we can calculate and use the moments of the stochastic

part (3.3.1) from (3.4.25) with accuracy O(z4); in other words, using

these expressions, we only lose the members having the multiplier h of

degree 4 or higher.

Example 3.8. The approximate moments of dSxt = σ(Sxt )1/2dBt are:

3m̂1 = x,

3m̂2 = xz + x2,

3m̂3 = 3
2xz

2 + 3x2z + x3,

3m̂4 = 3xz3 + 9x2z2 + 6x3z + x4,

3m̂5 = 30x2z3 + 30x3z2 + 10x4z + x5,

3m̂6 = 150x3z3 + 75x4z2 + 15x5z + x6,

where x ≥ 0, z > 0.

Example 3.9. The approximate moments of dSxt = σ(Sxt )2/3dBt are:

3m̂1 = x,

3m̂2 = − 1
243z

3 + 1
9 x

2/3z2 + x4/3z + x2,

3m̂3 = 35
81 xz

3 + 7
3 x

5/3z2 + 3x7/3z + x3,

3m̂4 = 700
81 x

2z3 + 35
3 x

8/3z2 + 6x10/3z + x4,

3m̂5 = 14300
243 x3z3 + 325

9 x11/3z2 + 10x13/3z + x5,

3m̂6 = 20020
81 x4z3 + 260

3 x14/3z2 + 15x16/3z + x6,

where x ≥ 0, z > 0.
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Chapter 4

First-order approximation

In this chapter, we construct a first-order discretization scheme for the

solution of the CKLS model. In the first section of the chapter, we dis-

cuss all techniques used to find the first-order approximation. In Section

4.2, we find a general construction for a potential first-order discretiza-

tion scheme of the stochastic part. Section 4.3 is dedicated to finding

a discretization scheme for the CKLS equation. In Section 4.4, we give

an algorithm for simulations, and finally, in Section 4.5, we provide nu-

merical simulations illustrating the accuracy of CKLS approximations.

4.1 A first-order approximation

We construct our scheme applying methods described in Section 3.3.

First, we split the CKLS model into the stochastic and deterministic

parts. The solution of dDx
t = (θ − βDx

t )dt, Dx
0 = x ≥ 0, is easy to find

(see (3.3.2)), and then we focus on constructing a first-order discretiza-

tion scheme for the solution of the stochastic part dSxt = σ̃(Sxt ) dBt,

Sx0 = x ≥ 0. For this, we use approximate moments (see Remark 3.7)

instead of using exact ones. We apply the found construction to the

stochastic part dSxt = σ(Sxt )γ dBt, Sx0 = x ≥ 0, and we prove that

constructed potential approximation is, in fact, a strongly potential ap-

proximation of the stochastic part of the CKLS equation. Theorem

3.3 allows us to merge split-step parts of equation (1.1.1) using com-

position (3.3.3), and in this way, we get a strongly potential first-order
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approximation of the CKLS equation.

4.2 A potential first-order approximation of
the stochastic part

The generator of the stochastic part dSxt = σ̃(Sxt )dBt (the stochastic

part of (3.1.1)) for f ∈ C2(R+) is

L0f(x) =
1

2
σ̃2(x)f ′′(x),

(see Definition 3.2). If f ∈ C4(R+) and E(Sxh)2 is finite, then similarly to

(3.4.1), we get that the discretization scheme Ŝxh is a potential first-order

approximation of the stochastic part (3.3.1) if

E(Ŝxh − x) = 0, x ≥ 0, (4.2.1)

E(Ŝxh − x)2 = σ̃2(x)h+O(h2), x ≥ 0, (4.2.2)

|E(Ŝxh − x)3| = O(h2), x ≥ 0, (4.2.3)

E
[

max
0≤s≤Ŝxh

|f (4)(s)|(Ŝxh − x)4
]

= O(h2). (4.2.4)

It is obvious that

E(Ŝxh − x) = E(Sxh − x) = 0.

From Remark 3.7 we know that condition (4.2.2) in fact means that

E(Ŝxh − x)2 − E(Sxh − x)2 = O(h2).

Using the equality

EX2 = E(X − EX)2 + (EX)2

for any random variable X, we get the second approximate moment of

Sxh :

E(Sxh)2 = σ̃2(x)h+ (E(Sxh))2 +O(h2).

Denote m̂1 := 1m̂1 = E(Sxh) = x and m̂2 := 1m̂2 = σ̃2(x)h + m̂2
1 and

construct Ŝxh . Clearly, for x = 0, we can trivially take Ŝ0
h = 0 for all
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h > 0. For x > 0, let us first look for Ŝxh satisfying (4.2.1) and (4.2.2)

and taking two positive values x1 and x2 with probabilities p1 and p2,

respectively, that is,

p1 + p2 = 1, (4.2.5)

x1p1 + x2p2 = m̂1, (4.2.6)

x2
1p1 + x2

2p2 = m̂2. (4.2.7)

Denote, for short, p = p2. Then from (4.2.5)–(4.2.7) we have

x1
1− p
m̂1

+ x2
p

m̂1
= 1, (4.2.8)

x2
1(1− p) + x2

2p = m̂2. (4.2.9)

Consider c = x2p
m̂1
∈ (0, 1) as a parameter. Then from (4.2.8) we have

x1 = m̂1(1−c)
1−p and x2 = m̂1c

p , and from (4.2.9) we get the following

quadratic equation for p:

m̂2 p
2 +

(
m̂2

1 (1− 2c)− m̂2

)
p+ m̂2

1c
2 = 0.

Since m̂2
1 < m̂2 = σ̃2(x)h+ m̂2

1, the discriminant of this equation(
m̂2

1 (1− 2c)− m̂2

)2−4 m̂2 m̂
2
1c

2 =
(
m̂2 − m̂2

1

) (
m̂2 − m̂2

1 (1− 2c)2
)
> 0

as (1 − 2c)2 < 1 for c ∈ (0, 1). So the quadratic equation has two real

roots

m̂2 + (2c− 1)m̂2
1 ∓

√
(m̂2 − m̂2

1)
(
m̂2 − m̂2

1(2c− 1)2
)

2 m̂2
,

which are both positive because their sum
m̂2

1
m̂2

(2c − 1) + 1 and product
m̂2

1
m̂2
c2 are clearly positive. Denote

∆ :=
√

(m̂2 − m̂2
1)
(
m̂2 − m̂2

1(2c− 1)2
)
.

Let us consider, say,

p2 = p =
m̂2 + (2c− 1) m̂2

1 −∆

2 m̂2
. (4.2.10)
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Then

p1 = 1− p =
m̂2 − (2 c− 1) m̂2

1 + ∆

2 m̂2
, (4.2.11)

x1 =
m̂1(1− c)

p1
=
m̂2 − (2 c− 1) m̂2

1 −∆

2 m̂1 (1− c)
, (4.2.12)

x2 =
m̂1c

p2
=
m̂2 + (2 c− 1) m̂2

1 + ∆

2 m̂1c
. (4.2.13)

Obviously, p1, x2, and x1 are also positive. Let us now calculate the cen-

tral moment E(Ŝxh−x)3, where Ŝxh takes the values x1,2 with probabilities

p1,2 defined in (4.2.10)–(4.2.13):

E(Ŝxh − x)3 = E(Ŝxh − m̂1)3

= E(Ŝxh)3 − 3E(Ŝxh)2m̂1 + 3E(Ŝxh) m̂2
1 − m̂3

1

= x3
1 p1 + x3

2 p2 − 3 (x2
1 p1 + x2

2 p2) m̂1 + 2 m̂3
1 (4.2.14)

=

(
m̂2 − m̂2

1

)2
+
(
m̂2 − m̂2

1

)
(1− 2 c) ∆

2 m̂1 c (1− c)

=
σ̃4(x)h2 + σ̃3(x) (1− 2 c) h

√(
σ̃2(x)h+ 4x2c (1− c)

)
h

2x c (1− c)
.

The second summand in the numerator of the last expression of (4.2.14)

is of order O(h3/2). To ensure (4.2.3), we have to eliminate it by taking

c = 1/2. In such a case, from (4.2.10)–(4.2.13) we get the following

solution of system (4.2.5)–(4.2.7):

x1,2 =
m̂2

m̂1
∓

√
m̂2(m̂2 − m̂2

1)

m̂2
1

(4.2.15)

p1,2 =
m̂1

2x1,2
=

x

2x1,2
, x > 0. (4.2.16)

Note that the constructed potential first-order two-valued approxima-

tion of the stochastic part does not require knowing the exact finite

moment E(Sxh)2.
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4.3 A strongly potential first-order
approximation of the CKLS equation

From Section 4.2 we get the first-order potential one-step approximation

of the stochastic part dSxt = σ(Sxt )γ dBt:{
x1 = x+ x2γ−1σ2h−

√
(x2γ + x2(2γ−1)σ2h)σ2h > 0, x > 0,

x2 = x+ x2γ−1σ2h+
√

(x2γ + x2(2γ−1)σ2h)σ2h > 0, x > 0,

(4.3.1)

P{Ŝxh = x1,2} = p1,2 =
x

2x1,2
, x > 0. (4.3.2)

Remark 4.1. In the case of the CIR equation the two-valued discretiza-

tion scheme of the stochastic part defined by (4.3.1)–(4.3.2) coincides

with that of Mackevičius [33]. In turn, the latter is a particular case

of the two-valued discretization scheme of Alfonsi [2, Sect. 2.2], who

used it to approximate the CIR equation near zero in a second-order

approximation.

Theorem 4.2 (Theorem 1.1). Let X̂x
t be the discretization scheme de-

fined by composition (3.3.3), where Ŝxh takes values x1, x2 with proba-

bilities p1, p2 defined in (4.3.1)–(4.3.2) (Ŝ0
h = 0). Then X̂x

t is a strongly

potential first-order discretization scheme for the CKLS equation (1.1.1).

Proof. We have to check that scheme (4.3.1)–(4.3.2) satisfies conditions

(3.4.4)–(3.4.5). For brevity, we further denote z := σ2h. For x > 0, by

rather tedious calculations we have

E(Ŝxh − x)3 = (x1 − x)3 x

2x1
+ (x2 − x)3 x

2x2
= 2x4γ−1z2, (4.3.3)

E(Ŝxh − x)4 = (x1 − x)4 x

2x1
+ (x2 − x)4 x

2x2

= x4γ(1 + 4x2(γ−1)z)z2. (4.3.4)

Now (3.4.4) follows from (4.3.3). If f (4) is bounded, then from (4.3.4) we

immediately get (3.4.5). In fact, (3.4.5) is satisfied for every f ∈ C∞pol(D).

By the expression of the maximal value x2 of Ŝxh and the simple estimate

|P (x, y)| ≤ M(|x|p + |y|p) for all x, y ∈ R with some finite constant
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M , where P (x, y) is a pth-order homogeneous two-variable polynomial,

condition (3.4.5) is satisfied for every f ∈ C∞pol(D) (suppose |f (4)(x)| ≤
C4(1 + xk4)):

E
[

max
0≤s≤Ŝxh

|f (4)(s)|(Ŝxh − x)4
]
≤ max

0≤s≤x2
|f (4)(s)|E(Ŝxh − x)4

≤ C4(1 + xk42 )E(Ŝxh − x)4

= C4

(
1 +

(
x+ x2γ−1z +

√
(x2γ + x2(2γ−1)z)z

)k4)
E(Ŝxh − x)4

≤ C4

(
1 + 2k4

(
x+ x2γ−1z

)k4)E(Ŝxh − x)4

≤ C4

(
1 + 2k4 (x+ (1 + x) z)k4

)
E(Ŝxh − x)4

≤ C4

(
1 + 2k4 (1 + z)k4 (1 + x)k4

)
E(Ŝxh − x)4

≤ C4

(
1 + C5

(
xk4 + 1

))
E(Ŝxh − x)4

≤ C(1 + xk4)E(Ŝxh − x)4 = O(h2).

We need to prove that the discretization scheme Ŝxh has uniformly

bounded moments. To this end, we need the following lemma.

Lemma 4.3. For p ∈ N,

E(Ŝxh)p = xR̂p(x, x
2γ−1z), and

E(Ŝxh − x)2p = x(x2γ−1z)pQ̂p(x, x
2γ−1z),

where R̂p = R̂p(x, y) and Q̂p = Q̂p(x, y) are (p−1)th-order homogeneous

two-variable polynomials with positive coefficients.

Proof. Substituting the expressions of x1,2 and p1,2 into E(Ŝxh)p, we get

E(Ŝxh)p = xp1p1 + xp2p2 = xp1
x

2x1
+ xp2

x

2x2
=
x

2

(
xp−1

1 + xp−1
2

)
=
x

2

{(
x+ x2γ−1z −

√
(x2γ + x2(2γ−1)z)z

)p−1

+
(
x+ x2γ−1z +

√
(x2γ + x2(2γ−1)z)z

)p−1}
= x

{ b(p−1)/2c∑
i=0

(
p−1
2i

)
(x+ x2γ−1z)p−1−2i((x+ x2γ−1z)x2γ−1z)i

}
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= x

{ b(p−1)/2c∑
i=0

(
p−1
2i

)
(x+ x2γ−1z)p−1−i(x2γ−1z)i

}
= xR̂p(x, x

2γ−1z),

where R̂p(x, y) =
∑b(p−1)/2c

i=0

(
p−1
2i

)
(x+ y)p−1−iyi.

Similarly,

E(Ŝxh − x)2p = (x1 − x)2pp1 + (x2 − x)2pp2

= (x1 − x)2p x

2x1
+ (x2 − x)2p x

2x2

=
x

2x1x2

{
(x1 − x)2px2 + (x2 − x)2px1

}
=

1

2(x+ x2γ−1z)

{
(x1 − x)2p(x2 − x) + (x2 − x)2p(x1 − x)

+ x((x1 − x)2p + (x2 − x)2p)
}

=
−x2γz

2(x+ x2γ−1z)

{
(x1 − x)2p−1 + (x2 − x)2p−1

}
+

x

2(x+ x2γ−1z)

{
(x1 − x)2p + (x2 − x)2p

}
=

−x2γz

(x+ x2γ−1z)

{
(x2γ−1z)2p−1

+

p−1∑
i=1

(
2p−1

2i

)
(x2γ−1z)2p−1−2i((x2γ + x2(2γ−1)z)z)i

}
+

x

(x+ x2γ−1z)

{
(x2γ−1z)2p

+

p∑
i=1

(
2p
2i

)
(x2γ−1z)2p−2i((x2γ + x2(2γ−1)z)z)i

}
= x

{ p−1∑
i=1

((
2p
2i

)
−
(

2p−1
2i

))
(x2γ−1z)2p−i(x+ x2γ−1z)i−1

+ (x2γ−1z)p(x+ x2γ−1z)p−1
}

= x(x2γ−1z)p
{ p−1∑
i=1

((
2p
2i

)
−
(

2p−1
2i

))
(x2γ−1z)p−i(x+ x2γ−1z)i−1

+ (x+ x2γ−1z)p−1
}

= x(x2γ−1z)pQ̂p(x, x
2γ−1z),

where Q̂p(x, y) =
∑p−1

i=1

((
2p
2i

)
−
(

2p−1
2i

))
yp−i(x+ y)i−1 + (x+ y)p−1.
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All coefficients of Q̂p(x, x
2γ−1z) are positive integers because

(
2p
2i

)
−(

2p−1
2i

)
> 0 for all i = 1, . . . , p.

From Lemma 4.3 we also easily obtain that, for all z0 > 0 and p ∈ N,

there exists a constant C such that

E(Ŝxh)p ≤ xp(1 + Cz) + Cz, 0 < z ≤ z0.

By Proposition 1.5 of [2], this leads to the following:

Lemma 4.4. The discretization scheme Ŝxh has uniformly bounded mo-

ments.

In view of Theorem 3.3, our Theorem 4.2 now immediately follows

from Lemma 4.4.

Remark 4.5. In addition to (3.4.2) and (3.4.3), we can set the require-

ment from the second-order calculations in Section (3.4)

E(Ŝxh − x)3 = 3γx4γ−1z2 (4.3.5)

although for our approximation, by Eq. (4.2.14), we actually have

E(Ŝxh − x)3 = 2x4γ−1z2.

However, we can achieve the fulfilment of Eqs. (3.4.2), (3.4.3), and (4.3.5)

by modifying the discretization scheme (4.3.1)–(4.3.2) as follows:
x1 = x+ x2γ−1σ2h−

√
(x2γ + (3 γ − 1)x2(2γ−1)σ2h)σ2h, x > 0,

x2 = x+ x2γ−1σ2h+
√

(x2γ + (3 γ − 1)x2(2γ−1)σ2h)σ2h, x > 0,

x3 = 0, x > 0,

(4.3.6)

P{Ŝxh = x1,2} = p1,2 =
x

2x1,2
, P{Ŝxh = x3} = p3 = 1− p1 − p2, x > 0.

(4.3.7)

Note the appearance of the third value x3 = 0 and the factor 3γ − 1

inside the square root. Some improvement in accuracy of this modified

scheme is further confirmed by simulation examples. Unfortunately, this

scheme is well-defined only for γ ∈ [1/2, 2/3] since we can easily check

that for γ > 2/3, x1 may take negative values.
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4.4 Algorithm

We first give a short algorithm for calculating X̂(i+1)h given X̂ih = x at

each simulation step i:

1. Draw a uniform random number U in the interval [0, 1].

2. Given the value x > 0, generate a random variable Ŝ taking the

values x1 and x2 with probabilities p1 and p2 defined in (4.3.1)

and (4.3.2), respectively:

if U < p1, then Ŝ := x1, otherwise Ŝ := x2.

If x = 0, then Ŝ := 0.

3. Calculate (see (3.3.3))

X̂(i+1)h = D(Ŝ, h).

4.5 Simulation examples

Using the discretization scheme defined in (4.3.1)–(4.3.2), we simulate

the solution of CLKS equation (1.1.1) or its stochastic part (3.3.1) for

γ = 1/2, 11/20, 3/5, 13/20, 2/3, 7/10, 3/4, 4/5, 5/6, 7/8, and 9/10

with test functions f(x) = x19/10, x9/5, x17/10, x8/5, x2, x3, and e−x.

Such a choice of γ and f is motivated by having explicit formulas for

the expectations Ef(Sxt ) (see Appendix) and

Ee−X
x
t =

(
β

1/2σ2 (1− e−βt) + β

)2 θ
σ2

e
− xβe−βt

1/2σ2(1−e−βt)+β , (4.5.1)

where γ = 1/2 (see, for example, [21, Prop. 6.2.5]). We also simulate the

solution of CLKS equation (1.1.1) for γ = 1/2 (i.e., the CIR equation)

with the discretization scheme defined in (4.3.6)–(4.3.7) and the test

function f(x) = e−x.

In Tables 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6, we give the values of the

errors

|E(Sx1 )p − E(Ŝx1 )p|
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for some p (for which we know explicit formulas for moments) with differ-

ent approximation steps h. Tables 4.1, 4.3, and 4.5 represent calculations

with “low” volatility (σ = 0.8, θ = 0, β = 0, x0 = 1.5), and Tables 4.2,

4.4, and 4.6 represent those with “high” volatility (σ = 1.5, θ = 0, β = 0,

x0 = 1.1). In Tables 4.7 and 4.8, we give the values of |Ee−X
x
1 −Ee−X̂

x
1 |,

where X̂x
1 was calculated by generating Ŝx1 with schemes (4.3.1)–(4.3.2)

(denoted A) and modified schemes (4.3.6)–(4.3.7) (denoted Am). Ta-

ble 4.7 represents calculations with “low” volatility (σ = 0.8, θ = 0.5,

β = 0.5, x0 = 1.5), and Table 4.8 represents those with “high” volatility

(σ = 2, θ = 0.04, β = 0.1, x0 = 0.3). Each table also contains the

values of time steps h and the numbers N · 106 of generated samples

used calculating the corresponding error.

In Figures 4.1 and 4.2, we show E(Sx1 )2 (dashed lines) and E(Ŝx1 )2

(solid lines); in Figures 4.3 and 4.4 we show E(Sx1 )3 (dashed lines) and

E(Ŝx1 )3 (solid lines); in Figures 4.5 and 4.6, we show E(Sx1 )
19
10 , E(Sx1 )

9
5 ,

E(Sx1 )
17
10 , and E(Sx1 )

8
5 (dashed lines) and E(Ŝx1 )

19
10 , E(Ŝx1 )

9
5 , E(Ŝx1 )

17
10 , and

E(Ŝx1 )
8
5 (solid lines). All figures were generated by the same set of sim-

ulations that was used in the preparation of the tables. Figures 4.1, 4.3,

and 4.5 represent values with “low” volatility (σ = 0.8, θ = 0, β = 0,

x0 = 1.5) and Figures 4.2, 4.4, and 4.6 with “high” volatility (σ = 1.5,

θ = 0, β = 0, x0 = 1.1). In Figures 4.7 and 4.8 we show Ee−X
x
1 (exact)

and Ee−X̂
x
1 generated using the discretization scheme (4.3.1)–(4.3.2) (de-

noted A) and Ee−X̂
x
1 generated using the modified discretization scheme

(4.3.6)–(4.3.7) (denoted Am). Figure 4.7 represents the case of “low”

volatility (σ = 0.8, θ = 0.5, β = 0.5, x0 = 1.5) and Figure 4.8 represents

the case of “high” volatility (σ = 2, θ = 0.04, β = 0.1, x0 = 0.3). In Fig-

ures 4.9 and 4.10, we show Ee−X
x
1 for γ = 1/2 and Ee−X̂

x
1 for γ = 1/2,

2/3, 3/4, 5/6, 7/8, 9/10, where N = 106 and h = 0.25, in the cases of

“low” and “high” volatilities as before.
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Figure 4.1: E(Ŝx1 )2 (solid lines) as functions of h for some values of
γ. The exact values of E(Sx1 )2 are shown by horizontal dashed lines.
σ = 0.8, θ = 0, β = 0, x0 = 1.5.

Figure 4.2: E(Ŝx1 )2 (solid lines) as functions of h for some values of
γ. The exact values of E(Sx1 )2 are shown by horizontal dashed lines.
σ = 1.5, θ = 0, β = 0, x0 = 1.1.
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Figure 4.3: E(Ŝx1 )3 (solid lines) as functions of h for some values of γ.
The exact values of E(Sx1 )3 are shown by horizontal dashed lines. θ = 0,
β = 0, x0 = 1.5, σ = 0.8.

Figure 4.4: E(Ŝx1 )3 (solid lines) as functions of h for some values of
γ. The exact values of E(Sx1 )3 are shown by horizontal dashed lines.
σ = 1.5, θ = 0, β = 0, x0 = 1.1.
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Figure 4.5: E(Ŝx1 )
19
10 , E(Ŝx1 )

9
5 , E(Ŝx1 )

17
10 , and E(Ŝx1 )

8
5 (solid lines) as func-

tions of h for some values of γ. The exact values of E(Sx1 )
19
10 , E(Sx1 )

9
5 ,

E(Sx1 )
17
10 , and E(Sx1 )

8
5 are shown by horizontal dashed lines. σ = 0.8,

θ = 0, β = 0, x0 = 1.5.

Figure 4.6: E(Ŝx1 )
19
10 , E(Ŝx1 )

9
5 , E(Ŝx1 )

17
10 , and E(Ŝx1 )

8
5 (solid lines) as func-

tions of h for some values of γ. The exact values of E(Sx1 )
19
10 , E(Sx1 )

9
5 ,

E(Sx1 )
17
10 , and E(Sx1 )

8
5 are shown by horizontal dashed lines. σ = 1.5,

θ = 0, β = 0, x0 = 1.1.
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Table 4.1: Values of |E(Sx1 )2 − E(Ŝx1 )2| for σ = 0.8, θ = 0, β = 0,
x0 = 1.5, h = 1/2n.

γ n = 6 n = 5 n = 4 n = 3 n = 2 n = 1
N = 102.4 N = 25.6 N = 6.4 N = 1.6 N = 0.4 N = 0.1

|E(Sx
1 )2 − E(Ŝx

1 )2|

1/2 0.002915 0.003857 0.003016 0.002397 0.004984 0.005049
2/3 0.001559 0.000121 0.005077 0.012592 0.007669 0.040422
3/4 0.003340 0.000786 0.006177 0.015025 0.025857 0.081000
4/5 0.004578 0.003604 0.010149 0.023229 0.052740 0.116562
5/6 0.003147 0.004245 0.012843 0.025792 0.043640 0.067414

Table 4.2: Values of |E(Sx1 )2 − E(Ŝx1 )2| for σ = 1.5, θ = 0, β = 0,
x0 = 1.1, h = 1/2n.

γ n = 6 n = 5 n = 4 n = 3 n = 2 n = 1
N = 102.4 N = 25.6 N = 6.4 N = 1.6 N = 0.4 N = 0.1

|E(Sx
1 )2 − E(Ŝx

1 )2|

1/2 0.002717 0.005503 0.003268 0.003579 0.008855 0.038444
2/3 0.000509 0.018897 0.050594 0.100763 0.170371 0.295007
3/4 0.032290 0.049884 0.097300 0.189880 0.344428 0.630473
4/5 0.027158 0.065583 0.162247 0.265843 0.450578 0.837778
5/6 0.031016 0.093902 0.194255 0.349305 0.703000 1.057874

Table 4.3: Values of |E(Sx1 )3 − E(Ŝx1 )3| for σ = 0.8, θ = 0, β = 0,
x0 = 1.5, h = 1/2n.

γ n = 6 n = 5 n = 4 n = 3 n = 2 n = 1
N = 102.4 N = 25.6 N = 6.4 N = 1.6 N = 0.4 N = 0.1

|E(Sx
1 )3 − E(Ŝx

1 )3|

1/2 0.018900 0.023367 0.020630 0.054256 0.070708 0.157102
2/3 0.006975 0.000945 0.021329 0.085945 0.080353 0.293248
3/4 0.011071 0.013691 0.066994 0.166196 0.339563 0.684186
4/5 0.000602 0.044261 0.143507 0.321432 0.493142 1.071639
5/6 0.022714 0.069883 0.177082 0.389716 0.664207 1.474358
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Table 4.4: Values of |E(Sx1 )3 − E(Ŝx1 )3| for σ = 1.5, θ = 0, β = 0,
x0 = 1.1, h = 1/2n.

γ n = 6 n = 5 n = 4 n = 3 n = 2 n = 1
N = 102.4 N = 25.6 N = 6.4 N = 1.6 N = 0.4 N = 0.1

|E(Sx
1 )3 − E(Ŝx

1 )3|

1/2 0.004807 0.147367 0.144550 0.353186 0.792581 1.425949
2/3 0.091082 0.109581 0.423729 0.812364 1.605744 3.542449
3/4 0.159271 0.759191 1.726704 2.894023 6.554272 11.724430
4/5 1.068226 1.869902 3.757507 6.158224 12.900163 21.305779
5/6 2.872209 3.692346 5.996176 11.439493 20.224748 34.820765

Table 4.5: Values of |E(Sx1 )p−E(Ŝx1 )p| for some p and γ. σ = 0.8, θ = 0,
β = 0, x0 = 1.5, h = 1/2n.

p γ n = 6 n = 5 n = 4
N = 102.4 N = 25.6 N = 6.4

|E(Sx
1 )p − E(Ŝx

1 )p|

19/10 11/20 0.001803 0.001705 0.001113
9/5 3/5 0.002859 0.001819 0.000148

17/10 13/20 0.001340 0.001132 0.003159
8/5 7/10 0.001526 0.000849 0.001378

p γ n = 3 n = 2 n = 1
N = 1.6 N = 0.4 N = 0.1

|E(Sx
1 )p − E(Ŝx

1 )p|

19/10 11/20 0.001510 0.001197 0.022932
9/5 3/5 0.007329 0.007740 0.005487

17/10 13/20 0.006003 0.004246 0.021242
8/5 7/10 0.006399 0.010495 0.005900
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Table 4.6: Values of |E(Sx1 )p−E(Ŝx1 )p| for some p and γ. σ = 1.5, θ = 0,
β = 0, x0 = 1.1, h = 1/2n.

p γ n = 6 n = 5 n = 4
N = 102.4 N = 25.6 N = 6.4

|E(Sx
1 )p − E(Ŝx

1 )p|

19/10 11/20 0.000755 0.005139 0.012418
9/5 3/5 0.003443 0.007615 0.023056

17/10 13/20 0.002730 0.010925 0.028374
8/5 7/10 0.005346 0.012419 0.023916

p γ n = 3 n = 2 n = 1
N = 1.6 N = 0.4 N = 0.1

|E(Sx
1 )p − E(Ŝx

1 )p|

19/10 11/20 0.036881 0.024518 0.094347
9/5 3/5 0.050630 0.089301 0.160324

17/10 13/20 0.053472 0.108758 0.151686
8/5 7/10 0.055905 0.075857 0.195324

Table 4.7: Values of |Ee−X
x
1 − Ee−X̂

x
1 | for σ = 0.8, θ = 0.5, β = 0.5,

x0 = 1.5, γ = 1/2, h = 1/2n. “A” denotes scheme (4.3.1)–(4.3.2), “Am”
denotes scheme (4.3.6)–(4.3.7).

n = 6 n = 5 n = 4 n = 3 n = 2 n = 1
N = 102.4 N = 25.6 N = 6.4 N = 1.6 N = 0.4 N = 0.1

|Ee−Xx
1 − Ee−X̂x

1 |

A 0.000290 0.000430 0.000769 0.001231 0.002891 0.005404
Am 0.000273 0.000258 0.000306 0.000449 0.000327 0.002275

Table 4.8: Values of |Ee−X
x
1 − Ee−X̂

x
1 | for σ = 2, θ = 0.04, β = 0.1,

x0 = 0.3, γ = 1/2, h = 1/2n. “A” denotes scheme (4.3.1)–(4.3.2), “Am”
denotes scheme (4.3.6)–(4.3.7).

n = 6 n = 5 n = 4 n = 3 n = 2 n = 1
N = 102.4 N = 25.6 N = 6.4 N = 1.6 N = 0.4 N = 0.1

|Ee−Xx
1 − Ee−X̂x

1 |

A 0.000491 0.001331 0.002349 0.005248 0.012123 0.027630
Am 0.000418 0.000557 0.001046 0.001707 0.003434 0.007223
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Figure 4.7: Ee−X
x
1 (exact) and Ee−X̂

x
1 (“A” denotes scheme (4.3.1)–

(4.3.2) and “Am” denotes scheme (4.3.6)–(4.3.7)) as functions of h for
σ = 0.8, θ = 0.5, β = 0.5, x0 = 1.5, γ = 1/2.

Figure 4.8: Ee−X
x
1 (exact) and Ee−X̂

x
1 (“A” denotes scheme (4.3.1)–

(4.3.2) and “Am” denotes scheme (4.3.6)–(4.3.7)) for σ = 2, θ = 0.04,
β = 0.1, x0 = 0.3, γ = 1/2.
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Figure 4.9: Ee−X
x
1 (exact) and Ee−X̂

x
1 for σ = 0.8, θ = 0.5, β = 0.5,

x0 = 1.5, h = 0.25.

Figure 4.10: Ee−X
x
1 (exact) and Ee−X̂

x
1 for σ = 1.5, θ = 0.04, β = 0.1,

x0 = 0.3, h = 0.25.
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Chapter 5

Second-order
approximation

In this chapter, we construct a second-order discretization scheme for

the solution of the CKLS model. In the first section of the chapter,

we discuss all techniques used to find the second-order approximations.

In Section 5.2, we find a second-order discretization scheme for the CIR

equation. Section 5.3 is dedicated to finding a third-order approximation

for the stochastic part of the CIR equation. In Section 5.4, we find

a second-order discretization scheme for the CKLS equation. In the

next section, we give algorithm for simulations, and finally, in the last

section of the chapter, we provide numerical simulations illustrating the

accuracy of CKLS approximations.

5.1 A second-order approximation

We construct our schemes applying methods described in Section 3.3.

First, we split CKLS model into the stochastic and deterministic parts.

The solution of dDx
t = (θ − βDx

t )dt, Dx
0 = x ≥ 0, is easy to find

(see (3.3.2)) and we focus on constructing a second-order discretization

scheme for the solution of the stochastic part dSxt = σ(Sxt )γ dBt, Sx0 =

x ≥ 0. Here we find probability p1, p2, and p3 expressions through values

of a three-valued (x1, x2, and x3) random variable and the first three

moments of the corresponding stochastic part (with particular γ). Then
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we find suitable values expressions of the three-valued random variable.

For the CIR equation we manage to find probability p1, p2, p3, and p4

expressions through values of a four-valued (x1, x2, x3, and x4) ran-

dom variable and the first four moments of the corresponding stochastic

part. Then we find suitable values expressions of the four-valued random

variable.

Theorem 3.4 allows us to merge split-step parts of equation (1.1.1)

using the composition (3.3.4) and we get a strongly potential second-

order approximation of the CKLS equation.

5.2 A strongly potential second-order
approximation of the CIR equation

In this section, we construct a strongly potential second-order approxi-

mation for the CIR equation (γ = 1/2) using a three-valued random vari-

able at each generation step, without switching to another scheme in a

neighborhood of zero. The approximate moments (3.4.15) in conditions

(3.4.14) for the noncentral moments E(Ŝxh)i in this case become as follows

(recall that z := ah = σ2h; let us denote m̂i := 2m̂i, i = 1, 2, . . . , 6):

m̂1 = x,

m̂2 = x2 + xz,

m̂3 = x3 + 3x2z + 3
2xz

2,

m̂4 = x4 + 6x3z + 9x2z2,

m̂5 = x5 + 10x4z + 30x3z2,

m̂6 = x6 + 15x5z + 75x4z2.

(5.2.1)

We look for approximations Ŝxh taking three positive values x1, x2,

and x3 with probabilities p1, p2, and p3 such that

E(Ŝxh)i = m̂i +O(h3), i = 1, 2, . . . , 6, (5.2.2)

where x ≥ 0, h > 0, together with obvious requirement

p1 + p2 + p3 = 1. (5.2.3)
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Denote mp = mp(h, x) := E(Sxh)p, p ∈ N. We have (see Section 7

[Appendix])

m1 = m̂1 = x,

m2 = m̂2 = x2 + xz,

m3 = m̂3 = x3 + 3x2z + 3
2 xz

2.

Solving the system

xi1p1 + xi2p2 + xi3p3 = mi, i = 1, 2, 3,

with respect to unknowns x1, x2, and x3, we get:

p1 =
m1x2x3 −m2(x2 + x3) +m3

x1(x3 − x1)(x2 − x1)
,

p2 =
m2(x1 + x3)−m1x1x3 −m3

x2(x2 − x1)(x3 − x2)
, (5.2.4)

p3 =
m1x1x2 −m2(x1 + x2) +m3

x3(x3 − x2)(x3 − x1)
.

We can get analogous expressions from the last three equations of sys-

tem (5.2.2) (with m4,m5,m6 instead of m1,m2,m3). However, trying

to directly solve the obtained six equations with respect to all unknowns

x1, x2, x3, p1, p2, p3 gave no satisfactory results. In view of the form of

approximations presented by Alfonsi [2] and Mackevičius [33] for the

CIR equation and of our first-order approximations for the CKLS equa-

tions (4.3.1), after a number of experiments, we arrived at the following

conclusions:

• the values of discretization scheme Ŝxh may be chosen of the fol-

lowing form:

x1,3 = x+A1z ∓
√

(Bx+ Cz)z, x2 = x+A2z, (5.2.5)

with parameters A1, A2, B,C > 0;

• Instead of the exact matching of moments E(Ŝxh)i = mi for i =

4, 5, 6, it is more convenient to require E(Ŝxh)i = m̂i, i = 4, 5, 6.
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Solving system (5.2.2)–(5.2.4) with x1, x2, x3 of the form (5.2.5), together

with ensuring the nonnegativity of the solution {x1, x2, x3, p1, p2, p3},
still is a rather technical and long task, even with the help of MAPLE.

Note that the right-hand sides O(h3) in conditions (5.2.2) give us cer-

tain flexibility in finding relatively simple expressions of solutions. We

postpone the details to Appendix.

This way we get a family of second-order discretization schemes Ŝxh

depending on the parameter A ∈ [3/4, 3/2]:

x1,3 = x+ (A+ 3
4)σ2h∓

√(
3x+ (A+ 3

4)2σ2h
)
σ2h,

x2 = x+Aσ2h, (5.2.6)

with probabilities p1, p2, and p3 given by (5.2.4). The interval of pos-

sible values of the parameter A is conditioned by the necessary non-

negativity of the solution {x1, x2, x3, p1, p2, p3}. In particular, the value

A = (3 +
√

3)/4 ≈ 1.183 ensures the exact matching of the fourth mo-

ment, E(Ŝxh)4 = m4, in addition to the exact matching of the first three

moments.

Theorem 5.1 (Theorem 1.2). Let X̂x
t be the discretization scheme de-

fined by composition (3.3.4), where Ŝxh takes the values x1, x2, and x3

defined in (5.2.6) with probabilities p1, p2, and p3 defined in (5.2.4)

(Ŝ0
h = 0). Then X̂x

t is a strongly potential second-order discretization

scheme for the CIR equation.

Proof. Let us first check that

x1 = x+ (A+ 3
4)z −

√
(3x+ (A+ 3

4)2z)z ≥ 0

for all x ≥ 0 and z > 0. This is equivalent to

(A+ 3
4)2z2 + 2(A+ 3

4)xz + x2 ≥ (A+ 3
4)2z2 + 3xz,

which in turn is equivalent to

(4A− 3)xz + 2x2 ≥ 0.
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This implies that x1 ≥ 0 for all x, z ≥ 0, provided that A ≥ 3/4.

Obviously, x2, x3 ≥ x1 ≥ 0.

Now let us check the nonnegativity of p1, p2, and p3. For p1, we have

p1 =
m1x2x3 −m2(x2 + x3) +m3

x1(x3 − x1)(x2 − x1)

=
8xz((4A2 − 5A+ 3)z + 4x− (1−A)

√
((4A+ 3)2z + 48x)z)

((4A+ 3)z + 4x−
√

((4A+ 3)2z + 48x)z)
√

((4A+ 3)2z + 48x)z

× 1

(
√

((4A+ 3)2z + 48x)z − 3z)
,

where x ≥ 0, z > 0. We have already checked the nonnegativity of

4x+ (4A+ 3)z −
√

(48x+ (4A+ 3)2z)z = 4x1.

The positivity of
√

(4A+ 3)2z + 48x)z− 3z is obvious, and 4A2− 5A+

3 > 0 for all A ∈ R. Thus, clearly, p1 ≥ 0 if A ≥ 1. Now let A < 1.

Then p1 ≥ 0 if and only if

((4A2 − 5A+ 3)z + 4x)2 ≥ (1−A)2((4A+ 3)2z + 48x)z

or, equivalently,

−A(4A− 3)(2A− 3)z2 − 2(2A− 1)(A− 3)xz + 4x2 ≥ 0,

which clearly holds for all x ≥ 0 and z > 0 if A ∈ [3/4, 3/2]. Thus p1 ≥ 0

for x ≥ 0 and z > 0 if A ∈ [3/4, 3/2]. For p2, we obviously have

p2 =
m2(x1 + x3)−m1x1x3 −m3

x2(x2 − x1)(x3 − x2)

=
32xz

(−3z +
√

((4A+ 3)2z + 48x)z)(3z +
√

((4A+ 3)2z + 48x)z)

=
32xz

16A2z2 + 24Az2 + 48xz
=

4x

2A2z + 3Az + 6x
≥ 0

for x ≥ 0, z > 0. Finally, for p3, we have

p3 =
m1x1x2 −m2(x1 + x2) +m3

x3(x3 − x2)(x3 − x1)

=
8xz((4A2 − 5A+ 3)z + 4x− (A− 1)

√
((4A+ 3)2z + 48x)z)

((4A+ 3)z + 4x+
√

((4A+ 3)2z + 48x)z)
√

((4A+ 3)2z + 48x)z
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× 1

(
√

((4A+ 3)2z + 48x)z + 3z)

for x ≥ 0 and z > 0. The nominator is obviously positive, and the

nonnegativity of the denominator follows similarly to that of p1.

Let us check that, indeed, the central moments of Ŝxh satisfy conditions

(3.4.8)–(3.4.13) (with γ = 1/2). The first three are obvious, since the

moments of the random variable Ŝxh exactly match the three first mo-

ments of Sxh , so they also match the first three central moments:

E(Ŝxh − x) = E(Sxh − x) = 0, E(Ŝxh − x)2 = E(Sxh − x)2 = xz,

E(Ŝxh − x)3 = E(Sxh − x)3 = 3xz2/2.

Conditions (3.4.11), (3.4.12), and (3.4.13a) are satisfied, since, respec-

tively,

E(Ŝxh − x)4 = (−2A2 + 3A+ 9/4)xz3 + 3x2z2 = 3x2z2 +O(h3),

|E(Ŝxh − x)5| = |(−6A3 + 3A2 + 9A+ 27/8)xz4 + (6A+ 9)x2z3|

= O(h3),

E(Ŝxh − x)6 = (−14A4 − 3A3 + (45/2)A2 + (81/4)A+ 81/16)xz5

+ (6A2 + 36A+ 81/4)x2z4 + 9x3z3 = O(h3)

for A ∈ [3/4, 3/2].

For a pth-order homogeneous two-variable polynomial P (x, y), we have

the simple estimate |P (x, y)| ≤M(|x|p+ |y|p) for all x, y ∈ R with some

finite constant M .

By the the relation E(Ŝxh − x)6 = O(h3) and the expression of the max-

imal value x3 of Ŝxh , condition (3.4.13) is satisfied for every f ∈ C∞pol(D)

(suppose |f (6)(x)| ≤ C6(1 + xk6)):

E
[

max
0≤s≤Ŝxh

|f (6)(s)|(Ŝxh − x)6
]
≤ max

0≤s≤x3
|f (6)(s)|E(Ŝxh − x)6
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≤ C6(1 + xk63 )E(Ŝxh − x)6

= C6

(
1 +

(
x+ (A+ 3

4)z +
√(

3x+ (A+ 3
4)2z

)
z

)k6)
E(Ŝxh − x)6

≤ C6

(
1 + 2k6

(
x+ 9

4 z
)k6)E(Ŝxh − x)6

≤ C6

(
1 + C7

(
xk6 + zk6

))
E(Ŝxh − x)6

≤ C(1 + xk6)E(Ŝxh − x)6 = O(h3).

It remains to check that the discretization scheme Ŝxh has uniformly

bounded moments, that is, there exists h0 > 0 such that

sup
0<h≤h0

sup
t∈∆h

E(|Ŝ(x, t)|p) < +∞, p ∈ N, x ≥ 0.

By elementary but tedious calculations that we postpone to Appendix,

we arrive at the following expression for the moments:

E(Ŝxh)p = xp + p(p−1)
2 xp−1 z + p(p−1)2(p−2)

8 xp−2 z2 + · · ·

≤ xp + C(1 + xp)h = xp(1 + Ch) + Ch, x ≥ 0, h ≤ h0 = 1
σ2 ,

where the constant C > 0 depends on p and σ, from which the bound-

edness of the moments of the approximation follows in a standard way

(see [2, Prop. 1.5]).

5.3 A potential third-order approximation for
the stochastic part of the CIR equation

By a similar procedure we can obtain a potential third-order weak ap-

proximation of the stochastic part (3.3.1) of the CIR equation (1.1.1)

(γ = 1/2). Although then composition (3.3.4) theoretically gives only

second-order approximation, numerical simulations show that, practi-

cally, it gives a slightly better accuracy of approximation than with

second-order approximation of the stochastic part.

Let mi = mi(x, h) = E(Sxh)p, i = 1, 2, 3, 4, and m̂i := 3m̂i, i =

1, 2, . . . , 8. We look at a discretization scheme Ŝxh taking four values

x1, x2, x3, x4 with probabilities p1.p2, p3, p4 such that

xi1p1 + xi2p2 + xi3p3 + xi4p4 = mi, i = 1, 2, 3, 4, (5.3.1)
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and

xi1p1 + xi2p2 + xi3p3 + xi4p4 = m̂i +O(h3), i = 5, 6, 7, 8. (5.3.2)

Its solution with respect to x1, x2, x3, and x4 is as follows:

p1 = −m1 x2 x3 x4−m2(x2 x3+x2 x4+x3 x4)+m3(x2+x3+x4)−m4

x1 (x1−x4)(x1−x3)(x1−x2) ,

p2 = m1 x1 x3 x4−m2(x1 x3+x1 x4+x3 x4)+m3(x1+x3+x4)−m4

(x1−x2)x2 (x2−x4)(x2−x3) ,

p3 = −m1 x1 x2 x4−m2(x1 x2+x1 x4+x2 x4)+m3(x1+x2+x4)−m4

(x2−x3)(x1−x3)x3 (x3−x4) ,

p4 = m1 x1 x2 x3−m2(x1 x2+x1 x3+x2 x3)+m3(x1+x2+x3)−m4

x4 (x3−x4)(x2−x4)(x1−x4) .

(5.3.3)

Again, after a number of experiments, we have chosen to look for a so-

lution of (5.3.1)–(5.3.2), together with
∑

i pi = 1 and pi ≥ 0, in the

form

x1,3 = x+A1z ∓
√

(B1x+ C1z)z ≥ 0,

x2,4 = x+A2z ∓
√

(B2x+ C2z)z ≥ 0,

with parameters A1, A2, B1, B2, C1, C2 > 0 and probabilities p1, p2, p3,

p4 defined in (5.3.3). The main difficulty was obtaining a nonnegative

solution {x1, x2, x3, x4, p1, p2, p3, p4}.
The final result of current section is bellow.

Theorem 5.2. Approximation Ŝxh taking the four values

x1,2 =x+ 3
2 σ

2h∓
√(

(3−
√

6)x+ 3
4 σ

2h
)
σ2h,

x3,4 =x+
(

3
2 + 1

2

√
6
)
σ2h∓

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
σ2h

)
σ2h,

(5.3.4)

with the corresponding probabilities pi, i = 1, 2, 3, 4, given by (5.3.3), is

a potential third-order weak approximation of the stochastic part (3.3.1)

of the CIR equation.

Proof. Let us first check that

x1 = x+ 3
2 z −

√(
(3−

√
6)x+ 3

4 z
)
z > 0
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for all x ≥ 0 and z > 0. This is equivalent to

x2 + 3xz + 9
4 z

2 > (3−
√

6)xz + 3
4 z

2,

which in turn is equivalent to

1
4 (
√

6z + 2x)2 > 0.

Let us check then that

x3 = x+
(

3
2 + 1

2

√
6
)
z −

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z ≥ 0

for all x ≥ 0 and z > 0. This is equivalent to

x2 +
(
3 +
√

6
)
xz +

(
15
4 + 3

2

√
6
)
z2 ≥ (3 +

√
6)xz +

(
15
4 + 3

2

√
6
)
z2,

which in turn is equivalent to

x2 ≥ 0.

This implies that x1, x3 ≥ 0 for all x ≥ 0, z > 0. Obviously, x2 ≥ x1 ≥ 0

and x4 ≥ x3 ≥ 0.

Now let us check the nonnegativity of p1, p2, p3, and p4. For p1, we

have

p1 =
m2(x2 x3 + x2 x4 + x3 x4)−m1 x2 x3 x4 −m3(x2 + x3 + x4) +m4

x1 (x1 − x4) (x1 − x3) (x1 − x2)

=
np1

dp1
,

where

np1 =2
(

3−
√

6
)(

z
√

6 + 2x+ 3 z
)
xz

+

√
4
(

3−
√

6
)
xz + 3 z2

(
8x+ 6 z + 4

√
6 (x+ z)

)
x,

dp1 =3
(

2−
√

6
)(

z
√

6 + 4x+ 3 z
)(

z
√

6 + 12x+ 12 z
)
z

+
(

12 z2
(

3 + 4
√

6
)

+ 32
√

6x2 + 24
(

5
√

6− 3
)
xz
)

× 1/2

√
4
(

3−
√

6
)
xz + 3 z2, x ≥ 0, z > 0.
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The nonnegativity of np1 is obvious. Let us check the positivity of dp1

for all x ≥ 0 and z > 0. This is equivalent to

0 ≤ 6
(

3−
√

6
)(

6xz
√

6− 3 z2
√

6− 16x2 − 60xz − 24 z2
)2

− 18
(
z
√

6 + 4x+ 3 z
)
z
(

5− 2
√

6
)(

z
√

6 + 12x+ 12 z
)2

= 12
(

3−
√

6
)(

16xz
√

6 + 6 z2
√

6 + 32x2 + 24xz + 15 z2
)

×
(
z
√

6 + 2x
)2

for x ≥ 0 and z > 0.

For p2, we have

p2 =
m1 x1 x3 x4 −m2(x1 x3 + x1 x4 + x3 x4) +m3(x1 + x3 + x4)−m4

(x1 − x2)x2 (x2 − x4) (x2 − x3)

=
np2

dp2

where

np2 =

√(
3−
√

6
)(

z
√

6 + 4x+ 3 z
)
z
(

2
√

6 (x+ z) + 4x+ 3 z
)
x

−
(

3−
√

6
)(

z
√

6 + 2x+ 3 z
)
xz,

dp2 =
(

8
√

6x2 + 6
(

5
√

6− 3
)
xz + 3

(
3 + 4

√
6
)
z2
)

×
√(

3−
√

6
)(

z
√

6 + 4x+ 3 z
)
z

+ 72
(√

6− 2
)
x2z + 6

(
13
√

6− 18
)
xz2

+ 9
(

2
√

6 + 1
)
z3, x ≥ 0, z > 0.

The positivity of dp2 is obvious. Let us check the nonnegativity of np2

for all x ≥ 0 and z > 0. This is equivalent to

0 ≤ 1/2
(

3 +
√

6
)(

z
√

6 + 4x+ 3 z
)(

z
√

6− 4x− 6 z
)2

− 3 z
(

5− 2
√

6
)(

z
√

6 + 2x+ 3 z
)2

=
(

3 +
√

6
)(

z
√

6 + 8x+ 3 z
)(

z
√

6 + 2x
)2

for x ≥ 0 and z > 0.

For p3, we have

p3 =
m2(x1 x2 + x1 x4 + x2 x4)−m1 x1 x2 x4 −m3(x1 + x2 + x4) +m4

(x2 − x3) (x1 − x3)x3 (x3 − x4)

60



=
np3

dp3

where

np3 =2
(

3−
√

6
)
x2z + 4

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z
(√

6− 2
)
x2,

dp3 =
√

6

(
3 z
√

6 + 8x+ 6 z − 4

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z

)
×
(
z
√

6 + 2x+ 3 z − 2

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z

)
×
√(

(3 +
√

6)x+
(

15
4 + 3

2

√
6
)
z
)
z, x ≥ 0, z > 0.

The nonnegativity of np3 is obvious. Let us check the positivity of dp3

for all x ≥ 0 and z > 0. This is equivalent checking that

0 <
(

3 z
√

6 + 8x+ 6 z
)2
− 16

(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z

= 6 (2
√

6 + 5)z2 + 16 (2
√

6 + 3)xz + 64x2

and

0 ≤
(
z
√

6 + 2x+ 3 z
)2
− 4

(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z = 4x2

for x ≥ 0 and z > 0.

Finally, for p4, we have

p4 =
m1 x1 x2 x3 −m2(x1 x2 + x1 x3 + x2 x3) +m3(x1 + x2 + x3)−m4

x4 (x3 − x4) (x2 − x4) (x1 − x4)

=
np4

dp4

where

np4 = 2

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z
(√

6− 2
)
x2 −

(
3−
√

6
)
x2z,

dp4 =

(
3
(

3 +
√

6
)
z + 2

√
6

(
2x+

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z

))
×
((

3 +
√

6
)
z + 2x+ 2

√(
(3 +

√
6)x+

(
15
4 + 3

2

√
6
)
z
)
z

)
×
√(

(3 +
√

6)x+
(

15
4 + 3

2

√
6
)
z
)
z, x ≥ 0, z > 0.
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The positivity of dp4 is obvious. Let us check the nonnegativity of np4

for all x ≥ 0 and z > 0. This is equivalent checking that

0 ≤ 4
(√

6− 2
)2
√(

(3 +
√

6)x+
(

15
4 + 3

2

√
6
)
z
)
z −

(
3−
√

6
)2
z2

=
(

3−
√

6
)(

3 z
√

6 + 8x+ 3 z
)
z

for x ≥ 0 and z > 0.

Let us check that, indeed, the central moments of Ŝxh satisfy condi-

tions (3.4.16)–(3.4.19) (with γ = 1/2). The first four are obvious, since

the moments of the random variable Ŝxh exactly match the four first

moments of Sxh , so they also match the first four central moments:

E(Ŝxh − x) = E(Sxh − x) = 0,

E(Ŝxh − x)2 = E(Sxh − x)2 = xz,

E(Ŝxh − x)3 = E(Sxh − x)3 = 3
2 xz

2,

E(Ŝxh − x)4 = E(Sxh − x)4 = 3 (x+ z)xz2.

Conditions (3.4.20)–(3.4.22) are satisfied, since, respectively,

E(Ŝxh − x)5 = 27
4 xz

4 + 15x2z3 = 15x2z3 +O(h4),

E(Ŝxh − x)6 = 63
4 xz

5 + 3 (
√

6 + 21)x2z4 + 15x3z3 = 15x3z3 +O(h4),

|E(Ŝxh − x)7| = |297
8 xz6 + 1

4 (1053 + 135
√

6)x2z5 + (6
√

6 + 279
2 )x3z4|

= O(h4).

Then we estimate that

E(Ŝxh − x)8 =351
4 xz7 + (252

√
6 + 1161)x2z6

+ (108
√

6 + 918)x3z5 + 81x4z4 = O(h4).

Finally, by the last relation and the expression of the maximal value

x4 of Ŝxh , condition (3.4.23) is satisfied for every f ∈ C∞pol(D) (suppose

|f (8)(x)| ≤ C8(1 + xk8)):

E
[

max
0≤s≤Ŝxh

|f (8)(s)|(Ŝxh − x)8
]
≤ max

0≤s≤x4
|f (8)(s)|E(Ŝxh − x)8

≤ C8(1 + xk84 )E(Ŝxh − x)8 ≤ C(1 + xk8+1)E(Ŝxh − x)8 = O(h4).
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5.4 A strongly potential second-order
approximation of the CKLS equation

In this section, we apply to the CKLS equations the method of con-

structing second-order approximations used in the previous section in

the CIR case. As an example, we present strongly potential second-

order approximations in the cases γ = 3/4 and γ = 5/6, where the

results look relatively simple.

Let γ = 3/4 in the CKLS equation (1.1.1). Then for the stochastic

part dSxt = σ(Sxt )3/4 dBt, S
x
0 = x ≥ 0, we have (see Section 7 [Ap-

pendix])

m1 = x,

m2 = x2 + x3/2z + 3
16 xz

2,

m3 = x3 + 3x5/2z + 45
16 x

2z2 + 15
16 x

3/2z3 + 45
512 xz

4.

Let us use (4.2.15) with m̂i = mi, i = 1, 2, for obtaining values of a two-

valued approximation of the stochastic part. In particular, for γ = 3/4,

x1,2 = x+ x1/2z + 3
16z

2 ∓
√(

x3/2 + 19
16 xz + 3

8 x
1/2z2 + 9

256 z
3
)
z.

This motivated us to look for the second-order approximations with

values of the following form:

x1,3 = x+A1x
1/2z+A2z

2 ∓
√(

B1x3/2 +B2xz +B3x1/2z2 +B4z3
)
z,

x2 = x+ C1x
1/2z+C2z

2, A1, A2, B1, B2, B3, B4, C1, C2 > 0,

with probabilities (5.2.4). Using the same method as in the CIR case,

after tedious and rather complex calculations, we arrive at the scheme

with values

x1,3 = x+ 5
2 x

1/2σ2h+ 15
64 (σ2h)2

∓
√(

3x3/2 + 103
16 xσ

2h+ 75
64 x

1/2(σ2h)2 + 225
4096 (σ2h)3

)
σ2h,

(5.4.1)

x2 = x+ 11
8 x

1/2σ2h+ 15
64 (σ2h)2,
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and probabilities p1, p2, and p3 defined in (5.2.4).

Similarly, in the case γ = 5/6, we have

m1 =x,

m2 =x2 + x5/3z + 5
18 x

4/3z2 + 5
243 xz

3,

m3 =x3 + 3x8/3z + 10
3 x

7/3z2 + 140
81 x

2z3 + 35
81 x

5/3z4

+ 35
729 x

4/3z5 + 35
19683 xz

6.

The corresponding approximation takes the values

x1,3 = x+ 3
2 x

2/3σ2h+ 485
816 x

1/3(σ2h)2 + 1681
22032 (σ2h)3

∓
(
(3x5/3 + 2077

612 x
4/3σ2h+ 125695

66096 x(σ2h)2 + 1162907
1997568 x

2/3(σ2h)3

+ 815285
8989056 x

1/3(σ2h)4 + 2825761
485409024(σ2h)5)σ2h

)1/2
, (5.4.2)

x2 = x+ 1
4 x

2/3σ2h+ 5
72 x

1/3(σ2h)2 + 1
72(σ2h)3,

with probabilities p1, p2, and p3 defined in (5.2.4).

In summary, we have the following:

Theorem 5.3 (Theorem 1.3). Let X̂x
t be the discretization scheme de-

fined by composition (3.3.4), where Ŝxh takes the values x1, x2, and x3

defined in (5.4.1) in the case γ = 3/4 or in (5.4.2) in the case γ = 5/6

with probabilities p1, p2, and p3 defined in (5.2.4) (Ŝ0
h = 0). Then X̂x

t

is a strongly potential second-order discretization scheme for the CKLS

equation with γ = 3/4 or γ = 5/6, respectively.

5.5 Algorithm

We give a short algorithm for calculating X̂(i+1)h given X̂ih = x at each

simulation step i:

1. Substitute x := D(x, h/2).

2. Draw a uniform random number U in the interval [0, 1].

3. Generate a random variable Ŝ taking the values x1, x2, and x3

defined by (5.2.6), (5.4.1), or (5.4.2) (for 1/2Ŝ
x
h , 3/4Ŝ

x
h , or 5/6Ŝ

x
h ,

respectively) with probabilities p1, p2 and p3 defined in (5.2.4):
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if U < p1, then Ŝ := x1; otherwise, if U < p1 + p2, then Ŝ := x2;

otherwise, Ŝ := x3. If x = 0, then Ŝ := 0.

4. Calculate (see (3.3.4))

X̂(i+1)h = D
(
Ŝ, h/2

)
.

In the case of a strongly potential third-order approximation of 1/2Ŝ
x
h ,

step (3) should be replaced by

(3’) Generate a random variable Ŝ taking the values x1, x2, x3, and x4

defined by (5.3.4) with probabilities p1, p2, p3, and p4 defined in

(5.3.3):

if U < p1, then Ŝ := x1; otherwise, if U < p1 + p2, then Ŝ := x2;

otherwise, if U < p1 + p2 + p3, then Ŝ := x3; otherwise, Ŝ := x4.

If x = 0, then Ŝ := 0.

5.6 Simulation examples

We indicate a particular γ of the stochastic part (3.3.1) by the left

subscript γ as in γS
x
t . Using our discretization schemes, we simulate

the solutions of the CLKS equation (1.1.1) or its stochastic part (3.3.1)

for γ = 1/2, 3/4, and 5/6 with test functions f(x) = x3, x4, x5, and

e−x. Such a choice of f is motivated by having explicit formulas for the

expectations Ef(Sxt ) (see Section 7 [Appendix]) and, in the case γ = 1/2,

(4.5.1) (see, e.g., [21, Prop. 6.2.5]). We also simulate the solution of

the CLKS equation (1.1.1) for γ = 1/2 (i.e., the CIR equation) with

discretization scheme defined in (5.3.3)–(5.3.4) and test function f(x) =

e−x.

Below we present the results by a number of figures, were the exact

and approximate expectations are given as functions of the approxima-

tion step size h. For the reader’s convenience, we give a list of graphs in

the figures:

• Figs. 5.1 and 5.2: Ee−(1/2X
x
1 ) and Ee−(1/2X̂

x
1 ) with the same pa-

rameters as in Alfonsi [2];
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• Figs. 5.3 and 5.4: E(3/4S
x
1 )3 and E(3/4Ŝ

x
1 )3;

• Figs. 5.5 and 5.6: E(3/4S
x
1 )4 and E(3/4Ŝ

x
1 )4;

• Figs. 5.7 and 5.8: E(3/4S
x
1 )5 and E(3/4Ŝ

x
1 )5;

• Figs. 5.9 and 5.10: E(5/6S
x
1 )3 and E(5/6Ŝ

x
1 )3;

• Figs. 5.11 and 5.12: E(5/6S
x
1 )4 and E(5/6Ŝ

x
1 )4;

• Figs. 5.13 and 5.14: E(5/6S
x
1 )5 and E(5/6Ŝ

x
1 )5;

• Figs. 5.15 and 5.16: Ee−(3/4X̂
x
1 );

• Figs. 5.17 and 5.18: Ee−(5/6X̂
x
1 ).

Figures 5.1, 5.15, and 5.17 represent the values of Ee−X
x
1 with “low”

volatility (σ = 0.8, θ = 0.5, β = 0.5, x0 = 1.5). Figures 5.2, 5.16,

and 5.18 represent the values of Ee−X
x
1 with “high” volatility (σ = 2.0,

θ = 0.04, β = 0.1, x0 = 0.3). Figures 5.3, 5.5, 5.7, 5.9, 5.11, and 5.13

represent values of Ef(Sx1 ) with “low” volatility (σ = 0.8, x0 = 1.5).

Figures 5.4, 5.6, 5.8, 5.10, 5.12, 5.14 and represent the values of Ef(Sx1 )

with “high” volatility (σ = 1.5, x0 = 0.3). In all the graphs, the error

bars show 95% confidence intervals. To shorten the bars, for approxi-

mation time-step sizes h = 1/2i, i = 0, 1, 2, 3, 4, 5, we have generated

N = 90,000 · 4i samples of approximations.

In the legends of figures, we use the following notation.

1. “First ord. GLVM”: the modified first-order scheme for the CIR

(Rem. 4.5, [27, Rem. 4]) (for comparison with higher-order

schemes);

2. “Second ord. GLVM”: our second-order scheme for the CIR (Thm.

5.1);

3. “Third ord. GLVM”: the second-order composition (3.3.4) with

our third-order scheme Ŝxh taking the values x1, x2, x3, and x4

defined in (5.3.4) with probabilities p1, p2, p3, and p4 defined in

(5.3.3);
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Figure 5.1: Ee−(1/2X̂
x
1 ) as functions of h: σ = 0.8, θ = 0.5, β = 0.5,

x0 = 1.5.

4. “First ord.”: our first-order scheme for the CKLS (Thm. 4.2, [27,

Thm. 2]);

5. “Second ord.”: our second-order schemes for the CKLS (Thm. 5.3);

6. “Second ord. AA”: the second-order scheme of Alfonsi for the CIR

[2, Thm. 2.8];

7. “Third ord. AA”: the third-order scheme of Alfonsi for the CIR

[2, Thm. 3.7].
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Figure 5.2: Ee−(1/2X̂
x
1 ) as functions of h: σ = 2.0, θ = 0.04, β = 0.1,

x0 = 0.3.

Figure 5.3: E(3/4Ŝ
x
1 )3 as functions of h: σ = 0.8, x0 = 1.5.
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Figure 5.4: E(3/4Ŝ
x
1 )3 as functions of h: σ = 1.5, x0 = 0.3.

Figure 5.5: E(3/4Ŝ
x
1 )4 as functions of h: σ = 0.8, x0 = 1.5.
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Figure 5.6: E(3/4Ŝ
x
1 )4 as functions of h: σ = 1.5, x0 = 0.3.

Figure 5.7: E(3/4Ŝ
x
1 )5 as functions of h: σ = 0.8, x0 = 1.5.
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Figure 5.8: E(3/4Ŝ
x
1 )5 as functions of h: σ = 1.5, x0 = 0.3.

Figure 5.9: E(5/6Ŝ
x
1 )3 as functions of h: σ = 0.8, x0 = 1.5.
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Figure 5.10: E(5/6Ŝ
x
1 )3 as functions of h: σ = 1.5, x0 = 0.3.

Figure 5.11: E(5/6Ŝ
x
1 )4 as functions of h: σ = 0.8, x0 = 1.5.

72



Figure 5.12: E(5/6Ŝ
x
1 )4 as functions of h: σ = 1.5, x0 = 0.3.

Figure 5.13: E(5/6Ŝ
x
1 )5 as functions of h: σ = 0.8, x0 = 1.5.
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Figure 5.14: E(5/6Ŝ
x
1 )5 as functions of h: σ = 1.5, x0 = 0.3.

Figure 5.15: Ee−(3/4X̂
x
1 ) as functions of h: σ = 0.8, θ = 0.5, β = 0.5,

x0 = 1.5.

74



Figure 5.16: Ee−(3/4X̂
x
1 ) as functions of h: σ = 2.0, θ = 0.04, β = 0.1,

x0 = 0.3.

Figure 5.17: Ee−(5/6X̂
x
1 ) as functions of h: σ = 0.8, θ = 0.5, β = 0.5,

x0 = 1.5.
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Figure 5.18: Ee−(5/6X̂
x
1 ) as functions of h: σ = 2.0, θ = 0.04, β = 0.1,

x0 = 0.3.
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Chapter 6

Conclusions

In the doctoral thesis, we construct first- and second-order weak ap-

proximations for the CKLS model using split-step, moments matching,

and approximate moment matching techniques. Split-step technique al-

lows us to divide the model into deterministic and stochastic parts, so

that we need to construct a discretization scheme for the stochastic part

only, as the deterministic part is easily solvable in explicit way. Mo-

ment matching and approximate moments techniques help to construct

discrete random variables so that we get weak approximations of the

desired order.

The following contributions are the main results of the thesis:

• A construction of potential first-order two-valued approximations

of a stochastic part that does not require knowing the exact finite

moments of the stochastic part;

• A strongly potential first-order approximation of the CKLS equa-

tion;

• A new construction method for second-order weak approximations

based on a particular form of approximating random variable and

using approximate moments in moment matching;

• A strongly potential second-order approximation for the CIR equa-

tion without switching to another scheme near zero;
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• A strongly potential second-order approximation for the CKLS

equation;

• A potential third-order approximation for the stochastic part of

the CIR equation without switching to another scheme near zero.

Some ideas for the research in the future:

• Investigate the restrictions and possible extensions of the con-

struction of potential first-order two-valued approximations of a

stochastic part that does not require knowing the exact finite mo-

ments of the stochastic part;

• Investigate the restrictions and possible extensions of the new con-

struction method for second-order weak approximations based on

a particular form of approximating random variable and using ap-

proximate moments in moment matching;

• Apply in Heston model for option pricing the strongly potential

second-order approximation for the CIR equation without switch-

ing to another scheme near zero;

• Apply to other classes of equations the idea of construction of

the strongly potential second-order approximation for the CKLS

equation.
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Chapter 7

Appendix

In this chapter, we provide additional calculations which we think would

only distract the reader if placed elsewhere in the text.

Moments of the CKLS model

Using Itô’s formula for the solution of stochastic part dSxt = σ(Sxt )γdBt,

Sx0 = x, with γ = [1/2, 1), we have

(Sxt )p = xp + pσ

t∫
0

(Sxs )γ+p−1dBs + p(p−1)σ2

2

t∫
0

(Sxs )2γ+p−2ds,

and thus

E(Sxt )p = xp + p(p−1)σ2

2

t∫
0

E(Sxs )2γ+p−2ds. (7.0.1)

In particular,

E(Sxt ) = x, (7.0.2)

E(Sxt )2 = x2 + σ2

t∫
0

E(Sxs )2γds, (7.0.3)

E(Sxt )3 = x3 + 3σ2

t∫
0

E(Sxs )2γ+1ds. (7.0.4)

From the recurrence relation (7.0.1) we can get E(Sxt )2 and E(Sxt )3 if

γ = k/(k + 1), where k = 1, 2, . . . (we further indicate a particular γ of
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the stochastic part (3.3.1) by the left subscript γ as in γS
x
t ). In these

cases the recurrence calculation “stops” at E(γS
x
t )p, where p ∈ N0, and

we already know them. For example, if γ = 3/4, then using (7.0.3), we

get

E(3/4S
x
t )2 = x2 + σ2

t∫
0

E(3/4S
x
s )3/2ds.

Using (7.0.1) and (7.0.2), we get

E(3/4S
x
t )3/2 =x3/2 + 3

8σ
2

t∫
0

E(3/4S
x
s )ds = x3/2 + 3

8σ
2

t∫
0

xds

=x3/2 + 3
8xσ

2t.

For brevity, we use the notation w := σ2t. We have

E(3/4S
x
t )2 =x2 + σ2

t∫
0

(x3/2 + 3
8σ

2xs)ds

=x2 + x3/2σ2t+ 3
16xσ

4t2 (7.0.5)

or

E(3/4S
x
t )2 = x2 + x3/2w + 3

16xw
2.

Using (7.0.4), (7.0.1), and (7.0.5), we have

E(3/4S
x
t )3 = x3 + 3σ2

t∫
0

E(3/4S
x
s )5/2ds,

E(3/4S
x
t )5/2 = x5/2 + 15

8 σ
2

t∫
0

E(3/4S
x
s )2ds

= x5/2 + 15
8 σ

2

t∫
0

(x2 + σ2x3/2s+ 3
16σ

4xs2)ds

= x5/2 + 15
8 σ

2x2t+ 15
16σ

4x3/2t2 + 15
128σ

6xt3,

and finally,

E(3/4S
x
t )3 = x3 + 3σ2

t∫
0

(x5/2 + 15
8 σ

2x2s+ 15
16σ

4x3/2s2 + 15
128σ

6xs3)ds
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= x3 + 3σ2x5/2t+ 45
16σ

4x2t2 + 15
16σ

6x3/2t3 + 45
512σ

8xt4

= x3 + 3x5/2w + 45
16x

2w2 + 15
16x

3/2w3 + 45
512xw

4.

Then we have:

E(1/2S
x
t )2 =x2 + xw,

E(2/3S
x
t )2 =x2 + x4/3w + 1

9 x
2/3w2 − 1

243 w
3,

E(3/4S
x
t )2 =x2 + x3/2w + 3

16 xw
2,

E(4/5S
x
t )2 =x2 + x8/5w + 6

25 x
6/5w2 + 6

625 x
4/5w3 − 3

15625 x
2/5w4

+ 9
1953125 w

5,

E(5/6S
x
t )2 =x2 + x5/3w + 5

18 x
4/3w2 + 5

243 xw
3,

E(1/2S
x
t )3 =x3 + 3x2w + 3

2 xw
2,

E(2/3S
x
t )3 =x3 + 3x7/3w + 7

3 x
5/3w2 + 35

81 xw
3,

E(3/4S
x
t )3 =x3 + 3x5/2w + 45

16 x
2w2 + 15

16 x
3/2w3 + 45

512 xw
4,

E(4/5S
x
t )3 =x3 + 3x13/5w + 78

25 x
11/5w2 + 858

625 x
9/5w3 + 3861

15625 x
7/5w4

+ 27027
1953125 xw

5,

E(5/6S
x
t )3 =x3 + 3x8/3w + 10

3 x
7/3w2 + 140

81 x
2w3 + 35

81 x
5/3w4

+ 35
729 x

4/3w5 + 35
19683 xw

6,

E(1/2S
x
t )4 =x4 + 6x3w + 9x2w2 + 3xw3,

E(3/4S
x
t )4 =x4 + 6x7/2w + 105

8 x3w2 + 105
8 x5/2w3 + 1575

256 x
2w4

+ 315
256 x

3/2w5 + 315
4096 xw

6,

E(5/6S
x
t )4 =x4 + 6x11/3w + 44

3 x
10/3w2 + 1540

81 x3w3 + 385
27 x

8/3w4

+ 1540
243 x

7/3w5 + 10780
6561 x

2w6 + 1540
6561 x

5/3w7 + 1925
118098 x

4/3w8

+ 1925
4782969 xw

9,

E(1/2S
x
t )5 =x5 + 10x4w + 30x3w2 + 30x2w3 + 15

2 xw
4,

E(3/4S
x
t )5 =x5 + 10x9/2w + 315

8 x4w2 + 315
4 x7/2w3 + 11025

128 x3w4

+ 6615
128 x

5/2w5 + 33075
2048 x

2w6 + 4725
2048 x

3/2w7 + 14175
131072 xw

8,
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E(5/6S
x
t )5 =x5 + 10x14/3w + 385

9 x13/3w2 + 25025
243 x4w3 + 25025

162 x11/3w4

+ 110110
729 x10/3w5 + 1926925

19683 x3w6 + 275275
6561 x8/3w7

+ 1376375
118098 x

7/3w8 + 9634625
4782969 x

2w9 + 1926925
9565938 x

5/3w10

+ 875875
86093442 x

4/3w11 + 875875
4649045868 xw

12,

E(1/2S
x
t )6 =x6 + 15x5w + 75x4w2 + 150x3w3 + 225

2 x2w4 + 45
2 xw

5,

E(3/4S
x
t )6 =x6 + 15x11/2w + 1485

16 x5w2 + 2475
8 x9/2w3 + 155925

256 x4w4

+ 93555
128 x7/2w5 + 1091475

2048 x3w6 + 467775
2048 x5/2w7

+ 7016625
131072 x

2w8 + 779625
131072 x

3/2w9 + 467775
2097152 xw

10,

E(5/6S
x
t )6 =x6 + 15x17/3w + 595

6 x16/3w2 + 30940
81 x5w3 + 77350

81 x14/3w4

+ 1191190
729 x13/3w5 + 38713675

19683 x4w6 + 11061050
6561 x11/3w7

+ 60835775
59049 x10/3w8 + 2129252125

4782969 x3w9 + 425850425
3188646 x8/3w10

+ 387136750
14348907 x

7/3w11 + 1354978625
387420489 x

2w12 + 104229125
387420489 x

5/3w13

+ 74449375
6973568802 x

4/3w14 + 14889875
94143178827 xw

15.

For γ other than k/(k + 1), k ∈ N, we cannot calculate E(γS
x
t )2 or

E(γS
x
t )3 because the recurrence calculation requires, for example, to

use unknown E(γS
x
t )p, where p < 0. However, we want to test our

approximation with γ from the interval (1/2, 3/4). From the recurrence

relation (7.0.1) we notice that the recurrence calculation immediately

”stops” at E(γS
x
t ) = x if

2γ + p− 2 = 1, 1/2 ≤ γ < 1, p ≥ 0.

Using this simple equation, we get that for γ = 11/20, we can calculate

E(11/20S
x
t )19/10. Indeed,

E(11/20S
x
t )19/10 =x19/10 + 171

200 σ
2

t∫
0

E(Sxs )ds = x19/10 + 171
200 σ

2xt

=x19/10 + 171
200 wx. (7.0.6)
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In the same way, we calculate the following moments for γ = 3/5, 13/20,

and 7/10:

E(11/20S
x
t )19/10 = y19/10 + 171

200 yw,

E(3/5S
x
t )9/5 = y9/5 + 18

25 yw,

E(13/20S
x
t )17/10 = y17/10 + 119

200 yw,

E(7/10S
x
t )8/5 = y8/5 + 12

25 yw.

Finding values of a three-valued random
variable

We find the coefficients A1, B, and C in a three-valued random variable

(5.2.5):

x1,3 = x+A1z ∓
√

(Bx+ Cz)z, x2 = x+A2z,

where the corresponding probabilities p1, p2, and p3 are given in (5.2.4).

For this purpose, we will calculate the differences

di := xi1p1 + xi2p2 + xi3p3 − m̂i, i = 1, . . . , 6,

where m̂i are of γ = 1/2 (3.4.15). Since di = 0, i = 1, 2, 3, because

m̂i −mi = 0, i = 1, 2, 3, and mi, i = 1, 2, 3, are used in (5.2.4), we

proceed with i = 4, 5, 6:

d4 = (B (1−A2) + 2A1 +A2 − 9/2)x2z2 +O(h3),

d5 = (B (5− 4A2) + 4 (2A1 +A2)− 21)x3z2 +O(h3),

d6 = (5B (3− 2A2) + 10 (2A1 +A2)− 60)x4z2 +O(h3).

From these expressions we get the system of equations
B (1−A2) + 2A1 +A2 − 9/2 = 0,

B (5− 4A2) + 4 (2A1 +A2)− 21 = 0,

5B (3− 2A2) + 20A1 + 10A2 − 60 = 0,

(7.0.7)

which has the solution {B = 3, A1 = A2 + 3/4}. We substitute B and

A2 into (5.2.5) with expressions found and get

x1,3 = x+ (A2 + 3/4)z ∓
√

(3x+ Cz)z, x2 = x+A2z.
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Then we solve the equation

Σ pi = 1

or

(Denominator of Σ)− (Numerator of Σ)

= A2 (A2 (16A2 + 24)− 16C + 9) z3 = 0,

where Σ = p1 + p2 + p3. The equation has two solutions:{
C = A2

2 + 3/2A2 +
9

16

}
and {A2 = 0} .

{A2 = 0} does not suit because we cannot ensure the nonnegativity of

x1. We substitute C into (5.2.5) with found expression and get

x1,3 = x+ (A2 + 3
4)z ∓

√
(3x+

(
A2 + 3

4

)2
z)z, x2 = x+A2z,

which matches (5.2.6).

Uniformly bounded moments of a second-order
discretization scheme of the CIR equation

E(Ŝxh)q =
1

(x1 − x3) (x1 − x2) (x2 − x3)

×
(
(m1 x2 x3 −m2 (x2 + x3) +m3)x1

q−1 (x2 − x3)

− (m1 x1 x3 −m2 (x1 + x3) +m3)x2
q−1 (x1 − x3)

+ (m1 x1 x2 −m2 (x1 + x2) +m3)x3
q−1 (x1 − x2)

)
=

1

2 (((4A+ 3)2 z + 48x)z)1/2 (A (2A+ 3) z + 6x)

×
(
8x(((4A+ 3)2 z + 48x)z)1/2(x+Az)q

+ (((4A+ 3)2 z + 48x)z)1/2 (A (2A+ 3) z + 2x) (x1
q + x3

q)

+
(
A (2A+ 3) (4A+ 3) z2 + 6 (4A+ 1)xz

)
(x1

q − x3
q)
)

=

[
x∓ := x1

q ∓ x3
q

=
(
x+ (A+ 3/4) z −

√
(3x+ (A+ 3/4)2z)z

)q
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∓
(
x+ (A+ 3/4) z +

√
(3x+ (A+ 3/4)2z)z

)q
=

q∑
k=0

(
q

k

)
(x+ (A+ 3/4) z)q−k

×
(
−
√

(3x+ (A+ 3/4)2z)z
)k

∓
q∑

k=0

(
q

k

)
(x+ (A+ 3/4) z)q−k

×
(√

(3x+ (A+ 3/4)2z)z
)k
,

x− = −2

dq/2e∑
k=0

(
q

2 k + 1

)
(x+ (A+ 3/4) z)q−2 k−1

×
(√

(3x+ (A+ 3/4)2z)z
)2 k+1

= −1/2 (((4A+ 3)2 z + 48x)z)1/2

×
dq/2e∑
k=0

(
q

2 k + 1

)
(x+ (A+ 3/4) z)q−2 k−1

× (3x+ (A+ 3/4)2z)kzk,

x∗− := −1/2

dq/2e∑
k=0

(
q

2 k + 1

)
(x+ (A+ 3/4) z)q−2 k−1

× (3x+ (A+ 3/4)2z)kzk,

x+ = 2

bq/2c∑
k=0

(
q

2 k

)
(x+ (A+ 3/4) z)q−2 k

× (3x+ (A+ 3/4)2z)kzk.

]

=
1

2 (A (2A+ 3) z + 6x)

[
8x (x+Az)q

+ (A (2A+ 3) z + 2x)x+

+
(
A (2A+ 3) (4A+ 3) z2 + 6 (4A+ 1)xz

)
x∗−

]

=
1

2 (A (2A+ 3) z + 6x)

[
8x
[
xq + qxq−1Az +

(
q
2

)
xq−2(Az)2

+
(
q
3

)
xq−3(Az)3 + ...

]
+ 2 (A (2A+ 3) z + 2x)
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×
[
(x+ (A+ 3/4)z)q +

(
q
2

)
(x+ (A+ 3/4)z)q−2

× (3x+ (A+ 3/4)2z)z

+
(
q
4

)
(x+ (A+ 3/4)z)q−4(3x+ (A+ 3/4)2z)2z2

+
(
q
6

)
(x+ (A+ 3/4)z)q−6(3x+ (A+ 3/4)2z)3z3 + ...

]
+ (−1/2)

(
A (2A+ 3) (4A+ 3) z2 + 6 (4A+ 1)xz

)
×
[
q (x+ (A+ 3/4)z)q−1 +

(
q
3

)
(x+ (A+ 3/4)z)q−3

× (3x+ (A+ 3/4)2z)z +
(
q
5

)
(x+ (A+ 3/4)z)q−5

× (3x+ (A+ 3/4)2z)2z2

+
(
q
7

)
(x+ (A+ 3/4)z)q−7(3x+ (A+ 3/4)2z)3z3 + ...

]]
≤xq + q(q−1)

2 xq−1 z + q(q−1)2(q−2)
8 xq−2 z2 + ...

≤xq + C (1 + xq) z

≤xq(1 + C z) + C z, 0 < z ≤ z0.
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