
Lietuvos matematikos rinkinys
Proc. of the Lithuanian Mathematical Society, Ser. A
Vol. 62, 2021, pages 16–22
https://doi.org/10.15388/LMR.2021.25215

Press

Logical derivation search with assumption
traceability

Adomas Birštunas , Elena Reivytytė
Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius
E-mail: adomas.birstunas@mif.vu.lt; e.reivytyte@gmail.com

Received September 1, 2021; published online December 15, 2021

Abstract. In this paper authors research the problem of traceability of assumptions in
logical derivation. The essence of this task is to trace which assumptions from the avail-
able knowledge base of assumptions are necessary to derive a certain conclusion. The paper
presents a new derivation procedure for propositional logic, which ensures traceability fea-
ture. For the derivable conclusion formula derivation procedure also returns the smallest set
of assumptions those are enough to get derivation of the conclusion formula. Verification of
the procedure were performed using authors implementation.

Keywords: propositional logic; traceability; loop checking 1�

Introduction

In the recent decades artificial intelligence is increasingly used by software developers
to provide more and more smart systems. One of the areas of the artificial intelligence
is formal logics. There are lots of classical methods for logical derivation. Some of
them are applicable for particular logic, some of them are universal methods, those
may be applied for a big set of logics. The most widely used methods are sequent
calculi, resolution methods, tableaux methods [5]. The logic to be chosen depends
on the application scope and may vary from the propositional logic, predicate logic,
descriptive logic and different modal logics. The goal of these methods is to deter-
mine if given formula (conclusion) is derivable from the set of assumption formulas.
Different provers based on the different calculi or derivation procedures are already
implemented and used in real word applications.

1�

© 2021 Authors. Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

https://doi.org/10.15388/LMR.2021.25215
https://orcid.org/0000-0003-4574-1534
mailto:adomas.birstunas@mif.vu.lt; e.reivytyte@gmail.com
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Logical derivation search with assumption traceability 17

In the real applications we use knowledge bases, those contain hundreds, thousands
or even much more assumptions. Most of the assumptions are not related to the
particular goal formula. Usually prover, especially if we take a general-purpose prover,
returns simple result – if given conclusion formula is derivable or non-derivable. For
the most applications such a simple result is enough. For some application we also
need the smallest set of assumptions, those are enough to get a derivation of given
conclusion formula.

For example, suppose we have logic-based intelligent system for reasoning on re-
quirements of legal acts. Our knowledge base is a set of assumptions (logic formulas),
those describe particular requirements, restrictions presented in the legal acts. Sup-
pose, our system may check if some given restriction, requirement shall be applied
or not, or some action, operation is legal or not in the particular situation. Using
classical prover, we will be able to provide the main answer – is it applicable or not.
But in the example case, it is not enough. The system user should be able to explain
the decision correctness – to present the set of legal act requirements, those leads to
the decision. Therefore, we also need the set of assumptions (related to particular
legal requirements) used to derive our conclusion.

General purpose calculi and decision procedures do not care about assumption
traceability. Usually they may by modified to return used assumptions. Unfortu-
nately, the returned set of assumptions may contain unnecessary assumptions, those
are not needed for the derivation, but they were used during derivation. There can
be few different derivation trees based on the different assumptions, classical methods
will return only one of them. As a result, we may get the set of used assumptions
containing 50 or 100 assumptions, even if there exist a small set of 5 or 10 assump-
tions, those are enough to prove a goal formula. Therefore, we need methods those
ensure assumption traceability feature – returning the smallest set of assumptions for
provided formula derivation.

There is also other research area of the traceability. When a set of used assump-
tions to derive some goal and derivation tree is already presented, we may analyse
the decision tree itself to get even more useful information. Sometimes formal logics
are also used for such a reasoning. Such a research may be found in [3].

In the next section we will introduce a new propositional logic method with as-
sumption traceability feature. We will call it “Decision procedure with assumption
traceability for the propositional logic”, or shortly PWATPL procedure. For creating
PWATPL procedure some techniques were used – indexing formulas and loop check-
ing. Indexing formulas are widely used in logical calculi for different modal logics.
Usually indexing formulas are used to show finality, completeness or soundness of the
calculus (see [4, 6]). We use indexed formulas for the different purpose. We will in-
troduce 2 level indexes: the first is used to ensure the smallest set of assumptions, the
second – to ensure traceability itself. Loop checking technique for some modal logics
are used to achieve the finality of the calculus (see [1]). We will use loop checking to
ensure completeness and soundness of our method.

1 Derivation procedure

Suppose we have the set of premises {ϕ1, . . . , ϕn} (assumption formulas) and the goal
formula ψ.

Liet.matem. rink. Proc. LMS, Ser. A, 62:16–22, 2021

https://doi.org/10.15388/LMR.2021.25215

18 A. Birštunas, E. Reivytytė

Definition 1. Suite is a structure: [i1, i2, i3, . . . , in; state; q1, q2, . . . , qk], where:

• i1, i2, i3, . . . , in – 2-level clause indices.
• state ∈ {closed, loop} – the state of the suite.
• q1, q2, . . . , qk – looping literals of this suite; not used for closed suites.

Example 1. Suite [2.2, 3.1, 3.2; loop; p,¬q] is a loop suite (with looping literals p and
¬q), containing indeces, those refer to clauses D2.2, D3.1, D3.2 from 2 premises ϕ2, ϕ3.

Definition 2. Joint (union) suite of the suites S1 = [i1, i2, . . . , in; st1; q1, q2, . . . , qk]
and S2 = [j1, j2, . . . , jm; st2; p1, p2, . . . , pr] is a new suite S = S1∪S2 = [{i1, i2, . . . , in}∪
{j1, j2, . . . , jm}, st, {q1, q2, . . . , qk} ∪ {p1, p2, . . . , pr}], where state st = closed if st1 =
st2 = closed, and, otherwise, st = loop.

Definition 3. Literal structure LS = 〈state, setOfSuites〉, where:

• state ∈ {init, started, finished} – current state.
• setOfSuites – set of suites assigned to the literal.

Initialization:

1) Convert every premise into conjunctive normal form (CNF): ϕi = Di.1&Di.2& . . .
&Di.m, where Di.j is a disjunctive clause (further clause).

2) For every obtained clause Di.j give a two level index – i.j. The first index part
refers to the premise, and the second part refers to the particular clause.

3) Create set S of all clauses (clause indexes) obtained from every premise.
4) For every literal used in any clause create a structure LS.

PWATPL procedure for the goal formula G derivation follows:

1) Convert goal formula G into disjunctive normal form (DNF): G = F1∨F2∨· · ·∨Fs,
where Fl conjunctive clause (further conjunct).

2) For every conjunct Fl perform derivation procedure deriveConjunct(Fl).
3) Put obtained suite into the set of good suites – GoodSuites.
4) Choose the smallest suite from the GoodSuites. Note: only the first level indices

should be taken into consideration during suite comparison, since they define real
premises, not their parts only.

Conjunct F = p1&p2& . . .&pk derivation procedure deriveConjunct(F) follows:

1) For every literal pj perform procedure getSuitesFor(pj). As the result we get the
set of suites R′(pj) for the literal pj . R′(pj) will contain closed suites and loop
suites as well.

2) Obtain the set of the closed suites R(pj) ⊂ R′(pj) – remove every loop suite from
R′(pj) and leave only the closed ones. R(pj) contains suites, from which literal pj
is derivable.

3) Join all the obtained set of suites for single literals pj (j = 1, 2, . . . , k) into the one
set of closed suites R(F) for conjunct F = p1&p2& . . .&pk.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

Logical derivation search with assumption traceability 19

R(F) is obtained similar to getting Cortesian product – every suite form R(p1)
should be joint (union operation) with every suite from R(p2), and the result suites –
with every suite from R(p2), and so on. If R(pj) = ∅, for any j, R(F) is also an empty
set. R(F) contains suites, from which conjunct F is derivable.

4) Choose the smallest suite from the set R(F). Note: only the first level indices
should be taken into consideration during suite comparison, since they define real
premises, not their parts only.

5) The smallest suite from the set R(F) is a result of deriveConjunct(F).

Now we introduce helper suite generation procedure genSuites(suiteMap,C(p)).
It generates suites for the literal p from suites of the literals containing in the same
clause.

Suppose clause C(p) = p∨¬c1∨ . . .¬cm, and suite map for literals is suiteMap =
{c1 → {S1.1, . . . , S1.k1}, . . . , cm → {Sm.1, . . . , Sm.km}}. {Sx.1, . . . , Sx.kx} is a set of
the suites of the literal cx.

Procedure genSuites(suiteMap,C(p)) generates new suites for literal p as follows:

1) Create set of union suites
S = {S1.1 ∪ S2.1 ∪ · · · ∪ Sm.1, . . . , S1.k1

∪ S2.k2
∪ · · · ∪ Sm.km

, } – all posible unions
of m suites taking one suite per one literal (like Cartesian product).

2) Add C(p) index into every suite of the set S.
3) Remove litaral p from looping literals from every suite of the set S.
4) From the suite set S remove duplicates and supersuites (leave only subsuites).

Finally, we present the main procedure getSuitesFor(pj). It returns the set of
suites literal pj is derivable from.

For the further text, by the ¬c we denote the opposite literal to c: if c = q, then
¬c = ¬q, if c = ¬q, then ¬c = q. Therefore, ¬c does not mean, that literal has
negation.

Procedure getSuitesFor(pj) follows:
path.add(p); 1. add literal p into the derivation path
if (p.explored) 2. if literal p is already explored

return p.suites; just return previously found suites
p.state = started; 3. initialize process for literal p
for (C(p): getClauseWith(p)) 4. for every clause containing p proceed:
begin

if (path.contains(C(p))) 4.1. if clause is on the derivation path
continue; continue with a next clause for literal p,

go to step 4
if (C(p) = p) 4.2. if clause C(p) is p – it is derivable:
begin
suite = new [C(p).index; closed;]; – create new closed suite

containing only C(p) index
p.suites.add(suite); – add new suite for the literal p
continue; – continue with the next clause

end and go to step 4

Liet.matem. rink. Proc. LMS, Ser. A, 62:16–22, 2021

https://doi.org/10.15388/LMR.2021.25215

20 A. Birštunas, E. Reivytytė

path.add(C(p)); 4.3. add clause C(p) to the path
suiteMap = new Map(literal to set); 4.4. new map from literals to set of suites
for (¬c : C(p).getLiteralsExcept(p)) 4.5. for every literal in the C(p),
begin except literal p itself, repeat:

4.5.1. if derivation path contains literal c
if (path.contains(c)) it is a “bad-loop” (to get c we need c),
begin literal c is non-derivable for current path:
startClause = path.getStart(c); – get clause in the derivation path,

which starts the loop for the literal c
c.setFinishedFor(startClause); – set, that c is finished for every

path containing loop-starting clause
continue; – continue with the next literal

and go to step 4.5
end
c_suites = getSuitesFor(c); 4.5.2. recursion call to get all suites for

literal c (including loop-suites)
suites.c -> c_suites; – add found suites into the suite map
if (path.contains(¬c)) 4.5.3. if derivation path contains ¬c
begin it is a “good-loop”, ¬c is derivable

from the all clauses in the loop,
if only all other literals are derivable
(despite p may be non-derivable):

loopSuite = new [; loop;¬c]; – create empty suite (without indices)
suites.c.add(loopSuite); – add suite into the suite map

end
end
if (suites.containsForEveryLitaral()) 4.6. if there is at least one suite
begin for every literal of the clause C(p):
p_suites = genSuites(suites, C(p)); – create new suites for the literal p
p.suites.add(p_suites); – add all found suites for the literal p

end (obtained by using clause C(p))
end
return p.suites; 5. return found suites for the literal p

The following examples explain the main idea of the used loop-checking (good and
bad loops) in the procedure.

Example 2 [Good-loop]. Suppose we have the set of clauses

S = {D1.1 = p ∨ ¬q ∨ ¬z,D2.1 = q ∨ ¬y,D3.1 = y ∨ p,D4.1 = z ∨ ¬p,D5.1 = ¬z ∨ p}

Clauses p ∨ ¬q ∨ ¬z, q ∨ ¬y, y ∨ p creates “good-loop” for y, since for deriving p
using D1.1 it is enough to derive q ∨ p (and z): to derive p from the p ∨ ¬q ∨ ¬z, we
need to derive q and z, to derive q, we need to derive y, to derive y, we need to derive
¬p. Since p is our goal, there is no need to eliminate p at all – we leave it in a loop
suite.

Clauses p ∨ ¬q ∨ ¬z, z ∨ ¬p creates another “good-loop” for z.
Therefore, we create loop suites: [3.1; loop; p] for y and, as a result, we create loop

suite [2.1, 3.1; loop; p] for q, and [4.1; loop; p] for z.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

Logical derivation search with assumption traceability 21

Finally, from loop suites [2.1, 3.1; loop; p] and [4.1; loop; p] we generate closed loop
[1.1, 2.1, 3.1, 4.1; closed;] for p.

Remark that q and z are non-derivable by themselves form the given set S.
Example 3 [Bad-loop]. Suppose we have the set of clauses

S = {D1.1 = p ∨ ¬q ∨ ¬z,D2.1 = q ∨ ¬y,D3.1 = y ∨ ¬p,D4.1 = y ∨ p,D5.1 = z}

Clauses p ∨ ¬q ∨ ¬z, q ∨ ¬y, y ∨ ¬p creates “bad-loop”, since it is impossible to
derive p using these clauses: to derive p from the p ∨ ¬q ∨ ¬z, we need to derive q
and z, to derive q, we need to derive y, to derive y, we need to derive p. But p is our
goal. Therefore, there is no sense to use such a derivation path for p derivation.

Despite this, it does not mean, that y is not derivable by itself using clause D3.1 =
y∨¬p. D3.1 is not useful for p derivation, but y may be derived from the D3.1 = y∨¬p
and D4.1 = y∨p. This is the reason, we cannot mark y as non-derivable if “bad-loop”
was found. We just mark it is explored for particular derivation path. Derivation
procedure still derives y.

Note, that p is still derivable from the set {D1.1, D2.1, D4.1, D5.1} in the given
example, and PWATPL procedure returns suite [1.1, 2.1, 4.1, 5.1; closed].

At first sight, it may look like PWATPL procedure is polynomial, since we explore
every literal once. Unfortunately, it is not a true. “Bad loops” cause us to mark
literals as explored for particular derivation path only. It means the same literal may
be explored for the second time, and, therefore, we get an exponential complexity. It
is not surprise, since it is 3SAT problem, which is known to be NP-complete according
Cook theorem [2].
Lemma 1. If Derivation procedure getSuitesFor(p) for literal p returns suite [i1, i2,
i3, . . . , in; loop/closed; q1, q2, . . . , qk], then clause p∨ q1∨ q2∨ · · ·∨ qk is derivable from
the set of clauses S = {Di1 , Di2 , . . . , Din} using Resolution method.
Proof. The proof goes from mathematical induction according suite size S size – n.
Lemma 2. If clause p ∨ q1 ∨ q2 ∨ · · · ∨ qk is derivable from the set of clauses S =
{Di1 , Di2 , . . . , Din}, then suite [i1, i2, i3, . . . , in; loop/closed; q1, q2, . . . , qk] will be re-
turned by the Derivation procedure getSuitesFor(p).
Proof. The proof goes from mathematical induction according clause p∨q1∨q2∨· · ·∨qk
derivation length m using Resolution method.

As the special case, we get, that literal p is derivable from the set of clauses S =
{Di1 , Di2 , . . . , Din} using Resolution method if and only if suite [i1, i2, i3, . . . , in; closed]
is returned by the Derivation procedure getSuitesFor(p).

Therefore, PWATPL procedure is equivalent to classical Resolution method.

2 Conclusions

PWATPL procedure is a decision procedure with assumption traceability feature for
propositional logic. Suites structures were used to “catch” loops, and 2 level indices
were used to ensure getting smallest set of the used assumptions as a result. Despite
PWATPL procedure returns much more information (set of needed and enough as-
sumptions) comparing with classical derivation methods, its complexity is still as the
Resolution method complexity for the worst case.

Liet.matem. rink. Proc. LMS, Ser. A, 62:16–22, 2021

https://doi.org/10.15388/LMR.2021.25215

22 A. Birštunas, E. Reivytytė

References

[1] R. Alonderis, H. Giedra, A. Pliuškevičienė, R. Pliuškevičius. Loop-type sequent calculi
for temporal logic. J. Autom. Reason., 64:1663ā€–1684, 2020.

[2] S.A. Cook. The complexity of theorem-proving procedures. In Conference Record of
Third Annual ACM Symposium on Theoryof Computing, pp. 151–158, 1971.

[3] J. Dick. Rich traceability. In Proc. 1st TEFSE, pp. 18–23, 2002.
[4] G. Mints. Indexed systems of sequents and cut-elimination. J. Philos. Log., 26(6):671–

696, 1997.
[5] S. Norgėla. Matematinė logika. TEV, Vilnius, 2004.
[6] A. Pliuškevičienė, R. Pliuškevičius. A new method to obtain termination in backward

proof search for modal logic s4. J. Log. Comput., 20(1):353ā€–379, 2010.

REZIUMĖ

Loginio išvedimo paieška su prielaidų atsekamumu
A. Birštunas, E. Reivytytė
Šiame darbe autoriai nagrinėja loginio išvedimo iš prielaidų atsekamumo problemą. Šio uždavinio
esmė yra atsekti, kurios prielaidos iš turimos prielaidų žinių bazės yra būtinos tam tikros išvados
išvedimui. Darbe pristatoma nauja teiginių logikai skirta išvedimo procedūra užtikrinanti prielaidų
atsekamumo savybę. Išvedamai formulei išvedimo procedūra grąžina ir mažiausią prielaidų aibę,
kurios užtenka išvados formulės išvedimui gauti. Procedūra verifikuota su autorių realizacija.
Raktiniai žodžiai: teiginių logika; atsekamumas; ciklų aptikimas

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

	Derivation procedure
	Conclusions
	References

