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able support to my family and me during these intense doctoral years.

Last but not least, I thank my loving wife Živilė, and my beautiful daughter
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PREFACE

This thesis addresses a few theoretical issues in the physics of deep-level defects
in semiconductors. The study of defects in semiconductors has a rich history,
dating back more than a half-century. For a long time, deep-level defects have
been considered detrimental, as they generally deteriorate the characteristics
of the material. Therefore, identifying, understanding, and controlling such
defects is crucial in devising better electronic and optoelectronic devices. On
the other hand, deep-level defects have highly localized atomic-like electronic
states, which are often decoupled from those of the host material. Numerous
experiments demonstrated coherent control and readout of such states in the
past few decades, sometimes even at room temperature. Therefore, these deep-
level defects are interesting quantum systems (called “quantum defects”) with
many potential and already existing applications.

The theoretical groundwork to study deep-level defects was already estab-
lished many years ago. However, quantitative description of specific defects
turned out to be difficult. Most earlier theoretical models have been used to
provide qualitative understanding, as they relied on a simplified picture of the
defect’s electronic and atomic structure. It was only with the advent of modern
electronic structure techniques that a more quantitative description became
possible. In the past three decades, the field has experienced rapid development.
Many issues that have been hitherto difficult to address were tackled. Still,
the development in the field of quantitative electronic structure calculations of
defects has been slower than in the case of, e.g., molecules or bulk solids, and
many questions remain unsolved.

In this thesis, we focus on two particular aspects of deep-level defects: (i) vi-
brational and vibronic properties of isolated defects; and (ii) photoionization of
deep defects. Our goal is to develop practical methodologies to calculate the
relevant quantities completely from the first principles of quantum mechanics.
The quantities are vibrational lineshapes of absorption and emission bands, as
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well as photoionization thresholds and cross-sections. The knowledge of these
quantities is important to understand the physics of known defects, as well as
to identify unknown ones.

This thesis is composed of five chapters. Chapter 1 is an introduction with
the main focus on preferable properties and novel applications of quantum
defects. The nitrogen–vacancy (NV) center in diamond is introduced, as it
is a well-understood example of such a defect. The NV center serves as a
benchmark system for our theoretical analysis. Chapter 2 presents the the-
oretical background used to describe the defect’s vibrational, vibronic, and
spectroscopic properties. Most sections in this chapter contain aggregated the-
ory from classical papers and textbooks. However, Secs. 2.5.3, 2.6.3, and 2.6.4
are original. They present our formulation to describe the multi-mode E ⊗ e
Jahn–Teller effect at defects with C3v symmetry. Chapter 3 presents the com-
putational methodology to determine and analyze the vibrational structure of
defects in the dilute limit. We apply this methodology to explain isotopic shifts
of luminescence peaks of the silicon-vacancy center in diamond (Paper [T1]).
Chapter 4 presents a theoretical investigation of luminescence and absorption
lineshapes in the presence of the Jahn–Teller effect. The methodology is applied
to NV centers in diamond (Paper [T2]). In Chapter 5, we address the photoion-
ization of deep defects in solids. We present a new methodology to calculate
photoionization cross-sections. This methodology is applied to explain the
photoionization mechanisms of the NV center (Paper [T3]).
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Chapter 1

INTRODUCTION

Point defects are omnipresent in semiconductor materials. They are imper-
fections of local lattice sites in the otherwise purely periodic crystal struc-
ture. Such defects are classified into two broad categories depending on the
ionization energy: shallow- and deep-level defects. Shallow defects can be
thermally ionized at an operating temperature of the device (usually room
temperature) and make the material n-type or p-type conductive. On the other
hand, for deep-level defects, the excitation energy required to release a bound
electron (or hole) to the conduction (or valence) band is much larger than
the characteristic thermal energy. The typical feature of deep-level defects
is strongly localized carrier states, in contrast to more delocalized states of
shallow defects.

Historically deep-level defects were considered undesirable as they inter-
fere with the preferable properties of a material. They impede the doping
behavior, increase non-radiative recombination, and deteriorate the material’s
electronic and optoelectronic properties. However, in the past two decades,
a new viewpoint emerged towards optically active point defects, also known
as color centers. Some of them can occur in small concentrations and ex-
hibit strong and photostable optical transitions. This property permits optical
detection of individual centers and makes such defects suitable systems for
single-photon generation [4]. Furthermore, deep-level defects have electronic
states within the host material’s band-gap and resemble systems like isolated
atoms or molecules. They possess their orbital, spin, and nuclear degrees
of freedom which are sufficiently isolated from the host environment. For
some defects, such states can be initialized, manipulated, and read out us-
ing optical and electrical methods. There has been a lot of progress in the
spin control of isolated color centers [5–8]. Due to weak coupling to the
environment, spins in solids display low decoherence rates (sometimes even
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at room temperature), making it possible to achieve coherent control in the
time scales suitable for quantum technology applications [9]. Together with
scalable device engineering, they are promising platforms for new kinds of
technologies.

A good example of such a “quantum defect” is the negatively charged
nitrogen–vacancy center (NV−) in diamond [10]. It is a stable and bright
defect with a localized spin that can be prepared and read out using optical
excitation and subsequently coherently manipulated using microwave radiation.
This unique set of properties made NV center one of the key platforms to test
and eventually implement various quantum technologies. A lot of success
has already been demonstrated in the field of quantum-enhanced sensing [11],
quantum communication [12], and quantum computing [13, 14].

The success of the diamond NV center propelled the research field of
deep-level point defects in semiconductors, as there are other systems with
similarly useful quantum properties [15]. Indeed, it has been found that other
impurity systems can be used for quantum technological applications [6, 8, 16].
However, despite many years of research, the physical understanding of deep-
level defects is far from complete. The defect is not an isolated system, as it is
embedded in the matrix of the host material. The presence of surfaces and other
structural and isotopic impurities introduces non-trivial interactions and makes
it hard to disentangle characteristic properties of the defect from those of the
surrounding material. From an experimental perspective, not every property can
be measured directly. Even the identification of a defect’s chemical structure
is a non-trivial task. This is where the theoretical analysis can play a strong
supportive role.

This thesis is about a theoretical description of such deep-level defects.
Here, we focus on the electronic, vibrational, and vibronic structures of defects,
as they are essential for the rigorous quantum-mechanical description. More-
over, these structures determine the color center’s optical spectra, which have
subtle features often unique to the defect. Therefore, the theoretical ability to
predict optical lineshapes should help to identify new color centers. Further-
more, in the case of established defects, modeling of optical lineshapes serves
as a benchmark for theoretical methods and calculations. In this study, we
advance first-principles theoretical methods for describing (i) the vibrational
and vibronic structure, (ii) electron–phonon interactions, (iii) optical lineshapes,
and (iv) photoionization cross-sections of deep-level defects. These methods
are then applied to the nitrogen–vacancy center of diamond to explain its optical
signatures and the photoionization processes.
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Figure 1.1: (a) Atomic structure of the nitrogen–vacancy (NV) center in di-
amond. (b) Experimental photoluminescence spectra at 4 K from Ref. [17].
(c) Energy level diagram of the NV center.

1.1 Introduction to the NV center

The nitrogen–vacancy color center in diamond is the central defect system
considered in this thesis. It is a well-studied impurity–vacancy complex and has
well-characterized optical features, suitable for benchmark calculations. In this
dissertation, we perform a rigorous analysis of the NV− center’s vibrational
and vibronic structure, and then, using this data, we describe optical processes
of emission, absorption, and ionization. This section briefly introduces the
electronic structure and the basic physics of the negatively charged NV center.

The NV center is formed when one carbon atom is replaced by a nitrogen,
accompanied by the formation of an adjacent vacancy site, shown in Fig. 1.1(a).
This geometric structure has C3v point group symmetry. The NV center is
known to exist in three charge states: negative (NV−), neutral (NV0), and
positive (NV+). The negative charge state is most frequently used in quantum
technological applications. The identifying feature of NV− is its unique spectral
signature of the photoluminescence band, shown in Fig. 1.1(b). The sharp peak
at 1.945 eV corresponds to a purely electronic transition (with no vibrational
excitation) and is known as the zero phonon line (ZPL). The broad vibrational
sideband extends to the lower energy and reflects electron–lattice interaction.
After this band was first reported in 1965 by du Preez [18], the NV center
became an active subject of investigation and is now one of the most studied
defects in diamond.

The energy-level diagram of NV− is shown in Fig. 1.1(c). The ground
state is of orbital symmetry A2 and is a spin-triplet with Dgs ≈ 2.87 GHz
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zero-field splitting between ms = 0 and ms = ±1 spin sub-levels [10]. The
optically excited state 3E is a degenerate orbital-doublet and spin-triplet with
the zero-field splitting of Des ≈ 1.42 GHz [19]. The spin-conserving transition
3A2 ↔ 3E is observed to be extremely photostable under off-resonant excita-
tions (∼2.3 eV) [20]. Together with a short decay time (∼12 ns), these prop-
erties make the NV− center an attractive system for single-photon generation.

The optical spin detection and preparation of the NV− center can be ex-
plained as follows. After the optical excitation to the 3E state, there is a
possibility of non-radiative decay to a spin-singlet level 1A1 [Fig. 1.1(c)]. This
transition is more probable if the initial spin state is ms = ±1 and weaker
for ms = 0 [10]. Such spin-selective behavior is reflected in the strength of
the photoluminescence signal, as the intensity of optical transition 3E → 3A2

is stronger for ms = 0. This mechanism enables an optical readout of the
spin state [21]. After the transition to the 1A1 level, the system non-radiatively
decays to the spin-singlet 1E state and then back to the ground state 3A2. How-
ever, this time, the most probable final state is ms = 0. The overall process
leads to optical spin-polarization, as after a few cycles, the NV− center has a
preferential spin projection ms = 0. An applied magnetic field splits ms = ±1

sublevels of the ground state 3A2. Then, the ms = 0 and ms = −1 spin states
can be chosen to function as a two-level qubit system, which can be manipulated
using microwave radiation adjusted to energy splitting. The coherence times of
this spin system can reach milliseconds at room temperature [22] and seconds
at cryogenic temperatures [23]. However, in modern practical applications, the
qubit is a nuclear spin coupled to the NV center [24].

In summary, the NV− center is a bright and stable paramagnetic defect,
with spin states which can be optically initialized, manipulated, and read out at
room temperature.

While the NV− center is the main focus, we also consider the negatively
charged silicon–vacancy center (SiV−) in diamond [25]. It is another prominent
defect system with potential applications in quantum technologies. The short
introduction to the SiV− center is given in Sec. 3.4.1.

1.2 Main goals and tasks of the thesis

The first goal of this research work is to develop a theoretical methodology
for describing optical lineshapes and photoionization processes of deep-level
defects. The second goal is the application of these methods to explain the
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vibrational structure of SiV− and NV− centers of diamond and photoionization
mechanisms of NV−. To achieve these goals, we formulated the following
tasks:

(1) Improve the computational methodology for the calculation of the defects’
vibrational structure in the dilute limit.

(2) Develop practical theoretical methods for the analysis of the dynamical
multi-mode Jahn–Teller effect in color centers.

(3) Develop an ab initio methodology for the calculation of photoionization
cross-sections in the supercell geometry.

(4) Explain the isotopic shift of the phonon side peak in the luminescence
spectrum of the negatively charged silicon–vacancy center of diamond.

(5) Model theoretical luminescence and absorption lineshapes of the NV−

center.

(6) Model absolute cross-sections of absorption, emission, and photoioniza-
tion processes of the NV− center.

1.3 Statements presented for the defense

(I) We suggest that the experimentally observed sharp vibrational feature in
the photoluminescence spectrum of SiV− is an eu-symmetry vibrational
resonance. The appearance of this feature in the experimental spectrum
cannot be explained in the Frank–Condon approximation. We hypoth-
esize that this peak is due to the Herzberg–Teller effect, whereby the
vibration modulates the optical transition dipole moment.

(II) We developed a novel computationally tractable methodology for the ab
initio description of the multi-mode Jahn–Teller effect in point defects.
This methodology improves current theoretical techniques that are based
on the single-mode approximation.

(III) Our ab initio methodology to calculate luminescence and absorption line-
shapes accurately reproduces the NV− center’s experimental lineshapes.

(IV) After the photoionization from the 3E state, NV centers transition into
the metastable 4A2 state of NV0. This explains electron spin resonance
experiments and has important consequences for the charge dynamics of
the NV center. We determine the threshold for the photoionization to be
1.15 eV.

(V) Our ab initio methodology for the photoionization cross-section calcu-
lations explains recent photoionization experiments and elucidates the
charge-state dynamics of NV centers.
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Chapter 2

THEORY AND FORMAL

DEVELOPMENT

Is this the real life? Is this just fantasy?
Caught in a landslide, no escape from reality
Open your eyes, look up to the skies and see

— Queen, Bohemian Rhapsody

This chapter presents a theoretical framework for analyzing electronic,
vibrational, and vibronic structures of deep-level defects. In Section 2.1, we
formulate the theoretical problem of the defect system in the framework of
non-relativistic quantum mechanics. Section 2.2 introduces the crude adiabatic
approximation. Section 2.3 discusses the electronic problem and introduces
density functional theory (DFT), which is our method of choice for electronic
structure calculations. Special attention is given to the excited state calculations
and a Kohn–Sham single-particle picture. At the end of Section 2.3, we present a
molecular-orbital model that supplements density functional theory calculations
and provides an intuitive framework for describing multi-electron states of
deep-level defects. Section 2.4 introduces the methods for the analysis of
lattice dynamics. In the harmonic approximation, lattice motion corresponds
to simple vibrations around the equilibrium configuration. However, when
the electronic degeneracy is present, adiabatic approximation fails, and the
nuclear dynamics result in a complicated motion, which cannot be reduced to
a simple harmonic form. Systems of such behavior are termed as Jahn–Teller
systems. Therefore, Section 2.5 introduces the theory of the Jahn–Teller effect,
which goes beyond the adiabatic approximation. Finally, in Section 2.3, we
discuss the interaction with light and the theoretical approach for describing
the spectral properties of deep-level defects. The concept of electron–phonon
interaction is presented, and general formulae are derived for calculating the
optical spectrum.
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The content of this chapter mainly aggregates different theoretical ideas
from classical papers and textbooks. Our original contribution is presented in
Sections 2.5.3, 2.6.3, and 2.6.4. In these sections, we introduce our approach to
the multi-mode Jahn–Teller problem and derive formulae for vibronic states,
matrix elements, and optical spectrum in the case ofE ⊗ (e⊕ e⊕ · · · ) vibronic
coupling.

2.1 The nature of the problem

From the microscopic point of view, pure crystal is an infinite structure that
is periodic with respect to spatial translations. From the theoretical perspec-
tive, such a system is effectively modeled by considering only the unit cell.
The unit cell generates the whole crystal by periodic repetition in space and
completely reflects the structural and symmetrical properties of the entire solid.
However, the defect breaks this symmetry, and theoretical techniques applicable
to periodic structures are partially lost. In some cases, defect-related effects
can be treated as small perturbations to the periodic system. This is often
done for shallow impurities. However, deep-level defects strongly perturb the
surrounding environment and require different theoretical techniques. There
are two approaches to model defect systems: (i) a cluster approach, where the
quasi-infinite system is approximated by a cluster, containing a finite number
of atoms; (ii) a supercell approach, where periodic modeling is applied for
non-periodic systems by selecting the large unit cell with an embedded defect
(see Section 2.3.4 for a more detailed discussion).

In the absence of external perturbations, the behavior of a molecular system
is described by a time-independent Schrödinger equation:

Ĥ(r,R)Ψ(r,R) = EΨ(r,R). (2.1)

Here we use an abstract notation, where index-free bold symbols denote a set
of electronic or nuclear degrees of freedom, i.e., r = {r1, . . . , rNe} for elec-
tronic coordinates and R = {R1, . . . ,RNn} for nuclear coordinates1 (Ne and
Nn label the number of electrons and ions). In this thesis, we ignore all rela-
tivistic effects (e.g., spin–orbit interaction). The Hamiltonian Ĥ contains all
information about the system and its particle–particle interactions:

Ĥ = T̂e(r) + T̂n(R) + Ûee(r) + Ûen(r,R) + Ûnn(R). (2.2)
1The electronic spin can be accounted for by replacing r→ x = {r,σ}, where σ denotes

the spin degrees of freedom.
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In this equation, T̂e and T̂n are electronic and nuclear kinetic energy operators,
respectively:

T̂e = −1

2

Ne∑
i

∇2
ri , T̂n = −1

2

Nn∑
i

1

Mi
∇2

Ri
.

Here and throughout the thesis, we adopt Hartree atomic units, where ~ =

me = e = 4π/ε0 = 1. The potential energy terms Ûee, Ûen, and Ûnn individu-
ally describe electron–electron, electron–nuclei, and nuclei–nuclei Coulombic
interactions:

Ûee =

Ne∑
i<j

1

|ri − rj |
, (2.3)

Ûen = −
Ne∑
i

Nn∑
j

Zj
|ri −Rj |

, (2.4)

Ûnn =

Nn∑
i<j

ZiZj
|Ri −Rj |

. (2.5)

The direct solution of Eqs. (2.1)–(2.5) is practically impossible due to its
complicated many-body nature. Therefore, a sequence of approximations must
be adopted to obtain practical results. The correct choice of approximations
should lead to a systematic convergence of the theory towards the truthful
description of the system. The best example of such approximate treatment is
an adiabatic approximation, which effectively separates electronic and nuclear
subsystems. In the next section, we present the adiabatic approximation in the
form used throughout the whole thesis. This form differs from the original
Born–Oppenheimer formulation as it defines the electronic subsystem for fixed
nuclear positions R0 (rather than be dependent on R). Compared to other
traditional forms, this is a rougher assumption and is named crude adiabatic
approximation. However, this simple form is very convenient for a subsequent
treatment of non-adiabatic effects, which is the topic of Section 2.5. Once the
adiabatic form is reached, we can separate the discussion of electronic and
vibrational structures.

2.2 Crude adiabatic approximation

The very notion of the nuclear or electronic configuration of the molecular
system essentially relies on the adiabatic approximation. All adiabatic approxi-
mations are based on the fact that the nuclear masses are much larger than the
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electronic ones. This implies that electron velocity is much larger than that of
the nuclei, and we can separate electronic and vibrational degrees of freedom
without losing much of the accuracy. From many adiabatic approximations, the
crude adiabatic approximation (CAA) [26] is the most straightforwardly applied
in electronic structure calculations of solids.2 Formally, this approximation can
be obtained starting from the exact Hamiltonian (2.2) of the system:

Ĥ(r,R) = T̂e(r) + T̂n(R) + Û(r,R). (2.6)

In this equation, Û = Ûee + Ûen + Ûnn is the potential energy of all particle–
particle interactions [Eqs. (2.3)–(2.5)]. Let us expand Û around some reference
nuclear configuration R0:

Û(r,R) = Û(r,R0) +
∑
n

∂Û

∂un

∣∣∣
0
un +

1

2

∑
n,m

∂Û

∂un∂um

∣∣∣
0
unum +O(u3)

= Û(r,R0) + ∆Û(r,R). (2.7)

Here, un = Rn −R0,n denotes the three-dimensional displacement of nuclei
n about the point R0,n. The first term of Eq. (2.7) is a static contribution
independent of nuclear motion. In contrast, the second term in the second line
of Eq. (2.7) contains all the information about nuclear dynamics. In the CAA,
the electronic spectrum ψi(r) and energies εi are defined as eigenstates and
eigenvalues of the electronic Schrödinger equation:[

T̂e + Û(r,R0)− εi
]
ψi(r,R0) = 0. (2.8)

The solution of this equation is discussed in the next section. The exact eigen-
function of the Hamiltonian (2.6) can be expressed in the form of the expansion:

Ψ(r,u) =
∑
i

χi(u)ψi(r,R0), (2.9)

where χi(u) are functions of nuclear coordinates. Searching for the solution
of Eq. (2.6) in the form of Eq. (2.9), one arrives at the equations for χi(u):

T̂nχj(u) +
∑
i

〈ψj |∆Û |ψi〉χi(u) = (E − εj)χj(u). (2.10)

Here, 〈·| · |·〉 stands for integration over electronic coordinates. The crude adi-
abatic approximation is obtained by ignoring off-diagonal terms in Eq. (2.10):

〈ψj |∆Û |ψi〉 = 0, for j 6= i. (2.11)
2Term “static approximation” is also often used.
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In this case, equation (2.10) attains diagonal form (w.r.t. electronic states), and
the eigenfunction can be written in the adiabatic form:

Ψi(r,u) = χi(u)ψi(r,R0). (2.12)

Once the electronic problem of Eq. (2.8) is solved, the coefficients χi for se-
lected ψi are expressed as the eigenstates of the adiabatic nuclear Schrödinger
equation: [

T̂n + V̂i(u)
]
χi(u) = Evχi(u), (2.13)

where Ev = E − εi is the energy contribution due to the motion of nuclei and

V̂i(u) ≡ 〈ψi|∆Û |ψi〉 , (2.14)

is the potential energy of nuclei in the presence of electronic state ψi. V̂i holds
all the information required to solve the nuclear equation (2.13) and is known
as adiabatic potential energy surface (APES). Adiabatic approximation sig-
nificantly simplifies the problem. Instead of solving Eq. (2.1), which treats
electronic and nuclear degrees of freedom equally, we first solve the electronic
equation (2.8), treating nuclei as an array of fixed point charges. Once the
solution is known, we can calculate the adiabatic potential energy surface (2.14)
and solve the equation (2.13), which determines the dynamical motion of ions
in the selected electronic state ψi. Usually, close to the equilibrium configura-
tion, such dynamical motion manifests itself as quantum harmonic oscillations.
Thus, one often refers to excitations of the nuclear subsystem as vibrations or
phonons. The formal treatment of the nuclear dynamical problem is presented
in Section 2.4.

Approximation (2.11) works well when relatively large energy gaps sep-
arate electronic states of interest and fails when this separation is compa-
rable to phonon excitation quanta [27]. Thus, the validity of the adiabatic
approximation can be verified by first solving the adiabatic problem and then
comparing electronic energies εi with vibrational energies Ev. If electronic
states are well separated, the expected CAA error for energy is of the order
(m/M)1/2 ≈ 2.3× 10−2 [28]. The particular case of non-validity of the adia-
batic approximation is the presence of electronic degeneracy. For degenerate
states, simple separation of electronic and nuclear parts in the form of Eq. (2.12)
is not possible. Such states are termed to be Jahn–Teller (JT) systems. The
theory of JT effects is the topic of Section 2.5.
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2.3 Electronic structure

The topic of this section is the solution of the electronic Schrödinger equa-
tion (2.8). Despite the simplification of the adiabatic approximation, it is still a
formidable task, especially if one considers large systems where thousands of
electrons are present. Thus, the electronic problem requires the use of approx-
imate electronic structure techniques. The method of choice in this thesis is
the density functional theory (DFT) of Hohenberg and Kohn [29, 30]. It is the
leading ab initio3 method for electronic structure analysis of solid-state systems,
as it allows to address systems up to several hundred or even thousands of atoms.
In Section 2.3.1, a short review of the ground-state density functional theory will
be presented. Although DFT is formulated in terms of electron density, a single-
particle picture emerges in the Kohn–Sham formulation of the theory [30].
Thereby, in Section 2.3.2, the meaning of single-particle orbitals is discussed,
and the methodology for excited-state calculations is presented. Section 2.3.3
reviews different approximate schemes for the exchange–correlation functional,
which is the core part of DFT. The practical implementation of Kohn–Sham
density functional theory is introduced in Section 2.3.4. Finally, Section 2.3.5
presents the molecular orbital model, which supplements DFT calculations and
allows intuitive interpretation of the defect’s electronic structure.

2.3.1 Density Functional Theory

The central problem of electronic structure theory is the solution of the eigen-
value problem for electrons [Eq. (2.8)]. The explicit form of the potential
Û(r,R0) involves electron–electron interactions Ûee(r) and an external poten-
tial v̂(r,R0):

Û(r,R0) = Ûee(r) +

Ne∑
i

v̂(ri,R0).

For isolated molecular systems, the external potential corresponds to electron–
nuclei interaction v̂(r,R0) = −

∑
j Zj/|r − R0,j |. The exact solution of

Eq. (2.8) using traditional wavefunction-based methods is practically impossi-
ble for realistic solid-state systems. Contrary to traditional methods, the density
functional theory solves the electronic problem in terms of the electronic den-
sity ρ(r), a function of three spatial variables. The electron density measures

3In Latin, ab initio means “from the beginning” (or “from first principles”), implying that
the only input parameters are physical constants.
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the probability of an electron being present at infinitesimal volume element and
is defined as an observable of spatial density operator ρ̂(r) =

∑Ne
i δ(r− ri):

ρ(r) ≡ 〈ψ|ρ̂(r)|ψ〉

= Ne

∫
|ψ(r, s1,x2, . . . ,xNe)|

2 ds1 dx2 · · · dxNe . (2.15)

Here xi = (ri, si) denotes the combination of spatial and spin degrees of free-
dom. The traditional wavefunction based approach relies on the minimization
of the energy expectation value with respect to the total wavefunction ψ:

E0 = min
ψ

〈
ψ
∣∣∣ T̂ + Ûee +

Ne∑
i

v̂(ri)
∣∣∣ψ〉 . (2.16)

However, the wavefunction itself is not directly needed to evaluate the ex-
pectation value, as the electron density can be used instead. This statement
is formally proven by two Hohenberg–Kohn (HK) theorems [29], laying the
groundwork for density functional theory.

Hohenberg–Kohn theorems

The first HK theorem establishes the connection between electron density and
the many-electron Schrödinger equation for the wavefunction ψ(r1, · · · , rNe).
This theorem states:

First Hohenberg–Kohn theorem [29]. The ground state density ρ0(r) of a
multi-electron system in some external potential v̂(r) determines this potential
uniquely.

In other words, if two electronic systems bound with potentials v̂1(r) and
v̂2(r) have the same ground-state density, these potentials must be equal up
to a constant. This is a significant result as it points out that the ground state
density encodes all the electronic properties of the system as well as the ground
state wavefunction ψ0 itself. This fact enables us to write the ground state
wavefunction ψ0 and energy E0 as functionals of ρ:

E0[ρ] =
〈
ψ0[ρ]

∣∣∣ T̂ + Ûee +

Ne∑
i

v̂(ri)
∣∣∣ψ0[ρ]

〉
=

∫
ρ(r)v̂(r) dr + F̂HK[ρ]. (2.17)
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In the last line, the functional is split into two parts: the first term
∫
ρ(r)v̂(r) dr

describes the interaction with external potential, while the second term:

F̂HK[ρ] =
〈
ψ0[ρ]

∣∣∣T̂ + Ûee

∣∣∣ψ0[ρ]
〉

describes the energy contribution from kinetic energy and mutual electron–
electron interactions. F̂HK[ρ] is defined independently of external potential v̂(r)

and is known as the “universal functional”.
The second HK theorem lays the groundwork for the variational principle:

Second Hohenberg–Kohn theorem [29]. The functional E0[ρ] gives the low-
est energy of the system if and only if the input density is the actual ground-state
density.

Particularly, if the true functional form of F̂HK[ρ] is known, the ground-
state density and energy can be determined by minimizing the total energy
functional:

E0 = min
ρ
E[ρ]. (2.18)

Once this density is known, all other properties can, in principle, be calculated.
In the original paper, HK theorems were formulated for non-degenerate

states and only for particular types of densities. Eq. (2.18) holds only if the
given density is associated with the ground state wavefunction of some Hamil-
tonian Ĥ = T̂ + Ûee + v̂′, where v̂′ is any local potential. Such densities are
called v-representable densities. This is a troublesome constrain as it is hard
to check whether the given density satisfies the latter condition. Fortunately,
Levy [31] and Lieb [32] reformulated density functional theory in a much
broader and convenient sense. The requirement of v-representability in HK the-
orems stems from the fact that only for such densities we can find a one-to-one
correspondence between density and the ground-state wavefunction (note that
in general, there exists an infinite number of antisymmetric wavefunctions that
give the same density ρ(r)). Levy [31] noted that from all the antisymmetric
wavefunctions that correspond to ρ0(r), the true ground state wavefunction
minimizes the universal functional F̂HK[ρ], while Lieb [32] proved that such a
minimum exists. Following these arguments, the whole theory was augmented
using a two-step constrained-search formulation, which extends HK theorems
to include any densities that can be derived from any N -electron antisymmet-
ric wavefunction (N -representability). Such constraint is very weak since it
can be satisfied by any non-negative differentiable function ρ(r) for which∫
ρ(r) dr = Ne [32].
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Kohn–Sham formulation

The practical implementation of density functional theory is done via the self-
consistent Kohn–Sham formulation [30]. In their work, Kohn and Sham [30]
reformulated the variational problem for density in terms of fictitious non-
interacting electrons orbitals φKS

i , often termed Kohn–Sham (KS) orbitals.
These orbitals constitute the antisymmetric determinantal wavefunction:

ψKS =
1√
Ne!

∣∣φKS
1 φKS

2 · · ·φKS
Ne

∣∣ , (2.19)

where | · · · | denotes the determinant made from one-electron wavefunctions:

∣∣φKS
1 φKS

2 · · ·φKS
N

∣∣ ≡ det


φKS

1 (r1) φKS
2 (r1) · · · φKS

Ne
(r1)

φKS
1 (r2) φKS

2 (r2) · · · φKS
Ne

(r2)
...

...
. . .

...
φKS

1 (rNe) φKS
2 (rNe) · · · φKS

Ne
(rNe)

 .

The wavefunction ψKS is required to produce the correct electron density:

ρ(r) = 〈ψKS|ρ̂|ψKS〉 =

Ne∑
j

|φKS
j (r)|2, (2.20)

where ρ̂ =
∑

i δ(r − ri) is the density operator. The wavefunction (2.19) is
not required to correspond to the true wavefunction of an interacting electron
system.

The derivation of single particle Kohn–Sham equations is illustrated as
follows. Let us consider the system of non-interacting electrons, with the
Hamiltonian:

Ĥs =

Ne∑
i

T̂i +

Ne∑
i

v̂s(ri). (2.21)

Its ground state is a single-determinant wavefunction:

ψs =
1√
Ne!
|φ1φ2 · · ·φNe | .

Here φi’s are N lowest eigenstates of the one-particle Hamiltonian:

ĥs = T̂i + v̂s(ri).

The HK theorems still hold for such system, and the ground state density can
be determined via the minimization of:

Es[ρ] = T̂s[ρ] +

∫
ρ(r)v̂s(r) dr, (2.22)
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where

T̂s[ρ] =

Ne∑
i

〈
φi

∣∣∣T̂ ∣∣∣φi〉 , (2.23)

is the kinetic energy of non-interacting electrons. The minimization of Eq. (2.22)
with respect to the total density, under constraint

∫
ρdr = N , yields the

following Euler–Lagrange equation:

µ = v̂s(r) +
δT̂s[ρ]

δρ
, (2.24)

where µ is a Lagrange multiplier.
For the interacting system, Kohn and Sham suggested rewriting the univer-

sal functional in the form:

F̂HK[ρ] = T̂KS
S [ρ] + J [ρ] + Êxc[ρ]. (2.25)

where T̂KS
S [ρ] is the kinetic energy of non-interacting KS orbitals [defined as in

Eq. (2.23)]. J [ρ] is the classical Coulomb interaction of the density with itself:

Ĵ [ρ] =

∫∫
ρ(r1)ρ(r2)

|r2 − r1|
dr1 dr2. (2.26)

The final term of Eq. (2.25) is the exchange-correlation energy functional.
Êxc[ρ] is defined to account for the remaining energy contributions:

Êxc[ρ] = T̂ [ρ]− T̂KS
s [ρ]︸ ︷︷ ︸

(i)

+ Ûee[ρ]− Ĵ [ρ]︸ ︷︷ ︸
(ii)

. (2.27)

Here (i) is the difference between the true kinetic energy T̂ and the artificial
kinetic energy of non-interacting electrons T̂KS

s , and (ii) is a non-classical
part of electron–electron interaction. The Euler–Lagrange equation for the
functional (2.17) of the interacting system now becomes:

µ =

[
v̂(r) +

δĴ [ρ]

δρ
+
δÊxc[ρ]

δρ

]
+
δT̂s[ρ]

δρ
.

This equation is precisely the same as one obtained for non-interacting electrons
[Eq. (2.24)], except v̂s(r) is replaced with:

v̂KS(r) = v̂(r) +
δĴ [ρ]

δρ
+
δÊxc[ρ]

δρ

= v̂(r) +

∫
ρ(r)

|r− r′|
dr′ + v̂xc(r).
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The exchange–correlation potential v̂xc = δÊxc[ρ]/δρ is the only formally
unknown term, which contains all non-classical contributions. Therefore, for
given v̂KS(r), the variational problem is mapped to the solution of one-electron
Schrödinger-like equations:[

T̂i + v̂KS(r)
]
φKS
i = εiφ

KS
i . (2.28)

Here, the potential v̂KS is a functional of ρ, while ρ is constructed from single-
particle KS orbitals through Eq. (2.20). Hence, the whole problem must be
solved self-consistently as it is done in the Hartree–Fock method. In principle,
one begins with a guessed ρ (or equivalently, a set of φKS

i ’s), constructs v̂KS,
and then finds a new ρ. The process is repeated until the required convergence
is reached. The Kohn–Sham formulation of DFT is formally rigorous. That
is, if v̂xc were the exact exchange–change correlation potential, the solution of
Eq. (2.28) would yield the exact ground-state energy and charge density.4 The
main practical complication is the form of Êxc (and thus v̂xc), which is only
approximately known. However, the search for proper exchange–correlation
functionals is a very active field of research, and increasingly accurate func-
tionals are being developed (see Section 2.3.3 for review on approximate
functionals).

Spin

Another important property for electronic structure analysis is spin. The wave-
functions of the electronic Hamiltonian must be eigenfunctions of spin operators
S2 and Sz . In the formulation above, Kohn–Sham density (2.20) was required
to be identical to the total density of the interacting system. There is no distinc-
tion between spin-up and spin-down states of Eq. (2.28) with this constraint
only. This formulation leads to spin-restricted DFT, where the spatial parts for
both spin counterparts are identical, i.e.:

ψKS =
∣∣φKS

1 |↑〉 , φKS
1 |↓〉 , φKS

2 |↑〉 , φKS
2 |↓〉 , · · ·

∣∣ .
This formulation is suitable for closed-shell systems, where all spins are paired.
However, this approach could lead to undesirable results for open-shell systems,
where there are unpaired electrons. Most importantly, in spin-restricted DFT,

4However, there is an open question of the v-representability of ρ in terms of Kohn–Sham
wavefunction. In general, not every ρ can be expressed as a density of a single Slater determinant.
Nonetheless, from a practical perspective, this assumption holds in most cases, although some
counter-examples can be found.
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the spin density Qs(r) = ρ↑ − ρ↓ (excess of spin-up electrons at a given point)
in principle could be different from the true spin density of the interacting
system [33]. Therefore, to overcome this problem, the spin-unrestricted formu-
lation of DFT is used [34, 35]. The main idea behind the spin-unrestricted DFT
is to introduce different Kohn–Sham potentials v̂seff for spin-up and spin-down
electrons to account for contrasting exchange interactions. As a result, two
systems of KS equations (2.28) emerge for each spin component. Resultant spin
densities ρ↑, ρ↓ are required to be equal to their fully interacting counterparts. In
this formulation, the exchange–correlation energy becomes a unique functional
of both spin densities. In the case of deep-level defects, paramagnetic states are
often encountered. Thus the spin-unrestricted DFT is the usual choice, as it is in
this thesis. One drawback of the spin-unrestricted approach is possible artificial
mixing of different S2 eigenstates (spin-contamination). However, such arti-
facts can be partially avoided if the correct structure of Kohn–Sham wavefunc-
tion (2.19) is enforced. This will be the topic of the last Subsection 2.3.5, where
the molecular-orbital model is used to determine the appropriate form of ψKS.

2.3.2 Kohn–Sham orbitals and excited-states

In wavefunction-based methods, like Hartree–Fock, single-particle wavefunc-
tions are rather “physical” constructs. The occupied orbitals constitute the true
(approximate) wavefunction, and the energy of the highest orbital is approxi-
mately equal to the first ionization energy of the molecular system (as proved
by the Koopmans’ theorem). These properties strengthen the phenomenological
concept of a “chemical orbital”, which is extremely useful in explaining the
complex reality of molecular structures. In the Hartree–Fock theory, the assump-
tion that a single Slater determinant can describe the electronic wavefunction is
equivalent to the notion that each electron can be represented by an effectively
independent single-particle function (molecular orbital). The presence of other
electrons is felt through averaged Coulomb repulsion and exchange interaction.
Although this picture is not very rigorous, it provides a very intuitive interpreta-
tion of electronic states. If the ground state is a single-determinant configuration,
the excited configuration can be modeled in terms of single-particle excitations,
where electron–hole pairs are introduced. Such an orbital picture is also ben-
eficial for the defect system. It provides a simple and intuitive description of
electronic states in terms of single-electron localized orbitals (see Section 2.3.5).
The main drawback of the traditional Hartree–Fock approach is the assumption
of a single configuration, as not all states are described by a single Slater determi-
nant. Thus, improved methods like configuration-interaction (CI) or many-body
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perturbation theory (MBPT) must be used to describe such correlated systems.5

However, in such advanced methods, intuitive orbital interpretation is partially
lost. On the other hand, the density functional theory is an exact theory that
should account for the electronic correlation to its full extent. However, the role
of single-particle orbitals still requires clarification. The main questions of this
section are: “what is the meaning of Kohn–Sham single-particle states”, and
“can they be used to model other electronic states beyond the ground state”.

Band-gap problem

From first sight, the single-particle Kohn–Sham orbitals of DFT are just aux-
iliary constructs without any meaningful “physical” information. In the early
days of DFT, the theory was primarily used to determine the ground-state bind-
ing energies and related properties, like potential energy surfaces, geometrical
structure, and force constants. The explicit use of KS orbitals to rationalize
chemical structure was avoided, mostly because it was difficult to extract physi-
cal information from these constructs. The picture started to change in the early
1980s after Janak [36] found a rigorous connection between the ground state
energies of Ne- and Ne + 1-particle systems in terms of KS eigenvalues. In
Ref. [36], Janak generalized the KS system to include fractional occupations
0 ≤ αi ≤ 1:

ρ =
∑
i

αi|φKS
i |2.

Such a generalization describes the density and energy of a statistical grand
canonical ensemble [37]. Janak [36] proved that the variation of the total energy
with respect to orbital occupation αi is equal to the eigenvalue of KS orbital for
N + αi electron system:

∂E0

∂αi
= εi(N + αi). (2.29)

Therefore the KS eigenvalue has the meaning of the chemical potential. This
result uncovered new possible applications of DFT for a broad class of problems,
such as ionization potentials, electron affinities, and work functions of metals.
For example, from Eq. (2.29), it follows that the ionization potential I (the
energy of removing an electron from the system) and electron affinity A (the
energy of adding an electron to the system) forN electron system can be written

5The term “electron correlation” in principle describes the deviation from a single-
determinant description.
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in terms of KS eigenvalues:

I = EN−1
0 − EN0 = −

∫ 1

0
εN (αN ) dαN ,

A = EN0 − EN+1
0 = −

∫ 1

0
εN+1(αN+1) dαN+1, (2.30)

where εN and εN+1 are, respectively, the energies of the highest occupied and
the lowest unoccupied one-electron levels (these are calculated for different
fractional electron numbers). Furthermore, Perdew et al. [38] showed that for
the exact functional, the energy of the grand canonical ensemble is a piecewise
linear function of fractional occupations, connecting energies at integer electron
numbers. Thus, the equations (2.30) for the exact functional can be rewritten as:

I = −εN (N − δ),
A = −εN+1(N + δ), (2.31)

where δ is a very small positive fraction of electrons. One could further argue
that adding or removing an infinitesimal number of electrons could only make
infinitesimal changes to ensemble density ρ and thus to the effective potential
v̂KS. Such change should not alter one-electron energies and Eqs. (2.31) would
become I = −εN (N) and I = −εN+1(N). This argument leads to extremely
simple band-gap expression Eg = A − I = εN+1(N) − εN (N) [39]. In the
early 1980s, the first DFT band-structure calculations were reported. However,
systematic studies showed that with available approximate functionals, fun-
damental band gaps of semiconductors are typically underestimated by 40%.
Perdew and Levy [40] rigorously proved that this inconsistency is not only due
to an approximate form of functional but also has more fundamental ground.
The Kohn-Sham band-gap εKS

gap = εN+1(N)− εN (N) always underestimates
the gap width, even with the exact Êxc [40, 41]:

Eg = εKS
gap +

{
∂Êxc

∂N

∣∣∣∣∣
N+δ

− ∂Êxc

∂N

∣∣∣∣∣
N−δ

}
. (2.32)

The second term in Eq. (2.32) comes from the derivative discontinuity of
exchange–correlation potential and should always be present in the Kohn–Sham
formulation of DFT. This is the well-known band-gap problem of DFT [42].
Apart from this band-gap problem, empirical observations show that the Kohn–
Sham band-structure calculations typically produce band-shapes and density
of states close to the experimental ones. Perdew and Levy [40] noted that
band-gap errors could be reduced by improving orbital-dependent one-electron
self-energies, which lies beyond the standard Kohn–Sham formulation. During
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the past 30 years, many attempts have been made to augment DFT to provide
a better description of the band-gap and excited-state properties. The most
advanced methods are time-dependent density functional theory (TDDFT) [43],
GW -approximation [44–46], and embedding methods [47], which combine
DFT with high-accuracy quantum chemistry approaches. Maybe the most
popular is the GW -approximation, where a quasi-particle picture is employed
to calculate the self-energy of interacting electrons. This approach is remark-
ably successful in predicting band-gaps (and electronic excitations in general),
achieving an error of a few percent with respect to experimental data for “simple”
materials [48]. However, the computational cost of GW and other advanced
methods is still very high, especially if one considers an extended defect system.

Generalized Kohn–Sham scheme

The approach for excited states, which is employed in this thesis, is based
on a generalized Kohn–Sham (GKS) scheme [49]. The idea of GKS is to
reformulate the Kohn–Sham variational procedure differently to give more
physical meaning to single-particle eigenvalues. In the ideal case, the one-
electron band-gap should be equal to the true fundamental gap:

Eg = εGKS
gap .

In principle, this reformulation could be achieved within the framework of DFT
by introducing electron–electron interaction into single-particle equations. In
GKS formalism, the density generating wavefunction (2.19) is still a single
Slater determinant of one-particle orbitals φGKS

i . Seidl et al. [49] showed
that ground state energy could be written as a functional of such one-electron
orbitals:

E0

[
ρ[{φGKS

i }]
]

= Ŝ[{φGKS
i }] + R̂S [ρ] +

∫
v̂ρdr, (2.33)

where ρ is a functional of {φGKS
i }. Ŝ is an arbitrarily chosen operator, which is

explicitly a functional of {φGKS}, while R̂s accounts for the difference between
F̂HK and Ŝ. In principle, this is a different partitioning of Eq. (2.25). The
minimization of Eq. (2.33) yields the following single-particle equations [49]:

Ôs[{φGKS
i }]φGKS

j + v̂Rφ
GKS
j + v̂φGKS

j = εGKS
j φGKS

j , (2.34)

where
v̂R =

δRs

δρ
.

is the remainder single-particle potential. Based on the partitioning of Eq. (2.33),
operator Ôs now may depend on one-electron orbitals. Although this is just a
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reformulation of a variational problem, it allows flexibility in choosing single-
particle equations. For example, if one chooses Ŝ to be the kinetic energy
of the Slater determinant, Ŝ =

∑
i〈φGKS

i |T̂ |φGKS
i 〉, the standard Kohn–Sham

formulation is recovered. On the other hand, if Ŝ = 〈Φ|T̂ + Ûee|Φ〉 (where Φ

is a single Slater determinant), Ôs will have the Fock operator form of Hartree-
Fock theory, and v̂R will contain all correlation effects absent in the HF theory.
With the exact functional, the minimization should produce the same ground
state energy and density as in the standard Kohn–Sham formulation (though
a single-particle description is different). However, the exact form of R̂S (and
thus v̂R) is not known for chosen Ŝ, and appropriate approximations should
be used instead. Successful examples of the GKS scheme are meta-GGA [50]
and hybrid functionals [51] (see Section 2.3.3 for more detailed discussion). In
hybrid functionals, the exact exchange of Hartree–Fock theory is mixed with the
exchange-correlation of the approximate DFT functional [52–54]. Such mix-
ture introduces non-local Fock type (integral) operators into the single-particle
equations. The partial motivation behind the hybrid functionals is based on
the empirical observation that HF single-particle band-gaps are overestimated
while KS band-gaps are underestimated. Meta-GGA is another type of func-
tionals, which introduce OS dependence on the kinetic energy density of the
non-interacting system τ =

∑
i |〈φGKS

i |T̂ |φGKS
i 〉|2. Modern meta-GGA [55]

and hybrid functionals [53] can improve the predictive power of single-particle
description. For example, screened hybrid functionals predict band-gaps with
15% accuracy and mean deviations of 0.21 eV for solid-state systems [56].

Excited-state calculations

The discussion above shows that the single-particle orbitals have a physical
significance, as they can be used to predict excitation energies (at least as a first
estimation). However, for localized systems, like defects, electronic excitation
could lead to geometrical rearrangement of atoms and some electronic relax-
ation in the vicinity of the defect. Ground-state calculations cannot capture such
effects. For point defects, geometrical relaxation is a very important property
as it leads to electron–phonon coupling, which is one of the central problems
of this thesis. To extract information about geometrical rearrangements (or
excited-state potential energy surfaces in general), one needs to access excited
states in the same manner as the ground states. The practical idea to calculate
excited states comes from the fact that Kohn–Sham orbitals generally provide
a good qualitative interpretation of the electronic structure and can be used to
rationalize chemical description, as is shown by Baerends and Gritsenko [57].
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This is even more true for the generalized Kohn–Sham scheme, where the
description of single-particle orbitals is improved. Thus, up to some approxi-
mation, the excitation of one-particle states should mimic the true excitation
of the system. This conception forms the basis of the ∆SCF method [58, 59].
∆SCF method has formal justification for a subset of excited states. Gun-
narsson et al. [35] showed that the variational procedure of density functional
theory could be formulated for the lowest excited states of each orbital and
spin symmetry. In principle, this extended theory should include symmetry
restrictions in the exchange–correlation functional Êxc. However, no general
prescription to achieve this is known. A more practical approach is to restrict
the variational principle to Kohn–Sham wavefunctions of a specific symmetry.
This restriction is achieved by considering different electronic configurations in
terms of ground-state KS orbitals (the framework to acquire different symmetry
configurations is presented in Section 2.3.5). Suppose the wavefunction of
certain symmetry is found to have a single-determinant representation. In that
case, the realization is straightforward: on top of ground-state calculations,
the electron–hole pairs are introduced by constraining the orbital occupations
to form appropriate symmetry wavefunction. Such constraint can be inter-
preted as single-particle excitation. However, if the state is a multi-determinant
wavefunction, direct SCF calculation is impossible. ∆SCF method is widely
employed for deep-level defect calculations [60–62], and the results with hybrid
functionals produce an excellent agreement with the experiment. In practice,
this approach yields satisfactory results even if applied to states which do not
have formal justifications.6

As a final remark, I think it is essential to emphasize that extracting infor-
mation from the single-particle picture of density functional theory is far from
“ideal”. It works in some cases and fails in others. However, more advanced
wavefunction-based methods beyond the Hartree–Fock are computationally
intractable for large systems, which is the case for defects. Thereby, DFT is the
best tool that we have in our hands, and it should be used carefully to predict
properties that go beyond the intended use of theory. However, much of the
“credibility” can be provided by careful comparison with experimental results.
If the theory can predict well-known properties, then it is reasonable to assume
that other predictions are also close to the truth.

6Some justification of this approach can be given in the context of the extended KS formal-
ism [63]. However, a special exchange–correlation potential should be used for the excited states.
As this special component is still unknown, the standard ground-state exchange-correlation
potentials are used in practical implementations.
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Figure 2.1: Jacob’s ladder of density functional approximations [64].

2.3.3 Approximate exchange–correlation potentials

The exact exchange–correlation functional Êxc is the “holy grail” of quantum
chemistry. However, up to this day, no exact form of this functional is known.
Although Êxc is fairly small compared to the Coulomb and single-particle
kinetic energy terms, it plays an important role in describing chemical phe-
nomena. Luckily, many mathematical features of the exact functional Êxc are
known. In accord with these mathematical features and predictive power, the
whole hierarchy of exchange-functionals can be put in the form of “Jacob’s lad-
der” [64], where functionals of similar capabilities are placed at the same rung
(see Fig. 2.1). The ground corresponds to the Hartree theory, where exchange
and correlation contributions are completely neglected. Higher rungs employ a
more accurate description of exchange and correlation.

Local-density approximation

Originally introduced by Kohn and Sham [30], on the first rung of Jacob’s
ladder lies the class of functionals which employ the local-density approxima-
tion (LDA).7 This approach is based upon the exact exchange energy of the
uniform electron gas. The uniform electron gas is a well-understood model
system, where exchange and correlation are local in character (energy contri-

7In the case of unrestricted spin formulation, it is termed local spin density approximation
(LSDA).
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bution from infinitesimal volume element depends only on electron density
at that point). Therefore, LDA is a good starting point for the approximate
exchange–correlation functional. LDA assumes a small variation of the density
and provides the following functional form of the energy:

ÊLDA
xc =

∫
εunif

xc (ρ↑, ρ↓)ρ(r) dr,

where εunif
xc = εunif

x + εunif
c is the exchange and correlation energy of the

uniform gas. The exchange part is just an analytical result of Dirac [65] for
uniform electron gas. However, the correlation part εunif

c is more complicated.
Usually, quantum Monte Carlo simulations [66] are performed for multiple
intermediate values of density to obtain accurate values of correlation energy.
Despite its simplicity, LDA often provides good structural and vibrational
properties. It works surprisingly well for extended systems, like solids or solid
surfaces. Unfortunately, it performs poorly for binding energies (overbinds)
and activation energies of chemical reactions [59]. Thus, in the early 1970s,
LDA had become a standard tool for solid-state physicists. However, it never
gained much popularity with the majority of quantum chemists.

Generalized gradient approximation

The next step in functional development is the inclusion of density gradient
in the formulation of Êxc. This is the second rung of Jacob’s ladder, which
introduces the generalized gradient approximation (GGA) [67–69]. GGA
functionals have the following semi-local generalized form [69]:

ÊGGA
xc =

∫
εGGA

xc (ρ↑, ρ↓,∇ρ↑,∇ρ↓)ρ(r) dr.

In comparison with LDA, GGA approximations tend to improve many aspects
of calculations. They partially repair the overbinding character of the LDA.
The functional proposed by Perdew, Burke, and Ernzergof (PBE) [69] is the
most used exchange–correlation functional in computational materials science.8

PBE is a non-empirical functional which satisfies the uniform density limit
and several exact properties related to the exchange–correlation hole [69]. It is
highly successful in describing ground state structural properties (geometry,
bulk-modulus, vibrational frequencies) and is extensively used in this thesis for
vibrational structure analysis. However, GGA, as well as LDA, suffers from
the already mentioned band-gap problem.

8In fact, the PBE paper [69] is among the 100 most cited scholarly articles of all time [70].
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Meta-GGA functionals

Meta-GGA functionals [55, 71, 72] occupy the third rung. This class provides
fully non-local functionals of density but avoids computationally demanding
integral (non-local) formulation on orbital parts. Generally, in addition to ρ and
∇ρ, meta-GGA consider kinetic energy density τσ of Kohn–Sham orbitals:

τσ =
∑
i

1

2

∣∣∇φKS
i,σ

∣∣2 , where σ =↑, ↓,

as a functional ingredient:

ÊMGGA
xc =

∫
εMGGA

xc (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓)ρ(r) dr.

Such functionals are able to satisfy more exact constraints and achieve higher
accuracy in comparison to standard LDA and GGA formulations. Also, meta-
GGA falls under the generalized Kohn–Sham scheme as one-particle operators
are explicit functionals of orbitals. This formulation improves single-particle
description and partially cures band-gap discrepancies by 20%–50%. More
recent non-empirical meta-GGA functionals [55, 72] show promising results as
their accuracy is consistent for diverse systems and properties.

Hybrid functionals

The next class of density functionals that are most often used nowadays are
hybrid-functionals, which lie on the fourth rung of Jacob’s ladder. The original
idea of hybrids stems from the fact that exchange is the most dominant part
of the exchange–correlation energy. Thus, coupling the Hartree–Fock theory,
which provides an exact treatment of exchange with density-functional approxi-
mations, could in principle deliver some improvements over standard LDA and
GGA functionals. In the pioneering paper, Becke [52] developed a formally
rigorous approach to couple the exact exchange of the Kohn–Sham orbital
system with approximate exchange–correlation functional. In his derivation,
Becke [52] used the adiabatic connection formula for the exact functional [73]
and showed that the exchange–correlation functional approximately could be
expressed as:

ÊHH
xc ≈

1

2
EHF
x +

1

2
ÊDFT

xc . (2.35)
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Here Ex is the exchange energy of Kohn–Sham Slater determinant:

EHF
x [{φGKS

i }] (2.36)

= −1

2

N∑
i,j=1

∫∫
φGKS∗
i (r1)φGKS

j (r1)
1

r12
φGKS∗
i (r2)φGKS

j (r2) dr1 dr2.

This scheme is widely known as “half-and-half” functional. Although such
simple mixing improved several aspects of standard functionals (especially
atomization energies), it had several deficiencies. In a subsequent publication,
Becke [74] proposed a semi-empirical approach and defined a three-parameter
hybrid-functional which mixes LDA, GGA, and exact exchange. Parameter
values were determined by an appropriate fit to experimental datasets. This idea
opened the door for new semi-empirical hybrids, which became very popular
in molecular applications. For example, the B3LYP (Becke, 3-parameter,
Lee–Yang–Parr) exchange–correlation functional is one of the most popular
functionals for describing molecular properties.

However, initial hybrid functionals were problematic for solids [75]. One
problem is computational, as Eq. (2.36) is hard to evaluate numerically for
delocalized states. Another, more fundamental problem is connected to the
fact that for hybrids, exchange interactions at large spatial separations are
approximately canceled by correlation in narrow band-gap semiconductors
and metals [75]. To cure these problems, screened hybrid functional of Heyd,
Scuseria, and Ernzerhof (HSE) [53] was proposed. The main idea was to
separate long-range (LR) and short-range (SR) interactions. HSE functional
splits the Coulomb operator into two parts:

1

rij
=

erfc(ωrij)

rij︸ ︷︷ ︸
SR

+
erf(ωrij)

rij︸ ︷︷ ︸
LR

,

where erf and erfc are error and complementary error functions. The parameter
ω adjusts the two ranges. Part of HF exchange is only incorporated in the short
range, while GGA-PBE exchange is present in both short and long ranges. The
mixing takes the following form:

Exc(α, ω) = aEHF,SR
x (ω) + (1− a)EPBE,SR

x (ω) + EPBE,LR
x (ω) + EPBE

x .

The parameter a is a mixing parameter, which determines the part of the exact
exchange of HF in the short range. The standard HSE values are a = 1/4 and
ω = 0.2. The most important aspect of HSE is the ability to rather accurately
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predict semiconductor band-gaps. This follows from the fact that hybrids fall
under the generalized Kohn Sham scheme and approximately include derivative
discontinuity (2.32) [76]. For deep-level defects, HSE functional has become a
“gold standard” as it is able to predict accurate thermodynamic properties and
excitation energies.

2.3.4 Implementation

In this thesis, all the calculations were carried using the Vienna ab initio
simulation package (VASP) [77]. VASP uses the plane-wave basis for single-
particle wavefunctions and PAW pseudopotentials to effectively separate core
and valence electrons. Plane-wave basis implies spatial periodicity of the
system, which is natural to solid-state systems but can also be used as an
approximation for analysis of point-defects. Here we will briefly discuss these
technical topics.

Plane-waves

From a microscopic point of view, extended systems like solids are infinite.
However, for pure crystal, translational symmetry simplifies an electronic
solution by employing the Bloch theorem [78]. According to the Bloch theorem,
single-particle solutions take the form:

φKS
k (r) = eikruk(r),

where k is any vector within the first Brillouin zone of the cell, and uk(r) has
the same translational invariance as potential energy v̂KS. Periodicity of uk(r)

implies that it can be written as a Fourier expansion:

uk(r) =
∑
G

CG(k)eiGr, (2.37)

where summation runs over all reciprocal lattice vectors G. In practice, summa-
tion (2.37) is truncated by defining the kinetic energy cutoff |k+G|2/2 6 Ecut.
This cutoff energy is chosen by performing convergence tests for total energy
or other sought properties. Thus, effectively the problem reduces to the size of
the periodic primitive cell. However, in an infinite system, we must solve for all
continuum values of k, as calculations of charge density and other properties
involve integration over the whole Brillouin zone. The general form of such an
integral is:

I(ε) =
1

ΩBZ

∫
BZ
F (k) dk,
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Figure 2.2: A schematic illustration of the supercell method for a point defect
in a solid. The supercell is the area enclosed by the dashed lines.

where F is a certain function. In practice, such integration is replaced by
approximate summation:

1

ΩBZ

∫
BZ

⇒
∑
k

wk,

where wk are weight factors that sum to unity. The most popular method for
the Brillouin zone integration is based on Monkhorst–Pack (MK) scheme [79].
MK method generates an evenly spaced k-grid through the whole Brillouin
zone with equal weight factors. Three integer numbers M1 ×M2 ×M3 define
the size of the grid and correspond to partitioning along each reciprocal lattice
vector. Convergence tests once again determine the suitable size of the grid.

Supercell approach

When the defect is put into a crystal, all translational symmetry is lost. Yet,
electronic and geometrical perturbations are expected to be well localized
in a finite neighborhood of impurity for deep-level defects. The supercell
approximation is based on this assumption. The supercell itself is an effectively
large periodic cell with an embedded defect (see Fig. 2.2). The volume of a
supercell contains an integral number of primitive (or conventional) unit cells.
This approximation has evident drawbacks known as finite-size effects, which
stem from spurious interactions between defects and their periodic images.
The defect wavefunction can overlap with itself and cause wrong localization
and dispersive behavior of constituent single-particle orbits. Thus, the validity
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of calculated properties must be checked by convergence tests for different-
size supercells. Present-day high-performance computers can tackle periodic
systems up to a few thousand atoms.9 Usually, the finite-size effects for neutral
defects are eliminated by choosing supercells of several hundred atoms.

On the other hand, for charged defects, long-range electrostatic interactions
decay slowly with the cell size, and some additional corrections should be
taken into account. The energy correction scheme of Freysoldt et al. [80]
is a popular and reliable method for charged defects and is also used in this
thesis. Another issue is related to geometrical relaxation. The cell size restricts
nuclear relaxations to the region contained within a single supercell. Almost
no relaxation occurs in the midway between defect and its periodic image.
However, the relaxation could have a long-range pattern in the dilute limit,
which is not always reflected in finite-sized supercells. We address this problem
in Chapter 3 together with additional issues of vibrational structure and electron–
phonon interaction.

Pseudopotentials

The plane-wave basis is convenient for the description of periodic systems.
However, they introduce some computational problems for the core electrons
and regions close to the core. One-electron orbitals have sharp features close to
the nuclei as they are required to be orthogonal to core states. This situation is
problematic as a huge number of plane waves is required to describe the wave
function accurately. The pseudopotential method is based on two observations:
(i) Most of the chemical properties only depend on the interaction between
some set of valence (outer shell) electrons; (ii) The chemistry is, in a large
extent, determined by the character of wavefunctions at a bonding region,
which resides at some distance from the core. First, the pseudopotential method
effectively removes core orbitals from the simulation as they are almost identical
in atomic and bonding environments. Thus, the core degrees of freedom are
frozen and taken from atomic calculations (frozen-core approximation). The
second simplification is achieved by replacing frozen-core potential with a
smooth pseudopotential, for which outer-shell electrons have smooth behavior
inside the core region. Pseudo-wavefunctions must be identical to true all-
electron wavefunctions outside this core region. In this work, we adopt the
projector-augmented-wave (PAW) method [81], which has good transferability

9Note that this only applies to semi-local LDA and GGA functionals which have good
scalability properties. Hybrid functionals are, by order of magnitude, more expensive.
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properties. PAW method maintains the relation between pseudo-wavefunctions
and all-electron wavefunctions in the form of the linear transformation:

ψPS = τ̂ψAE, (2.38)

where τ̂ has an identity character outside the core region. Thus, the pseudo-
wavefunction only differs from the original one inside the augmentation sphere
around the atom. The form of transformation τ̂ is chosen such that the continu-
ation of pseudo-wavefunctions inside the augmentation region is smooth [81].
Once the transformation is known, all operators for single-particle electrons
are transformed to the new basis. Relation (2.38) is very important as it allows
the recovery of the true all-electron wavefunctions. This property is useful
for the evaluation of matrix elements between single-particle Kohn–Sham
wavefunctions.

2.3.5 Molecular-orbital model

In Section 2.3.2, when discussing excited-state calculations, we introduced the
∆SCF method [58, 59]. This method relies on symmetry restrictions imposed
on Kohn–Sham multi-electron wave functions. More precisely, the wave func-
tion is chosen to be of well-defined orbital and spin symmetry. This restriction
is held during the self-consistent minimization of the total energy. Determin-
ing the correct one-electron configuration from which Slater determinants are
formed relies on the so-called molecular orbital (MO) model.

Before numerical ab initio techniques, the determination of the electronic
structure of deep-level defects was a challenging task. Conventional theoret-
ical methods, like effective-mass theory or Greens-function techniques, are
inadequate for localized defects, as the variation of the strongly localized wave-
function and perturbing potential is too great [82]. On the other hand, despite
interaction with the host material, the deep-level defect resembles localized
systems like trapped atoms or molecules. Provided that defect consists only
of a small number of active localized “defect electrons” (which only weakly
interact with the crystal field), a simplified molecular orbital (MO) picture
follows naturally as an intuitive and descriptive model. These assumptions
are justified by the observed localized nature of color centers (e.g., by EPR
experiments) and the notion that the rest of the crystal is covalently bonded and
effectively neutral. Despite its simplicity, the MO model is very illustrative and
broadly used to interpret the electronic structure of deep-level impurities.
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The MO model was first applied to deep-level defects by Coulson and
Kearsley [83]. They used a simplified picture where the defect system (dia-
mond vacancy) was analyzed using several electrons and sp3-type active bonds.
By utilizing spin and spatial symmetry considerations, these orbitals were com-
bined to form different multi-electron states. Although semi-empirical energy
calculations could not explain all experimental measurements, this approach
became a widely used framework to predict orbital symmetries and spin multi-
plicities of defects [82]. For example, successive application of this model to
the NV− center by Loubser and Van Wyk [84] provided a coherent explanation
of electron spin resonance experiments.

In present-day electronic structure methods, the host states are treated on
the same footing as localized defect orbitals. However, the chemistry of a defect
mainly depends on localized orbits that are occupied by electrons. Thus, the
standard ab initio approach to determine excited electronic states is as follows.
First, the ground state calculation is performed, and one-electron states of
localized character are identified as “defect orbitals”. These orbitals are treated
as a MO basis to construct excited state wavefunctions of different symmetry.
If a sought configuration is a single-determinant wavefunction, electron–hole
pairs are introduced by the constrained occupation of Kohn–Sham states. This
approach is widely used in modern-day electronic structure calculations of
point defects (see, e.g., Refs. [85–88]).

Requirements

Once the localized orbitals are determined, the construction of multi-electron
MO states relies on three fundamental requirements:

(i) The total wavefunction must be antisymmetric under a binary electron
permutation.

(ii) The spin part of the multi-particle wavefunction must be an eigenstate of
total spin operators S2 and Sz .

(iii) The orbital part of the all-electron wavefunction must transform as an irre-
ducible representation of the symmetry point group of the defect [89, 90].

These three principles lay the foundation of the molecular orbital model. The
requirement (i) can be satisfied by applying the antisymmetrization procedure.
Antisymmetrizer A is a linear operator that makes any N -particle wavefunction
antisymmetric [89]:

A =
1√
N !

∑
P

(−1)Θ(P)P. (2.39)
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Here, the sum runs over all N ! permutations, and Θ(P) is the number of
binary transpositions entering the permutation P. If the projection operator of
Eq. (2.39) is applied to the Hartree-type product of single-particle states, the
result is a well-known Slater determinant:

A (φ1(1)φ2(2)...φN (N)) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) · · · φN (1)

φ1(2) φ2(2) · · · φN (2)
...

...
. . .

...
φ1(N) φ2(N) · · · φN (N)

∣∣∣∣∣∣∣∣∣∣
≡ |φ1φ2...φN | . (2.40)

The permutation operators P entering Eq. (2.39) commute with spin and or-
bital symmetry transformations. Therefore, the total wavefunction satisfying
requirements (i)–(iii) can be put in the form:

|Ψ〉 = A (Φ(r)χ(σ)) . (2.41)

Here χ(σ) and φ(r) are spin and orbital wavefunctions that fulfill requirements
(ii) and (iii). Eq. (2.41) enables a systematic search for well-defined multi-
electron states as the spin and orbit counterparts can be analyzed separately.
In the following content, we will present construction schemes that we use to
obtain correct forms of spin χ(σ) and orbital Φ(r) subsystems.

Spin eigenstates

The spin function χ(σ) of Eq. (2.41) must be a simultaneous eigenfunction of
multi-particle spin operators [91]:

S2 =

(
N∑
i=1

S(i)

)2

, Sz =

N∑
i=1

Sz(i), (2.42)

where S2(i) = S2
x(i) + S2

y(i) + S2
z(i) is the square of the angular momentum

operator, and sums run over all electrons i of the system. The eigenstates of
single-electron operators are:

Sz(i)
∣∣Si = 1

2 ,mi

〉
= mi

∣∣Si = 1
2 ,mi

〉
,

S2(i)
∣∣Si = 1

2 ,mi

〉
= Si(Si + 1)

∣∣Si = 1
2 ,mi

〉
=

3

4

∣∣Si = 1
2 ,mi

〉
. (2.43)

The Hilbert space of an N -spin system is a tensor product of spin-1/2 particle
spaces H = H1 ⊗ H2 ⊗ · · · ⊗ HN . The trivial basis of such space is a set
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of pure (uncoupled) states which are written in the form of direct product:
|12 ,m1〉|12 ,m2〉 · · · |12 ,mN 〉. Such states are eigenstates of Sz , but they are not
necessarily eigenstates of S2. There are many different methods to obtain
simultaneous eigenfunctions of S2 and Sz (see, e.g., Ref. [91] for a detailed
discussion).

For open-shell systems with a small number of electrons, the genealogical
construction scheme [91] is a relatively straightforward method, which allows
obtaining spin states by a successive combination of two spin subsystems. For
example, let us consider two spin systems with known eigenfunctions of S2(i)

and Sz(i) (i.e., |S1,m1〉 for the first system and |S2,m2〉 for the second one).
The theorem of angular momentum addition states that the resultant eigenstate
of S2 = (S(1) + S(2))2 and Sz = Sz(1) + Sz(2) can only attain values
between |S1 − S2| and S1 + S2 (differing from each other by 1):

S = |S1 − S2|, |S1 − S2|+ 1, . . . , S1 + S2. (2.44)

Appropriately, one can construct an N -electron state by combining states of
(N − 1)-electron system with one electron of spin-1/2. The resultant angular
momentum value can only differ by ±1/2 from the S value of the (N − 1)

electron system. In the genealogical construction scheme, we start from a
single electron and construct multi-electron states, adding one electron at a time.
The “parent” states are tracked and labeled to identify different degenerate spin
states. The coupling is done using Clebsch–Gordan (CG) coefficients of the
SO(3) group. CG coefficients 〈S1m1;S2m2|S,m〉 connect the states of the
uncoupled basis with eigenstates of S2 and Sz:

|Sm〉 =
∑

m1+m2=m

〈S1m1S2m2|S,m〉 |S1m1〉 |S2m2〉 . (2.45)

The tabulated values or analytical expressions for CG coefficients can be found
in many books (e.g., [89, 92]) or online references. The procedure is illustrated
for up to N = 4 electron states in Appendix B.

Symmetry-adapted orbital wavefunctions

The requirement for the orbital part of the wavefunction [Eq. (2.41)] stems from
group theory considerations (see Appendix A for a brief review of group theory
concepts applied in this thesis). The eigenfunctions must transform as a basis
of an irreducible representation of the point group G of the Hamiltonian [89]:

T (Ga) |Γγ〉 =
∑
j

TΓ
γ′γ(Ga)

∣∣Γγ′〉 ,
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where T (Ga) is a functional symmetry transformation of corresponding group
element Ga [see Eq. (A.2)], and TΓ

γ′γ(Ga) is the matrix of the irreducible
representation Γ of a point group G [89, 90, 92].

In the MO model, single-particle orbitals φi are chosen to transform as
irreducible representations of the group G. In fact, if the mean-field approach
(like DFT or Hartree–Fock) is used, the single-particle Hamiltonian has the same
symmetry as an all-electron system. Thus, the single-particle wavefunctions
automatically satisfy this requirement.10

Similarly, as in the case of spin, the basis of the direct product of single-
particle eigenstates does not transform as a basis of an irreducible representation
of the point group G. The construction of the symmetric multi-particle wave-
functions follows a similar procedure to the genealogical construction scheme.
Clebsch–Gordan coefficients of the point group G combine the basis of the
direct product of irreducible representations Γi ⊗ Γj into the state with well-
defined symmetry Γγ [89, 90]:

|Γγ〉 =
∑
γi,γj

〈ΓiγiΓjγj |Γγ〉 |Γiγi〉 |Γjγj〉 . (2.46)

The values of CG coefficients can be calculated using computer algebra pack-
ages (e.g., Ref. [93]) or found from tabular data (e.g., Ref. [94]). Once the
CG coefficients are known, the total wavefunction is constructed similarly
to the spin states. First, using Eq. (2.46), the two-electron wavefunctions of
well-defined orbital symmetry are formed by combining two one-electron or-
bitals. Then successive states are formed by adding one orbital at a time. The
procedure is demonstrated for MO states of NV center in Appendix B.

All electron wavefunctions

Once spin χ and orbital Φ parts are known, the all-electron wavefunction is
obtained via Eq. (2.41). Product χ(σ)Φ(r) yields some linear combination
of various Hartree-type products (i.e., φ1(r1)φ̄2(r2) · · ·φN (rN ), where “bar”
denotes spin-down configuration). Application of antisymmetrizer A promotes
Hartree terms to Slater determinants [Eq. (2.40)]. As a result, the final wave
function has a multi-determinant form, which sometimes can be contracted to a
single determinant expression. The search for physical states can be exhaustive
as one needs to consider all the combinations of possible spin and orbital states.
In Appendix B, we show the derivation of NV0 states, which originally were
obtained in the thesis paper [T3].

10If atomic orbitals are used as a basis for the MO model, the group theoretical projection
operators [90, 92] are employed to find the symmetric basis of one-electron states.
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2.4 Vibrational structure
This section focuses on the solution of the nuclear Schrödinger equation (2.13),
which follows from the adiabatic treatment of the molecular system. This equa-
tion determines the dynamical properties of the lattice. First, in Section 2.4.1,
we review the harmonic approximation and introduce the main parameters for
the vibrational structure analysis. In the harmonic approximation, the dynami-
cal motion of nuclei is described in terms of normal coordinates and vibrational
frequencies. In Section 2.4.2, we briefly review the formal analysis of the
periodic systems. The effect of defect perturbation on the vibrational structure
of the bulk is discussed in Section 2.4.3. Here we introduce the notion of
localized and resonant modes. Finally, at the end of Section 2.4.3, we present
the practical supercell approach for first-principle calculations of the vibrational
structure of the defect.

2.4.1 Harmonic approximation

The electronic Shrödinger equation (2.8) in principle can be solved for any
nuclear configuration R0. In most practical situations, we are interested in
the dynamics of nuclei around the equilibrium geometry. In the classical
picture, such equilibrium geometry corresponds to the minimum of the adiabatic
potential energy surface (APES) [see Eq. (2.14)]. The procedure of finding this
minimum is termed ionic relaxation.

Ionic relaxation relies on the calculation of atomic forces. Once the forces
are known, one can apply minimization techniques (like the quasi-Newton or
conjugate gradient [95]) to find the local minima. For an atomic system, the
nuclear forces on ions are calculated from the Hellman–Feynman theorem [95]:

FR0,n = − ∂εi
∂R0,n

=
〈
ψi

∣∣∣∂Û(r,R0)

∂R0,n

∣∣∣ψi〉, (2.47)

where R0,n is the coordinate of the n-th ion, εi is the electronic energy of
state ψi, and Û(r,R0) is the potential energy of the electronic Shrödinger
equation (2.8). The potential energy has two R0-dependant terms: the potential
energy of electron–nuclear interaction, Ûen(r,R0), and the potential energy
of nuclear–nuclear interaction, Ûnn(R0) [see Eqs. (2.4) and (2.5)]. From
Eq. (2.47), it follows that the force explicitly depends on the electron density:

FR0,n =

∫
ρ(r)

∂Ûen(r,R0)

∂R0,n
dr +

∂Ûnn(R0)

∂R0,n
,

and can be calculated using density functional theory. Hence, in the following
analysis, we will assume that the system is in its equilibrium geometry.
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From Eqs. (2.7) and (2.14), it follows that the adiabatic potential energy
surface of the nuclear Shrödinger equation (2.13) can be written as:

V̂i = 〈ψi|∆Û(r,R)|ψi〉

=
∑
n

〈
ψi

∣∣∣ ∂Û
∂un

∣∣∣ψi〉
u=0
un +

1

2

∑
n,m

〈
ψi

∣∣∣ ∂Û

∂un∂um

∣∣∣ψi〉
u=0
unum +O(u3),

where u are displacements from the reference configuration R0, Û is the
potential energy of all particle–particle interactions, and ∆Û is defined as
∆Û(r,R0) = Û(r,R) − Û(r,R0). If R0 corresponds to the equilibrium
geometry, the first term of the expansion vanishes. The harmonic approximation
is obtained when only the second-order terms are considered:

V̂ har
i (u) =

1

2

∑
n,m

Φnmunum. (2.48)

In the crude adiabatic approximation, the quadratic coefficients:

Φnm =
〈
ψi

∣∣∣ ∂2Û

∂un∂um

∣∣∣ψi〉
u=0

=
∂2Vi

∂un∂um
, (2.49)

are second-order derivatives of the APES.11 The matrix Φ is known as the force
constant matrix (or Hessian matrix). The corresponding harmonic Hamiltonian
of the nuclear system is given by:

Ĥv =
∑
n

p2
n

2Mn
+

1

2

∑
nm

Φnmunum. (2.50)

The direct solution of Ĥvχ = Evχ is still a challenging task since nuclear
degrees of freedom are coupled through Φnm. The canonical transformation of
coordinates to the basis where potential and kinetic energy terms have diagonal
forms could simplify the problem. Such transformation is obtained by solving
the classical problem of a harmonic motion, as described below.

Classical solution

The classical equations of motion for Hamiltonian (2.50) are:

Mnün = −
∑
m

Φnmum. (2.51)

This is the coupled system of second-order differential equations. The standard
ansatz for the stationary solution has the harmonic form:

un(t) = wn exp(−iωt). (2.52)
11These coefficients are multi-dimensional analogs of Hooke’s constant.
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Here, wn is a three-dimensional amplitude vector that describes the shape
of the vibration. Substituting Eq. (2.52) into Eq. (2.51) yields a generalized
eigenvalue equation:

Φw = ω2M̂w, (2.53)

where the mass matrix is defined by ‖M̂‖mn = Mnδmn.12 This equation can
be easily transformed to the standard eigenvalue problem by the introduction of
mass-weighted coordinates/displacements η:

ηn =
√
Mnwn.

In this coordinate system, the equation (2.53) becomes:

D̂η = ω2η. (2.54)

The matrix D̂ is just a mass-weighted force constant matrix:

D̂ = M̂
−1/2

ΦM̂
−1/2

(
or D̂nm =

Φnm√
MnMm

)
, (2.55)

which is often termed the dynamical matrix [96]. The solution of Eq. (2.54)
yields a set of 3Nn orthonormal vectors ηk and corresponding frequencies ωk.
These are the stationary vibrations of the classical system.

Quantum-mechanical description

Once the classical solution is found, we can define so-called normal coordi-
nates Qk [96]:

Qk =
∑
n

ηnηk;n =
∑
n

√
Mn (Rn −R0,n)ηk;n,

ηn =
∑
k

Qkηk;n, (2.56)

where Rn is the position of atom n, R0,n is its equilibrium position, and ηk;n

is an eigenvector of dynamical matrix D̂, that describes the three components
of the mode k of atom n. The normal coordinates are scalars that represent
the collective motion/displacement of the nuclear system. The second relation
of Eq. (2.56) follows from the ortho-normality condition

∑
n ηk;nηk′;n =

δkk′ , which implies that η−1
k;n = ηn;k (note index transposition). Canonical

12The notation ‖A‖mn denotes the matrix element of operator A.
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transformation to normal coordinates transforms the kinetic and potential energy
term into the diagonal form:∑

n

p2
n

2Mn
=

1

2

∑
k

∂2

∂Q2
k

,
1

2

∑
nm

D̂nmηnηm =
1

2

∑
k

ω2
kQ

2
k.

In the basis of normal coordinates, the harmonic Hamiltonian becomes the sum
of one-dimensional harmonic oscillator equations:

Ĥv =
∑
k

Ĥk
v , where Ĥk

v =
1

2

∂2

∂Q2
k

+
1

2
ω2
kQ

2
k. (2.57)

Since [Ĥk
v , Ĥ

k′
v ] = 0 for every k, the eigensolution of Ĥv can be written in the

multiplicative form:

χ(Q) = χi(Q1)χ2(Q2) · · ·χ3Nn(Q3Nn),

where each χk(Qk) is found by solving a one-dimensional Schrodinger equa-
tion:

Ĥk
vχk(Qk) = εkχk(Qk). (2.58)

Therefore, each one-dimensional oscillator is described by a quantum number
nk = 0, 1, . . ., and the corresponding energy is εk = ωk(nk + 1/2). The
vibrational state of the whole system is characterized by Fock state vector
|n1n2 · · ·n3Nn〉, and related energy is the sum of harmonic oscillator energies:

Ev =
∑
k

εnk .

The discussion above shows that the vibrational problem can be solved
by diagonalizing the dynamical matrix [Eq. (2.55)]. Once the solutions are
found, the quantum-mechanical vibrational states are described by a set of one-
dimensional harmonic oscillators. However, direct diagonalization is impossible
for extended systems like solids, as we have an effectively infinite number of
degrees of freedom. In the next section, we will shortly revision the solution of
the vibrational problem in the systems with translational symmetry.

2.4.2 Crystal vibrations

For periodic crystals, the translational symmetry is utilized to simplify the
analysis and reduce the computational cost. Crystal is divided into an array of
unit cells. A unit cell is the volume element that generates the whole structure by
periodic repetition in space. Therefore, each atomic position can be described
by two vectors:

Rα
n = Rα + Rn,
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Figure 2.3: Principle scheme of crystal structure.

where Rα defines the position of unit cell α, and Rn labels the relative posi-
tion within the unit cell (see Fig. 2.3). Accordingly, we label the dynamical
matrix (2.55) of the periodic system by four indices:

D̂αm,βn ≡ D̂m,n(Rα,Rβ).

The translational invariance of Hamiltonian implies translational invariance of
the dynamical matrix:

D̂mn(Rα + L,Rβ + L) = D̂mn(Rα,Rβ),

where L is a crystal lattice vector. Such symmetry allows to employ the
Bloch theorem, which states that any eigenvector of a periodic operator has the
following mathematical form:

ηn(Rα) = exp(iqRα)η̃qn. (2.59)

Here, q is any vector, and η̃q,n is a lattice-periodic part. Plugging Eq. (2.59)
into Eq. (2.54) yields:∑

n

∑
β

D̂mn(Rα,Rβ)eiqR
β
η̃qn = ω2eiqR

α
η̃qm.

Finally, the translational symmetry of D̂ allows us to set the coordinate system
to Rα = 0, and the dynamical equation becomes:

D̂(q)η̃(q) = ω(q)2η̃(q). (2.60)

Here, D̂(q) is the reduced dynamical matrix:

D̂nm(q) =
∑
β

D̂mn(0,Rβ)eiqR
β
. (2.61)

Consequently, we must solve Eq. (2.60) for each q point within the first Brillouin
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zone (FBZ) for the periodic crystal. Solutions outside FBZ are equivalent
because of the relation:

exp
(
i(q + G)Rβ

)
= exp

(
iqRβ

)
,

for any reciprocal lattice vector G. In practice, the vibrational structure analysis
of the periodic system is performed along some paths inside FBZ. The exemplar
calculations of the diamond phonon structure will be presented in Section 3.1.

2.4.3 Defect vibrations
When the point defect is present in an infinite lattice, it spoils the periodic
symmetry and, hence, the vibrations of the perfect crystal are modified from
their usual form. As a result, the analysis of normal modes cannot be simplified
in the same way as for periodic systems. However, the simplifying feature of
the point-defect is that the defect is localized in a small region of the volume
in the otherwise perfect lattice. The original theoretical method for the defect–
lattice vibrational analysis was the Green’s-function (GF) approach [97–99].
This method allows qualitative analysis of general properties of defect-specific
vibrational modes. Therefore, in the first part of this section, we will briefly
review some findings of the vibrational structure of the point-defect.

However, the practical application of the Green’s-function method to real
problems is difficult, especially if one needs to obtain accurate geometrical
shapes of vibrations. Therefore, in the second part of this section, we will
present the computational supercell approach for the quantitative analysis of
vibrational modes of the defect.

Localized and quasi-localized modes

Point imperfections may introduce vibrational modes in the frequency region
forbidden to the crystal (e.g., phonon bandgap) or modify the bulk vibra-
tions [98, 99]. In the first case, the vibrational modes have large amplitudes
and are strongly localized in the vicinity of the defect. Therefore, they are often
referred to as “localized modes”. The formal analysis of Maradudin [98] shows
that the amplitude of localized mode is independent of the system size and
decays faster than exponentially with increasing distance from the defect. Due
to a strong electron–lattice interaction, such modes often leave signatures in
the luminescence (or absorption) spectrum. They can also be detected using
infrared or Raman spectroscopy [100].

In contrast, if the frequency of defect-specific mode is in the energy band of
the perfect crystal, the vibrational mode has a less localized character [99–102].
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Such “in-band” modes often appear in collections and are qualitatively character-
ized by resonance-type amplitude peaks in the frequency spectrum of perturbed
lattice (e.g., if the vibrational amplitude of the impurity atom is a function
of the frequency, this function has a sharp increase at some resonant value).
Such collections of perturbed modes are often referred to as “resonance modes”
(or “quasi-local modes”). The first theoretical prediction of resonant modes
was made for pure mass defects [103]. However, they are common features of
impurities that cause a decrease of force-constants. The characteristic feature of
quasi-local mode is that the amplitude at the defect site is of orderN−1/2

n , while
it is independent of the system size for the localized mode [101]. However,
as the size of the system increases, the number of modes that constitute the
resonance also grows. Therefore, resonances are significant in describing the
electron–phonon interaction, as the collective increase of amplitude in the vicin-
ity of the defect implies a stronger coupling between the lattice and electrons.

Supercell approach

The discussion above indicates that the defect-specific modes are either strongly
localized in the defect neighborhood or resemble pure bulk vibrations with
usually small perturbations in the vicinity of the defect. Thus, a natural idea
for quantitative analysis is to use the sufficiently large defected supercell with
periodic boundary conditions. If the supercell is large enough, the local and
quasi-local vibrations can be effectively contained in the region of one supercell.
This approach is standard for defect vibrational structure analysis (see, e.g.,
Refs. [104–108]). Although the idea principally is correct, from the practical
point of view, we are restricted to somewhat limited size supercells due to
computational limitations. In general, localized modes are easily captured in
moderate-sized supercells. However, the general features of resonance only
slowly converge with the size of the cell (this will be illustrated in Chapters 3
and 4). For small and moderate-sized supercells, the most troublesome region is
the low-frequency domain of acoustic modes. In the case of diamond NV center,
Alkauskas et al. [109] noted that the correct overall shape of electron–phonon
interaction could only be obtained if the supercell size reaches tens of thou-
sands of atoms. Correspondingly, Alkauskas et al. [109] suggested using the
embedding methodology, where the dynamical matrix of a very large supercell
is constructed from the calculations in computationally feasible moderate-sized
supercells. The development and improvement of this embedding methodology
were one of the major topics in this thesis. This methodology is presented in
Section 3.3.
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2.5 Degenerate states and vibronic structure

The adiabatic approximation [Eq. (2.11)] works well if the separation between
energies εi of electronic states ψi is much larger than the characteristic vi-
brational energy of the nuclear subsystem. However, this approximation fails
when ψi belongs to the degenerate set of electronic wavefunctions. In such
a case, instead of the adiabatic wavefunction (2.12), one needs to consider
wavefunctions of the vibronic form:13

Ψ =
∑
i

χi(R)ψi(r,R0). (2.62)

Here, the summation runs over all electronic states of the degenerate sub-
space. Wavefunction (2.62) is a solution of the vibronic Schrödinger equation
[Eq. (2.10)]:

T̂Nχj(u) +
∑
i

〈ψj |∆Û |ψi〉χi(u) = Evχj(u), (2.63)

where i runs over all degenerate states, and Ev = E − εi is the energy contribu-
tion to the total energy of the molecular system.14 The non-adiabatic Eq. (2.63)
results in complex nuclear dynamics, often titled the Jahn–Teller (JT) effect.

Degeneracy is a consequence of spatial symmetry and is a common prob-
lem for point defects. The Jahn–Teller effect in color centers is responsible
for many non-trivial phenomena and impacts optical spectroscopic proper-
ties [110]. However, the theoretical treatment of the JT system is difficult,
especially if the system has many nuclear degrees of freedom. Therefore, the
analysis is often simplified by considering the model of one effective vibra-
tional mode [106, 110, 111]. This reduction is formally justified for strong
vibronic coupling [112] but is inadequate for weak and moderate vibronic
strengths. One of the important achievements of this thesis is the development
of a practical methodology for the multi-mode treatment of the JT problem.
This methodology will be presented in Section 4.3.3.

This part is organized as follows. Section 2.5.1 introduces the formal theory
of the JT effect.15 This theory relies on the group theoretical analysis, which
is shortly reviewed in Appendix A. In Section 2.5.2, we discuss the practical
approach to the solution of the dynamical JT problem. Section 2.5.3 presents

13“Vibronic” is often used to refer to a combined electronic and vibrational state. Here, we
will use “vibronic” to indicate that the total wavefunction is not simple multiplicative product
Ψ = χψ.

14Note that in the adiabatic approximation, only the diagonal terms 〈ψi|∆Û |ψi〉 are kept.
15Our presentation loosely follows the theoretical analysis of Bersuker and Polinger [27].
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our original treatment of the JT effect in the excited triplet state of the diamond
NV− center. We show that the JT effect has E ⊗ (e⊕ e⊕ · · · ) coupling in this
system, where e symmetry modes mix two degenerate electronic wavefunctions
of E symmetry. Finally, at the end of Section 2.5.3, we derive a practical
expression for matrix elements of the E ⊗ (e⊕ e⊕ · · · ) Jahn–Teller perturba-
tion. These findings are later used in Chapters 4 and 5, where we analyze the
electron–phonon coupling of A2 ↔ E electronic transitions.

2.5.1 Vibronic Hamiltonian

Let us first discuss the symmetry properties of the system. As a starting point,
we choose the reference nuclear configuration R0 for which the symmetry
is highest and the electronic degeneracy occurs. In practice, R0 could be
selected as an equilibrium geometry of some non-degenerate electronic state.
In this configuration, the symmetry of the electronic system is described by
the point group G, a set of all spatial symmetry transformations that keep
the electronic Hamiltonian [Eq. (2.8)] invariant. The fundamental theorem
of group theory [89] states that any eigenstate of the symmetric Hamiltonian
must transform as a basis of some irreducible representation Γ of the point
group G (see Appendix A for a brief introduction to representation theory).
Moreover, degenerate electronic states always transform as different rows γ of
same irreducible representation Γ. Therefore, we label degenerate electronic
states by |Γγi〉 ≡ |ψi〉, where γi identifies different degenerate wavefunctions.

For the description of the ionic motion, similarly, as in Eq. (2.56), we define
the basis of symmetrized coordinates:

QΓkγk =
∑
n

√
Mn(Rn −R0,n)ηn;Γkγk

.

Here, ηΓkγk
transforms as row γk of some irreducible representation Γk and

describes the collective displacement from the reference configuration R0.
Index k is used to distinguish different sets of symmetric coordinates. Such
symmetrized basis can be directly obtained using group theory projection
operators [89, 90]. Alternatively, one can use normal coordinates [Eq. (2.56)]
of some non-degenerate electronic state, as they naturally transform as a basis
of irreducible representation.

For specific labeling of irreducible representations, we follow the nota-
tion suggested by Mulliken [94]: “A ” and “E ” respectively denote one- and
two-dimensional representations (or non-degenerate and doubly degenerate
states). The most trivial representation is totally symmetric representation A1.
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Mathematical objects of A1 symmetry are invariant under all symmetry trans-
formations of the point-group (e.g., T (Gi)Qa1 = Qa1).16

Using symmetrized basis, we expand the matrix element 〈Γγi|∆U |Γγj〉 of
Eq. (2.63) around the reference configuration R0:

〈Γγi|∆U(r,Q)|Γγj〉

=
∑
Γkγk

V ij
Γkγk

QΓkγk +
1

2

∑
Γkγk

∑
Γlγl

W ij
Γkγk,Γlγl

QΓkγkQΓlγl+O(Q3). (2.64)

Here, we have introduced the expansion coefficients:

V ij
Γkγk

=

〈
Γγi

∣∣∣∣∂∆U(r,Q)

∂QΓkγk

∣∣∣∣Γγj〉
Q=0

, (2.65)

W ij
Γkγk,Γlγl

=

〈
Γγi

∣∣∣∣ ∂2∆U(r,Q)

∂QΓkγk∂QΓlγl

∣∣∣∣Γγj〉
Q=0

. (2.66)

These matrix elements are called linear and quadratic constants of vibronic
coupling. The non-diagonal terms of Eqs. (2.65) and (2.66) are essential for the
non-adiabatic description, as they characterize the influence of nuclear motion
on the electronic distribution and vice versa. Following the above notation, the
Hamiltonian of Eq. (2.63) up to the second-order expansion can be written as:

Ĥvibr
ij =

1

2

∑
Γkγk

P 2
Γkγk

+
∑
Γkγk

V ij
Γkγk

QΓkγk

+
1

2

∑
Γkγk

∑
Γlγl

W ij
Γkγk,Γlγl

QΓkγkQΓlγl , (2.67)

where PΓkγk = ∂/∂QΓkγk is the conjugate momentum of the coordinateQΓkγk .
In the following analysis, we will factor out the non-adiabatic part of

Eq. (2.67), ĤJT, that is only present in the case of degeneracy:

Ĥvibr = Ĥ0 + ĤJT. (2.68)

Here, Ĥ0 describes the zero-order solution in the absence of vibronic coupling
between degenerate electronic states.

Linear vibronic constants

Parameters V ij
Γkγk

are linear vibronic constant (LVC) and have a clear meaning
when i = j: V ii

Γkγk
is the force in the direction of QΓkγk when electrons are in

16We will use lower case letters (e.g., a1, a2, and e) for irreducible representations of normal
coordinates or single-particle states and upper-case letters for multi-electron wave functions.
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the state |Γγi〉. On the other hand, the off-diagonal LVCs couple degenerate
electronic states when the motion of nuclei is turned on.

Let us look at the symmetry properties of LVC. The operator:

XΓkγk =
∂∆U(r,Q)

∂QΓkγk

,

has the same symmetry as the ionic displacement QΓkγk [27].17 When all the
terms in the matrix element transform as a basis of the irreducible representation,
we can employ the Wigner–Eckart theorem [90]. This theorem states that for
any symmetric operator XΓkγk , we have:

〈Γiγi|XΓkγk |Γjγj〉 = X̄
ΓiΓj
Γk
〈ΓiγiΓkγk|Γjγj〉 ,

where X̄ΓiΓj
Γk

is the so-called reduced matrix element, and 〈ΓγiΓkγk|Γγj〉 are
the point groups’ Clebsch–Gordan (CG) coefficients. The reduced matrix
element does not depend on rows of irreducible representations. Thus, it is the
same for all γi, γj , and γk. CG coefficients depend only on the point group
and can be found from tabulated data [93] or calculated using computer algebra
packages (e.g., Ref. [113]).18 Therefore, we can write the linear constant of
vibronic coupling as:

V ij
Γkγk

= VΓk 〈ΓγiΓkγk|Γγj〉 . (2.69)

If one vibronic constant V ij
Γkγk

is known, all the others belonging to the same
symmetric set k can be calculated using the above equation.

Now, let us analyze the matrix element (2.65) in the case of non-degenerate
electronic states. Group theory tells us that this matrix element is non-vanishing
only if we have a totally symmetric contribution in the direct product of repre-
sentation A1 ∈ Γ⊗Γk⊗Γ. In the case of non-degenerate electronic states, Γ is
a one-dimensional representation and Γ⊗ Γ = A1. In direct product algebra,
A1 has a role of identity, and Γk can only be A1 representation; otherwise,
V ii

Γkγk
is zero. Therefore, for non-degenerate electronic states, the force can

only emerge along totally symmetric directions.
In the case of degeneracy, the matrix element forA1 symmetry displacement

is also diagonal with respect to electronic states V̂ ij
A1

= V̂A1δij .
19 Therefore, we

split the linear term of Eq. (2.64) into the sum that contains A1 symmetry dis-
placements, and treat the rest as a contribution to Jahn–Teller perturbation ĤJT.

17It transforms as the same row of irreducible representation as QΓkγk .
18Note that CG coefficients are directly related to the matrix form of representation. Thus, for

two equivalent representations T ′(Gi) = ST (Gi)S
−1, CG coefficient values generally differ.

19This follows from CG coefficient relation 〈ΓγiA1|Γγj〉 = δij for “simply reducible”
groups [92].
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Quadratic constants of vibronic coupling

A similar analysis is applied to the second-order coefficients (2.66). This time,
the operator:

ΩΓkγkΓlγl =
∂2∆U(r,Q)

∂QΓkγk∂QΓlγl

, (2.70)

generally does not transform as an irreducible representation of the point
group G. It is a second rank tensor and a direct product of two representa-
tions, Γk ⊗ Γl. The same reasoning holds for the product QΓkγkQΓlγl . We
knwo from the discussion above that only the A1 part of Eq. (2.70) con-
tributes to the non-degenerate states. To separate this part, we expand op-
erator (2.70) into symmetric components using inverse Clebsch–Gordan coeffi-
cients 〈Γiγi|ΓjγjΓkγk〉 [89, 92]:

ΩΓkγkΓlγl =
∑
Γ′γ′

〈
Γ′γ′

∣∣ΓkγkΓlγl〉ΩΓ′γ′(Γk ⊗ Γl), (2.71)

QΓkγkQΓlγl =
∑
Γ′γ′

〈
Γ′γ′

∣∣ΓkγkΓlγl〉 {QΓk ⊗QΓl}Γ′γ′ . (2.72)

Here, ΩΓ′γ′(Γk ⊗ Γl) and {QΓk ⊗QΓl}Γ′γ′ are projections that transform as
rows γ′ of the irreducible representation Γ′.

Using the Wigner–Eckart theorem, we define the reduced matrix element
WΓ′(Γk ⊗ Γl) of the quadratic vibronic constant as:〈

Γγi
∣∣ΩΓ′γ′(Γk ⊗ Γl)

∣∣Γγj〉 = WΓ′(Γk ⊗ Γl)
〈
ΓγiΓ

′γ′
∣∣Γγj〉 . (2.73)

If the representation is unitary and real (and for most groups, it can be chosen to
be one by the correct choice of a degenerate basis), the following orthogonality
property holds [92]:∑

ΓkγkΓlγl

〈
Γ′γ′

∣∣ΓkγkΓlγl〉 〈Γ′′γ′′∣∣ΓkγkΓlγl〉 = δΓ′Γ′′δγ′γ′′ . (2.74)

Using Eqs. (2.71)–(2.74), we rewrite the second-order term of Hamiltonian (2.67) as:∑
Γkγk

∑
Γlγl

W ij
Γkγk,Γlγl

QΓkγkQΓlγl

=
∑
ΓkΓl

∑
Γ′γ′

WΓ′(Γk ⊗ Γl)
〈
ΓγiΓ

′γ′
∣∣Γγj〉 {QΓk ⊗QΓl}Γ′γ′ . (2.75)

In the second line of this equation, the first sum is over all pairs of symmetric
multiplets of nuclear coordinates, while the second sum runs over all symmetric
components of direct product Γk ⊗ Γl. In this form, we can separate Γ′γ′ ∈ A1
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contribution that is also present in the non-degenerate case. To simplify the
notation, we define CG coefficient matrices in the basis of electronic states as
ĈΓk , such that:

‖ĈΓk‖ij = 〈ΓγiΓkγk|Γγj〉 .

and ‖ĈA1‖ij = δij plays the role of the unit matrix.
From the above consideration of linear and quadratic terms, it follows that

the zero-order Hamiltonian of Eq. (2.68) contains only A1 contributions of
linear and quadratic vibronic constants:

Ĥ0 =

{
1

2

∑
Γkγk

P 2
Γkγk

+
∑

Γk∈A1

VΓkQΓk

+
1

2

∑
ΓnΓm

WA1(Γn ⊗ Γm) {QΓn ⊗QΓm}A1

}
ĈA1 . (2.76)

Since this Hamiltonian is diagonal with respect to electronic states, it does not
mix degenerate electronic wavefunctions. Furthermore, we can simplify the
last term of Eq. (2.76) by noting that:∑

ΓnΓm

WA1(Γn ⊗ Γm) {QΓn ⊗QΓm}A1

=
∑
Γnγn

∑
Γmγm

WA1(Γn ⊗ Γm) 〈ΓnγnΓmγm|A1〉QΓnγnQΓmγm

≡
∑
Γnγn

∑
Γmγm

DΓnγn,ΓmγmQΓnγnQΓmγm (2.77)

Here, we used the inverse relation of Eq. (2.72) [89, 92]:

{QΓk ⊗QΓl}Γ′γ′ =
∑
γkγl

〈
ΓkγkΓlγl

∣∣Γ′γ′〉QΓkγkQΓlγl .

In Eq. (2.77), matrix D has the same role as the dynamical matrix in the
adiabatic problem. Therefore, we will call it the dynamical matrix of the
vibronic system. The elements of this matrix are called mass-weighted primary
force constants.

The Jahn–Teller part ĤJT contains all the terms which are responsible for
the non-adiabatic mixing of degenerate states:

ĤJT =
∑

Γkγk /∈A1

VΓkQΓkγkĈΓk

+
∑

ΓnΓm

∑
Γkγk /∈A1

WΓk(Γn ⊗ Γm){QΓn ⊗QΓm}ΓkγkĈΓk . (2.78)
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The mixing of electronic states comes from CG coefficient matrices ĈΓk , which
are, in the general case, non-diagonal with respect to electronic states.

The selection of Ĥ0 could seem a bit arbitrary. However, as pointed
out by Bersuker [28], WA1 has a major contribution to the potential energy
curvature ∂2E/∂Q2

Γkγk
(E is the system’s total energy). In contrast, the second-

order vibronic terms WΓk /∈A1
contribute only as a second-order perturbation.

Thus, the majority of electronic coupling comes from linear vibronic constants.
The second line of Eq. (2.78) has a small contribution in the case of weak
coupling. As the system considered in this thesis (NV center) has a relatively
weak coupling, we will omit terms WΓk /∈A1

, which considerably simplifies the
analysis. However, in the case of strong coupling, second-order contributions
might have a large impact.

A practical approach for calculating primary force constants and linear
vibronic constants is presented in Sections 3.2.2 and 4.3.1. In the following
analysis, we will assume that these parameters are known.

Zero-order solution

First, let us focus on the zero-order Hamiltonian (2.76) and its eigenfunctions.
Later these eigenfunctions will be used as the zero-order basis for the Jahn–
Teller problem. Terms VΓk∈A1 are forces in the direction of A1 symmetry
displacement. Practically, we can get rid of them by a suitable choice of the
reference configuration R0.20. Assuming that system has been relaxed along
with A1 symmetry coordinates, and by plugging Eq. (2.77) into Eq. (2.76), we
get the Hamiltonian:

Ĥ0 =

1

2

∑
Γkγk

P̂ 2
Γkγk

+
1

2

∑
Γkγk

∑
Γlγl

DΓkγk,ΓlγlQΓkγkQΓlγl

 ĈA1 . (2.79)

This form is equivalent to the harmonic Hamiltonian (2.50). Consequently,
we can follow similar steps and perform a canonical transformation to the
normal coordinates, diagonalizing the dynamical matrix D. As a result, in this
new basis, the Hamiltonian (2.76) takes a simple oscillator form [same as in
Eq. (2.57)]:

Ĥ0 =
∑
Γkγk

{
1

2
P̂ 2

Γkγk
+

1

2
ω2

Γk
Q2

Γkγk

}
ĈA1 ≡ ĈA1

∑
Γkγk

Ĥ0
Γkγk

, (2.80)

20See Section 3.2 for a practical realization of relaxation along with A1 symmetry directions.

63



where the previous notation QΓkγk is used for new normal coordinates. Here,
ω2

Γkγk
are eigenvalues of D that describe the frequency of the vibration. Simi-

larly, as in harmonic problem, the solution of the Hamiltonian (2.80) takes the
form:

Ψ0 = χ(0)(Q) |Γγi〉 , (2.81)

where nuclear term χ(0)(Q) =
∏

Γkγk
χΓkγk(QΓkγk) is a product of one-di-

mensional harmonic oscillator states. Each one-dimensional phonon state is
an eigenstate of Ĥ0

Γkγk
= {1

2 P̂
2
Γkγk

+ 1
2ω

2
Γk
Q2

Γkγk
}. In conclusion, zero-order

solutions of the Jahn–Teller problem take the form where each degenerate state
|Γγi〉 has the same vibrational manifold χ(0)(Q) described by

∑
Γkγk

Ĥ0
Γkγk

.

Jahn–Teller perturbation

As noted above, in this work, we ignore the second-order vibronic coupling
and take the linear vibronic constants as the only contribution to the Jahn–
Teller effect. In this approximation, the non-adiabatic part of the vibronic
Hamiltonian is:

ĤJT =
∑

Γkγk /∈A1

VΓkγkQΓkγkĈΓk . (2.82)

Here, CG matrices ĈΓk are responsible for the linear mixing of electronic states.
Because of these terms, adiabatic states (2.81) are coupled, and the nuclear
motion cannot be reduced to a simple harmonic oscillator form.

Decoupling symmetry-breaking contribution

In the analysis above, we showed that the A1 symmetry motion of the ionic
system does not couple degenerate electronic states.21 Luckily, we can separate
the problem for these vibrations from the symmetry-breaking modes, as shown
below. We split the total vibronic Hamiltonian into two parts: Ĥvibr = Ĥvibr

a1
+

Ĥvibr
asym. The first term contains only nuclear coordinates of A1 symmetry:

Ĥvibr
a1

(Qa1) =
∑

Γk∈A1

{
1

2
P 2

Γk
+

1

2
ω2

Γk
Q2

Γk

}
ĈA1 ≡ H0

a1
ĈA1 ,

21This is because ĈΓA1
is a unity matrix with respect to degenerate electronic states.
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where the summation runs over all A1 normal coordinates. The motion, along
with symmetry-breaking directions, is described by:

Ĥvibr
asym(Qasym) =

∑
Γkγk /∈A1

{
1

2
P 2

Γkγk
+

1

2
ω2

Γk
Q2

Γkγk

}
ĈA1 + ĤJT

≡ H0
asymĈA1 + ĤJT. (2.83)

As these two operators commute and pertain to different sets of coordinates, the
general solution can be written as a product:

Ψvibr = χa1(Qa1)Ψvibr
asym(r,Qasym), (2.84)

where χa1 =
∏
k∈A1

χk is the nuclear harmonic wavefunction of H0
a1

. The
second term:

Ψvibr
asym(r,Qasym) =

∑
γi

χγi(Qasym) |Γγi〉 , (2.85)

is the solution of symmetry-breaking part Ĥvibr
asym. Equations (2.84) and (2.85)

describe the general wavefunction of the Jahn–Teller system. If electronic states
are non-degenerate, then by symmetry considerations, ĤJT = 0, and Eq. (2.84)
reduces to the adiabatic form:

Ψadiabatic = χa1(Qa1)χasym(Qasym) |ψi〉 ,

where χasym is the harmonic wavefunction of HamiltonianH0
asym. The symmetry-

breaking displacements Qasym are termed Jahn–Teller active modes (or coor-
dinates). The whole non-adiabaticity is described by Eq. (2.83), and the JT
problem reduces explicitly to the eigenvalue problem of Ĥvibr

asym. In contrast, a1

contribution is obtained using standard methods of the adiabatic treatment (see
Section 2.4.1).

2.5.2 Solution

In the section above, we presented the formal problem of the Jahn–Teller active
system. This part will focus on the practical solution of Eq. (2.83), which
explicitly depends on JT active coordinates. To simplify the notation, we
will omit script labels and denote the non-adiabatic part of Hamiltonian by
Ĥ ≡ Ĥvibr

asym:

Ĥ = Ĥ0 + ĤJT = HphĈA1 + ĤJT.
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Note that this Ĥ contains all the symmetry-breaking displacements and has no
contributions of A1 coordinates. The zero-order solution (for ĤJT = 0) has an
adiabatic form:

Φ0
i,n = χn(Q) |Γγi〉 , (2.86)

where χn(Q) are eigenstates ofHph, and |Γγi〉 is one of the degenerate states.
In the harmonic approximation, we label phonon states by Fock-space vectors
χn(Q) ⇔ |nΓ1γ1 , . . . , nΓNγN 〉. Each state has vibrational energy calculated
using standard equation E0

v =
∑

Γkγk
(1

2 + nΓkγk)ωΓkγk . The ground state
|0, 0, . . . , 0〉 corresponds to a configuration where all harmonic oscillators
are in their lowest energy configuration. Using the formalism of the second-
quantization, we can define raising and lowering operators by:

a†Γkγk |· · ·nΓkγk · · · 〉 =
√
nΓkγk + 1 |· · ·nΓkγki + 1 · · · 〉 , (2.87)

aΓkγk |· · ·nΓkγk · · · 〉 =
√
nΓkγk |· · ·nΓkγk − 1 · · · 〉 , (2.88)

where “· · · ” represents the same configuration. The phonon number operator is
given by:

n̂Γkγk |· · ·nΓkγk · · · 〉 = a†ΓkγkaΓkγk |· · ·nΓkγk · · · 〉

= nΓkγk |· · ·nΓkγk · · · 〉 .

We can express normal coordinates QΓkγk and their conjugate momentum
P̂Γkγk in terms of a†Γkγk and aΓkγk using standard relations [114]:

QΓkγk =

√
1

2ωΓkγk

(a†Γkγk + aΓkγk),

PΓkγk =

√
ωΓkγk

2
(a†Γkγk − aΓkγk).

Finally, in the basis of zero-order wavefunctions (2.81), we can write the matrix
element of Ĥ0 for Jahn–Teller active coordinates as:〈

nΓ1γ1 · · ·nΓNγN ; Γγi

∣∣∣Ĥ0
∣∣∣n′Γ1γ1

· · ·n′ΓNγN ; Γγj

〉
= δijδnn′

∑
Γkγk

(
1

2
+ nΓkγk

)
ωΓk . (2.89)

Here, boldface n = {nΓ1γ1 , · · · , nΓ1γ1} denotes the all-phonon configuration,
and δnn′ is zero if at least one nΓkγk differs for configurations n and n′.
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Similarly, the matrix element of Jahn–Teller perturbation ĤJT can be evalu-
ated to be:〈

nΓ1γ1 · · ·nΓNγN ; Γγi

∣∣∣ĤJT
∣∣∣n′Γ1γ1

· · ·n′ΓNγN ; Γγj

〉
=
∑
Γk

VΓk‖ĈΓk‖ij
√
ωΓk

2

×
∑
γk

〈
· · ·nΓkγk · · ·

∣∣∣a†Γkγk + aΓkγk

∣∣∣· · ·n′Γkγk · · ·〉 . (2.90)

Using Eqs. (2.87) and (2.88), we can rewrite the matrix element of phonon
states as:〈

· · · , nΓkγk , · · ·
∣∣∣a†Γkγk + aΓkγk

∣∣∣· · · , n′Γkγk , · · ·〉
=

 ∏
Γiγi 6=Γkγk

δ(nΓiγi
,n′Γiγi

)


×
(√

nΓkγk + 1δ(n′Γkγk
,nΓkγk

+1) +
√
nΓkγk − 1δ(n′Γkγk

,nΓkγk
−1)

)
.

(2.91)

Eqs. (2.90) and (2.91) reveal some useful properties of linear vibronic
coupling. The mode of symmetry Γkγk directly couples two adiabatic wave-
functions if ‖ĈΓk‖ij 6= 0 and corresponding phonon states only differ by a
single phonon excitation:

|· · ·nΓkγk · · · ; Γγi〉
VΓk⇐⇒ |· · ·nΓkγk ± 1 · · · ; Γγi〉 .

The coupling strength is of order VΓk . Only such states are intermixed in the first
order of perturbation theory. Higher-order terms enter as (VΓ)∆n corrections,
where ∆n =

∑
i(ni − n′i) is the difference in phonon number. Therefore, for

a weak coupling (V̂Γ � 1), we can truncate the basis up to some number of
phonon excitations ∆n. This makes the problem in principle amenable but still
very difficult from a computational perspective, as the basis size is of order
2N∆n. For example, in the system of N = 10 modes, truncation up to ∆n = 3

would yield Hamiltonian matrices of size greater than 106 × 106. In the case
of a defect, the number of symmetry breaking modes N is huge, and the direct
diagonalization is practically impossible due to limited computational resources.

Luckily, in the system studied in this thesis (diamond NV center), the JT
problem has some additional symmetries, which can be utilized to reduce the
computational cost. Therefore, in the next section, we present our formulation
of the JT problem for the diamond NV center.
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e C−1
3z C3z σ1 σ2 σ3

A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1

E ( 1 0
0 1 )

(
− 1

2
−
√

3
2√

3
2
− 1

2

) (
− 1

2

√
3

2

−
√

3
2
− 1

2

) (
1
2
−
√

3
2

−
√

3
2
− 1

2

) (
1
2

√
3

2√
3

2
− 1

2

) (−1 0
0 1

)
Table 2.1: The irreducible matrix representations of the C3v point group. E
matrices are represented in the Cartesian (Ex, Ey) form.

2.5.3 Jahn-Teller effect in the NV− center

This section analyzes the dynamical JT effect in the electronically excited state
3E of the diamond NV− center [see Fig. 1.1(b)]. Here, we present our original
analysis of the vibronic coupling and derive practical expressions later used in
Chapters 4 and 5.

Symmetry

A short introduction to the diamond NV− center was given in Section 1.1. The
point-group symmetry of the defect is C3v with a threefold rotational axis going
through the nitrogen and the vacancy [see Fig. 1.1(a)]. This group has six sym-
metry elements which fall into three different classes. The first class contains
the identity element e, the second class has two C3 rotations, and the last class
contains three vertical reflections σi through plains containing the rotational
axis. C3v point-group possesses three irreducible representations shown in
Table 2.1. Objects of A1 symmetry are invariant under all symmetry transfor-
mations. A2 symmetry objects transform as pseudo-vectors and correspond
to rotational motion around the z-axis in the case of vibrations. E symmetry
objects come in pairs and represent doubly-degenerate electronic or vibrational
states. For two-dimensional E representation, the choice of representation
matrices is not unique. Table 2.1 shows the Cartesian (Ex, Ey) form, which
is the conventional selection in many articles and textbooks.22 However, any
other set of matrices T ′, related by unitary transformation T ′ = UTU−1, is an
equivalently good choice.

From Table 2.1, it follows that the degenerate electronic state can only be
of E symmetry, as it is the only two-dimensional representation. Accordingly,
we label the degenerate subset of electronic states by {|Ex〉, |Ey〉}. Jahn–Teller
active coordinates (modes) transform as A2 and E irreducible representations,

22This representation reflects how the basis vectors êx, êy transform under symmetry opera-
tions around rotational axis êz .
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and the motion along these coordinates mix electronic states |Ex〉 ↔ |Ey〉. We
split the JT interaction term (2.82) into two contributions:

ĤJT = ĤJT
a2

+ ĤJT
e ,

where parts pertaining to different symmetry coordinates are

ĤJT
a2

=
∑
k

ĈA2Vk;a2Qk;a2 , ĤJT
e =

∑
k,γ∈{x,y}

ĈEγVk;eQk;eγ . (2.92)

Here, ĈΓk are Clebsch–Gordan coefficient matrices for the pair of E electronic
states, ‖ĈΓk‖ij = 〈Ei Γkγk|Ej〉. In the (Ex, Ey) representation, they are given
by [115]:

ĈA2 =

(
0 1

−1 0

)
, ĈEx =

1√
2

(
0 1

1 0

)
, ĈEy =

1√
2

(
1 0

0 −1

)
.

Operators (2.92) do not mutually commute, and simple separation of a2 and
e degrees of freedom is impossible. Luckily, for the NV center, vibronic
contributions of a2 symmetry are negligible [116].23 Therefore, in the following
analysis, we omit a2 symmetry vibronic coupling.

Without a2 interactions, the Jahn–Teller problem of NV− center reduces
to the E ⊗ (e ⊕ e ⊕ · · · ) problem. This notation means that the degenerate
electronic E doublet couples with a large set of e-symmetry modes. In the
rest of the analysis, we will omit normal coordinate indices “e” for irreducible
representation and write the vibronic problem as:

Ĥ0 = ĈA1

∑
k;γ∈x,y

(
−1

2

∂2

∂Q2
kγ

+
1

2
ω2
kQ

2
kγ

)
,

ĤJT =
∑

k;γ∈x,y
ĈEγVkQkγ . (2.93)

In Section 2.5.2, we showed that the vibronic problem could be solved by
diagonalizing Ĥvibr = Ĥ0 + ĤJT in the basis of eigenvectors of Ĥ0. The ob-
vious choice is wavefunctions of the type |n1xn1y · · ·nNxnNy;Ei〉. However,
we also noted that this choice leads to huge matrices and is not convenient
for the computational approach, even for a small number of excitations. For
E ⊗ (e⊕ e⊕ · · · ) problems, a more suitable choice of the basis could be made
by additional symmetry considerations.

23In fact, our ab initio calculations show that they are zero.
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Chiral basis and pseudo-spin

The idea for simplifications stems from the original work of Longuet-Higgins et
al. [117], where the dynamical (E ⊗ e) Jahn–Teller system is analyzed in
terms of a complex basis.24. The extension to the multi-mode problem can be
formulated as follows. The E⊗ (e⊕e⊕· · · ) vibronic Hamiltonian has an addi-
tional symmetry which can be seen by considering the operator Ĵ = Ĵel + Ĵph,
where [118]:

Ĵel =
1

2
σ̂y, Ĵph = ĈA1

∑
k

L̂z,k. (2.94)

Here, Ĵel operates on the orbital part of the wavefunction, and σ̂y is the Pauli
matrix. Ĵph is the sum of phonon angular momentum operators:

L̂z,k = i

(
Qkx

∂

∂Qky
−Qky

∂

∂Qkx

)
,

which act on a two-dimensional space of degenerate normal modes {Qkx, Qky}.
It is easy to check that Ĵel and Ĵph commute with the zero-order Hamilto-
nian Ĥ0.25 Therefore, zero-order wavefunctions can be chosen to be simulta-
neous eigenstates of Ĵel and Ĵph separately. The eigenstates of the electronic
operator Ĵel are:

|E±〉 =
1√
2

(|Ex〉 ± i |Ey〉) , (2.95)

with corresponding eigenvalues jel = ±1
2 . These eigenvalues are usually

called the electronic “pseudo-spin”. To find common eigenstates of Ĥ0 and
Ĵph, we perform a canonical coordinate transformation to the basis of “chiral”
(or “circular”) phonons. Chiral phonons are described by second-quantization
operators [114]:

ak,+ =
1√
2

(akx − iaky) , ak,− =
1√
2

(akx + iaky) ,

where akx and aky belong to normal modesQk,x andQky. Defining the number
of right- and left-hand phonons as n̂k± = a†k,±ak,±, we can rewrite the phonon
angular momentum operator as:

Ĵph = ĈA1

∑
k

(n̂k+ − n̂k−) . (2.96)

24By “dynamical”, it is meant that the problem considers non-trivial dynamics of nuclei
which is intimately correlated with the electronic motion.

25[Ĵel, Ĥ
0] = 0 because ĈA1 is the identity matrix, and [Ĵph, Ĥ

0] = 0 because Hph in
Ĥ0 = ĈA1Hph has rotational SO(2) symmetry for every pair of normal modes {Qkx, Qky}.
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In this new basis, Ĥ0 takes the form:

Ĥ0 = ĈA1

∑
k

ωk (1 + n̂k+ + n̂k−) . (2.97)

By comparing equations (2.96) and (2.97), we see that two quantum numbers
can describe mutual eigenfunctions of both operators for each pair of degenerate
phonons k:

nk ≡ nk+ + nk−,

lk ≡ nk+ − nk−.

Here, nk corresponds to the total number of k-phonons, while lk is the eigen-
value of operator L̂z,k = (n̂k+ − n̂k−). Therefore, the common eigenstates
of Ĥ0, Ĵel, and Ĵph can be labeled as |n1l1 · · ·nN lN ;E±〉. Finally, we rewrite
the JT interaction part in terms of creation and annihilation operators of chiral
phonons:

ĤJT =
∑
k

Kkωk

(
0 ak+ + a†k−

ak− + a†k+ 0.

)
, (2.98)

where, following the notation of O’Brien [119], we define the dimensionless
vibronic constants:

Kk =
Vk√
2ω3

k

. (2.99)

Note that Hamiltonian (2.98) is explicitly written in terms of |E±〉 electronic
states.

We can check that Ĵ = Ĵel + Ĵph commutes with ĤJT and thus with the total
vibronic Hamiltonian.26 This implies that vibronic states can be classified by
quantum numbers of Ĵ . For eigenstates of Ĥ0, these numbers are calculated as:

j = jel +
∑
k

lk.

Finally, using standard relations for creation and annihilation operators and
some algebra, we derive the expression for matrix elements of ĤJT:〈

n′1l
′
1, . . . , n

′
N l
′
N ;E−

∣∣∣ĤJT
∣∣∣n1l1, . . . , nN lN ;E+

〉
=
√

2
∑
k

Kkωkδl′klk+1

∏
j 6=k

δn′jnjδl′j lj


×
[√

nk−lk
2 δn′knk−1 +

√
nk+lk+2

2 δn′knk+1

]
. (2.100)

26Note that separately Ĵel and Ĵph do not commute with Ĥ JT.
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Such a choice of the basis allows decoupling the problem for different Ĵ values
since matrix elements (2.100) only couple states described by the same quantum
number j. Therefore, we can solve the Jahn–Teller problem of diagonalizing
Ĥ0 + ĤJT for each value of j separately. This simplification is very useful for
numerical analysis of vibronic states, as it reduces computational complexity.

However, for solid-state systems, we still have a large number of vibra-
tional modes, and the diagonalization of Ĥ0 + ĤJT is still a difficult problem.
Section 4.3.3 will present our methodology, where a continuum of modes is re-
duced to a finite set of effective modes. Such simplification makes multi-mode
problems in principle tractable.

Perturbative treatment

Equation (2.100) makes the perturbative analysis tractable. In Appendix C,
we provide a general solution up to the second-order correction. In the first
order of degenerate perturbation theory, energy correction to Ĥ0 is zero, and
the vibronic ground state is given by:

Ψ0,±=
1√

1 +
∑

kKk

(
|00;E±〉 −

√
2
∑
k

Kk |00, nk=1, lk=±1,00;E∓〉

)
.

Second-order perturbation yields energy expression:

E
(2)
nl,± =

∑
k

[
ωk(nk + 1)− 2K2

kωk(1± lk)
]
. (2.101)

For each value of nk, phonon angular momentum lk can take (nk + 1) values
in the range −nk,−nk + 2, . . . , nk. Thus, zero-order adiabatic solutions have
degeneracy of orderD0 = 2

∏
k(nk+1) (factor 2 comes from electronic degen-

eracy). From Eq. (2.101), we see that linear vibronic interaction lifts phonon
degeneracy in the second-order of perturbation theory, and each level becomes
twofold degenerate for each jel = ±1 value. The ground state wavefunction up
to second-order correction is:

Ψ0,± = A
(
|00;E±〉 −

√
2
∑
k

Kk |00, nk=1, lk=±1,00;E∓〉 (2.102)

+
√

2
∑
k

K2
k |00, nk=2, lk=0,00;E±〉

+
√

8
∑
k

∑
q 6=k

KkKq |00, nk=1, lk=1,00, nq=1, lq=−1,00;E±〉
)
,

where A = (1 + 2
∑

kK
2
k + 2

∑
kK

4
k + 8

∑
k

∑
q 6=kK

2
kK

2
q )
−1/2 is the nor-

malization factor.
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Figure 2.4: The behavior of the vibronic states for E ⊗ e coupling. (a) Energy
levels in the range K2 = 0–4. (b) Energy levels in the range K2 = 0–0.2
(dashed lines represent perturbative solution). Values for K2 = 0 correspond
to the uncoupled states of energy E = ω(n+ 1).

2.5.4 Jahn–Teller effect for (E ⊗ e) coupling
In the above sections, we presented the formal development for the analysis
of the Jahn–Teller systems. Here we will illustrate the effect of vibronic
coupling in the presence of a single degenerate mode. The model of single-
mode provides a quantitative understanding of vibronic coupling. Moreover,
for strong coupling, the multi-mode problem can be approximately reduced to
a single effective mode [112].

Figure 2.4(a) shows the energies for the lowest vibronic states (n 6 4)
as K2 value changes from 0 to 4.27 K2 = 0 corresponds to the uncoupled
case, and energies of vibronic states are those of the two-dimensional harmonic
oscillator [ω(n+ 1)]. The ground state is doubly degenerate for all K values
and is always lowered in the presence of vibronic coupling. The first excited
state is a fourfold degenerate for K = 0 and splits into two doubly degenerate
branches for finite values of K. In Figure 2.4(b), we compare energies of the
second-order perturbation theory:

En,± = ω(n+ 1)− 2K2(1± l),

with the results of the direct diagonalization. The perturbative equation works
well for weak coupling strengths (K2 � 0.05). However, it is inadequate for
larger strengths. Later we will show that the coupling strength is K2 ≈ 0.5 for
the diamond NV center, and the perturbative treatment does not work.

27Diagonalization of vibronic Hamiltonian was performed using a basis limited to a maximal
number of excitations nmax = 15.
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2.6 Spectral properties
In this part, we present the semi-classical theory of optical absorption and emis-
sion in semiconductor materials. In Section 2.6.1, we begin by deriving standard
equations for transition rates and cross-sections. The main parameters of this
theory are position (or momentum) matrix elements calculated between molec-
ular wavefunctions. In Section 2.6.2, we first consider the evaluation of matrix
elements for non-degenerate adiabatic states. We show that in this case, the
problem decouples into the calculation of overlap integrals between vibrational
states and the calculation of electronic matrix elements. At the end of Sec-
tion 2.6.2, we present the equal mode approximation, which significantly simpli-
fies the evaluation of vibrational overlaps and leads to a standard Huang–Rhys
theory of electron–phonon interaction. Section 2.6.3 presents our original work
where we consider A2 ↔ E triplet transitions of the diamond NV center. We
derive an expression for a matrix element when one of the states is a degenerate
E⊗ (e⊕ e · · · ) Jahn-Teller system. Finally, in Section 2.6.4, we derive spectral
equations for optical transitions, which are later used in Chapters 4 and 5.

2.6.1 Interaction with light
The rigorous description of light–matter interaction requires theory where the
electromagnetic field is treated on the same footing as the quantum system.
However, the majority of experiments can be successfully described by a semi-
classical picture.28 In this picture, the light is treated as a classical wave and
the system of interest as a quantum object. Here we adopt this formulation.

In the presence of the classical electromagnetic field, the Hamiltonian of
the whole system can be split into two parts:

Ĥ = Ĥ0 + ĤI,

where Ĥ0 is the Hamiltonian of the molecular system [see Eq. (2.2)], and ĤI is
the interaction term due to the presence of the electromagnetic field. Depending
on the gauge fixing formulation, ĤI can be written in terms of position or
momentum operators. In the position formulation, the interaction term is [82]:

ĤI = −
∑
a

qaraE(ra), (2.103)

where E is an electric field, the sum runs over all charged particles a (electrons
and nuclei), ra is a three-dimensional position vector, and qa is the particle’s

28Actually, there is only a handful of experiments where a more sophisticated description is
required.
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charge. Alternatively, in the momentum formulation, the interaction term can
be written as [120]:

ĤI = −
∑
a

qa
ma

A(ra)pa,

where A is a vector potential, ma is the mass of the particle, and pa is the
momentum operator.

In the semi-classical description, we treat the electromagnetic field as a
monochromatic wave of the form:

A = A0η cos (kr− ωt)

=
1

2
A0η

(
ei(kr−ωt) + e−i(kr−ωt)

)
≡ A+ + A−, (2.104)

where η is a unit vector parallel to A, and A0 is the amplitude. The usual
analysis of the time-dependent perturbation theory [121] shows that the first
term A+ is responsible only for absorption. On the other hand, the second term
A− induces only stimulated emission.

In the following analysis, we will focus on the position formulation of
Eq. (2.103). First, we note that an electric field can be expressed in terms of the
vector potential:

E± = −∂A±

∂t
= ±iωA±. (2.105)

Combining Eqs. (2.103), (2.104), and (2.105), we write the interaction term as:

Ĥ±I = ±iA0ω

2

∑
a

qae
±ikraηrae

∓iωt.

Here, the top sign of “±” (or “∓”) should be taken for the absorption process
and the bottom sign for the emission. In the first order of time-dependent
perturbation theory, transition rate (average number of events per unit time) for
the harmonic perturbation is calculated using Fermi’s golden rule [121]:

W±(ω) = 2π
∑
m,n

wm(T )
∣∣∣〈Ψf ;n

∣∣∣Ĥ±I e±iωt∣∣∣Ψg;m

〉∣∣∣2 δ(Ee;n − Eg;m ∓ ω),

(2.106)

where |Ψg;m〉 and |Ψe;n〉 describe states in the ground (subscript g) and ex-
cited (subscript e) electronic manifolds. Quantum numbers n and m label
vibrational (or vibronic) excitations, and ωn(T ) are statistical weights for vibra-
tional/vibronic levels of the initial electronic state. In this thesis, we always as-
sume a low-temperature limit and calculate transition rates for T = 0 K. In this
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limit, statistical weights are non-zero only for the lowest vibrational/vibronic
states wm(0) = δm0. Therefore, the transition rates for absorption and stimu-
lated emission are:

Wabs(ω) =− πA2
0ω

2

2

∑
n

∣∣∣η · 〈Ψe;n

∣∣∣∑
a

q2
ae
±ikrara

∣∣∣Ψg;0

〉∣∣∣2
× δ(Ee;n − Eg;0 − ω), (2.107)

Wst(ω) =− πA2
0ω

2

2

∑
m

∣∣∣η · 〈Ψe;0

∣∣∣∑
a

q2
ae
±ikrara

∣∣∣Ψg;m

〉∣∣∣2
× δ(Ee;0 − Eg;m + ω). (2.108)

If electronic states are non-degenerate, wavefunctions are written in the crude
adiabatic form of Eq. (2.12). On the other hand, in the presence of electronic
degeneracy, the vibronic form of Eq. (2.62) should be used instead. In both
forms, electronic wavefunctions ψi(r,R0) are independent of nuclear motion,
and matrix elements of the nuclear position operator are equal to zero:〈

χe;n(R);ψe(r)
∣∣∣e±ikRaRa

∣∣∣χg;m(R);ψg(r)
〉
∼ 〈ψg|ψe〉 = 0.

Therefore, the summation over a in Eqs. (2.107) and (2.108) should be carried
only over the electronic indices (and qa = e = 1 in the Hartree atomic units).

For the defect system, the wavelength of the electromagnetic field is much
larger than the spread of localized charges. This property allows adopting
dipole approximation, where e±ikra → 1 in the long-wavelength regime. After
this approximation, the matrix element simplifies to transition dipole moment:

〈Ψe;n|r|Ψg;m〉 ≡
〈
Ψe;n

∣∣∑
a

ra
∣∣Ψg;m

〉
,

where r ≡
∑

a ra denotes the dipole operator of the electronic system.
Another simplification is achieved if one considers an ensemble of ran-

domly oriented defects. For a statistical ensemble, instead of calculating
|η · 〈Ψe;n|r|Ψg;m〉|2, one calculates the statistical average over all possible
orientations of the interacting system. Let us rewrite the transition dipole
moment in the form:

〈Ψe;n|r|Ψg;m〉 ≡ ren;gm r̂,

where:
|ren;gm|2 = |〈Ψe;n|r|Ψg;m〉|2 . (2.109)

Here, ren;gm is a complex scalar that determines transition strength, and r̂ is
a 3D unit vector parallel to the matrix element. Using this notation, we can
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express averaging over all symmetrically equivalent configurations as:

Avg
(
|η · 〈Ψe;n|r|Ψg;m〉|2

)
= β |ren;gm|2,

where averaging factor:

β = Avg(|η · r̂|2),

involves only unit vectors.29

For an isotropic material, every direction is equally probable and β = 1/3.30

As for the case of diamond NV center, the N–V complex can be formed along
with one of four tetrahedral directions of diamond [see Fig. 1.1(a)]. In a
statistical ensemble, each direction has an equal probability. Averaging over
four possible directions yields the same value as for isotropic case β = 1/3.

Taking into account all the considerations above, we can write optical
transition rates as:

Wabs(ω) = −βπA
2
0ω

2

2

∑
n

|ren;g0|2 δ(Een − Eg0 − ω), (2.110)

Wst(ω) = −βπA
2
0ω

2

2

∑
m

|re0;gm|2 δ(Ee0 − Egm + ω). (2.111)

Next, we want to rewrite A2
0 in terms of experimentally controllable values.

For a solid-state system, the amplitude A0 can be written in terms of energy
flux I(ω) [82]:

A2
0 =

8πα

ω2n
I(ω). (2.112)

Here, n is the refractive index of the material, and α is the fine structure constant.
Substituting this value into Eqs. (2.110) and (2.111), we get:

Wabs(ω) = −β 4π2α

n
I(ω)

∑
n

|ren;g0|2 δ(Een − Eg0 − ω), (2.113)

Wst(ω) = −β 4π2α

n
I(ω)

∑
m

|re0;gm|2 δ(Ee0 − Egm + ω). (2.114)

29Formally, Avgf(r) = (1/g)
∑
a f(G−1

a r), where Ga is a symmetry transformation, and
g is the number of transformations.

30This value is obtained by integrating over surface area Ω of unit sphere β = Ω−1
∫
|η ·

r̂|2 dS.
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Alternatively, in the momentum formulation, we can derive similar equa-
tions:

Wabs(ω) = −β 4π2α

nω2
I(ω)

∑
n

|pen;g0|2 δ(Een − Eg0 − ω), (2.115)

Wst(ω) = −β 4π2α

nω2
I(ω)

∑
m

|pe0;gm|2 δ(Ee0 − Egm + ω), (2.116)

where
|pen;gm|2 =

∣∣∣〈Ψe;n

∣∣∣∑
α

pα

∣∣∣Ψg;m

〉∣∣∣2, (2.117)

is the momentum matrix element.

Cross-sections

The transition rate W describes the number of events per unit time for a single
defect. It is not easy to measure this value directly. However, in the case of
absorption, one can measure the attenuation of light as it passes through the
material. The key parameter for this process is the absorption cross-section σ.
The cross-section σ of a single absorbing unit relates the photon flux Φ and the
transition rate W :

W (ω) = σ(ω)Φ(ω).

The photon flux is related to the energy flux by Φ(ω) = I(ω)/ω, and the
equation for absorption cross-section becomes:

σabs(ω) = β
4π2αω

n

∑
n

|ren;g0|2δ(Een − Eg0 − ω). (2.118)

The absorption cross-section is related to the Beer–Lambert law of attenua-
tion:

I(z) = I(0)e−αz,

where I is the energy flux of electromagnetic wave in distance z from the
surface, and α is an absorption coefficient. If the density of absorbing units is ρ
and the light passes in the direction z, then the change in the photon flux (and
energy flux) is:

dΦω(z)

dz
= −ρσabsΦω(z) ⇒ dIω(z)

dz
= −ρσabsIω(z).

By integrating this equation, we obtain the Beer–Lambert law in terms of
cross-section:

Iω(z) = Iω(0)e−ρσabsz,

78



which relates the absorption coefficient with the cross-section and the density
of absorbing units:

α = ρσabs.

The cross-section for stimulated emission is equivalent to Eq. (2.118):

σst(ω) = −β 4π2αω

n

∑
m

|re0;gm|2δ(Ee0 − Egm + ω). (2.119)

However, this time the intensity is increased as the light passes through the
sample.

Spontaneous emission rate

Spontaneous emission results from the electromagnetic field vacuum fluctua-
tions and cannot be explained using a semi-classical model. In principle, the
rate equations should be derived using the theory of quantum electrodynamics.
However, one can use the thermodynamic analysis of Einstein to obtain cor-
rect formulas by considering conditions of thermodynamic equilibrium [122].
In Einstein’s theory, the rates of two-level transitions are written in terms of
Einstein coefficients (B12, B21, A21):

W abs
1→2 = B12ρ(ω),

W st
2→1 = B21ρ(ω),

W sp
2→1 = A21. (2.120)

Here, ρ(ω) is the energy density, given by Plank’s law of black body radiation:

ρ(ω) = F (ω)
1

exp(ω/kBT )− 1
,

F (ω) =
ω3n3

π2c3
.

The Einstein coefficients for absorption and stimulated emission are related
by [122]:

B21g2 = B12g1, (2.121)

where g1 and g2 are degeneracy factors, respectively, for the ground and the
excited states. The rate of spontaneous emission is related to B coefficients
by [122]:

W sp
2→1 = A21 =

g1

g2
B12F (ω). (2.122)
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From Eq. (2.110) it follows, that the transition rate for two-level absorption is:

W abs
1→2 = −β 4π2α

n
I(ω)|r12|2. (2.123)

The energy flux is related to the energy density by I(ω) = ρ(ω)c/n, where
c/n is the speed of light in the material. Using equations (2.120), (2.122),
and (2.123), we arrive at the expression for the two-level spontaneous emission
rate:

W sp
2→1 = β

g1

g2

4αnω3

c2
|r21|2 . (2.124)

For a multitude of final states, equation (2.124) transforms to a spectral form:

Wsp(ω) = β
g1

g2

4αnω3

c2

∑
m

|re0;gm|2 δ(Ee0 − Egm + ω). (2.125)

From an experimental point of view, Wsp(ω) describes the number of photons
emitted in the solid angle 4π per unit energy per unit time.

2.6.2 Matrix elements: non-degenerate case

The primary parameters for spectral equations (2.118), (2.119), and (2.125) are
transition dipole elements |ren;gm|2 (or momentum matrix elements |pen;gm|2).
This section focuses on evaluating these parameters when wavefunctions |Ψg;m〉
and |Ψe;n〉 are non-degenerate. We will drop this restriction in the next section,
as the transition to a doubly degenerate electronic state of diamond NV center
will be considered.

For non-degenerate electronic states, the adiabatic form of Eq. (2.12) en-
ables to separate vibrational and electronic degrees of freedom:

|ren;gm|2 = |〈χe;n|χg;m〉|2
∣∣〈ψe∣∣r∣∣ψg〉∣∣2 , (2.126)

|pen;gm|2 = |〈χe;n|χg;m〉|2
∣∣〈ψe∣∣p∣∣ψg〉∣∣2 . (2.127)

In the context of Born–Oppenheimer adiabatic approximation, such separation
is known as the Franck–Condon approximation. However, for crude adiabatic
approximation, this separation is a natural consequence of the selected adiabatic
form. Electronic matrix elements |〈ψe|r|ψg〉|2 (or |〈ψe|p|ψg〉|2) determine
the strength of interaction and are required to calculate the absolute values
of cross-sections or lifetimes.31 The overlap integrals between vibrational

31The ab initio methodology for evaluating these matrix elements will be presented in
Chapter 5, where we consider absolute cross-sections of absorption and stimulated emission
processes.
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wavefunctions |〈χe;n|χg;m〉|2 are called Franck–Condon (FC) factors. FC
factors determine the lineshape of optical transition and are responsible for a
vibrational broadening of emission and absorption spectra. The evaluation of
these factors will be the topic of the rest of this section.

Franck–Condon factors

The evaluation of |〈χf ;n|χi;m〉|2 is a computationally challenging task for
systems with many degrees of freedom. This complication can be illustrated
as follows. In the harmonic approximation, the vibrational wavefunction is a
product of one-dimensional harmonic oscillator states χi;nk (see Section 2.4.1):

χi;n(Qi) =
∏
k

χi;nk(Qi;k).

Each one-dimensional state χi;nk is described by frequency ωi;k, normal coordi-
nateQi;k, and quantum number nk. The frequencies and normal coordinates are
determined by diagonalizing the dynamical matrix, which encodes the adiabatic
potential energy surface (APES) close to the equilibrium (see Section 2.4.1
for more details). However, the electronic transition induces a change in the
shape of the APES. This change implies a different vibrational structure. That
is, the frequencies ωf ;k and normal coordinates Qf ;k are different from those
of the initial state. New normal coordinates Qf are intermixed with old ones
by so-called Duschinsky transformation [123]:

Qf = ĴQi + ∆Q.

Here Ĵ is a non-diagonal matrix that mixes normal coordinates of both elec-
tronic states. Because of this mixing, Franck–Condon factors are highly multi-
dimensional integrals. Practically, such integrals can only be evaluated for
systems that have a small number of nuclear degrees of freedom.

Equal-mode approximation

To overcome the computation problem (presented above), we adopt the equal-
mode approximation [124].32 First, we express APES of initial and final
electronic states in terms of normal coordinates of initial state Q ≡ Qi.33

32There is no universally accepted notation for this approximation.
33In the Appendix of our paper [T2], we show that choosing the normal coordinates and

vibrational frequencies of initial states is the best approximation.
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Within equal mode approximation, the change of the APES, as a result of the
optical transition, is assumed to be linear in normal coordinates:

∆V (Q) = Vf (Q)− Vi(Q) =
∑
k

qkQk, (2.128)

where

qk =
∂Vf (Q)

∂Qk

∣∣∣∣
Q=0

=
〈
ψf

∣∣∣∂∆Û(Q)

∂Qk

∣∣∣ψf〉
Q=0

(2.129)

are the same linear vibronic constants of Eq. (2.65). Here ∆Û is the potential
energy due to the motion of nuclei [see Eq. (2.7)]. The potential energy surface
for the final state can be written as:

Vf (Q) = Vi(Q) +
∑
k

qkQk;a1 .

The harmonic Hamiltonian (2.57) for the final electronic state becomes:

Ĥf
v =

∑
k

(
1

2

∂2

∂Q2
k

+
1

2
ω2
kQ

2
k + qkQk

)

=
∑
k

(
1

2

∂2

∂Q2
k

+
1

2
ω2
k

(
Qk +

qk
ω2
k

)2

−
q2
k

2ω2
k

)
,

where ωk andQk are frequencies and normal coordinates of the initial electronic
state. We see that in the equal mode approximation, each one-dimensional
harmonic potential is displaced by the value:

∆Qk =
qk
ω2
k

.

In addition, the energy of each oscillator is lowered by the factor:

∆εk = −q2
k/(2ω

2
k) = −1

2
∆Q2

kω
2
k. (2.130)

This change of potential energy surface for a single Qk is illustrated in Fig. 2.5.
The coefficients ∆Qk describe the change of the equilibrium defect geometry
and can be written in terms of direct nuclear displacements:

∆Qk =
∑
n

√
Mn∆Rnηk;n, (2.131)

where ∆Rn = Rf ;n−Ri;n is the change of the equilibrium position of atom n

between the initial and the final electronic states.
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Figure 2.5: Effect of optical transition on one dimensional harmonic potential
in the equal mode approximation. Line V k

i shows the harmonic potential of the
initial electronic state, while V k

f shows potential after the optical transition.

In the equal mode approximation, one-dimensional vibrational states of the
final electronic configuration are related to the vibrational states of the initial
electronic configuration by:

χf ;nk(Qk) = χi;nk(Qk −∆Qk).

For the ground vibrational state, one-dimensional overlap integrals have an
elegant analytical expression [110]:

|〈χ0k(Qk)|χnk(Qk −∆Qk)〉|2 =
Snkk
nk!

exp(−Sk), (2.132)

where

Sk =
ωk∆Q

2
k

2~
, (2.133)

is the partial Huang–Rhys (HR) factor. The partial HR factor has a statistical
interpretation as the average number of k-type phonons created during an
optical transition [125]. Finally, the FC factor for all-phonon wavefunction is:

|〈χf ;n|χi;0〉|2 =
∏
k

Snkk
nk!

exp(−Sk). (2.134)

This form is convenient for the practical calculation of spectral lineshapes, as
will be demonstrated in Section 2.6.4.

Symmetry considerations

Now, let us take a look at the electron–phonon coupling from a group theoretical
perspective. Expansion coefficients qk of Eq. (2.128) are the same linear

83



vibronic constants introduced in the Jahn–Teller problem [see Eq. (2.65)]. In
Section 2.5.1, it was shown that for non-degenerate states, LVCs are non-zero
only for A1 symmetry displacements. Therefore, it follows that ∆Qk is non-
zero only if it represents a totally symmetric mode. Following this argument,
we can write:〈

χfn
∣∣χim〉 =

∏
k∈A1

〈χnk(Qk −∆Qk)|χmk(Qk)〉
∏
q /∈A1

δnq ,mq . (2.135)

The last product of Eq. (2.135) reveals a fundamental fact: an optical transition
between non-degenerate electronic states can only excite vibrational modes of
a1 symmetry. Otherwise, in the first order of theory, the transition probability is
zero.

2.6.3 Matrix elements: degenerate case

In the above section, we saw that for non-degenerate electronic states, only
totally symmetric a1 modes participate in the optical transition. This behavior
results from symmetry properties: the nuclear displacements due to electronic
transition can only occur along totally symmetric directions if both electronic
states are non-degenerate. However, for degenerate states, the vibronic inter-
actions modify nuclear motion along with symmetry-breaking directions, and
contributions of other modes become influential.

Here, we illustrate this effect by considering the triplet transition of the
diamond NV− center [see Fig. 1.1(c)]. The ground triplet state of the NV center
is an orbital singlet ofA2 symmetry. Since the electronic state is non-degenerate,
the wavefunction can be written in the adiabatic form:∣∣Ψg;pr

〉
= χa1

gp(Qa1)χegr(Qe) |A2〉 . (2.136)

In this equation, we separated the a1 and e symmetry components of the
vibrational wave function.34 We need two sets of quantum numbers, p and r,
to describe the vibrational states of these components. To avoid confusion, the
index “e” for “excited” will be used as a subscript, and the index “e” to label
the e irreducible representation will be used as a superscript whenever both
indices appear on the same symbol. The excited state is an orbital doublet of E
symmetry, and the general expression of its vibronic states is:∣∣Ψe;st

〉
= χa1

es (Qa1) |Φet〉 . (2.137)
34For the diamond NV center, a2 symmetry contribution is omitted because a2 symmetry

modes do not contribute to the vibronic interactions. This is explained in Section 2.5.3.
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Here |Φet〉 is the solution of E ⊗ (e⊗ e · · · ) vibronic Hamiltonian:35

|Φet〉 = χ
e+
et (Qe) |E+〉+ χ

e−
et (Qe) |E−〉 .

The matrix element between these triplet states can be written as:∣∣〈Ψe;st

∣∣r∣∣Ψg;pr

〉∣∣2 =
∣∣〈χa1

es

∣∣χa1
gp

〉∣∣2 ∣∣〈Φet

∣∣r∣∣χegr;A2

〉∣∣2 .
The first term |〈χa1

es |χa1
gp〉|2 is a Franck–Condon factor which can be calculated

using Eq. (2.134). The second term can be expanded in the following form:∣∣〈Φet

∣∣r∣∣χegr;A2

〉∣∣2 (2.138)

=
∣∣〈χe+et ∣∣χegr〉 〈E+|r|A2〉+

〈
χ
e−
et

∣∣χegr〉 〈E−|r|A2〉
∣∣2 .

Let us rewrite the position operator r in terms of Cartesian components:

r = rxêx + ryêy + rzêz.

If we choose the coordinate system such that êz corresponds to the rotational
axis of the C3v point group (and the symmetry axis of the NV center), then
rx, ry, and rz respectively transform as Ex, Ey, and A1 irreducible representa-
tions. Now, let us rewrite electronic matrix elements in the basis of Cartesian
representation [see Eq. (2.95)]:〈

E±
∣∣r∣∣A2

〉
=

1√
2

〈
Ex
∣∣r∣∣A2

〉
± i 1√

2

〈
Ey
∣∣r∣∣A2

〉
. (2.139)

From group theory, it follows that:

〈Ei|rz|A2〉 = 0,

for i = {x, y}, because A1 /∈ (E ⊗ A1 ⊗ A2) = E. This result implies that
light polarized along the axial direction of NV cannot induce triplet optical
transitions. Furthermore, from the Wigner–Eckart theorem, it follows that:

〈Ei|rj |A2〉 = µ0 〈Ei;Ej |A2〉 , (2.140)

where µ0 is the reduced matrix element,36 and 〈Ei;Ej |A2〉 are Clebsch–Gordan
coefficients. In the Cartesian representation, CG coefficients are given by:

〈Ei;Ej |A2〉 =
1√
2

(
0 −1

1 0

)
. (2.141)

35See Section 2.5.3 for a more detailed discussion.
36Physically, µ0 is simply the transition dipole moment.
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Using Eqs. (2.140) and (2.141), we can rewrite Eq (2.139) as:〈
E±
∣∣r∣∣A2

〉
=

1√
2

〈
Ex
∣∣ry∣∣A2

〉
êy ∓ i

1√
2

〈
Ex
∣∣ry∣∣A2

〉
êx. (2.142)

Substituting Eq. (2.142) into Eq. (2.138) yields:∣∣〈Φet

∣∣r∣∣χegr(Qe);A2

〉∣∣2 =
∣∣〈Ex∣∣ry∣∣A2

〉∣∣2 [∣∣〈χ+
et

∣∣χegr〉∣∣2 +
∣∣〈χ−et∣∣χegr〉∣∣2] .

Finally, we can write the matrix element of triplet transition as:∣∣〈Ψe;st

∣∣r∣∣Ψg;pr

〉∣∣2
=
∣∣〈Ex∣∣ry∣∣A2

〉∣∣2 ∣∣〈χa1
es

∣∣χa1
gp

〉∣∣2 [∣∣〈χ+
et

∣∣χegr〉∣∣2 +
∣∣〈χ−et∣∣χegr〉∣∣2] . (2.143)

The last term in square brackets comes from vibronic interactions in the degen-
erate electronic state.

2.6.4 Spectral functions

Calculation of emission and absorption spectra requires evaluating sums over
all vibrational/vibronic states of the final electronic manifold [see Eqs. (2.118),
(2.119), and (2.125)]. The direct calculation is complicated as there is effectively
an infinite number of such states. The exact calculation can be simplified by
considering the Fourier transform of the spectral function of electron–phonon
interaction [109]. We begin this section by defining the spectral function of
electron–phonon interaction for transitions involving non-degenerate electronic
states. We show how these functions can be directly obtained from the spectrum
of Huang–Rhys parameters. In the second part, we present our original analysis,
where we extend the definition of the spectral function of electron–phonon
interaction when one of the states is a degenerate Jahn–Teller system.

Spectral function for a1 modes

We define the spectral functions of electron–phonon interaction for a1 modes
for absorption and emission process, respectively, as [109]:

Aa1
abs(ω) =

∑
p

∣∣〈χa1
e0

∣∣χa1
gp

〉∣∣2δ(EZPL + εa1
g0 − ε

a1
gp − ω

)
, (2.144)

Aa1
em(ω) =

∑
s

∣∣〈χa1
es

∣∣χa1
g0

〉∣∣2δ(EZPL + εa1
es − ε

a1
e0 − ω

)
. (2.145)

Here, EZPL is the zero-phonon line (ZPL) of optical transition. This line
corresponds to the energy difference between the lowest vibrational/vibronic
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level in the excited state and the lowest vibrational/vibronic level in the ground
state:

EZPL = (εe − εg) + (εa1
e0 − ε

a1
g0). (2.146)

Here, εe and εg are energies of the electronic Schrödinger equation (2.8), and
εa1
en and εa1

gm are energies of the vibrational (or vibronic) subsystem.
For the non-degenerate case, vibronic interactions are negligible, and only

a1 modes contribute to the electron–phonon interaction [see Eq. (2.135)]. There-
fore, the total spectral function of electron–phonon interaction A(ω) equals the
spectral function of a1 symmetry modes (A{em,abs} = Aa1

{em,abs}). In this case,
we can write spectral equations (2.118), (2.119), and (2.125) in terms of A(ω):

σabs(ω) = −β 4π2αω

n
|〈ψe|r|ψg〉|2Aabs(ω), (2.147)

σst(ω) = −β 4π2αω

n
|〈ψe|r|ψg〉|2Aem(ω), (2.148)

Wsp(ω) = β
g1

g2

4αnω3

c2
|〈ψe|r|ψg〉|2Aem(ω). (2.149)

The evaluation of spectral functions (2.144) and (2.145) is simplified if one
considers their Fourier transform to the time domain, commonly denoted as the
generating function [126]:

G{abs,em}(t) =

∫
Aa1

{abs,em}(ω)eiωt dω. (2.150)

In the equal mode approximation, the FC factor is given by Eq. (2.134), and the
spectral function of electron–phonon coupling for emission is:

Aa1
em(ω) =

∑
n

∏
k∈A1

Snkk
nk

e−Skδ
(
EZPL −

∑
i

niωi − ω
)
.

The sum runs over all possible configurations of n = {n1, n2, . . . , nN}. The
Fourier transform of this expression yields generating function:37

Gem(t) = exp

[
−iEZPLt− Sa1 +

∫
eiωtSa1(ω) dω

]
, (2.151)

where:

Sa1(ω) =
∑
k∈A1

Skδ(ω − ωk), (2.152)

37The trick here is to use the integral form of the delta function.

87



is the density of electron-phonon coupling (also called Huang–Rhys spectrum),
and:

Sa1 =

∫ ∞
0

Sa1(ω) dω =
∑
k∈A1

Sk, (2.153)

is the total Huang–Rhys factor due to coupling to a1 modes. Similarly, for the
absorption process, the generating function is:

Gabs(t) = exp

[
−iEZPLt− Sa1 +

∫
e−iωtSa1(ω) dω

]
. (2.154)

Once the generating function is known, the spectral function can be obtained
via the inverse Fourier transform:

Aa1(ω) =
1

2π

∫ ∞
−∞

eiωtG(t)e−γ|t| dt. (2.155)

Here, we include additional Lorentzian broadening term e−γ|t|. This term
accounts for other homogeneous and inhomogeneous effects, which are not
treated explicitly in theory. In practice, the value of γ is adjusted to reproduce
the experimental broadening of the ZPL line.

Spectral function for e modes

If at least one of the states is degenerate, symmetry breaking modes (other
than a1) start to participate in the electron–phonon interaction. Here, we focus
on the A2 ↔ E transition of the diamond NV center (however, the analysis
can be readily extended to the case of other vibronic systems). To account
for vibronic coupling, we extend the definition of the spectral function of
electron–phonon interaction by:

A{em,abs}(ω) =

∫
Aa1

{em,abs}(ω − ω
′)Ae{em,abs}(ω

′) dω′. (2.156)

The contribution of a1 modes is given by equations (2.144) and (2.145). The
spectral functions pertaining to e symmetry modes are chosen to recover the
form of Eqs. (2.147)–(2.149):

Aeem(ω) =
∑
r

[∣∣〈χe+e0 ∣∣χegr〉∣∣2 +
∣∣〈χe−e0 ∣∣χegr〉∣∣2] δ(εeg0 − εegr − ω), (2.157)

Aeabs(ω) =
∑
t

[∣∣〈χe+et ∣∣χeg0〉∣∣2 +
∣∣〈χe−et ∣∣χeg0〉∣∣2] δ(εeet − εee0 − ω). (2.158)
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These spectral functions require the evaluation of 〈χe±et |χeg0〉. In Section 2.5,
we showed that the solution of the vibronic problem produces wavefunctions in
the form: |Φet〉 = |χ+

et〉|E+〉+ |χ−et〉|E−〉 where:∣∣χ±et〉 =
∑
nl

C±et;n1l1...nN ln
|n1l1, . . . , nN lN 〉 . (2.159)

The coefficients C±et;n1l1...nN ln
are determined by diagonalization of vibronic

Hamiltonian Ĥ = Ĥ0 + ĤJT [Eqs. (2.97) and (2.100)].
In the zero-temperature limit, overlaps for emission spectrum (2.157) are

calculated between the lowest vibronic state of the optically excited electronic
state |3E〉 and all the vibrational states of the electronic ground state |3A2〉. The
lowest vibronic state is always the one with the pseudo-spin38 j = ±1

2 [27].
Therefore, in the case of luminescence, one has to diagonalize the Hamiltonian
for either the j = 1

2 or the j = −1
2 “channel” (the two states are degenerate).

In the case of absorption, overlap integrals in the spectral function (2.158)
are calculated between zero-phonon state |00 . . . 0〉 of the electronic ground
state |3A2〉 and vibronic states of the electronic excited state |3E〉. Overlaps will
be non-zero only for vibronic states in the |3E〉 manifold that contain the con-
tribution of the zero-phonon state |00 . . . 0〉. This phonon state is only present
in vibronic states with j = ±1

2 [117], and therefore in our diagonalization
procedure, we again need to consider either only the j = 1

2 or the j = −1
2

“channel”.

38See Eq. (2.94) for the definition of the “pseudo-spin”.
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Chapter 3

VIBRATIONAL STRUCTURE OF

DEFECT: ab initio APPROACH

Good, good, good, good vibrations (oom bop bop)
She’s giving me the excitations (excitations, oom bop bop)
I’m pickin’ up good vibrations

— The Beach Boys, Good Vibrations

The vibrational structure is an essential component for the complete de-
scription of quantum mechanical states of deep-level defects. It is revealed
in the optical spectrum of color centers and plays an important role in other
physical processes of the defect (e.g., non-radiative transition, spin–phonon
coupling, vibrational averaging of the fine structure, etc.). This chapter focuses
on the ab initio theoretical description of the vibrational structure of defects in
lattices. For adiabatic states, the vibrational structure completely determines
the nuclear dynamics. In contrast, for non-adiabatic degenerate states, it serves
as a zero-order solution for the more complicated Jahn–Teller problem.

The content of this chapter is organized as follows. Section 3.1 starts with
the analysis of the pure bulk vibrational structure. There, we discuss the cal-
culation of interatomic force constants and show the performance of density
functional theory in the case of diamond. In Section 3.2, we review the standard
supercell approach for the defect vibrational structure calculations. We illustrate
this approach for the diamond NV center and show that in computationally ac-
cessible supercell sizes, the vibrational structure of the defect is not sufficiently
converged.

For this reason, in Section 3.3, we present our embedding methodology for
the vibrational structure analysis in the effectively dilute limit. Section 3.3.2
illustrates the embedding methodology for the ground state of the diamond NV−

center. Section 3.4 presents our theoretical study of isotopic shifts of negatively
charged silicon–vacancy (SiV−) in the diamond. Finally, in Section 3.5, we
conclude our results and present key statements for the defense.
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3.1 Lattice vibrations of diamond

Diamond is the host lattice for two defect systems considered in this thesis
(NV and SiV centers). Therefore, we begin this chapter by analyzing the
vibrational structure of diamond. Here, we introduce a standard methodology
for calculating interatomic force constants and test the performance of the
density functional theory for the description of the vibrational structure of bulk.

3.1.1 Finite-difference approach

The vibrational structure of the periodic system is found by solving the eigen-
value problem of Eq. (2.60) for different values of q. The central parameter is
the reduced dynamical matrix (2.61):

D̂nm(q) =
∑
β

Φαβ
mn√

MmMn
eiqR

β
.

Here, Φαβ
mn are elements of the Hessian matrix (interatomic force constants),

which are second-order derivatives of the adiabatic potential energy surface
[see Eq. (2.49)]:

Φαβ
mi;nj =

∂2V (R)

∂Rαmi∂R
β
nj

= −
∂F βnj
∂Rαmi

. (3.1)

Indices i and j denote Cartesian directions, and F βnj is the force along direction
j exerted on atom n in the primitive cell β.

For a practical calculation of interatomic force constants, we use the finite-
difference approach [127].1 This approach relies on the short-ranged character
of interatomic interactions in a semiconductor material. Such character implies
that if two atoms are sufficiently far apart (|Rα

m −Rβ
n| � 1), the correspond-

ing Hessian matrix element vanishes (Φαβ
mi;nj→0). Therefore, in a practical

approach, we choose a large supercell where the distance between periodic
images is larger than the extent of interatomic interactions. The Hessian matrix
is calculated by approximating Eq. (3.1):

Φαβ
mi;nj = −

∆F βnj
∆Rαmi

,

where ∆F βnj is the force difference due to atomic displacement ∆Rαmi.

1This method is also known as the “frozen” phonon approach.
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3.1.2 Symmetry considerations

The calculation of the Hessian matrix requires a large number of displacements;
however, this number can be reduced by employing symmetry properties. From
the second-order derivative form of Eq. (3.1), it follows that the Hessian matrix
is symmetric:

Φαβ
mi;nj = Φβα

nj;mi. (3.2)

The crystal lattice has a translational symmetry which also implies:

Φmi;nj(R
α,Rβ) = Φmi;nj(R

α + L,Rβ + L), (3.3)

where L is a lattice vector. Eq. (3.3) significantly simplifies the evaluation of
force constants, as one needs to consider only pairwise interactions where one
of the atoms resides in the reference primitive cell. Furthermore, the point
group symmetry implies:

Φi′j′(Rn′ ,Rm′) =
∑
ij

Sii′Sjj′Φij(ŜRn, ŜRm), (3.4)

where Ŝ is any 3D transformation of a point group.
According to these symmetry properties, one can choose a reduced set of

Hessian matrix elements. Symmetrically equivalent elements are recovered by
the application of Eqs. (3.2), (3.3), and (3.4).

3.1.3 Phonon structure of diamond

Here, we present our calculations of the phonon structure of diamond using PBE
and HSE exchange–correlation functionals.2 First principle calculations have
been performed with the Vienna ab initio simulation package (VASP) [77].

Lattice relaxation was performed using a conventional cubic cell with
eight carbon atoms. We used the projector-augmented wave approach with
a plane-wave energy cutoff of 500 eV. The Brillouin zone was sampled us-
ing the Monkhorst–Pack [95] 8 × 8 × 8 k-point mesh. Table 3.1 shows the
results for PBE and HSE functionals. The electronic bandgap (Eg) is signifi-
cantly underestimated in PBE (4.12 eV) compared to the experimental value
of 5.48 eV [128]. This result illustrates the bandgap problem discussed in
Section 2.3.2. The bandgap is much closer to the experiment in the hybrid
HSE functional (5.36 eV). However, we observe that PBE provides a better
description of the lattice constant and the bulk modulus.

2See Section 2.3.3 for introduction to exchange–correlation functionals.
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Eg a B ω(Γ) ω(X) ω(L)

PBE 4.12 3.574 (+0.20%) 430 (−0.19%) 160.5 147.6 154.2
HSE 5.36 3.548 (−0.53%) 470 (+0.61%) 169.9 155.1 161.1
expt. 5.48a 3.567a 443b 166.7c 149.2b 153.0b

a Reference [128]
b Reference [129]
c Reference [130]

Table 3.1: Calculated Kohn–Sham bandgaps Eg (eV), lattice constants a (Å),
bulk moduli B (GPa), and highest phonon frequencies (in meV) at high-
symmetry points in the diamond. Experimental values [128–130] are listed for
comparison. For the lattice constant and bulk modulus, the deviation from the
experimental value is indicated in parentheses.
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Figure 3.1: Phonon dispersion curves of diamond calculated using PBE (black
lines) and HSE (gray lines) functionals. Experimental values are taken from
Ref. [130].

Phonon dispersion curves were calculated using the PHONOPY software
package [131]. This package generates atomic displacements taking into ac-
count symmetry considerations for a given periodic cell. Each displacement
requires the separate self-consistent calculation of Hellman–Feynman forces.
Once the forces are calculated, PHONOPY builds the Hessian matrix and
solves the dynamical equation (2.61) for a selected set of q points.

We use the conventional unit cell with eight carbon atoms as a building
block for supercell construction. For example, the cubic supercell of size
N ×N ×N contains 8N3 atomic sites. For force constant calculations, we
chose the 4 × 4 × 4 supercell (containing 512 atoms) and a single k-point
(at Γ) for the Brillouin-zone sampling. The space group of diamond (Fd3̄m)
permits a reduction in the number of atomic displacements to just two. We
have used displacements of amplitude ∆R = 0.01 Å. In Fig. 3.1, the calculated
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phonon dispersion curves are compared with inelastic neutron scattering data
from Ref. [130]. Our calculations depict phonon dispersion for T = 0 K,
while experimental data have been obtained at room temperature. However,
this comparison is justified due to the very rigid nature of the diamond lattice:
The phonon energies in diamond change by less than 0.1 meV from cryogenic
to room temperatures [132]. Both functionals describe the phonon dispersion
comparatively well. However, the PBE functional provides a slightly more
accurate description of the spectrum. The highest phonon frequencies for
high-symmetry points are compared with experimental values in Table 3.1.

3.2 Supercell vibrational modes of the diamond NV−

center

The standard ab initio calculations of defect properties are usually carried out in
a supercell geometry, whereby a single defect is embedded in the periodic cell
of the host material (see Section 2.3.4 for a more detailed discussion). In the
following calculations, we use supercells that are computationally accessible in
the DFT approach.

3.2.1 Electronic structure

We start our analysis by presenting first-principle electronic structure calcula-
tions of the ground 3A2 and the excited 3E triplet states of the diamond NV−

center.3 Calculations were conducted using PBE and HSE functionals and the
same computational parameters as for diamond phonon dispersion curves. The
defect supercell is a 4× 4× 4 cell with a single diamond NV center.

Ground state

For the ground state, lattice geometry relaxation was carried out, preserving
C3v symmetry until Hellman–Feynman forces were less than 0.001 eV/Å. The
spatial localization of Kohn–Sham orbitals was determined by calculating the
inverse participation ratio (IPR) [133]:

IPR =

(∫
|φ(r)|4 dr

)−1

. (3.5)

3Density functional theory calculations of the ground and the excited states of the NV center
have been reported previously. For a review, see Ref. [86].
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Figure 3.2: Defect-level diagrams of the NV−1 center as calculated using
(a) PBE and (b) HSE functionals. Diagrams show Kohn–Sham single-particle
defect levels for the ground state 3A2. Shaded areas correspond to the va-
lence band (VB) and the conduction band (CB). Dotted arrows show optical
excitation.

We define the localization factor β = Ω/IPR for a supercell of volume Ω,
which yields the value of 1 for fully delocalized wavefunction (φ = 1/

√
Ω)

and higher values for more localized states. The localized “defect orbitals”
were identified by selecting Kohn–Sham states with β � 1 (more prominent
than the average value of bulk states). Irreducible representations of single-
particle orbitals were found by applying group theory projection operators [89].
Calculated Kohn–Sham defect level diagrams are shown in Fig. 3.2(a) for PBE
and Figure 3.2(b) for HSE functionals. In both spin channels, there are three
localized defect levels in the bandgap: fully symmetric a1 level and a doubly-
degenerate e level. All the orbitals are occupied in the spin-majority channel
(left), and only the a1 orbital is filled in the spin-minority channel (right). Such
ground state configuration is A2 symmetry triplet state:∣∣3A2;ms = 1

〉
= |a1ā1exey| , (3.6)

where | · · · | denotes the Slater determinant. This single-particle picture corre-
sponds to the molecular-orbital model of Lenef and Rand [134]. The difference
between the highest unoccupied e level and the lowest occupied a1 level in the
spin-minority channel is 1.87 eV for PBE and 2.94 eV for HSE.

Excited state

In the defect-orbital picture, the excited triplet state 3E is obtained by promoting
the electron in the spin-minority channel from the a1 level to one of the e levels
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(as depicted by dotted arrows in Fig. 3.2).4 Resultant configuration corresponds
to the Ex or Ey symmetry wavefunction:

|Ex;ms = 1〉 = |a1exey ēy| ,
|Ey;ms = 1〉 = |a1exey ēx| . (3.7)

We model this state using the ∆SCF method whereby orbital occupations of
localized states are constrained to match the wavefunction form of Eq. (3.7).5

The excited 3E state has an orbital degeneracy of nominal a1e
2
xey and

a1exe
2
y configurations. It is a E ⊗ (e ⊕ e · · · ) Jahn–Teller (JT) system (see

Section 2.5.3). Therefore, some additional considerations should be made
regarding the lattice geometry relaxation along with the symmetry-breaking
directions. DFT calculations directly solve the electronic problem, treating ions
as classical motionless point charges. This means that the kinetic energy of
nuclei is zero, and the effective Hamiltonian of E ⊗ (e⊕ e · · · ) system (2.93)
is just a potential energy term:

Û =
∑

k;γ∈{x,y}

[
1

2
ω2
kQ

2
kγĈΓA1

+ VkĈΓEγ
Qkγ

]

=
∑
k

1

2
ω2
k

(
Q2
kx +Q2

ky

)
ĈΓA1

+
∑
k

Vk

[
Qky Qkx

Qkx −Qky

]
, (3.8)

where k runs over all doublets of e symmetry coordinates. Since both terms in
Eq. (3.8) commute, we can diagonalize the vibronic term to find two potential
energy surfaces:

Û± =
∑
k

1

2
ω2
k

(
Q2
kx +Q2

ky

)
±

[∑
kk′

VkVk′
(
QkxQk′x +QkyQk′y

)]1/2

.

(3.9)

Energy minimization in DFT self-consistent calculation follows the lower-lying
branch of Eq. (3.9). It can be determined that the minimum of this potential
occurs at coordinates [27]:

(Qmin
kx )2 + (Qmin

ky )2 =
V 2
k

ω4
k

=
2K2

k

ωk
, (3.10)

where Vk is a reduced matrix element of vibronic coupling [see Eq. (2.69)], and
Kk is a dimensionless vibronic constant [see Eq. (2.99)]. The corresponding JT

4See Appendix B.4 for molecular orbital states of NV− center.
5See Section 2.3.2 for introduction to ∆SCF method.
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relaxation energy is [27]:

EJT =
1

2

∑
k

V 2
k

ω2
k

=
∑
k

K2
kωk.

From Eq. (3.10) it follows, that the minimum of DFT calculations is not a single
configuration but a continuum of configurations (e.g., in polar coordinates
Qkx = ρk sinφk andQkx = ρk cosφk, the minima corresponds to ρk = Vk/ω

2
k

and any value of φk). Eq. (3.10) will be important for the analysis of Jahn–
Teller coupling (Sec. 4.3.1), as it allows to determine constants of vibronic
coupling (Vk orKk) by measuring lattice relaxation in density functional theory
calculations.

3.2.2 Primary force constants for the excited state

The excited state is a JT active system, and the complete analysis requires
solving the vibronic problem. This chapter will focus on the zero-order adiabatic
solution and leave the treatment of non-adiabatic effects for Chapter 4. For
the zero-order description, we need to calculate the dynamical matrix of the
vibronic system [see Eq. (2.77)]:

DΓnγn,Γmγm = WA1(Γl ⊗ Γn) 〈ΓnγnΓmγm|A1〉 . (3.11)

Here, WA1(Γl ⊗ Γn) is the reduced matrix element of 〈Ei|ΩA1(Γn ⊗ Γm)|Ej〉
[see Eq. (2.73)], and ΩA1(Γn⊗Γm) is theA1 symmetry component of a second-
order derivative of potential energy [see Eq.(2.70)]. To separate A1 contribution
from the quadratic vibronic constants WΓ′γ′ /∈A1

, we propose the following
ab initio approach. In DFT calculations, we take the electronic configuration
with fractional orbital occupation a1e

1.5
x e1.5

y . Such electronic configuration
approximates a mixed state of degenerate configurations a1exe

2
y and a1e

2
xey.

The density matrix of such an electronic system is given by:

ρ =
1

2
(|Ex〉 〈Ex|+ |Ey〉 〈Ey|) .

In this configuration, any calculated value of observable operator Ô corresponds
to the ensemble average:

〈Ô〉 = Tr(ρÔ) =
1

2

(〈
Ex
∣∣Ô∣∣Ex〉+

〈
Ey
∣∣Ô∣∣Ey〉) .

If Ô transforms as a totally symmetric irreducible representation A1, then:6

〈ÔA1〉 =
〈
Ex
∣∣ÔA1

∣∣Ex〉 =
〈
Ey
∣∣ÔA1

∣∣Ey〉.
6This follows from CG coefficient relation 〈ΓnγnA1|Γmγm〉 = δΓnΓmδγnγm .
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On the other hand, if Ô transforms as non-trivial irreducible representation
Γ′γ′ /∈ A1, then CG coefficients 〈ΓnγnΓ′γ′|Γnγn〉 = 0 (in the Cartesian
representation of C3v group) and 〈ÔΓ′γ′ /∈A1

〉 = 0.
From consideration above, it follows that for orbital configuration a1e

1.5
x e1.5

y ,
calculated values of linear and quadratic vibronic constants [see Eqs. (2.69)
and (2.73)] are:

V̄Γkγk = 〈XΓkγk〉 =

〈Ei|XΓkγk |Ei〉, if Γkγk ∈ A1

0, if Γkγk /∈ A1

, (3.12)

and

〈ΩΓ′γ′(Γn ⊗ Γm)〉 =

〈Ei|ΩΓ′γ′(Γn ⊗ Γm)|Ei〉, if Γ′γ′ ∈ A1

0, if Γ′γ′ /∈ A1

. (3.13)

First, from Eq. (3.12), it follows that the relaxation using electronic occupa-
tion a1e

1.5
x e1.5

y optimizes the geometry only in the direction of A1 symmetry
coordinates.7 Therefore, after the relaxation, forces along A1 symmetry direc-
tions are zero, and geometry retains the C3v symmetry.

Furthermore, from Eq. (3.13), it follows that the quadratic constants of
potential energy expansion are nonzero only for A1 projection if we use the
a1e

1.5
x e1.5

y orbital configuration. As a result, applying the finite-difference
approach (as for the adiabatic case) computes only primary force constants that
enter the Eq. (3.11). This consequence is very important for the methodology
of vibronic structure analysis, as it provides a practical method to calculate the
dynamical matrix of the vibronic system.

3.2.3 Vibrational structure

The vibrational structure of NV− has been calculated using electronic configura-
tions a2

1exey and a1e
1.5
x e1.5

y , respectively, for the ground and excited state. The
interatomic force constants were obtained using the finite-difference approach
with displacements of amplitude ∆R = 0.01 Å.8 All the vibrational modes
have been characterized according to the irreducible representations of the C3v

point group. This has been done by using character projection operators [90]:

PΓ =
sΓ

g

∑
a

χ∗Γ(Ga)T (Ga),

7This is because diagonal terms of linear vibronic constants V iiΓkγk
are forces in the direction

of normal coordinate QΓkγk .
8This time, the number of symmetry-independent displacements is 574.
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where sΓk is the dimension of the irreducible representation Γ, g = 6 is the
order of the group, Ga is the group element, and T (Ga) is the symmetry trans-
formation matrix for vibrational mode. If the vibrational mode is unchanged
after the application of PΓ (i.e., the scalar product (ηk · PΓηk) is unity), then
the mode is identified as a basis of irreducible representation Γ.

Modes were also characterized by their spatial localization. A bulk phonon
is fully delocalized, and many atoms participate in particular vibration. How-
ever, as discussed in Section 2.4.3, point defects usually change the vibrational
structure of a solid. Sometimes, the defect gives rise to localized or quasi-
localized modes, which often induce observable spectroscopic signatures. To
quantify the localization of vibrational mode, we calculate the inverse participa-
tion ratio (IPR) similar to electronic wavefunctions Eq. (3.5):

IPRk =
1∑
n η

4
k;n

,

where ηk;n is the three-dimensional displacement of atom n and η4
k;n ≡

(
∑

i η
2
k;ni)

2. IPR essentially describes onto how many atoms the given mode is
localized [109], i.e., if M atoms vibrate with equal amplitudes, IPR = M . We
also define a localization ratio βk [109]:

βk =
Nn

IPRk
,

where Nn is the number of atoms in the cell. βk estimates the inverse of a
fraction of atoms in the supercell that vibrates for a given vibrational mode.
βk = 1 when all atoms in the supercell vibrate with the same amplitude and
βk � 1 for localized and resonant modes.

Quasi-localized modes: ground state

Let us first start with the vibrational structure of the ground state. Figure 3.3
shows calculated localization ratios (βk) using PBE and HSE functionals. The
vibrational frequencies in the HSE calculations are slightly shifted to higher
energies. This difference stems from the fact that interatomic interactions are
stronger in HSE, as reflected in the difference of lattice constants (see Table 3.1).
The shaded region shows the region of most probable β values for pure bulk
vibrations. These values are within 3σ (σ = 0.22 for PBE and 0.20 for HSE)
deviation from the mean value of bulk IPRs (∼1.56 for both functionals). Both
functionals provide clearly pronounced a1 and e symmetry resonant modes
in regions 60–65 meV and 80–85 meV. We also see some small resonances
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Figure 3.3: Localization ratios of ground state (3A2) vibrational modes of NV−,
calculated with (a) PBE and (b) HSE functionals. The shaded area shows a
region of bulk localization ratios within 3σ deviation from the mean value.
Note that the y axis has a logarithmic scale.

forming in the high-energy domain (∼140 and 160 meV in PBE and ∼150

and 170 meV in HSE). Larger localization implies possibly stronger electron–
phonon interaction as the amplitude of the vibration is localized in the vicinity
of the defect. The calculated resonant peaks (for both a1 and e symmetry
modes) can explain many features of the luminescence phonon sideband (see
Fig. 3.4). For example, let us take the quasi-local mode of frequency 63 meV (in
PBE). This resonance is clearly pronounced in the luminescence spectrum (see
Fig. 3.4), as it generates 3 increasingly broad phonon replicas and quantitatively
explains overall lineshape. Furthermore, from Fig. 3.4, we see that other PBE
resonances at approximately 140 and 155 meV almost perfectly correspond to
other small features of the luminescence sideband.

Quasi-localized modes: excited state

Calculated localization ratios for the excited state are shown in Figure 3.5.
As for the ground state, PBE and HSE yield quantitatively similar results. In
comparison to the vibrational structure of the ground state, the excited state
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Figure 3.4: Luminescence lineshape of the diamond NV− center (from
Ref. [17]). Phonon replicas of sideband are compared with ground state local-
ized modes of 4× 4× 4 supercell calculations (see Fig. 3.3).

100

101

β

a1

(a) PBE

a1

(b) HSE

100

101

β

e e

40 60 80 100 120 140 160 180

Phonon energy (meV)

100

101

β

a2

40 60 80 100 120 140 160 180

Phonon energy (meV)

a2

Figure 3.5: Localization ratios of excited state (3E) vibrational modes of NV−,
calculated with (a) PBE and (b) HSE functionals. The shaded area shows the
region of bulk localization ratios within 3σ deviation from the mean value.
Note that the y axis has a logarithmic scale.
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Figure 3.6: Absorption lineshape of the diamond NV− center (from Ref. [135]).
Phonon replicas of sideband are compared with excited state localized modes
of 4× 4× 4 supercell calculations (see Fig. 3.5).

yields more localized resonances in the high-energy region. One can assume that
these modes might be excited in the process of optical excitation. Comparing
phonon replicas of the absorption lineshape with PBE result [see Fig. 3.6(a)],
one could identify resonant modes at 63, 130, and 163 meV as the possible
sources of observed phonon replicas.

However, this time, such quantitative analysis does not completely explain
the asymmetry between luminescence and absorption lineshapes. The most
prominent difference is ∼10 meV splitting of the first phonon replica. This
double-peek structure is a famous property of the diamond NV center [136]. The
origin of this double-peak is still a subject of some debate. It was often attributed
to the Jahn–Teller effect. However, Davies and Hammer [136] obtained the
same polarization for the double peak and the ZPL in their uniaxial stress
measurements. This implicates that the double-peak is associated with totally
symmetric a1 modes. Davies and Hammer [136] attributed this splitting to
tunneling of nitrogen between identical positions of vacancy. However, Gali
et al. [104], in their ab initio study, calculated the potential energy barrier
to be greater than 4 eV, which is about two orders of magnitude larger than
proposed by Davies and Hammer [136]. Abtew et al. [111], in their ab initio
study, analyzed the dynamic Jahn–Teller effect in a single effective mode
approximation. They attributed the splitting of the first phonon replica to the
third and the fourth excited vibronic states of symmetry A2 and E. However,
more detailed analysis shows (not presented here) that the transition to E level
is forbidden. This can also be deduced from Figure 2.4. The dimensionless
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vibronic coupling constant obtained by Abtew et al. [111] is K2 = 0.35. The
E vibronic level corresponds to the first level of j = 5/2. As discussed in
Section 2.5.3, in the zero-temperature limit, the excitation can only occur to
vibronic j = 1/2 states. Therefore, the transition is forbidden and does not
explain double peak splitting.

3.2.4 Discussion

The results above demonstrate that the vibrational structure of defects calculated
in the supercell geometry can help to explain general features of optical line-
shapes. This is particularly true for the luminescence spectrum of the diamond
NV− center. However, localization ratios are not strictly physical quantities,
and the direct comparison with an experiment should be taken cautiously. First
of all, higher localization does not assuredly lead to a stronger electron–phonon
interaction, as this interaction depends on other parameters and symmetry
properties (see Section 2.6 and Chapter 4 for more details).

Furthermore, in such moderate-sized supercells, calculated resonant modes
are still not sufficiently converged. Let us take the ground state vibrational
structure as an example. In Fig. 3.3, each resonance contains only a few
strongly localized modes, which are scarcely distributed in a small region of
frequency. If the size of the system increases, the number of contributing
modes should also increase.9 In the continuum limit, each resonance should
contain an infinite number of modes distributed in some frequency domain. For
calculation of optical lineshapes, the continuum limit can be approximated by
smoothing spectral densities of a finite system (e.g., by replacing δ-functions of
Eq. (2.152) with Gaussian of small width). However, as noted by Alkauskas
et al. [109], such small supercells are not sufficient for calculations of high
accuracy resolution. For example, the lowest frequency mode in 4× 4× 4

supercell is ∼35 meV (see Figs. 3.3 and 3.5). The resulting calculations of
optical lineshapes can therefore not contain any contributions of lower energy
modes. In contrast, the optical lineshapes (see Figs.3.4 and 3.6) clearly show
contributions of phonons down to zero frequencies.

We postpone the calculation of optical lineshapes to Chapter 4. In the
following sections of this chapter, we focus on the vibrational structure of
defects.

9Note that the amplitude of each mode is of order N−1/2
n and decreases with the system

size (see Sec. 2.4.3).
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3.3 Embedding methodology

We solve the issue of small supercells by the use of the embedding methodology.
This methodology enables to compute defect vibrational modes for supercells
N × N × N with N > 5 for which direct ab inito calculations are too ex-
pensive. Such methodology was first introduced by Alkauskas et al. [109],
where the vibrational structure of NV− ground state was calculated to model
the luminescence lineshape. The improvement of this methodology was one of
the primary goals of my doctoral years.10

3.3.1 Description and justification

The embedding methodology relies on the fact that interatomic interactions
in semiconductors are short-ranged. When the atom is displaced from the
equilibrium position (as it is done in the finite-difference approach), the induced
force on the neighboring atom decays fast as a function of a distance from the
displaced atom. This property enables us to construct a Hessian matrix of large
supercell as described below.

First, we use the translational symmetry of a pure bulk and construct the
bulk Hessian matrix of a large supercell. Let us assume that the cutoff radius,
rc1, defines the range after which interatomic interactions in solid become
negligible. If the distance between two atoms in a large supercell is smaller
than rc1, we take the value of the Hessian matrix element from the matching
pair in a small supercell. Otherwise, the Hessian matrix element is set to zero.
Once the bulk Hessian is constructed, we embed defect interactions in a finite
neighborhood of impurity, as shown in Fig. 3.7. This procedure relies on the
assumption that the presence of defect only perturbs interatomic interactions
for atoms close to the defect. More precisely, we modify the Hessian matrix
elements Φnm only if both atoms, n, and m, are separated from impurity sites
by a distance smaller than a cutoff radius rc2.

While the procedure is relatively straightforward, it requires some additional
corrections related to the symmetry properties of the Hessian matrix (see
Section 3.1.2). Setting matrix elements beyond a certain radius to zero breaks
Newton’s third law:

Φni;nj = −
∑
m 6=n

Φmi;nj . (3.14)

10We developed a software package for defect vibrational structure calculations in large
supercells. This code will be made open-source and available for other researchers who work in
the computational field of point defects.
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Figure 3.7: Illustration of the embedding methodology for defect vibrational
structure calculations.

Breaking this “acoustic sum rule” could introduce a small force on the en-
tire system. This could affect the results for low-frequency acoustic modes.
Newton’s third law could be enforced by setting each matrix element Φni;nj

(diagonal in the atomic index n) to the right-hand side of Eq. (3.14). However,
this correction for i 6= j can break the symmetry property (3.2) of the Hessian
matrix for n = m. To ensure that (i) the symmetry properties of the Hessian
matrix are preserved, and (ii) frequency of acoustic modes at the Γ point are
equal to 0, we set Φni;nj to the right-hand side of Eq. (3.14) only in the case
when Cartesian components are the same, i = j.

3.3.2 Vibrations of the diamond NV− center in the dilute limit

Here we present the vibrational structure calculations of the NV− center using
the embedding methodology.

First, we tested the range of interatomic interactions in diamond by cal-
culating the PBE phonon dispersion lines in the 4× 4× 4 supercell. Fig. 3.8
compares dispersion lines of two calculations: black lines (“full”) were calcu-
lated using the full Hessian matrix from the 512-atom bulk supercell, while
for gray lines (“trunc.”), Hessian elements were set to 0 for atoms separated
by more than 4.2 Å. The maximum difference between the two sets of results
is 2.3 meV, which implies that the Hessian matrix is indeed short-ranged, and
the accuracy of 2 meV could be achieved by taking the cutoff radius rc1 > 5 Å.
Therefore, for bulk interactions, we chose rc1 = 7 Å. In the case of rc2, we
used a slightly smaller value, rc2 = 5.6 Å, to reduce the overall computational
cost in hybrid HSE calculations.
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Figure 3.8: Calculated phonon dispersion of bulk diamond. In “full” we have
included the full Hessian matrix, while in “trunc.” Hessian matrix elements of
atoms separated by > 4.2 Å are set to 0.

The embedding procedure was applied to construct defected supercells
up to N = 20 (64 000 atomic sites). The calculation of vibrational modes
in such large supercells requires diagonalization of dynamical matrices as
large as 192 000× 192 000. Since these matrices are sparse, with only ∼0.5%

of nonzero elements, for diagonalization we used the spectrum slicing tech-
nique [137] based on the shift-and-invert Lanczos method, as implemented in
the SLEPc [138] library. Parallelization was done using an interface to the
MUMPS [139] parallel sparse direct solver.

Figure 3.9(a) shows PBE localization ratios βk calculated in the 20×20×20

supercell for the diamond NV center’s ground state (3E). In contrast to the
4× 4× 4 supercell [Fig. 3.3(a)], we can clearly see the emergence of broader
resonances. For example, in the 4× 4× 4 supercell, we identified ∼63 meV
mode as a possible source for three phonon replicas. However, calculations in
a large supercell yield a broad resonance in the range of 60–80 meV, which
is shifted towards higher energies. Also, the first e symmetry resonance is
shifted towards lower energies and has a peak at 55 meV. We also see highly
localized modes of a1 symmetry at the edge of the diamond phonon structure.
Results calculated using the HSE functional are shown in Fig. 3.9(b). In
comparison to PBE calculations, HSE yields slightly higher frequencies and
stronger localization. However, as in the previous calculations, the general
features are qualitatively similar.

Fig. 3.10 shows localization ratios of vibrational modes in the excited state
3E. In comparison to ground-state calculations, we see a slightly different vibra-
tional structure. For example, the first a1 resonance is broader for the excited
state in comparison to the ground state, which could explain the asymmetry
between the first phonon replica in absorption and emission spectra.
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Figure 3.9: Localization ratios of ground state (3A2) vibrational modes, calcu-
lated with (a) PBE and (b) HSE functionals in 20× 20× 20 supercell.
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Figure 3.10: Localization ratios of excited state (3E) vibrational modes, calcu-
lated with (a) PBE and (b) HSE functionals in 20× 20× 20 supercell.
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Figure 3.11: (a) Atomic structure of the silicon–vacancy (SiV) center in dia-
mond. (b) Low temperature (20 K) experimental photoluminescence spectra
(plot taken from Ref. [142]). Inset shows the fine structure of the ZPL.

3.4 Isotopic shifts of negatively charged
silicon-vacancy

This section briefly presents our theoretical study of the vibrational structure
of silicon–vacancy (SiV) center in diamond [T1]. Our findings explain sev-
eral experimental observations and solve the contradiction between previously
calculated and measured isotopic shifts in Refs. [140] and [141].

3.4.1 Introduction

The SiV center is formed by removing two neighboring carbon atoms and plac-
ing a silicon atom between two vacant sites [see Fig. 3.11(a)]. This configuration
is of D3d point group symmetry. SiV center is a bright photoluminescence de-
fect with ZPL energy at 1.681 eV. The luminescence spectrum [see Fig. 3.11(b)]
is mainly dominated by the ZPL peak, which contains ∼70% of the total emis-
sion [142]. It has been established that the luminescence corresponds to a
negatively charged defect [60].

A recent experimental study by Dietrich et al. [141] showed that phonon
replica at 64 meV [peak B in Fig. 3.11(b)] displays an isotope shift that is
proportional to the inverse square root of the silicon mass for three different
Si isotopes (28Si, 29Si, 30Si). Downward shifts for 29Si and 30Si isotopes were
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Figure 3.12: Defect-level diagrams of the SiV− center. Diagrams show Kohn–
Sham single-particle configurations for (a) the ground state 2Eg and (b) the
exited state 2Eu. The spin-majority channel is denoted with upward arrows and
the spin-minority channel with downward arrows. Shaded areas correspond to
the valence band (VB) and the conduction band (CB).

1.02 meV and 2.21 meV. Earlier first-principles calculations [140] indeed found
resonant mode with similar energy (56.5 eV). However, calculated isotope shifts
were substantially smaller (0.62 meV for 29Si and 1.24 meV for 30Si). This
calls for a deeper analysis of the vibrational structure of SiV. Therefore, here we
provide novel ab initio calculations of vibrational structure and discuss isotopic
shifts of quasi-local modes.

3.4.2 Electronic states

The defect-level diagram of the ground state of SiV− is shown in Fig. 3.12(a).
It is a spin-doublet single determinant configuration 2Eg. In the molecular
orbital picture, the excitation is achieved by promoting an eu electron from a
spin-minority channel to an unoccupied eg state. The resultant wavefunction
has an orbital configuration of 2Eu symmetry, shown in Fig. 3.12(b). Both
electronic states are twofold degenerate and are dynamic Jahn–Teller systems.
In this study, we avoid complications associated with the Jahn–Teller effect and
use fractional electronic configurations of e2

uxe
2
uye

3/2
gx e

3/2
gy for the ground state

and e3/2
ux e

3/2
uy e2

gxe
2
gy for the excited state. As in the diamond NV center, such

fractional configurations avoid vibronic interactions and describe the zero-order
Hamiltonian of the vibronic system.

DFT calculations were carried using VASP code [77] and HSE exchange-
correlation functional [53]. We used the PAW approach with an energy cutoff
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of 400 eV. The Brillouin zone was sampled at the Γ point to ensure that the
symmetry of electronic wavefunction is correctly described. The cubic 3×3×3

supercell (216 sites) was used for actual defect calculations. The calculated ZPL
energy for the transition 2Eg → 2Eu is EZPL = 1.72 eV. This value compares
favorably with the experimental value of 1.681 eV.

3.4.3 Vibrational structure

The vibrational structure was calculated using a 216-atom supercell and the
same parameters as described above. We used the embedding methodology to
model the vibrational structure of supercells N ×N ×N up to N = 9 (5832
sites). All the vibrational modes were characterized according to the irreducible
representations of the D3d point group (A1g, A1u, A2g, A2u, Eg and Eu).

The localization ratio factors βk calculated in 5832-atom supercell are
shown in Fig. 3.13(a) for the ground (2Eg) state and in Fig. 3.13(b) for the ex-
cited (2Eu) state. We see that for vibrations of a1g, a1u, a2g, and eg symmetry,
localization ratios are similar to values of bulk modes. Therefore, there are no
clearly pronounced quasi-local modes of these symmetries. The situation is en-
tirely different for a2u and eu modes. For a2u modes, we see clearly pronounced
resonances at ∼(40–50) meV in the ground state and at ∼(50–60) meV in the
excited state. As shown in our paper [T1], these resonances are irrespective
of the size of the supercell. Analysis of the vibrational shapes shows that in
these vibrations, the movement of the Si atom along the symmetry axis is
predominant. For eu symmetry modes, there are pronounced resonances at the
∼(50–70) meV in the ground and excited states. The eu resonance is about two
times broader compared to the a2u peak.

To identify the peaks of a2u and eu resonances, we combine results from
different-sized supercells. Figures 3.14(a) and (b) show combined a2u and eu
localization ratios (from N = 3, 4, 5, 6, 7, 8 and 9 supercells), respectively, for
the ground and excited states. We loosely draw envelope functions to make the
interpretation of our results easier.

At the low-temperature limit, the ground state vibrational structure should
be reflected in the luminescence spectrum of the defect. However, direct
comparison of calculated frequencies with phonon replicas of lineshape should
be taken cautiously due to the possible complex nature of electron–phonon
interaction.11 The first resonance in Fig. 3.14(a) is an a2u symmetry peak at
∼43 meV. This mode might be the source of the first phonon replica of the

11See Section V of our paper [T1] for a more detailed discussion.
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Figure 3.13: Atomic localization ratios of ground (2Eg) and excited (2Eu) states
of the SiV− center in 9× 9× 9 supercell. The y axis has a logarithmic scale.
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Figure 3.14: Combined localization ratios of ground (2Eg) and excited (2Eu)
states of the SiV− center from N = 3, 4, 5, 6, 7, 8 and 9 supercells. The y axis
has a logarithmic scale.
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Figure 3.15: Localization ratios for the a2u symmetry quasi-local modes around
energy 43 meV for three Si isotopes. Calculations performed for the 5× 5× 5
supercell.

luminescence spectrum [see A in Fig. 3.11(b)]. The second eu peak is located
at ∼60 meV. Again, this vibrational mode could be associated with the second
phonon replica of the luminescence spectrum [see B in Fig. 3.11(b)].

The energies of corresponding a2u and eu peaks in the excited state are
∼56 meV and ∼63 meV [see Fig. 3.14(b)]. These peaks are shifted towards the
higher energies in comparison to the ground state. The increase of vibrational
energies in the excited state can be explained by the electronic structure of the
SiV center. The optical excitation corresponds to transferring the electron from
a more delocalized orbital eu to a more localized orbital eg [85]. This increases
the electron density around the Si atom and thus the vibrational energies.

3.4.4 Isotopic shifts

Dietrich et al. [141] reported isotopic shifts Ω28/Ω29 = 1.016 and Ω28/Ω30 =

1.036 of sharp phonon replica at 63.8 meV [see B in Fig. 3.11(b)]. These
isotope shifts closely correspond to the “ideal” shifts of

√
29/28 = 1.018

and
√

30/28 = 1.036 (i,e. Ω ∼ 1/
√
mSi). However, as noted above, in the

previous ab initio calculations [140], isotopic shifts were substantially smaller.

To explain this discrepancy, we first focus on a2u vibrational resonance of
the ground state in the energy range 20–70 meV. Figure 3.15 shows calculated
localization ratios for the 5 × 5 × 5 supercell for Si isotopes with MSi =

28, 29, and 30 a.m.u. For each isotope, five vibrations contribute to the quasi-
local mode. The vibration with the largest β has energies 46.40, 46.11, and
45.88 meV for 28Si, 29Si, and 30Si isotopes, respectively. The isotope shifts
for this most pronounced mode are ω28/ω29 = 1.006 and ω28/ω30 = 1.011.
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They are much smaller than the experimental values of 1.018 and 1.036 [141].
However, as can be seen from Fig. 3.15, shifts of a single mode do not explain
the behavior of a resonance. As we increase the isotope’s mass, we see changes
in frequency and localization for individual modes. Most interestingly, the
localization of lower-frequency modes tends to increase, while localization
of higher frequency modes tends to decrease. We explain the isotope shift of
the whole resonance as follows. As the localization ratios redistribute when
we change the mass of the Si atom, we associate β with the weight of the
contribution of each specific vibration of resonant mode. Then we determine
the energy of quasi-local mode Ω as a weighted average of all the modes that
contribute to this resonance:

Ω =

∑
k βkωk∑
k βk

. (3.15)

If we now weigh the contribution of localized modes, we get average energies
Ω28 = 44.81 meV, Ω29 = 43.90 meV, and Ω30 = 42.88 meV. The isotope
shifts are Ω28/Ω29 = 1.021 and Ω28/Ω30 = 1.045.

We performed a similar analysis for all considered supercells and eu sym-
metry resonance. We find that the frequency of the most pronounced mode in
the resonance has a considerable cell-to-cell variation (qualitative results are
presented in our paper [T1]). As we increase the supercell’s size, the frequency
of the mode oscillates around the average value with amplitude ∼1.5 meV for
small supercells and becomes smaller for larger supercells. However, for the
averaged frequency [Eq. (3.15)], the oscillations are smaller, and convergence is
much faster. Using this procedure, we determine frequencies of the quasi-local
modes as the asymptotic value of Eq. (3.15). In addition, we quantify the width
γ of quasi-local mode as:

γ2 =

∑
k βk(ωk − Ω)2∑

k βk
.

Table 3.2 shows our theoretical results for both a2u and eu resonances. We
also include our analysis of the vibrational modes in the excited electronic
state (2Eu). We find that excited-state resonances likewise exhibit nearly “ideal”
isotopic shifts.

3.4.5 Discussion

In this section, we briefly discuss how our theoretical calculations compare
to experimental measurements. The SiV− photoluminescence band has two
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Theory: vibrational resonances

State symmetry Ω28 (meV) γ (meV) Ω28/Ω29 Ω28/Ω30

2Eg a2u 43.4 1.9 1.018 1.035
ground eu 60.1 6.1 1.021 1.039
2Eu a2u 56.1 3.9 1.016 1.033
excited eu 63.2 6.5 1.017 1.036

Experiment: PL phonon sidebands

State symmetry Ω28 (meV) γ (meV) Ω28/Ω29 Ω28/Ω30

2Eg a2u (Ref. [143]) 63.8 ∼5 1.016 1.036
42 >25 ND ND

Table 3.2: Main results of Ref. [T1] compared with the experiment. Theory:
calculated frequencies Ω, widths γ (both for the 28Si isotope), and isotopic
shifts of quasi-local A2u and Eu modes in the ground and excited states. Values
of frequencies (widths) are given to two (one) significant digits. Experiment:
energy Ω, width, and isotopic shifts of vibrational sidebands in the photolumi-
nescence (PL) spectrum. All experimental data from Ref. [141] except where
indicated. ND = “not detectable”.

prominent phonon side peaks at 63.8 meV and 42 meV (with respective widths
γ ≈ 5 meV and γ > 25 meV [141]) [see Fig. 3.11(b)]. In Ref. [141], a
clear isotope shift of 63.8 meV peak with respect to the ZPL line was re-
ported. The 42 meV peak did not show any noticeable changes upon isotope
substitution. However, as noted in the same paper [141], the lack of change
could have been related to difficulties measuring small differences of broad
peaks. Also, it was suggested that the 63.8 meV phonon replica was due to a2u

vibration [141, 143].

We focus on the ground state vibrational structure, as it should be revealed in
the phonon sideband of the luminescence lineshape. On par with the experiment,
our calculations suggest the existence of two resonances, one at 43.4 meV and
another one at 60.1 meV. Although these values clearly agree with experimental
values of 42 and 63.8 meV, there is a large discrepancy regarding the width of
these resonances (see Table 3.2). Also, in our calculations, both resonances
undergo isotope shifts 1/

√
mSi, while experimental measurement shows only

a shift of narrow higher-energy peak. Furthermore, contrary to Refs. [141,
143], our calculations indicated that a narrow peak at 60.1 meV is due to eu
vibrations.
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We expect DFT calculations to work well regarding the vibrational struc-
ture of the defect. This will be illustrated in Chapter 4, where we present
high accuracy optical lineshapes of NV center calculated using the vibrational
structure of DFT calculations. Therefore, we tentatively suggest that the ex-
perimentally observed 63.8 meV peak is, in fact, of eu symmetry and not a2u.
In this case, our calculations agree with the experiment regarding frequency,
width, and isotopic shift of the resonance (see Table 3.2). Furthermore, we
hypothetically propose that calculated a2u resonance does not appear in the
PL spectrum, and experimental phonon replica at 42 meV is not related to
quasi-local modes.

Furthermore, we note that in the adiabatic approximation, only a1g modes
are expected to participate in the optical transition. These modes have no
pronounced optical signatures in the PL spectrum. In the case of JT cou-
pling, our group-theoretical analysis shows that only eg modes participate in
the vibronic coupling. Therefore, an optical transition between degenerate
states should involve such symmetry modes, leaving the appearance of eu
resonance unexplained. This requires alternative coupling mechanisms. We
tentatively hypothesize that the appearance of eu modes could be explained
by the Herzberg–Teller effect [144], whereby vibration modulates transition
dipole moment. However, quantitative interpretation of the luminescence
lineshape of the SiV center requires a more detailed study of optical transi-
tions.

3.5 Summary and conclusions

This chapter presented an ab initio methodology to calculate the vibrational
spectrum of deep-level defects in the dilute limit. We applied this methodology
to the nitrogen–vacancy (NV) and silicon–vacancy (SiV) centers of diamond.
The main achievements of the study presented in this chapter are summarized
as follows:

1. We presented a practical ab initio methodology for calculating primary force
constants for the Jahn–Teller active system using fractional occupation of
single-particle states (Sec. 3.2.2).

2. We have developed a parallel code (suitable for high-performance calcula-
tions) for an embedding procedure, which allows calculations of vibrational
modes for deep-level defects in the dilute limit. Using this code, we modeled
the vibrational spectrum of defects in supercells as large as 64 000 atoms.
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3. We have studied the vibrational spectrum of the negatively charged SiV
center in diamond using density functional theory calculations (Sec. 3.4).
This work was published in the dissertation paper [T1]. The main findings
of this study are:

a) We have found two pronounced vibrational resonances of a2u and eu
symmetry.

b) We presented a new methodology to calculate isotope shifts of vibra-
tional resonances.

c) We assume that the observed experimental feature in the photolumines-
cence spectrum at 63.8 meV is a quasi-local mode of eu symmetry.

d) We hypothesize that the appearance of the eu mode in the photolumi-
nescence spectrum could be explained by the Herzberg–Teller effect.

Thesis Statement (I)

We suggest that the experimentally observed sharp vibrational feature in the
photoluminescence spectrum of SiV− is an eu-symmetry vibrational resonance.
The appearance of this feature in the experimental spectrum cannot be explained
in the Frank–Condon approximation. We hypothesize that this peak is due to the
Herzberg–Teller effect, whereby the vibration modulates the optical transition
dipole moment.
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Chapter 4

LUMINESCENCE AND ABSORPTION

LINESHAPES OF DIAMOND NV−

CENTER

Nobody knows where you are
How near or how far
Shine on you crazy diamond

— Pink Floyd,
Shine On You Crazy Diamond

This chapter presents our first-principle calculations of optical lineshapes
of triplet transition in the diamond NV− center [T2]. The main goal of this
study is a high accuracy description of electron–phonon interaction utilizing
density functional theory calculations. The chapter is organized as follows. In
Section 4.1, we formulate the general problem of the calculation of optical
lineshapes. In Section 4.2, we present our analysis of the electron–phonon
coupling to a1 symmetry vibrational modes. Section 4.3 discusses the vibronic
coupling to e symmetry modes and proposes a practical methodology to solve
the multi-mode E ⊗ e Jahn–Teller problem. The luminescence and absorption
lineshapes are presented and compared to the experiment in Section 4.4. Fi-
nally, Section 4.5 summarizes our results and discusses possible sources of the
remaining discrepancies between experiment and theory.

4.1 General formulation

The general theory of optical lineshapes has been presented in Section 2.6. In the
triplet transition of the diamond NV center, only a1 and e symmetry modes par-
ticipate in the electron–phonon interaction. Therefore, the main parameters are
respective spectral functions of electron-phonon coupling, Aa1(ω), and Ae(ω).
These functions are defined by Eqs. (2.144) and (2.157) for the luminescence
process and Eqs. (2.145) and (2.158) for the absorption process. The overall
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spectral function A(ω) is a convolution of both contributions [see Eq. (2.156)].
Once the spectral functions are determined, the emission probability and ab-
sorption cross-section are calculated using Eqs. (2.147) and (2.149). In this
study, we will not deal with absolute intensities and cross-sections but rather
normalized lineshapes. Those are given by:

Lem(ω) = N1ω
3Aem(ω), (4.1)

for emission and

Labs(ω) = N2ωAabs(ω), (4.2)

for absorption. Here, N1 and N2 are normalization constants. Therefore, the
central task of this chapter is the evaluation of Eqs. (4.1) and (4.2).

4.2 Coupling to a1 modes

As a first step, let us focus on calculating spectral functions, Aa1(ω), that
describe the coupling to totally symmetric a1 modes. Since the Jahn–Teller
effect in the excited 3E state of the NV− center is not strong [111], this spectral
function governs the general features of optical lineshapes.

The methodology for the evaluation of Aa1(ω) has been discussed in Sec-
tion 2.6.4. In short, we adopt the equal mode approximation, which sim-
plifies the calculation of the Fourier transform of spectral function G(t) =∫
A(ω)eiωt dω [see Eq. (2.151) for luminescence and Eq. (2.154) for absorp-

tion]. Evaluation ofG(t) involves the calculation of partial Huang–Rhys factors
Sk and resultant densities of electron–phonon coupling Sa1(ω) [see Eqs. (2.133)
and (2.152)]:

Sk =
ωk∆Q

2
k

2
,

Sa1(ω) =
∑
k∈A1

Skδ(ω − ωk). (4.3)

Here, ωk is the angular frequency of the mode k, and ∆Qk is given by equa-
tion (2.131). Calculation of ∆Qk requires the knowledge of shapes of vibra-
tional modes, ηk, as well as the change of equilibrium geometry between the
ground and the excited state, ∆R = R0

e −R0
g.

After determining HR factors, we replace delta functions δ(ω − ωk) in
Eq. (4.3) with a small-width Gaussians to obtain smooth density Sa1(ω) through-
out the whole vibrational spectrum.
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4.2.1 Vibrational modes and lattice relaxations

Section 3.3.2 of the previous chapter presented the vibrational structure calcula-
tions for triplet states of the diamond NV center. We showed that for an accurate
description of the phonon structure, one needs to use very large supercells, as
the vibrational modes and resonances are poorly described in small-sized su-
percells, especially in frequency regions where the density of states is low.
Therefore, we used the embedding methodology to obtain vibrational modes
for supercells up to 64 000 atoms.

However, we encounter a similar problem for the lattice geometry relaxation,
∆R, caused by the optical transition. Relaxations have the lattice’s periodicity
in supercell geometry, and the cell’s size restricts the lowest spatial Fourier
component. Therefore, in moderate-sized supercells, the geometric relaxation is
smaller than the actual relaxation of an infinite system. We address this problem
by noting that within the harmonic approximation, ∆Qk can be alternatively
expressed in terms of atomic forces:

∆Qk =
1

ω2
k

∑
α

Fα√
Mα

ηk;α. (4.4)

In this equation, Fα is the force on atom α induced by the electronic transition.
As only atoms in the close neighborhood of defect experience the change in
the force, Fα decays much more rapidly with distance from the defect center
than ∆Rα.1 Therefore, we calculate ∆Qk using forces directly calculated in
moderate-sized supercell (in this case, 4× 4× 4) and vibrational modes of the
embedded supercell.2

4.2.2 Results: luminescence

We calculate spectral functions for the emission process using vibrational modes
of the ground state and forces induced by the transition 3E → 3A2.3 As a first
step, we calculate spectral densities of electron–phonon coupling Sa1(ω) for
different-sized supercells and check the convergence of lineshapes. Fig. 4.1

1Once atoms start to move under the influence of these short-ranged forces, the resulting
displacements ∆Rα become long-ranged.

2We tested that the contributions to the spectral density of electron–phonon coupling are
already converged if we ignore the forces for atoms further than 7 Å from the defect site.

3In the equal mode approximation, the state’s choice for vibrational structure is ambiguous as
both states should have the same structure. However, this is not the case in actual calculations, as
the frequencies of both electronic states differ. Our paper [T2] shows that the best approximation
for the zero-temperature limit is choosing the final electronic state for vibrational modes and
induced forces.
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Figure 4.1: Convergence of spectral densities Sa1(ω) (in units 1/meV) due to
coupling to a1 phonons with respect to the supercell size. Supercells range in
size from 4 × 4 × 4 (512 atomic sites) to 20 × 20 × 20 (64 000 sites). Total
Huang–Rhys factors for each supercell are also given. The insets enlarge the
high-frequency part. Gaussian smearing with varying σ was used, as explained
in the text.

shows how the spectral density Sa1(ω) converges as a function of the supercell
size. The results are obtained using PBE functional. The δ-functions in Eq. (4.3)
were replaced by Gaussians of variable width. This artificial smoothing was
chosen to obtain smooth function in low energy regions (where the density of
phonon states is still low) and high resolution in the high-frequency tail (where
the density of states is high). Our benchmarks show that choosing σ to vary
linearly from σ = 3.5 meV for ω = 0 to σ = 1.5 meV for the highest-energy
frequency results in a smooth lineshape without introducing any artifacts. This
smearing procedure is used for all spectral densities of this chapter.

From Fig. 4.1, we see that for the high-frequency phonons (>120 meV) the
spectral densities are already converged for the 8× 8× 8 supercell. However,
large supercells are needed for a high-resolution description of spectral densities
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Figure 4.2: (a) Spectral densities Sa1(ω) (in units 1/meV) due to coupling
to a1 phonons for luminescence, calculated with PBE and HSE functionals.
Huang–Rhys factors are also given. The inset enlarges the high-frequency part.
(b) Spectral functions Aa1(ω) [in units 1/eV, Eq. (2.144)] for luminescence
calculated using PBE and HSE. The ZPL energy is set to the experimental
value.

for coupling with low frequency (<60 meV) phonons. This is the essence of
our embedding methodology.

PBE and HSE spectral densities for the 20× 20× 20 supercell are shown
in Fig. 4.2(a). We see that the functionals provide slightly different results.
HSE yields 30% stronger electron–phonon interactions (as can be seen from
the total HR factor). In accord with the vibrational structure analysis of
Sec. 3.3.2, the most prominent features are shifted towards higher phonon
energies.

Corresponding PBE and HSE spectral functions Aa1(ω) are shown in
Fig. 4.2(b). These functions were calculated using Eqs. (2.151) and (2.155).
For a better comparison with the experiment, we used the experimental value
of the ZPL energy EZPL = 1.945 eV and γ = 0.3 meV. Since the actual
lineshapes contain additional contributions from e symmetry phonons, we leave
the direct comparison with the experiment to Section 4.4.
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Figure 4.3: (a) Spectral densities Sa1(ω) (in units 1/meV) due to coupling to
a1 phonons for absorption, calculated with PBE and HSE functionals. Huang–
Rhys factors are also given. The inset enlarges the high-frequency part. (b)
Spectral functions Aa1(ω) [in units 1/eV] for absorption calculated using PBE
and HSE. The ZPL energy is set to the experimental value.

4.2.3 Results: absorption

The calculations of spectral function Sa1(ω) for the absorption process require
vibrational modes and forces of the excited state. Forces Fα should be calcu-
lated using an orbital configuration of the excited state at the geometry of the
ground state. However, in DFT calculations, there are issues related to the con-
vergence of electronic structure calculations for degenerate states. Therefore, to
avoid these issues, we calculate these forces indirectly, using Harmonic relation:

Fα =
√
Mα

∑
k

ω2
kηk;α∆Qk, (4.5)

where ωk and ηk;α are calculated in the 4× 4× 4 supercell of diamond, and
∆Qk is given by Eq. (2.131) (see Sec. VI.C of our paper [T2] for a more
detailed explanation).

Figure 4.3(a) shows spectral densities Sa1(ω) for absorption in the case
of the 20 × 20 × 20 supercell. There are slightly larger differences between
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the shapes of spectral densities calculated in PBE and HSE in this case. PBE
calculations produce a broad peak at ∼60 meV, which shifts to ∼70 meV in
HSE calculations. Corresponding spectral functions were calculated using
Eq. (2.154) and are shown in Fig. 4.3(b). The comparison with the experimental
spectrum is left for Section 4.4.

4.3 Coupling to e modes

In the case of diamond NV center, the coupling to e symmetry modes occurs
because of the dynamic Jahn–Teller (JT) effect in the 3E state.4 The spec-
tral functions Ae(ω) of e symmetry modes are given by equations (2.157)
and (2.157), respectively, for the emission and absorption process. To find these
spectral functions, we must first solve the vibronic problem for the excited state
3E (see Section 2.5 for a formal introduction to the vibronic problem).

4.3.1 Calculation of coupling parameters

In Sections 3.2 and 3.3.2, we already discussed the zero-order solution of the
vibronic Hamiltonian for the diamond NV center. Section 2.5.3 presented our
formal analysis of the JT problem in the 3E state and derived the expression for
the matrix element of JT perturbation ĤJT [Eq. (2.100)]. Calculation of these
elements requires the knowledge of linear vibronic constants (2.65). In this
section, we present a novel ab initio methodology to calculate these vibronic
coupling constants.

While discussing actual DFT calculations of the JT system in Section 3.2.1,
we showed that the relaxation along symmetry breaking coordinates follows the
surface of the potential energy term of the vibronic Hamiltonian [see Eq. (3.8)].
The minimum of this potential is given by equation (3.10). This equation
enables the determination of Vk and thus Kk once ∆Qk is known:

K2
k =

ωk∆Q
2
k

2
, (4.6)

where:
∆Q2

k = ∆Q2
kx + ∆Q2

ky.

Here, components ∆Qkx and ∆Qky belong to e symmetry modes and are
calculated using Eq. (4.4), as in the case of a1 relaxation.

4The dynamical nature of the JT effect was confirmed by the ∼T 5 broadening of the
ZPL [145].
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Figure 4.4: Spectral density Se(ω) (in units 1/meV) due to coupling to e
phonons for (a) luminescence and (b) absorption, calculated with PBE and HSE
functionals. Results are for the 20 × 20 × 20 supercell. The total strengths
Se =

∫∞
0 Se(ω) dω are also given.

Comparing Eq. (4.6) with Eq. (2.133), we see that parameter K2
k plays a

similar role to the partial HR factor Sk of coupling to a1 modes. Therefore, in
analogy to Eq. (2.152), we define a spectral density of coupling to e symmetry
modes:

Se(ω) =
∑
k

K2
kδ(ω − ωk),

where the summation runs over all doublets of e symmetry. The integral of
Se(ω) quantifies the strength of JT coupling in a system:

Se ≡
∫ ∞

0
Se(ω) dω =

∑
k

K2
k .

The Jahn–Teller interaction is considered weak for Se � 1 and strong in the
case of Se � 1 [27].

The spectral densities of coupling to e symmetry modes for the 20×20×20

supercell are shown in Fig. 4.4. Both PBE and HSE functionals yield very sim-
ilar results for vibronic coupling. Furthermore, lineshapes and total strengths
of the vibronic coupling are very alike for the ground and excited states. From
Se values, we see that the JT interaction is of medium strength (Se ≈ 0.5).
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4.3.2 Luminescence and absorption processes

The solution of the vibronic problem Ĥvibr = Ĥ0 + ĤJT [see Eq. (2.93)] yields
the vibronic wavefunctions in the form:

|Φet〉 =
∣∣χ+
et

〉
|E+〉+

∣∣χ−et〉 |E−〉 ,
where t labels different vibronic states. Nuclear components |χ±et〉 are ex-
pressed in the basis of vibrational harmonic oscillator states of the zero-order
Hamiltonian Ĥ0:∣∣χ±et〉 =

∑
nl

C±et;n1l1...nN ln
|n1l1, . . . , nN lN 〉 . (4.7)

Note that we use a chiral basis for the description of phonon states (see
Sec. 2.5.3). The calculation of spectral functions Ae(ω) in the zero-temperature
limit requires the evaluation of 〈χ±et|χe0〉 for the absorption process and 〈χ±e0|χer〉
for the emission process [see Eqs. (2.157) and (2.158)].

In the zero-temperature limit, overlaps for the luminescence spectrum are
calculated between the lowest vibronic level of the excited electronic state |3E〉
and all the vibrational states of the electronic ground state |3A2〉. On the other
hand, for absorption, overlap integrals are calculated between zero-phonon
state |00 . . . 00〉 of the |3A2〉 manifold and vibronic states the |3E〉 manifold. In
Section 2.6.4, we showed that for both processes, the relevant vibronic states
are ones with the pseudospin value j = ±1/2, which significantly simplifies
the computational effort.

As for the a1 coupling, we adopt the equal mode approximation (Sec. 2.6.2)
and choose the vibrational modes and frequencies of the ground state for the
luminescence and those of excited manifold for the absorption.

4.3.3 Methodology for multi-mode Jahn–Teller coupling

Now, let us summarize the general methodology for treating the JT problem
for the diamond NV− center. First, in Section 2.5.3, we reformulated the JT
problem for the 3E state in terms of chiral phonons and showed that the problem
could be decoupled for different pseudo spin values j. While discussing optical
matrix elements, we showed that we only need to consider vibronic states of
j = ±1/2 in the zero-temperature limit. Therefore, the matrix of vibronic
Hamiltonian involves only the zero-order basis |n1l1, . . . , nN lN ;E±〉, where∑

k lk + jel = ±1/2. In constructing the basis set, we limit the total number
of vibrational excitations to specific number ntot =

∑
k nk. By increasing this

number, we can track the convergence of the final result. For a set of lowest
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vibronic states, this convergence is easily achieved in the case of diamond NV
center, as the vibronic interactions are weak.

However, we are still facing a huge computational problem: in the case of
the NV center, we have an extremely large number of e modes that participate
in the JT problem. In the actual system, this set is effectively infinite and is
described by the spectral density Se(ω). For a discrete number of modes, we
can calculate smooth spectral functions (2.157) and (2.158) by replacing δ-
functions with Gaussians of small width. However, the practical diagonalization
of Ĥ0 + ĤJT is impossible for N > 100 modes. To address this problem, we
propose the following methodology.

We approximate the actual spectral density Se(ω) with an effective one:

S(eff)
e (ω) =

Neff∑
n=1

K̄2
ngσ(ωn − ω). (4.8)

Here, the sum runs over Neff “effective” modes with frequencies ωn and cou-
pling strengths K̄2

n. gσ is a Gaussian function of width σ. For a selected
number of effective modes, Neff , the parameters K̄2

n, ωn, and σ are obtained by
minimizing the integral:

I =

∫ ∞
0

∣∣∣Se(ω)− S(eff)
e (ω)

∣∣∣ dω. (4.9)

During the minimization, we constraint the total value of vibronic coupling to
the actual one:

Neff∑
n=1

K̄2
n =

N∑
k=1

K2
k = Se.

For Neff = N , this approach reproduces the result of a full calculation. How-
ever, one can expect that the convergence of the final result can be achieved for
Neff � N , for which the problem is tractable by the diagonalization procedure.

We test the convergence of this approximation by considering NV vibra-
tional modes of the 2× 2× 2 supercell (64 sites). Such a system can be solved
by direct diagonalization, as it contains only 62 e vibrational doublets. In
Fig. 4.5, we show the approximation of Se(ω) with S(eff)

e (ω) for Neff = 2, 4, 8.
We see that in the case of Neff = 8, the approximate spectral density S(eff)

e (ω)

is almost identical to the real spectral density Se(ω).
For the diagonalization of the Jahn-Teller Hamiltonian, we restrict ntot = 3.

Although such a basis is not completely converged with respect to ntot, it is
sufficient for testing purposes, as we keep the same ntot for all calculations.
Fig. 4.6 shows the resulting spectral functions Ae(ω) for emission (left) and
absorption (right). We used 6 meV Gaussian smoothing. The effective spectral
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Figure 4.5: Convergence of S(eff)
e (ω) towards Se(ω) when increasing the num-

ber of effective modes Neff . The results are for the NV center in the 2× 2× 2
supercell. Spectral densities in units 1/meV.

Figure 4.6: Convergence of the spectral function Ae(ω) [in units 1/meV] for
emission (left) and absorption (right) as a function of Neff , the number of
effective e modes included in the calculation. The results are for the NV center
in the 2× 2× 2 fcc supercell.
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functions S(eff)
e (ω) are compared to those calculated from Se(ω) that include

all vibrations for the given supercell. We see that the result with Neff = 8

reproduces the “all-mode” calculations very accurately. This result justifies
our methodology for the largest supercell for which the full calculation is
still possible. It is reasonable to assume that this methodology applies to
a more general case, where we have a quasi-infinite number of vibrational
modes.

4.3.4 Spectral functions for absorption and emission

Finally, we discuss the spectral functions Ae(ω) pertaining to e symmetry
modes obtained from 20× 20× 20 supercells. We used Neff = 22 to approx-
imate the actual spectral densities of Fig. 4.4. The results for luminescence are
shown in Fig. 4.7. In the figure, we compare Ae(ω) obtained via the solution
of the multi-mode JT problem (labeled “JT”) with the one obtained via the
Huang–Rhys approach (labeled “HR”) of the adiabatic problem. Latter spectral
functions are obtained in a manner completely identical to those of a1 modes,
as described in Section 4.2.

Somewhat unexpectedly, the HR calculation yields spectral functions al-
most identical to those of the JT calculation. The agreement between the two
calculations is remarkable, and one is tempted to conclude that there is a deep
underlying reason for this. However, in the Appendix of our paper [T2], we
show that the agreement is to some degree accidental and can only happen in
the range Se ≈ 0.5–1.0. We conclude that the Huang–Rhys approach applied
to symmetry breaking modes can lead to errors in the case of smaller or higher
values of Se and should not be applied in the general case.

The spectral functions Ae(ω) for the absorption process are shown in
Fig. 4.8. In contrast to luminescence, the Jahn–Teller treatment differs substan-
tially from the Huang–Rhys theory. This difference partially stems from the
fact that we need to account for multiple vibronic states, and not just the ground
state, as for the emission process. Compared to the HR function, the JT spectral
function is “stretched” to higher energies.

4.4 Optical lineshapes

This section presents our final calculated luminescence and absorption line-
shapes (obtained via Eqs. (2.156), (4.1), and (4.2)). In Table 4.1, we summa-
rize the calculated Huang–Rhys factors and strengths of the vibronic coupling
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Figure 4.7: The spectral function Ae(ω) (in units 1/eV) for emission
[Eq. (2.157)] obtained with (a) PBE and (b) HSE functionals. We compare
spectral functions obtained via the solution of the multi-mode Jahn–Teller prob-
lem (“JT”) and via the Huang–Rhys treatment (“HR”).

Figure 4.8: The spectral function Ae(ω) (in units 1/eV) for absorption
[Eq. (2.158)] obtained with (a) PBE and (b) HSE functionals. We compare
spectral functions obtained via the solution of the multi-mode Jahn–Teller prob-
lem (“JT theory”) and via the Huang–Rhys treatment (“HR theory”).
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Luminescence Absorption

Sa1 Se Stot Sa1 Se Stot

PBE 2.39 0.52 2.91 2.60 0.51 3.11
HSE 3.20 0.56 3.76 3.59 0.57 4.16
expt. 3.49a

a Reference [17]

Table 4.1: Calculated Huang–Rhys factors for emission and absorption.

(Se =
∑

kK
2
k ). We define the total Huang–Rhys factor as Stot = Sa1 +Se. The

contribution of e symmetry modes to an optical lineshape can be approximately
quantified by ratio Se/Stot, which we find to be 14–18 %. Comparing with the
experiment, we see that the total HR factor for emission is overestimated in
HSE calculations and underestimated in PBE calculations.

Luminescence

Figure 4.9 shows calculated PBE (a) and HSE (b) luminescence lineshapes.
Results are compared to experimental curves from Refs. [17] and [109]. The
general agreement between theory and experiment is quite good for both PBE
and HSE functionals. However, comparing experimental lineshapes with the
PBE result, we see that the intensities of the first two phonon peaks are larger
in the calculated spectrum. This is because the total HR factor of PBE cal-
culations is smaller than the experimental one (see Table 4.1). On the other
hand, the total HR factor calculated in HSE is larger than the experimental one,
rendering smaller intensity of the first three phonon side peeks compared to the
experiment.

However, the peak structure agrees remarkably well with the experimental
lineshape (especially in PBE calculations). This agreement concerns not only
the primary phonon replica at ∼65 meV but even the fine structure of the
lineshape (e.g., two small peaks between the second and the third phonon
replica of 65 meV). Peak positions are in agreement with the experiment in
PBE calculations, while HSE tends to overestimate frequencies. This tendency
follows from the fact that PBE provides better values of diamond lattice constant
and vibrational frequencies.

Absorption

The calculated absorption lineshapes are compared with an experiment in
Fig. 4.10. The experimental absorption lineshape is taken from Ref. [135].
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Figure 4.9: Theoretical normalized luminescence lineshapes (in units 1/eV),
compared with experimental spectra: (a) PBE functional; (b) HSE functional.
Experimental spectra from Refs. [17] (at 4 K) and [109] (at 8 K). The ZPL
energy of the theoretical curves is set to the experimental value.

Comparing calculated absorption lineshapes with the experiment in Fig-
ure 4.10(a), we see that the intensities of first phonon side-peaks are overes-
timated in PBE and underestimated in HSE. As in the case of luminescence
calculations, we attribute these differences to the general performance of func-
tionals in describing structural lattice properties. The fine structure of the
spectra and the positions of side peaks are better described in PBE compared to
HSE. The experimental absorption lineshape displays the famous double-peak
structure of the first phonon side-peak at ∼2.02 eV [136]. While the double
peak structure is not clearly revealed in both calculations, the PBE calculations
accurately describe the double peak’s position and overall shape. This peak is
narrower and slightly shifted to higher frequencies in HSE calculations. Our
calculations show that this double-peak feature is a consequence of coupling
to a1 vibrational modes, as revealed in a1 spectral function (Fig. 4.3). We
conclude that the asymmetry of this peak between luminescence and absorption
lineshapes is a consequence of different vibrational structures in the ground
3A2 and excited 3E states.
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Figure 4.10: Theoretical normalized absorption lineshapes (in units 1/eV)
calculated using the Huang–Rhys (‘HR theory’) and Jahn–Teller treatment
(“JT theory”), compared with the experimental spectrum: (a) PBE functional;
(b) HSE functional. The experiment is from Ref. [135] at 5 K. The ZPL energy
of the theoretical curves is set to the experimental value. The small peak marked
with star “?” in the experimental curve is the ZPL of another center and should
be disregarded in the comparison.

In Fig. 4.10, we also compare JT treatment with the adiabatic HR theory.
Strictly speaking, the HR treatment for the absorption process is not justified in
the presence of the dynamical JT effect. However, the positions of peaks in both
treatments are reasonably well described, and both lineshapes as qualitatively
similar. This could be attributed to a weak coupling strength and broad spectral
features of the JT effect (see Fig. 4.4). In the case of more pronounced features
of JT coupling, the rigorous treatment could reveal different spectral signatures
compared to an approximate HR approach. However, even in the case of NV
center, we see some distinct differences. For instance, the JT approach better
describes the two features at ∼2.15 and 2.24 eV. This improved agreement with
an experiment gives support to the validity of our effective multi-mode JT treat-
ment. Nevertheless, this methodology should be tested for other systems with
strong JT coupling, where the JT effect has more considerable consequences
for optical spectra.
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4.5 Discussion

In this section, we critically review our calculations and methodology, focusing
on the accuracy of density functionals in a quantitative description of the vibra-
tional and vibronic structure of the NV center. First, let us mention some aspects
that have not been addressed or have only been partially addressed in this thesis.

Quadratic JT interactions. First of all, our calculations rely only on the
linear theory of JT coupling. However, it is estimated that quadratic terms
of JT coupling are ∼1/3 of the linear coupling in terms of JT energy low-
ering EJT [106, 111]. Unfortunately, the inclusion of quadratic terms in the
multi-mode treatment increases the complexity of an already complex prob-
lem. It would be challenging to account for them with current computational
capabilities.

Excited state calculations. The excited 3E state’s electronic structure has
been described using the ∆SCF approach (see Section 2.3.2). This approach
does not have the same fundamental backing of rigorous theorems as for the
ground state.

Hessian matrices for charged defects. For a calculation of Hessian matrix
elements, we used moderate-sized supercells (4× 4× 4). For a neutral lattice,
such supercells are sufficient for the accurate estimation of force constant.
However, for charged defects, long-range Coulombic interactions extend far
beyond the cell’s dimensions and are not modeled correctly in the supercell
approach. Furthermore, a neutralizing background is introduced in supercell
calculations to prevent the Coulomb interactions from diverging in a periodic
system. These issues may introduce minor errors in the computation of force
constants.

Let us assume that the above aspects affect the calculated lineshapes in a
minor way. In such conditions, one could attribute the remaining discrepancy
between experiment and theory to the accuracy of exchange–correlation func-
tionals of DFT in describing structural and vibrational properties of diamond
and the NV center.

To test this assumption, we first assume that the general shapes of PBE
spectral densities (Sa1(ω) and Se(ω)) are close to the “truth”, as PBE func-
tional provides favorable agreement regarding the positions of peaks. However,
atomic relaxations are slightly underestimated in PBE, as shown in Table 4.1.
Let us assume that atomic relaxations projected on all vibrational modes are
underestimated by the same linear factor ζ1/2, and “correct” spectral densities
are S′a1

(ω) = ζSa1(ω) and S′e(ω) = ζSe(ω).
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Figure 4.11: Calculated normalized luminescence lineshape compared with
the experimental lineshape (both in units 1/eV). In the calculations, we used
scaled PBE spectral densities S′a1

= ζSa1(ω) and S′e = ζSe(ω), with ζ = 1.2.
Experimental spectra as in Fig. 4.9.

Figure 4.11 shows the calculated luminescence lineshape with ζ = 1.2. This
value has been obtained via a least-square fit to the experimental luminescence
lineshape and is almost exactly the ratio between the experimental and PBE Stot

in Table 4.1 (3.49/2.91 = 1.199). Corrected lineshape agrees with the experi-
ment very well, both in terms of general shape and fine features of the spectrum.

Since ζ represents the scaling of the geometry relaxation induced by the
electronic transition from the ground to the excited state and vice versa, we fix
the value of ζ based on an analysis of the luminescence and use it for absorption
spectrum calculations. Like for luminescence calculations, we scale PBE
spectral densities with ζ: S′a1

(ω) = ζSa1(ω) and S′e(ω) = ζSe(ω). Fig. 4.12
shown shows the “corrected” result for absorption lineshape. Again, the general
shape is reproduced very well in the calculation. This favorable agreement
supports the hypothesis that PBE calculations produce accurate vibrational
frequencies but underestimate geometry relaxation.

Nevertheless, we can identify small discrepancies in the case of the absorp-
tion spectrum. The calculation shows a small peak at 2.11 eV, labeled by “#” in
Fig. 4.12. This peak originates from a localized vibrational mode just above the
diamond phonon spectrum (less than 1 meV). This peak seems absent in the ex-
perimental lineshape. This localized mode is present in both PBE and HSE cal-
culations (see Fig. 4.10). The frequency of this localized mode is very sensitive
to the parameters of our calculations, and its localized nature might be an artifact.
Despite this issue, the calculations clearly agree with the experiment and accu-
rately reproduce the asymmetry between the emission and absorption process.
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Figure 4.12: Calculated normalized absorption lineshape compared with the
experimental lineshape (both in units 1/eV). In the calculations, we used scaled
PBE spectral densities S′a1

= ζSa1(ω) and S′e = ζSe(ω), with ζ = 1.2.
Experimental spectrum as in Fig. 4.10. The observed peak marked “?” is the
ZPL of another defect and should be disregarded in the comparison. The feature
marked “#” in the calculated curve is discussed in the text.

4.6 Summary and conclusions

This chapter presented a computational study of electron–phonon coupling of
the triplet transition in NV− centers. The main focus was the calculation of
high-resolution luminescence and absorption lineshapes using PBE and HSE
functionals. The main achievements of this study are:

1. We have developed a computationally tractable methodology to account for
the dynamical multi-mode Jahn–Teller effect in optical lineshapes. We have
shown that the Jahn–Teller effect is most important in absorption.

2. Our calculations show that vibrational structure calculated with the PBE
exchange–correlation functional agrees slightly better with the experiment
than the one computed with the HSE functional.

3. We found that within the ∆SCF approximation, geometry relaxation between
the ground state and the excited state was underestimated in PBE and slightly
overestimated in HSE. Scaling the PBE relaxation with factor ζ = 1.2, we
obtained an excellent agreement with the experiment for both luminescence
and absorption lineshapes.

4. We show that the splitting and broadening of the first phonon side-peak in
the absorption spectrum is unrelated to the Jahn–Teller effect. The double
peak structure comes from the coupling to a1 phonons.
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In conclusion, our study shows that modern density functional theory calcu-
lations can predict high-resolution optical lineshapes of deep-level defects with
good accuracy. However, certain quantitative discrepancies remain regarding
the description of experimental spectra. Therefore, our study shows that the
continuing development of more accurate functionals, as well as computational
advances for a rigorous treatment of excited states, will be an essential feature
of first-principles calculations for point defects.

The methodology presented in this study advances ab initio calculations
of electron–phonon coupling for defects. It will be useful for the identification
and research of other point defects in solids.

Thesis statement (II)

We developed a novel computationally tractable methodology for the ab initio
description of the multi-mode Jahn–Teller effect in point defects. This method-
ology improves current theoretical techniques that are based on the single-mode
approximation.

Thesis statement (III)

Our ab initio methodology to calculate luminescence and absorption lineshapes
accurately reproduces the NV− center’s experimental lineshapes.
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Chapter 5

PHOTOIONIZATION OF NV−:
THEORY AND ab initio

CALCULATIONS

To thrill you with delight,
I’ll give you diamonds bright.
There’ll be things that will excite,
To make you dream of me at night.

— The Yardbirds, For Your Love

This chapter presents our theoretical study of photoionization mechanisms
of negatively charged nitrogen–vacancy (NV) center in diamond. We show
that after the ionization from the 3E state, the NV center transitions into the
metastable 4A2 electronic state of NV0. This model reveals how the spin polar-
ization of NV− gives rise to spin polarization of the metastable 4A2 electronic
state, explaining recent electron spin resonance (ESR) experiments. We also ad-
dress the question of the photoionization thresholds and absolute cross-sections
using first-principles calculations. To obtain smooth absolute cross-sections,
we develop a novel computational methodology based on the Brillouin zone
integration and band unfolding techniques. The results provided in this chapter
are based on our paper [T3].

The content of this chapter is organized as follows. In Section 5.1, we
give an introduction to photoionization processes in NV− centers. Section 5.2
describes the photoionization mechanisms in the framework of the molecular
orbital model. Here, we identify the final states of NV0 and give expressions for
photoionization thresholds and cross-sections. Section 5.3 discusses the elec-
tronic structure and introduces computational methods for calculating ionization
thresholds and absolute cross-sections. Finally, in Section 5.5, we present the
results of the calculations and compare them with the experiment.
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5.1 Introduction

Most of the practical applications of the NV− centers rely on triplet optical
excitation. However, incident light may induce a photoionization process,
whereby an electron from the NV center is excited to the conduction band, and
NV− is converted to NV0 [146–148]. In many situations, photoionization is a
detrimental process for the operation of NV− and has to be avoided by carefully
choosing experimental parameters. However, in some cases, the deliberate
photoionization of NV− can also be beneficial. For example, it is used for the
photocurrent detection of magnetic resonance (PDMR) [149]. The PDMR can
reach spin read-out rates superior to optical protocols, as the radiative lifetime
limits the latter. Photoionization of NV− is also used for the spin read-out via
spin-to-charge conversion [150–152].

Figure 1.1(c) shows the energy level diagram of the NV− center: two
spin-triplet states, 3A2 and 3E, and two metastable spin-singlets, 1A1 and 1E.
Photoionization can occur from any of those levels. The most studied process
is the photoionization from the triplet ground state (3A2). The threshold for
this process has been experimentally measured to be ∼2.6 eV in Ref. [148]
or ∼2.7 eV in Ref. [153]. The second process involves two-photon absorp-
tion [146–148], whereby first, the NV center is excited to the 3E state and then,
subsequently, is ionized. This process is essential for a majority of practical
situations, both when ionization is beneficial or detrimental [149, 150, 154].
Furthermore, the NV center can undergo an inter-system crossing (ISC) to the
spin-singlet level 1A1 after the excitation to the 3E state. 1A1 is a short-lived
state (with a lifetime of 0.1 ns [155]), from which there is a nonradiative tran-
sition to the 1E state. The latter is a long-lived metastable state with a lifetime
150–450 ns [156]. Therefore, ionization from the 1E state is a third mechanism
addressed in this study.

For NV− center, experimental measurements of photoionization cross-
sections and thresholds are problematic, especially concerning the photoion-
ization from the excited state 3E. The first complication is related to the fact
that light can induce both the transition NV− → NV0 (ionization) and NV0 →
NV− (recombination), making it hard to separate the two processes [146–148].
Furthermore, if the NV center is in the excited triplet state, photoionization
competes with stimulated emission, whereby the center transitions back to
the ground state [154, 157]. To the best of our knowledge, neither absolute
photoionization cross-sections from 3A2, 3E and 1E states nor photoionization
thresholds from 3E and 1E states have been measured experimentally.
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Figure 5.1: Photoionization of NV− center in the single-electron picture.
(a) Electronic configuration of the ms = 1 spin sublevel of the 3A2 state.
(b) Electronic configuration of the ms = 1 spin sublevel of the Ex component
of the 3E manifold. Gray arrows show possibilities of photoionization (see text
for a more in-depth discussion).

5.2 Photoionization mechanisms

To explain photoionization mechanisms, we use the molecular orbital model
(see Sec. 2.3.5), which enables the description of electronic states in terms of
localized single-electron orbitals. In this single-particle picture, photoion-
ization corresponds to NV electron being excited to the conduction band
state. Accordingly, the photoionization threshold (IP) is the energy of the
process, whereby the defect electron ends up in the conduction band minima
(CBM).

5.2.1 Photoionization from 3A2 state

The ground triplet state (3A2) is described by the electronic configuration a2
1e

2.
The wavefunctions of spin sublevels ms = ±1 are single Slater determinants
of localized single-particle orbitals. A single-orbital picture of the ms = 1

state [see Eq. (3.6)] is shown in Fig. 5.1(a). In this picture, the photoionization
process corresponds to the excitation of one e electron to the conduction band,
as shown by gray arrows in Fig. 5.1(a). The final state of NV0 is determined
from the remaining configuration of electrons (a2

1e
1). The lowest state with

this electronic configuration is the ground state 2E of the neutral center (see
Appendix B for a list of single-particle wavefunctions of NV0). We also
depict this process by using the energy-level diagram of the entire system in
Fig. 5.2.
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Figure 5.2: Photoionization of NV− from 3A2, 3E, and 1E states. Horizontal
lines indicate the energy of the system: black for NV− and gray for NV0

plus an electron at the CBM. Gray arrows indicate possible photoionization
mechanisms. EZPL is the ZPL energy of the triplet transition.

5.2.2 Photoionization from 3E state

The ionization from the excited triplet state (3E) is presently less understood
than the photoionization from the 3A2 state. The initial electronic configu-
ration of the 3E state is a1

1e
3. The ms = 1 configuration of this state [see

Eq. (3.7)] is illustrated in Fig. 5.1(b). Again, in this single-particle picture,
the ionization occurs by removing one electron from the e level, as shown
by gray arrows in Fig. 5.1(b). The remaining configuration is a1

1e
2, and the

lowest-energy state with this configuration is the spin-quartet 4A2 state of NV0

(see Appendix B). Therefore, the final state of the NV0 after the photoion-
ization from 3E is the meta-stable state 4A2 and not the ground state 2E, as
previously assumed [147]. The energy-level diagram for this process is shown
in Fig. 5.2: the initial state is the 3E state of NV−, while the final state is the
4A2 state of NV0 plus an electron in the conduction band. From this figure, we
can determine the expression for the threshold of photoionization from the 3E

level:

IP(3E) = IP(3A2)− EZPL +
[
E
(

4A2

)
− E

(
2E
)]
. (5.1)

Eq. (5.1) in principle enables determining the threshold for the photoioniza-
tion from the 3E state. Unfortunately, even though the experimental values of
IP(3A2) and EZPL are known, the experimental difference [E(4A2)− E(2E)]

is not known. Hence, the experimental value of IP(3E) cannot be deduced from
this relationship.
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5.2.3 Photoionization from 1E state

The two components of the orbital doubled 1E are described by multi-determi-
nant wavefunctions (as shown in Appendix B or discussed in Ref. [61]). The
electronic configuration of the 1E manifold is a2

1e
2 (same as for 3A2 state).

Again, the photoionization process is described by transferring one e electron
is to the conduction band. After this process, the NV center ends up in the 2E

ground state of the neutral defect. Therefore, the photoionization threshold
from the 1E state can be determined using equation (see Fig. 5.2):

IP(1E) = IP(3A2)−
[
E
(

1E
)
− E

(
3A2

)]
. (5.2)

The energy difference
[
E
(

1E
)
− E

(
3A2

)]
has not been measured directly.

However, the analysis of the intersystem crossing between the 3E and the 1A1

levels, as well as the knowledge of the ZPL energy between the two singlets,
allows determining this energy difference to be about 0.38 eV [158]. As a
result, IP(1E) is estimated to be 2.2± 0.1 eV.

5.3 Theory and computational methodology
5.3.1 Photoionization cross-section

The general theory of optical absorption and emission has been given in
Section 2.6. The absorption cross-section of a single transition is given by
Eq. (2.147). The photoionization process involves many final wavefunctions
that differ in the state of the conduction band electron. It is natural to assume
that the electron–phonon interaction is almost the same for all transitions, as
it primarily depends on geometry relaxation, which is governed by localized
defect orbitals. Accordingly, we write the photoionization cross-section as:

σph(ε) = ε

∫ ∞
−∞

1

ε′
σ̃ph(ε′)A(ε− ε′) dε′, (5.3)

where

σ̃ph(ε) =β
4π2α

nD
ε
∑
j

r2
ijδ (ε− Eij) , (5.4)

is the cross-section in the absence of lattice relaxation (electron–phonon interac-
tion). Here, label i denotes the electronic initial state ψi, and the sum runs over
all final states ψj . Eij = Ej − Ei is the energy difference between the two
states, and rij is the transition’s optical matrix element [Eq. (2.109)]. A(ε) is
the spectral function of electron–phonon interaction. The refractive index of
diamond is nD = 2.4, and β = 1/3 for an ensemble of randomly oriented
diamond NV centers (for discussion about β value, see Sec. 2.6.1).
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5.3.2 Electronic structure methods

Electronic structure calculations have been performed within the framework
of density functional theory (DFT). We have used the VASP package [77] and
PAW method with a plane-wave energy cutoff of 500 eV. Geometry relaxation of
the NV center has been performed using 4×4×4 (512 sites) diamond supercell
and a single Γ point for the Brillouin zone sampling. We have used hybrid
HSE functional [53] for the ionic relaxation and calculations of excitation
energies and thresholds. However, as discussed below, we have to perform
integration on a dense k-point grid in the first Brillouin zone to obtain smooth
and convergent photoionization cross-sections. Unfortunately, such calculations
are computationally too expensive for HSE functional. For this purpose, the
transition matrix elements were calculated using the PBE functional [69]. Our
estimates for few selected transitions have shown that matrix elements differ by
less than 10% for HSE and PBE exchange–correlation functionals.

The energies of excited states 3E and 4A2 have been calculated using the
∆SCF approach. Electronic structure calculations of the 3E state have already
been discussed in Section 3.2.1. For the total energy calculation of the 4A2 state,
we used a single determinant wave function with a spin projection ms = +3/2

(as will be discussed below).

5.3.3 Electronic states and optical matrix elements

Here, we discuss the calculation of optical matrix elements rij entering equa-
tion (5.4). For estimation of rij , we first need to specify the final states of the
transition. As mentioned in Section 5.2, in a single particle picture, once the
electron is transferred to the conduction band state, we can identify residual
occupied orbitals of NV0. The lowest energy molecular-orbital configuration
of these single-electron states should correspond to the final state of the NV0

center. However, the whole wave function (NV0 plus an electron in the conduc-
tion) must have the same spin state as the initial one. Otherwise, the transition
is forbidden. Such wavefunctions are found by combining different spin states
of NV0 with a single conduction band electron [Eq. (2.45)]:∣∣(NV0 + ecb);S,ms

〉
= A

∑
m′s+m

′′
s=ms

〈
S′,m′s;

1
2 ,m

′′
s

∣∣S,ms

〉 ∣∣(NV0);S′,m′s
〉
⊗
∣∣φc,m′′s〉 , (5.5)

Here, 〈S′,m′s; 1
2 ,m

′′
s |S,ms〉 are Clebsch–Gordan coefficients for angular mo-

mentum coupling, andA is an antisymmetrization operator. States, described by
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Eq. (5.5), satisfy requirements (i) and (ii) of the molecular orbital wavefunction
(see Sec. 2.3.5). However, we relax the requirement for orbital symmetry (iii),
as the conduction band electron could be of any irreducible representation.
From Eq. (5.5), we can estimate the probability to find the NV0 center in the
spin state |S′,m′s〉:

P (S′,m′s) =
∣∣〈S′,m′s; 1

2 ,ms −m′s
∣∣S,ms

〉∣∣2 .
In general, the matrix element rij and the energy difference Eij have

to be calculated for these many-electron states. However, such calculations
are computationally complicated and require some additional approximations
described below.

Photoionization from the 3A2 state

Let us first start with the photoionization from the ground state. If NV− is ini-
tially in the ms = 1 spin state, its wavefunction is a single Slater determinant:1∣∣3A2; 1

〉
= |a1ā1exey| . (5.6)

Here, a number after the semicolon labels the ms spin quantum number. Once
an e electron is excited to the conduction band state, the remaining lowest-
energy configuration of NV0 should be spin-doublet state 2E. For this transition,
the ionized state is given by:∣∣(2Ex/y;

1
2)⊗ φc

〉
=
∣∣a1ā1ex/yφc

∣∣ . (5.7)

It is an antisymmetrized product of NV0 in the 2E state with spin sublevel
ms = 1

2 , |2Ex/y; 1
2〉 = |a1ā1ex/y|, and a spin-up electron in the conduction

band with orbital wavefunction φc.
We simplify the calculation of optical matrix elements by assuming that all

single-electron orbitals are the same in the initial and the final states. Conse-
quently, the excited state differs from the initial one by a single occupied orbital,
corresponding to an electron in the e state being excited to the conduction band.
This simplification allows the adoption of the Slater–Condon rule to calculate
matrix elements. For example, the optical matrix element between states (5.6)
and (5.7) reduces to:

r2
ij ≡

∣∣〈3A2; 1
∣∣r∣∣(2Ex/y;

1
2)⊗ φc;ms = 1

〉∣∣2 =
∣∣〈ey/x∣∣r∣∣φc〉∣∣2, (5.8)

1See Appendix B for MO wavefunctions of the NV center.
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where 〈ey/x|r|φc〉 is a matrix element of single-particle orbitals. In the context
of density functional theory, we calculate these matrix elements between single-
particle Kohn–Sham states.2

In ms = 1 transition, the final state is an orbital doublet. Therefore, we
calculate only the excitation to one of the E states and multiply the final result
by the degeneracy factor g = 2. For ms = −1 transition, we have an analogous
picture as for ms = 1, with the only difference that the final spin state of 2E is
ms = −1/2. Finally, if the initial spin state isms = 0, the transition is possible
to both spin states of 2E, each with probability |〈12 ,±

1
2 ; 1

2 ,∓
1
2 |0, 0〉|

2 = 1/2.

Photoionization from the 3E state

For the ionization from the excited state, let us first consider the ms = 1 spin
sublevel with a wavefunction:∣∣3Ex/y; 1

〉
=
∣∣a1exey ēy/x

∣∣ .
For this process, the final state is a mixture of ms = 3/2 and ms = 1/2 states
in the NV0 manifold:∣∣(4A2 ⊗ φc);S=1,ms=1

〉
=

√
3

2

∣∣(4A2; 3
2)⊗ φ̄c

〉
− 1

2

∣∣(4A2; 1
2)⊗ φc

〉
As a result, we have 3/4 probability of finding NV0 in the |4A2; 3/2〉 state and
1/4 probability for the |4A2; 1/2〉 state. To calculate the matrix element, we
first consider the ms = 1/2 component:∣∣(4A2; 1

2)⊗ φc
〉

=
1√
3

(|ā1exeyφc|+ |a1ēxeyφc|+ |a1exēyφc|) . (5.9)

From this equation, we calculate the matrix element:〈
3Ex/y; 1

∣∣r∣∣(4A2; 1
2)⊗ φc

〉
=

1√
3

〈
ey/x

∣∣r∣∣φc〉 . (5.10)

This value can be related to the overall matrix element as follows. We expand
|(4A2; 1

2)⊗ φc〉 in terms of well defined spin states:∣∣(4A2; 1
2)⊗φc

〉
=
∑
S

〈
3
2 ,

1
2 ; 1

2
1
2

∣∣S, 1〉 ∣∣(4A2 ⊗ φc);S,ms=1
〉

=

√
3

2

∣∣(4A2⊗φc);S=2,ms=1
〉
− 1

2

∣∣(4A2⊗φc);S=1,ms=1
〉
.

2This is a standard approximation used in most DFT calculations that deal with optical
transitions.
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Figure 5.3: Spin physics of the photoionization from the 3E state. Numbers
near arrows show relative probabilities of the transition during photoionization.
The ms = +1 (−1) spin sublevel transitions into either the ms = +3/2
(−3/2) or the ms = +1/2 (−1/2) sublevel of the 4A2 manifold with different
probabilities. The ms = 0 sublevel transitions to the ms = ±1/2 sublevels
with equal probability. Spin sublevels are separated by zero-field splittings
D(3E) = 1.42 GHz [10] and D(4A2) = 1.69 GHz [159].

Plugging this expression into Eq. (5.10), we find that

rij =
〈

3Ex/y; 1
∣∣r∣∣(4A2 ⊗ φc);S = 1,ms = 1

〉
= − 2√

3

〈
ey/x

∣∣r∣∣φc〉 ,
and

r2
ij =

4

3

∣∣〈ey/x∣∣r∣∣φc〉∣∣2 . (5.11)

For the ms = −1 transition, we have a similar picture. Except, in this
case, the final states of NV0 are ms = −3/2 and ms = −1/2 with respective
probabilities 3/4 and 1/2.

Finally, if NV− is initially in the ms = 0 state, its wavefunction is given
by: ∣∣3Ex/y; 0

〉
=

1√
2

(∣∣a1ēxey/xēy/x
〉

+
∣∣ā1exey/xēy/x

〉)
.

The corresponding final state is a mixture of ms = 1/2 and ms = −1/2 spin
states of 4A2, together with an electron in the conduction band:

∣∣(4A2 ⊗ φc);S=1,ms=0
〉

=
1√
2

(∣∣(4A2; 1
2)⊗ φ̄c

〉
−
∣∣(4A2;−1

2)⊗ φc
〉)
.

This time, there is an equal probability to find NV0 in the ms = ±1/2 spin
projections.

Relative transition probabilities between spin sublevels of 3E and 4A2

manifolds are summarized in Fig. 5.3.

147



Photoionization from the 1E state

The orbital components of the spin-singlet 1E state are multi-determinant
wavefunctions given by [160]:∣∣1Ex〉 =

1√
2

(|a1ā1exēx| − |a1ā1ey ēy|) ,∣∣1Ey〉 =
1√
2

(|a1ā1ēxey| − |a1ā1exēy|) .

The final wavefunction of the photoionization from 1E state is:∣∣(2Ex/y ⊗ φc);S=0,ms=0
〉

=
1√
2

(∣∣(2Ex/y;
1
2)⊗ φ̄c

〉
−
∣∣(2Ex/y;−1

2)⊗ φc
〉)
,

where |(2Ex/y;−1
2)⊗ φc〉 = |a1ā1φcēx/y|, and |(2Ex/y;

1
2)⊗ φ̄c〉 is described

by Eq. (5.7). Following similar steps as for the 3E transition, we first cal-
culate the matrix element for single component 〈1Ex|r|(2Ex;−1

2) ⊗ φc〉 =

1/
√

2〈ex|r|φc〉, and expand the ket in terms of well-defined spin states of NV0

|(2Ex;−1
2)⊗φc〉 = 1√

2
(|(2Ex⊗φc);S=1,ms=0〉−|(2Ex⊗φc);S=0,ms=0〉).

The overall matrix is estimated to be:

r2
ij =

∣∣〈(2Ex/y ⊗ φc);S=0,ms=0
∣∣r∣∣1Ex〉∣∣2 =

∣∣〈ex/y∣∣~r∣∣φc〉∣∣2 .
Due to the multi-determinant nature of 1E, applying the ∆SCF method to
calculate its energy is not straightforward. From the theoretical standpoint,
there is no consensus regarding the position of this state above the 3A2 ground
state [10]. However, the energy difference

[
E
(

1E
)
− E

(
3A2

)]
= 0.38 eV

was estimated in Ref. [158] (as discussed in Section 5.2.3).
The main focus of this study is the photoionization from the triplet states.

Therefore, for photoionization from the 1E state, our calculations will be more
approximate. First, we assume that optical matrix elements are identical to
the photoionization from the 3A2 state. In addition, we will use the same
spectral function A(ε) as for the ground state, ignoring the occurrence of the
Jahn-Teller effect in the 1E state. The resulting cross-section is almost identical
to ionization from the 3A2 state. The only difference is that the energies that
appear in Eqs. (5.3) and (5.4) differ for the two processes.

Calculation of optical matrix elements and transition energies

In the discussion above, we presented how we can evaluate the transition
dipole element rij in terms of single-particle Kohn–Sham states. In the VASP
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code, these elements are calculated as ~rij = 〈ui|~∇k|uj〉, where ui and uj are
lattice-periodic parts of single-particle Bloch wavefunctions. Equation (5.4)
can also be formulated in terms of momentum matrix elements [120], defined
as pij = iEijrij .

In the formulation based on Kohn-Sham states, Eij in Eq. (5.4) is the differ-
ence between single-particle eigenvalues of the defect state and the perturbed
bulk state. Due to the bandgap problem of DFT (see Section 2.3.2), the smallest
value of Eij does not necessarily correspond to photoionization thresholds
obtained from total energy calculations [IP(3A2) or IP(3E)]. Therefore, we
apply a rigid shift to make calculated cross-sections consistent with thresholds.
The estimates for the 1E state are more approximate. In this case, we use Kohn-
Sham states of the 3A2 ground state, but the rigid shift of energies corresponds
to the “experimental” threshold IP(1E) = 2.2 eV.

5.3.4 The choice of the charge state

For the computation of matrix elements between single-particle states [Eqs. (5.8)
and (5.11)], we use orbitals from a single self-consistent calculation. However,
there is an issue regarding the choice of the charge state in which single-particle
Kohn–Sham orbitals are calculated. On the one hand, the negatively charged
defect is the one that is being ionized. Thus, performing calculations for the
NV− charge state could seem a natural choice. However, while the defect
orbitals are represented correctly, conduction band states are not. The final state
φc should be a conduction band state perturbed by a neutral defect and not a
charged one.

On the other hand, supercell calculations of the neutral NV center should
adequately capture perturbations to the conduction bands but might affect the
accurate description of localized defect orbitals. We can expect that due to
long-range Coulomb interactions, the presence of charge affects localized defect
states to a much smaller degree than those of bulk states interacting with the
NV center. To test this hypothesis, we use the methodology of Ref. [161] to
estimate overlap integrals between defect levels in the case of the neutral and
the negatively charged defect. Our calculations show that more than 99.6% of
the orbital character of the localized states is preserved when the charge state is
changed. Therefore, we conclude that performing calculations in the neutral
charge state is a much more accurate approximation. This approximation will
be employed in this study.

149



5.3.5 Brillouin zone integration and supercell effects

For the calculation of cross-sections, we need to evaluate the sum entering
equation (5.4). First, let us focus on the matrix element rij and its calculation
in supercell geometry. In a periodic supercell, all single-particle states have the
Bloch form:

φsc
k;n = eikrusc

n,k(r),

where k is a vector in the first Brillouin zone of the supercell (label “sc” indi-
cates that the solution is found in the supercell geometry). The Bloch periodic
part usc(r) is normalized within the volume of supercell Ωsc.

Now consider a single defect embedded in a large supercell of volume
Ω = NΩsc. For this system, delocalized conduction band state can be written
in terms of usc

k,n:

φk,n =
1√
N
eikrusc

k,n(r).

On the other hand, the localized defect state is contained within a single super-
cell of volume Ωsc, and we don’t need a normalization factor 1/

√
N :

φd = eikrusc
d (r).

From the equations above, it follows that the optical matrix element of large
supercell rn is related to the matrix element of small supercell rsc

n by:

rn(k) =
1√
N

∫
Ωsc

usc
d (r)rusc

k;n(r) dr ≡ rsc
n (k)√
N

.

Here, we relabeled matrix element rn(k) ≡ rij by the final state of conduction
band electron.

Using this result, we can rewrite the summation over the final states ψj ≡
ψn(k) in Eq. (5.4) as:

I(ε) =
∑
k,n

r2
n(k)δ (ε− En(k)) .

=
1

N

∑
k,n

(rsc
n (k))2 δ (ε− En(k)) . (5.12)

For a system of volume Ω = NΩsc, the number of k states in a single band
n is N . Therefore, by increasing the size of uniform k-point mesh N =

M × M × M , we effectively increase the size of the system. In practical
calculations, we replace δ-functions in Eq. (5.12) with Gaussians of width σ
and track the convergence with respect to N .
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To converge the cross-section σph(ε) for a given supercell, a very dense
k-point mesh is required. Increasing the mesh in self-consistent supercell
calculations becomes computationally very expensive (even at the PBE level).
However, the charge density converges much faster as the k-point mesh is
increased. Therefore, we first obtain the charge density using self-consistent
calculations and the 6×6×6 Monkhorst–Pack k-point mesh. Then, we compute
matrix elements using this charge density and non-self-consistent calculations
for much denser 14× 14× 14 meshes.

The artificial periodicity of the supercell approach causes two undesirable
effects: (i) defect–defect interaction in the periodic system and (ii) fictitious
perturbation of conduction band states. Effect (i) influences single-particle
defect states. To check the convergence of these orbitals with respect to the
supercell size, we calculate the optical matrix element rij for the transition
between NV center’s a1 and e levels in 4× 4× 4 and 5× 5× 5 supercells.3

Our calculations show that matrix elements calculated in these two supercells
differ by less than 3%.

Aspect (ii), however, is more subtle. Periodically distributed NV centers
form a superlattice. Simmilar to traditional semiconductor superlattices, one
could expect the formation of sub-bands and the opening of “mini-gaps”. We
illustrate this by applying the band unfolding procedure [162] for the 4× 4× 4

supercell. This procedure maps the k states of the supercell geometry to
the first Brillouin zone of the primitive diamond lattice. Fig. 5.4(a) shows
such unfolded band structure of conduction band states perturbed by the NV−

cente in the 4A2 state. One can clearly identify discontinuities in the band
structure. To explain these discontinuities, we show the band structure of
bulk diamond folded onto the Brillouin zone of the 4 × 4 × 4 supercell in
Fig. 5.4(b). The folding in supercell geometry introduces degeneracies at
the band crossing points and Brillouin zone boundaries. Perturbations of
periodically repeated defects remove these degeneracies and open up “mini-
gaps” [Fig. 5.4(a)]. These mini-gaps affect the density of final states and thus
the shape of cross-sections. We also find that the values of optical matrix
elements rij are also affected by artificial periodicity: we observe small jumps
of r2

ij across the “mini gaps”. These jumps can be explained using the textbook
picture of the behavior of electronic wavefunctions close to the bandgap in
pristine solids via the formation of standing electronic waves (see, e.g., Fig. 3
in Chapter 7 of Ref. [78]). The wave function on one edge of the “mini-gap”

3In single-particle picture, this matrix element describes intra-defect transition 3A2 ↔ 3E.
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Figure 5.4: (a) Unfolded band structure of conduction band states perturbed by
the NV center along the Γ–X path. The color indicates a relative spectral weight
(dark blue is zero); see Ref. [162] for more details. (b) The band structure of
bulk diamond folded to the first Brillouin zone of the 4× 4× 4 supercell along
the Γ–X path of the supercell.

has a vanishing weight on the NV center, and rij of this state tends to zero. The
wave function on the other edge has maximum weight on the NV center, and
rij attains a finite value for transition to this state. Therefore, we conclude that
artificial periodicity affects both the energies of conduction band states and the
values of optical matrix elements.

To solve the above issue, we use the following ad hoc approach:
(i) Using the methodology of Popescu and Zunger [162], we unfold conduc-

tion band states of the defect supercell to the Brillouin zone of the primitive cell.
Each k-point of the supercell’s Brillouin zone unfolds onto several k-points of
the Brillouin zone of the primitive cell.

(ii) We take the k-vector of primitive cell with the highest spectral weight
and find the bulk state n with the same k which is closest in energy (typical
differences < 0.08 eV). Then, we replace the energy of a single particle con-
duction band state with the energy of the corresponding bulk state. In such a
way, we restore the density of conduction band states to that of pure bulk.

(iii) To eliminate the discontinuities of r2
ij , we replace each optical matrix

element r2
ij with a value averaged in the Brillouin zone of the primitive cell.

The averaging is performed for every band n separately, taking the mean of the
points situated closer than 0.57 nm−1 in the reciprocal space. This procedure
“smears” the jumps of the optical matrix elements across “mini gaps”. The
overall calculation results in smooth values of σph(ε) as a function of ε.4

4The effect of such smoothing is illustrated in the Supplemental Material of our paper [T3].
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5.4 Spectral functions of electron–phonon interaction

Here, we present ab initio calculations of spectral functions of electron–phonon
interaction A(ω) for photoionization from the ground 3A2 and excited 3E states.
Since both excitations are of type A2 ↔ E, we can apply the same formal
theory as for intra-defect transition between triplet levels of NV−.

For photoionization from the ground 3A2 state, we follow the same steps
as for absorption calculations in Chapter 4: we calculate spectral functions
pertaining to a1 and e symmetry modes using equations (2.145) and (2.158).
However, for 3E → 4A2 transition, the Jahn–Teller active system is the initial
state and not the final one. Therefore, for ionization from the 3E state, we
calculate the spectral function of e modes using equation:

Aeabs(ω) =
∑
t

[∣∣∣〈χeet∣∣χe−g0 〉∣∣∣2 +
∣∣∣〈χeet∣∣χe+g0 〉∣∣∣2] δ(εeet − εee0 − ω),

where |χe±g0 〉 describe the degenerate ground state of the vibronic manifold.
Spectral functions were calculated using PBE vibrational structures of

excited neutral states. Vibrational modes were calculated in 16 × 16 × 16

supercells (32 768 atomic sites) using the embedding methodology discussed in
Section 3.3. The calculated densities of electron–phonon coupling for a1 and
e symmetry modes are shown in Fig. 5.5. Fig. 5.5(a) shows spectral densities
for the 3A2 → 2E transition (photoionization from the ground state 3A2).
Fig. 5.5(b) shows the spectrum for the 3E → 4A2 transition (photoionization
from the excited state 3E). As in the case of 3A2 ↔ 3E transition, modes of
a2 symmetry do not participate in the electron–phonon interaction. In order to
obtain smooth spectral lineshapes, δ-functions in S(ω) [see Eq. (2.152)] have
been replaced by Gaussians with width σ = 5 meV. This smoothing determines
the spectral resolution of final lineshapes.

The contributions of a1 symmetry modes to the spectral functions, Aa1(ε),
were calculated using the generating function approach and are shown in
Figs. 5.6. The contributions of Jahn–Teller active e symmetry modes were
calculated using the multi-mode Jahn–Teller methodology described in Sec-
tion 4.3.3. For the current calculations, we chose 20 effective modes that
approximate the actual spectral density Se(ω). Obtained spectral functions
Ae(ε) for the two transitions are shown in Figs. 5.6 (gray lines). The overall
spectral function A(ε) is a convolution of the two contributions, Ae and Aa1 .
These are shown as insets in Fig. 5.6.
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Figure 5.5: Spectral densities of electron–phonon coupling S(ω) for a1 (black)
and e (gray) vibrations: (a) 3A2 → 2E transition (photoionization from 3A2);
(b) 3E → 4A2 transitions (photoionization from 3E).

Figure 5.6: Spectral functions A(ε) (in 1/eV) for optical transitions:
(a) 3A2 → 2E; (b) 3E → 4A2. Black: the contribution of a1 modes, Aa1(ε);
gray: the contribution of e modes, Ae(ε). The inset shows the total spectral
function A(ε).
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IP(3A2) IP(3E) IP(1E)

theory 2.67 1.15 –
experiment 2.6a, 2.7b – 2.2

aReference [148]
bReference [153]

Table 5.1: Thresholds for photoionization from the 3A2, 3E, and 1E states
of NV− (in eV). The experimental results for IP(3A2) are taken from
Refs. [148, 153]. The value of IP(1E) has not been measured directly but
deduced from Ref. [158] (shown in italic).

5.5 Results
5.5.1 Photoionization thresholds and excitation energies
Let us first consider calculated values for ionization thresholds and excitation
energies. For photoionization from the ground state, we calculate the value of
the threshold to be IP(3A2) = 2.67 eV. This value is in very good agreement
with the experimental energies of 2.6 eV [148] and 2.7 eV [153] (and previous
ab initio calculations [153, 163]). The calculated ZPL energy of the intra-
defect triplet transition is E(3E) − E(3A2) = 1.996 eV. Again, this energy
agrees well with the experimental value of 1.945 eV and previous theoretical
calculations [62]. Furthermore, we calculate the energy difference between
quartet 4A2 and doublet 2E states of NV0, E(4A2) − E(2E) = 0.48 eV. As
discussed in Section 5.2.2, this energy is not known experimentally. Finally,
from Eq. (5.1), we obtain the value IP(3E) = 1.15 eV for the photoionization
from the excited state 3E. The calculated and experimental thresholds for
photoionization from NV− states are summarized in Table 5.1.

5.5.2 Cross-sections
Theoretical models
Before presenting calculated cross-sections, let us discuss some available the-
oretical models of photoionization of deep defects [120]. Most of these models
use the formulation based on the momentum matrix element ~pij = iEij~rij [82].
Therefore, we will use this formulation in the following discussion.

Suppose the conduction band is parabolic close to the CBM. In such case,
the photoionization close to the threshold corresponds to the electron excitation
to the conduction band with the density of states D(E) ∼ (E − ECBM)1/2.
In this picture of single-particle excitation, there are two limiting cases regarding
the dependence of the momentum matrix element ~pij on the quasi-momentum
measured with respect to its value at the CBM, ∆~k = ~k − ~kCBM.
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Figure 5.7: Photoionization cross-sections from (a) the 3A2 and (b) the 3E states
of negatively charged NV center. Gray lines: cross-sections σ̃ph(ε) without
vibrational broadening [Eq. (5.4)]; solid black lines: actual cross-sections σph(ε)
[Eq. (5.3)]; dashed lines show σ̃ph calculated using a constant momentum
matrix element in Eq. (5.4) and DOS corresponding to a parabolic band (see
text). Insets show the spectral function of electron–phonon coupling A(ε).

One limit describes a system where the character of the defect wavefunction
is principally the same as the character of bulk states near the CBM. For this
case, ~pij ∼ ∆~k [120], and the cross-section is given by σ̃ph(ε) ∼ (ε− εth)3/2,
where εth is the threshold for photoionization. The widely-used Lucovsky
model describes such a scenario [164].

Another limit occurs when the defect wavefunction has a different character
from the bulk states near CBM. This happens, for example, when the defect
state has p character, while the conduction band states have s character. In this
case, ~pij is constant for small ∆~k [120], and one obtains σ̃ph(ε) ∼ (ε− εth)1/2

close to the threshold.

Calculated cross-sections

We first calculate photoionization cross-sections without the electron–phonon
interaction σ̃ph [see Eq. (5.4)]. The cross-sections σ̃ph for the photoionization
from the ground 3A2 and excited 3E states are shown respectively in Figs. 5.7(a)
and (b) (solid gray lines). We have replaced δ functions in Eq. (5.4) with
Gaussians of width σ = 30 meV. Interestingly, for transitions close to the
threshold, cross-sections follow σ̃ph(ε) ∼ (ε− εth)1/2 dependence. This be-
havior indicates that p2

ij attains a constant value for the transition close to the
band edge (for more details, see Supplemental Material of our paper [T3]).
Dashed lines in Fig. 5.7 show σ̃ph(ε) pertaining to this constant value of the
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Figure 5.8: Calculated cross-section as a function of photon energy. Solid black
line: photoionization from the excited state 3E, σph; dark gray line: stimulated
emission, σst; light gray line: intra-defect absorption, σintra; dashed black
line: photoionization from the singlet state 1E. Photoionization thresholds
from 3E and 1E are indicated (estimated error bar 0.1 eV), together with the
experimental values of the ZPL energy for NV− and NV0.

momentum matrix element and DOS corresponding to a parabolic band. Model
parabolic dispersion was described by effective electron masses m‖ = 1.66

and m⊥ = 0.32, obtained by our theoretical calculations (in good agreement
with experimental ones [165]). Cross-section σ̃ph(ε) starts to deviate from
the (ε− εth)1/2 behavior for larger energy. This is because the momentum
matrix element begins to differ from the value at the threshold, and the DOS of
conduction band states starts to deviate from the parabolic model. For instance,
small peaks at 3.35 eV in Fig. 5.7(a) and at 1.85 eV in Fig. 5.7(b) correspond
to van Hove singularities at the X-point of the conduction band.

Finally, the convolution of σ̃ph with a spectral function of electron-phonon
A(ω) (shown in insets of Fig. 5.7) yields actual cross-sections σph shown by
solid black lines in Fig. 5.7. The electron–phonon interaction shifts the weight
of the cross-section to higher energies, and overall lineshape no longer exhibits
the square root behavior close to the threshold.

The most important result of this chapter is shown in Fig. 5.8. We plot
the photoionization cross-section σph(ε) from the excited triplet state 3E (solid
black line) together with the calculated cross sections for stimulated emission
from the excited state 3E (σst, dark gray line) and the intra-defect absorption
cross-section from the ground state 3A2 (σintra, light gray line). Photoionization
cross-section from the 3A2 state is not shown. We will discuss the relevance of
Fig. 5.8 for the physics of NV centers in the next section.
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5.6 Discussions

5.6.1 Ensembles vs. single NV centers

Cross-sections calculated above are for ensembles of randomly oriented NV
centers. However, some experiments are performed on single NV centers and
depend on the polarization of light and orientation of defects. Therefore, here,
we will briefly discuss how cross-sections for ensembles can be used to obtain
relevant information about single NVs.

Stimulated emission and intra-defect absorption have non-zero dipole mo-
ments only in the plane perpendicular to the N–V axis. They strongly depend
on the orientation of the defect. Usually, in the experimental setup, once a
single NV center is chosen, polarization is rotated in the plane of the diamond
surface to maximize the efficiency of intra-defect triplet excitation. In such a
case, from geometric considerations, one can show that σst and σintra are by
factor 3/2 larger than the corresponding cross-section for an ensemble.

In the case of photoionization, an electron is excited close to the conduction
band minimum. The CBM of diamond comprises six different conduction band
valleys. The presence of NV center lowers the point group symmetry to C3v,
and six degenerate single-electron states form linear combinations that result in
two a1 states and two e symmetry doublets.

In a single-particle picture, all photoionization mechanisms (from 3A2, 3E,
and 1E states) involve the excitation of an electron from an e defect level to
a conduction band state. If the final single-electron state is of a1 symmetry,
excitation is polarized perpendicularly to the N–V symmetry axis. On the
other hand, excitation to an e state can be polarized in any direction. Our
approximate numerical analysis shows that the average cross-section along
the symmetry axis is about twice smaller than the average cross-section in
the perpendicular directions. Therefore, if polarization is rotated to maximize
the efficiency of intra-defect excitation, one can show that the photoionization
cross-section σph is approximately by factor ∼6/5 larger than the value for
ensembles.

5.6.2 4A2 state as a state of NV0 directly after photoionization

Our finding that after the photoionization from the 3E state, NV center tran-
sitions into the metastable quartet state 4A2 of the neutral defect has im-
portant implications for the physics of NV charge dynamics. In particular,
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this model might explain the electron spin resonance (ESR) experiments of
Felton et al. [159]. Felton observed spin polarization of the quartet state
4A2 under the continuous illumination of light. This effect can be under-
stood using Fig. 5.3, where transition probabilities from different spin sub-
levels of excited NV− state 3E to spin sublevels of the 4A2 manifold are
shown.

If the NV− center is initially in the ms = ±1 spin sublevel, the probability
of the transition to the ms = ±3/2 spin state of 4A2 is 3/4, while that to
the ms = ±1/2 sublevel is 1/4. On the other hand, if the initial spin state
is ms = 0, 4A2 can be found in one of the ms = ±1/2 spin states with
equal probabilities. Therefore, one can deduce that if NV− is initially spin-
unpolarized, then there is no spin polarization of the 4A2 state after the ionization
of the NV− center.

In Ref. [159], the spin polarization of the 4A2 state was observed only
for laser wavelengths above the ZPL of the neutral NV center, 2.156 eV. For
such wavelengths, the NV center is constantly switching between NV− and
NV0 [146, 148]. Furthermore, under the continuous illumination of light, NV−

polarizes to the ms = 0 level of 3A2 and thus 3E. Therefore, after some time,
the ionization mainly occurs from the ms = 0 sublevel, rendering the final
state of NV0 to be ms = ±1/2. The zero-field splitting of 4A2 state separates
ms = ±1/2 and ms = ±3/2 spin sublevels by D(4A2) = 1.69 GHz [159].
Therefore, the populated ms = ±1/2 state of NV0 gives rise to a strong ESR
signal.

5.6.3 Photodynamics: comparison with selected experiments

Here, we focus on a few selected experiments on charge-state dynamics that
do not require the knowledge of cross-sections for recombination processes
(whereby NV0 is converted to NV−) [166–168].

Our theoretical calculations can be directly compared to the experiments of
Hacquebard and Childress [166], where green (2.33 eV) and infrared (1.62 eV)
picosecond laser pulses were used to track the charge-state dynamics of single
NV− centers in [111] diamond. The authors modeled their experimental data
to determine the ratio between the cross-section of stimulated emission and
the cross-section of the photoionization from the 3E state. They estimated that
for infrared excitation (1.62 eV) σst/σph ≈ 13. We can determine this ratio
from ensemble data (Fig. 5.8) using our theoretical calculations and prefactors
for single centers (3/2 for intra-defect absorption and 6/5 for photoionization).
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Figure 5.9: The ratio of the photoionization cross-section and the cross-section
for stimulated emission, σph/σst, as a function of photon energy.

We obtain a theoretical ratio at the same excitation energy σst/σph ≈ 10. The
agreement between theory and experiment is rather good, considering the error
bars of both approaches.

Another set of experiments that our theoretical calculations can explain is
a spin-to-charge conversion with dual-beam excitation in cryogenic tempera-
tures [167, 168]. In such spin-to-charge experiments, one narrow frequency
laser is first used to excite the NV− center into one of the selected spin states.
Then, a second laser pulse with the sub-ZPL energy is used to ionize the
3E state. This specific energy range is chosen to avoid disturbances of other
spin states. Irber et al. [167], in their experiments, obtained effective pho-
toionization using a sub-ZPL laser of energy 1.93 eV. In another experiment,
Zhang et al. [168] used a laser emitting at 1.17 eV and also observed effective
photoionization.

We can explain the results of Refs. [167, 168] using our theoretical calcula-
tions. Since the polarization of the ionizing pulse was unknown in both studies,
we use data calculated for an ensemble of randomly oriented NVs. For better
comparison, we plot the photoionization cross-section and stimulated emission
cross-section ratio (σph/σst) as a function of energy in Fig. 5.9. There are
two regions where photoionization of 3E is most effective in comparison to
stimulated emission. The first region is between the photoionization threshold
IP(3E) = 1.15 eV and 1.3 eV. The second region is between 1.92 eV and the
ZPL of triplet transition EZPL = 1.945 eV. These two regions perfectly cor-
respond to energy ranges for which the photoionization was efficient (1.17 eV
and 1.93 eV).
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5.7 Summary and conclusions

This chapter presented the theory and first-principles calculations of photoion-
ization processes in the negatively charged NV center in diamond. The main
achievements and findings of this study can be summarized as follows:

1. We showed that the NV center transitions to the metastable 4A2 state right
after the photoionization from the 3E state. This model explains the ESR
experiments of Felton et al.[159].

2. We determined the photoionization threshold from the 3E state to be 1.15 eV.
This value was hitherto unknown.

3. We introduced a novel methodology to calculate absolute photoionization
cross-sections for deep-level defects and applied it to NV−. This is the first
calculation of absolute photoionization cross-sections for point defects using
modern electronic structure theory.

4. Our calculations rationalize recent experiments of spin-to-charge under
sub-ZPL illumination [167, 168]. The calculated ratio of cross-sections of
stimulated emission and photoionization agrees perfectly with the experi-
mental estimation of Hacquebard and Childress [166].

Thesis statement (IV)

After the photoionization from the 3E state, NV centers transition to the
metastable 4A2 state of NV0. This explains electron spin resonance experi-
ments and has important consequences for the charge dynamics of the NV
center. We determine the threshold for the photoionization to be 1.15 eV.

Thesis statement (V)

Our ab initio methodology for the photoionization cross-section calculations
explains recent photoionization experiments and elucidates the charge-state
dynamics of NV centers.

161





Appendix A

ELEMENTS OF GROUP THEORY

This appendix briefly reviews some formal ideas of group theory that are used
throughout this thesis. Here we will focus on key definitions and general con-
cepts with examples for the C3v group of the diamond NV center.1 The rigorous
theory can be found in many excellent textbooks (see, e.g., Refs. [89, 90, 92]).

A.1 Group and classes

The geometric structure of the point defects often has some symmetries that can
be described by a set of coordinate transformations Gi that preserve geometry
and keep at least one point fixed. The complete set of such transformations
forms algebraic structure G known as a point group. In other words, the
multiplicative structure of G satisfies formal conditions, called group axioms.2

Identification of the group structure has some practical implications for the
theoretical analysis, as shown below.

Elements in the group can be partitioned into mutually disjoint sets, which
are called “classes” [90]. Each class contains equivalent elements Ga ∼ Gb,
which are related by conjugate relation:

Ga ∼ Gb ⇔ Ga = GiGbG
−1
i , (A.1)

for some elements Gi of the group G. From a geometric perspective, each class
includes similar transformations, i.e., same angle rotations around different
axes [90].

1In this review, we assume that groups of interest are simply reducible groups [92]. This is
the case for most spatial groups in molecular systems.

2These are four conditions: (i) multiplication of two element s yield the third element
in the same group, GaGb = Gc ∈ G; (ii) group multiplication is associative, (GaGb)Gc =
Ga(GbGc); (iii) there exists identity element e, such that Gie = Gi; (iv) each element has its
inverse, GiG−1

i = e.
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Figure A.1: The operations of the C3v group elements on the structure of the
NV center. The picture is taken from Ref. [116].

e C+
3 C−3 σ1 σ2 σ3

e e C+
3 C−3 σ1 σ2 σ3

C+
3 C+

3 C−3 e σ3 σ1 σ2

C−3 C−3 e C+
3 σ2 σ3 σ1

σ1 σ1 σ2 σ3 e C+
3 C−3

σ2 σ2 σ3 σ1 C−3 e C+
3

σ3 σ3 σ1 σ2 C+
3 C−3 e

Table A.1: C3v group multiplication table.
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Let us take the NV center as an example (Fig. A.1). Six symmetry opera-
tions keep the geometry invariant: identity operation e (which does nothing),
two 2π/3 rotations about the symmetry axis (C+

3 , C
−
3 ), and three vertical

reflections through planes containing symmetry axis (σ1, σ2, and σ3). The
multiplicative structure of the C3v group is displayed in Table A.1. This table
completely encodes the whole structure of a group. The C3v point group has
three classes:

E : {e},
C3 : {C+

3 , C
−
3 },

σ : {σ1, σ2, σ3}.

The first class, E, contains only identity element e since GieG−1
i = e for any

Gi ∈ G. This class is present in all groups. The second class, C3, comprises
two 2π/3 rotations, while the third class σ consists of three vertical reflections.

A.2 Group of the Shrödinger equation

From the practical perspective of this thesis, the group theory becomes impor-
tant when we have an eigenvalue problem for an operator which is invariant
under some symmetry transformations. This is, indeed, the case for the adia-
batic description of the point defect. For example, the electronic Shrödinger
equation (2.8) is defined in the reference geometrical configuration R0. The
point group G of this configuration is a set of geometric transformationsGi ∈ G,
for which GiR0 = R0. One can check that this symmetry also implies in-
variance of the electronic Hamiltonian Ĥ(r) with respect to the same spatial
transformations. That is, if we define the functional transformation T (Gi) as
T (Gi)f(r) = f(G−1

i r), the invariance is encoded in the following form:

T (Gi)Ĥ(r) = Ĥ(G−1
i r) = Ĥ(r). (A.2)

From this equation, it follows that it is irrelevant whether T (Gi) appears to
the left- or right-hand side of Ĥ(r), that is, T (Gi)Ĥψ = ĤT (Gi)ψ, and both
operators commute. The set of all operators which commute with Ĥ are said
to form the group of Schrödinger equation. In this case, the group structure is
identical to the point group G of geometric configuration R0. In a more general
case, there could be other symmetries (sets of operators that form a group) that
are not related to the spatial configuration.
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The harmonic Hamiltonian of the nuclear system (2.50) also is invariant
with respect to symmetry transformations of the reference system R0. There-
fore, the implications derived for electronic states also apply to vibrational
states of a nuclear subsystem.

A.3 Irreducible representations

Identification of Hamiltonian symmetry has an interesting immediate result
for an eigenvalue problem. If we apply one of the commuting transformation
operators to the stationary Schrodinger equation (Ĥψn = εnψn), we get:

T (Gi)
{
Ĥ(r)ψn(r)

}
= Ĥ(r) {T (Gi)ψn(r)} = εn {T (Gi)ψn(r)} .

From the above result, we can conclude that any function T (Gi)ψn obtained
by applying symmetry transformation on eigenfunction ψn is also an eigen-
state with the same energy as the original one. In principle, if all symmetry
transformations are determined correctly, such a procedure should yield all the
degenerate states from a single one [89].3 This result implies that all states of
the same degenerate subspace are connected through linear relation:

T (Gi)ψn =
∑
m

Γmn(Gi)ψm, (A.3)

where scalar coefficients Γmn(Gi) constitute some M ×M matrix (M is the
number of mutually degenerate states). The summation is chosen over the first
index to ensure that the matrices Γ(Gi) form a matrix representation of a point-
group. By term “representation”, we mean that the multiplicative structure of
matrices is homomorphic to the multiplicative structure of a group:

GaGb = Gc =⇒
∑
l

Γnl(Ga)Γlm(Gb) = Γnm(Gc). (A.4)

The functions {ψi|i = 1, . . . , s} used to generate representation Γ in Eq. (A.3)
are said to form a set of basis functions for this representation. Alternatively,
we also say that they transform as a basis of representation Γ.

For each group, there are infinite possible matrix representations that fulfill
Eq. (A.4). For example, if there are two different matrix representations, Γα

3Exception to this statement could be the degeneracy caused by other hidden mathematical
symmetry, which is not reflected in the spatial structure. Such degeneracy is called accidental-
degeneracy.
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e C+
3 C−3 σ1 σ2 σ3

A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1

E ( 1 0
0 1 )

(
− 1

2

√
3

2

−
√

3
2
− 1

2

) (
− 1

2
−
√

3
2√

3
2
− 1

2

) (
1
2
−
√

3
2

−
√

3
2
− 1

2

) (
1
2

√
3

2√
3

2
− 1

2

) (−1 0
0 1

)
Table A.2: The irreducible matrix representations of the C3v point group. E
matrices are represented in the Cartesian (Ex, Ey) form.

and Γβ , we can always form a third representation with a typical element:

Γ(Gi) =

(
Γα(Gi) 0

0 Γβ(Gi)

)
,

where Γα(Gi) and Γα(Gi) are matrices representing group element Gi. This
new set of matrices will also be a representation, as they satisfy a relation
of Eq. (A.4). The representation Γ of this enlarged matrix form is said to be
reducible. This reducibility can be hidden by applying similarity transformation
Γ′(Gi) = SΓ′(Gi)S

−1 to the set of matrices, breaking the block diagonal form.
Note that Γ′(Gi) also form a representation since similarity transformation
preserves the homomorphic structure of Eq. (A.4). Such two sets of matrices,
Γ(Gi) and Γ′(Gi), are then said to be equivalent.

However, there is a special type of representations called irreducible repre-
sentation [89, 90]. The matrices of irreducible representation cannot be reduced
to block diagonal form by any similarity transformation. In the group theory, it
is proven that there is a finite number of irreducible representations for each
discrete group G, and this number equals the number of classes. As an example,
the C3v group has only three irreducible representations (A1, A2, and E) shown
in Table A.2.

Irreducible representations are important because of the following theo-
rem [89]: The set of s degenerate eigenfunctions with the same energy transform
as basis functions of a s-dimensional irreducible representation of the group
of the Shrödinger equation. In other words, matrices Γmn(Gi) of Eq. (A.3)
that connect eigenstates of the same degenerate subspace must be irreducible
representations of the Hamiltonian group G.

From the discussion above it follows, that we can classify eigenstates of
the symmetric Hamiltonian according to their transformation properties. The
dimension of irreducible representation matrices Γmn(Gi) can vary from one
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to an arbitrary number. For example, one-dimensional representations are de-
scribed by scalars, and objects that transform as such representations cannot be
degenerate. The most trivial one-dimensional irreducible representation (that is
present in every group) is totally symmetric A1 (identity) representation (or Ag
for geometries with inversion symmetry). In this representation, ΓA1(Gi) = 1

for every Gi ∈ G. Objects of A1 symmetry are invariant for all symmetry
transformations of the group:

T (Gi)ψA1 = 1ψA1 , ∀Gi ∈ G.

However, each multi-dimensional irreducible representation is not unique
in its numerical form as similarity transformation connects many equivalent
forms. In the context of physical applications, the basis of multi-dimensional
irreducible representation often corresponds to a degenerate subspace of states.
Therefore, similarity transformation just changes the basis of the degenerate
subspace. When a certain matrix form of multi-dimensional representation is
chosen [e.g., Cartesian (Ex, Ey) representation of Table A.2], we can identify
eigenfunction by its row. That is, if we say that wavefunction ψn transforms
as row n of irreducible representation Γ, we mean that Eq. (A.3) holds for
a specific form of Γmn(Gi) matrices. For example, in the C3v group, when
we say that functions ψEx and ψEy transforms as a basis of the irreducible
(Ex, Ey) representation, we mean that:

T (C+
3 )ψEx = −1

2
ψEx −

√
3

2
ψEy ,

T (C+
3 )ψEy =

√
3

2
ψEx −

1

2
ψEy ,

where −1/2,±
√

3/2 are the respective coefficients of the C+
3 matrix.

A.4 Projection operators

In the above section, we showed that eigenstates of the symmetric Hamiltonian
could be classified by their symmetry properties. In a general case, any arbi-
trary function can always be decomposed into parts that transform irreducibly.
Formally this is done by using projection operators of group theory [89]:

P̂Γγ =
sΓ

g

∑
i

Γ∗γγ(Gi)T (Gi),

where sΓ is the dimension of representation, and g is the order of the group
(number of group elements). Operator P̂Γγ projects any function to the part,
which transforms as row γ of irreducible representation Γ.
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The projection operators are very useful in many different situations. Some-
times a posteriori, we want to find the symmetry of an eigenstate. In such a
case, we could calculate 〈ψ|P̂Γγ |ψ〉 for all P̂ ’s and check whether it is equal to
zero or one. This is how we classified vibrational and electronic states obtained
by numerical methods. However, sometimes, we want to solve the eigenvalue
problem by utilizing symmetry a priori. This time we can use projection opera-
tors to symmetrize the zero-order basis into species that transform as irreducible
representations of a point group. As shown in Section A.7, such a basis can
help reduce the computational complexity of the eigenvalue problem.

A.5 Irreducible sets of operators

Similarly, as for functions (or vectors), we can define an “irreducible set of
operators” {ŜΓγ |γ = 1, . . . , s} by the property:

T (Gi)ŜΓγT (Gi)
−1 =

s∑
γ′

Γγ′γ(Gi)ŜΓγ′ ,

where Γγ′γ(Gi) are matrices of irreducible representation Γ. Such a set of
operators ŜΓγ is said to transform according to the irreducible representation Γ.

The Hamiltonian always transforms as an identity representation A1 of the
group of Shrödinger equation, since:

T (Gi)Ĥ(r)T (Gi)
−1 = Ĥ(r),

for all Gi ∈ G.

A.6 Clebsh–Gordan coefficients

Let us assume that we have two sets of functions, {ψΓαγα |γα = 1, 2, . . . , sα}
and {φΓβγβ |γβ = 1, 2, . . . , sβ}, that transform as irreducible representations
Γα and Γβ . If we take a product of any two functions ψΓαγαφΓβγβ , this product
generally does not transform as a basis of irreducible representation. However,
it is possible to choose linear combinations:

ΨΓγ =
∑
γαγβ

〈
ΓαγαΓβγβ

∣∣Γγ〉ψΓαγαφΓβγβ (A.5)

which transform irreducibly according to representation Γγ . The coefficients
〈ΓαγαΓβγβ|Γγ〉 are usually called Clebsh–Gordan coefficients for the group.
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These coefficients depend only on the group and form of representation matrices.
They can be found from tabulated data [93] or calculated using computer algebra
packages (e.g., Ref. [113]). The inverse of Eq. A.5 can be written as:

ψΓαγαφΓβγβ =
∑
γ

〈
Γγ
∣∣ΓαγαΓβγβ

〉
ΨΓγ , (A.6)

where 〈Γγ|ΓαγαΓβγβ〉 are inverse Clebsh–Gordan coefficients. These Clebsch–
Gordan coefficients are the main parameters for group theory application to
physical problems.

A.7 Wigner–Eckart theorem

So far, we have only introduced the language of the group theory and not much
of practical implications. The most useful expression of the group theory for
physical problems follows from the Wigner–Eckart theorem.

The Wigner–Eckart theorem [92]. Let G be a discrete group of coordinate
transformations. Let Γα, Γβ , and Γδ be unitary irreducible representations of
G of dimensions sα, sβ , and sγ , respectively, and suppose that φΓαγα(r), and
ψΓβγβ (r), are sets of basis functions for Γα and Γβ . Finally, let X̂Γδγδ be a set
of irreducible tensor operators of Γδ. Then:〈

φΓαγα
∣∣X̂Γδγδ

∣∣ψΓβγβ
〉

= 〈ΓγαΓδγδ|Γγβ〉 〈φΓα‖X̂Γδ‖ψΓβ 〉, (A.7)

where 〈φΓα‖X̂Γδ‖ψΓβ 〉 are “reduced matrix elements” that are independent of
γα, γβ , and γδ.

The reduced matrix element is a scalar that does not depend on rows γα,
γβ , and γδ of irreducible representation.

From a physical point of view, Eq. A.7 represents the matrix element of
some symmetric operator X̂Γδγδ (or irreducible set of operators). For example,
this operator could be a position operator of the optical matrix element. Actually,
if we choose a coordinate system of the NV center, such that the êz axis goes
through the symmetry axis of the center, and the êy axis is in the plane σ2

[Fig. A.1(e)], then position operator z transforms as A1 representation of C3v

group, and x, y operators transform respectively as x and y rows of Cartesian
representation (Ex, Ey). From Eq. (A.7), it follows that the symmetry alone
allows us to deduce that certain matrix elements are zero and predict connections
between the others.
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If operator X̂ is invariant (transforms as A1 representation), then it can be
shown that Clebsh–Gordan coefficients satisfy 〈Γαγα;A1|Γβγβ〉 = δΓαΓβδγαγβ

and: 〈
φΓαγα

∣∣X̂A1

∣∣ψΓβγβ
〉
∼ δΓαΓβδγαγβ .

For the Shrödinger equation of symmetric Hamiltonian, this says that only the
basis of the same symmetry are coupled, and we can decouple the diagonaliza-
tion problem for each symmetry species.

In the case of degenerate states ψΓαγα and φΓβγβ (where sα > 1 or/and
sβ > 1), Wigner–Eckart theorem says that single scalar 〈φΓα‖X̂Γδ‖ψΓβ 〉
describes all matrix elements for a different choice of degenerate states γα and
γβ . The only difference is within the Clebsh–Gordan coefficients. Therefore,
we can calculate the matrix element for a single pair of degenerate functions
and deduce others from relation (A.7). Also, for some combinations, the
Clebsh–Gordan coefficient will be zero.
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Appendix B

NV MOLECULAR ORBITAL

WAVEFUNCTIONS

In this appendix, using the formal methodology of Section 2.3.5, we derive
molecular orbital states of the NV0 center in diamond. In Section B.1, we obtain
orbital parts of multi-electron wavefunctions that have well-defined spatial
symmetry properties. In Section B.2, we obtain spin states of the multi-particle
spin system. Finally, in Section B.3, we antisymmetrize different products of
orbital and spin parts and deduce molecular orbital wavefunctions of NV0.

B.1 Orbital wavefunctions
The geometric structure of the NV center has C3v point group symmetry. From
the electronic structure analysis of NV− (Sec. 3.2.1), it follows that there are
three localized single-particle defect orbitals in the bandgap: fully symmetric
a1 orbital and a doubly-degenerate e orbital (see Fig. 3.2). We use these single-
particle states to construct multi-electron orbital wavefunctions that transform
as irreducible representations of the C3v point group. The construction is done
via Eq. (2.46).

To determine Clebsch–Gordan (CG) coefficients entering Eq. (2.46), we
choose the Cartesian form of irreducible representation matrices of the C3v

group (Table 2.1). Nonzero CG coefficients for this representation are given by:

〈
A1; Γin

∣∣Γjm〉 = δijδnm, 〈Ei;Ej |A2〉 =
1√
2

(
0 −1

1 0

)
,

〈A2;A2|A1〉 = 1, 〈Ei;Ej |Ex〉 =
1√
2

(
0 1

1 0

)
,

〈Ei;Ej |Ey〉 =
1√
2

(
1 0

0 −1

)
, 〈A2;Ei|Ej〉 =

(
0 1

−1 0

)
,

〈Ei;Ej |A1〉 =
1√
2
δij . (B.1)
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C3v ⊗ C3v A1 A2 E

A1 A1 A2 E
A2 A2 A1 E
E E E A1 ⊕A2 ⊕ E

Table B.1: The C3v point group direct product multiplication table.

These coefficients were determined using the GTPACK software package [113].
The direct product multiplication rules of the C3v point group are given in

Table B.1.

B.1.1 Two electrons

Using Eq. (2.46) and CG coefficient values of Eq. (B.1), we obtain the following
orbital configurations for two-electron wavefunctions:

Φ
α(2)
A1

= a1a1, Φ
β(2)
A1

=
1√
2

(exex + eyey) ,

Φ
(2)
A2

=
1√
2

(eyex − exey) , Φ
α(2)
Ex/y

= a1ex/y,

Φ
β(2)
Ex

=
1√
2

(exey + eyex) , Φ
β(2)
Ey

=
1√
2

(exex − eyey) . (B.2)

Here, subscript shows the irreducible representation of the resultant wavefunc-
tion, greek letters α and β label different wavefunctions of the same symmetry,
and the number in the superscript indicates the number of electrons.

B.1.2 Three electrons

Three-electron molecular-orbital states belong to the NV0 manifold. Those can
be found by combing orbitals from Eq. (B.2) with a one-electron orbital of a1

or e symmetry.1 The low-lying states (that contain at least one a1 orbital) are:

Φ
(3)
A1

=
1√
2

(a1exex + a1eyey) , Φ
(3)
A2

=
1√
2

(a1eyex − a1exey) ,

Φ
α(3)
Ex

=
1√
2

(a1exey + a1eyex) , Φ
α(3)
Ey

=
1√
2

(a1exex − a1eyey) ,

Φ
β(3)
Ex/y

= a1a1ex/y. (B.3)

Note that for orbital wavefunctions, the order of orbitals is not important as long
as permutations are simultaneously applied to all terms of the wavefunction.

1Note that we normalize the final result.
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B.2 Spin eigenstates

To construct spin eigenstates of multi-particle spin operators S2 and Sz [see
Eq. (2.42)], we use the genealogical construction scheme (see Sec. 2.3.5 for
more details) and Eq. (2.45) for angular momentum coupling.

B.2.1 Two electrons

The spin eigenstates of two electrons are constructed by combining two spins.
Those are well-known singlet and triplet states:

∣∣0, 0; 1
2

〉
=

1√
2

(|↑↓〉 − |↓↑〉) ,

∣∣1,ms;
1
2

〉
=


|↑↑〉, if ms = 1,

1√
2

(|↑↓〉+ |↓↑〉) , if ms = 0,

|↓↓〉, if ms = −1.

(B.4)

Here, we use the notation |S, Sm;P 〉, where P is a list of “parent” states from
which N electron wavefunction was constructed. In this case, 1/2 indicates
that the two-electron state was constructed by adding one electron to the spin
1/2 system.

B.2.2 Three electrons

Adding one electron to a singlet state of Eq. (B.4) could only yield a spin
doublet (S = 1/2). In this case, non-zero Clebsch–Gordan coefficients are
given by 〈0, 0; 1

2 ,±
1
2 |

1
2 ,±

1
2〉 = 1, and the following spin states are:

∣∣1
2 ,ms; 0, 1

2

〉
=

|0, 0; 1
2〉 ⊗ |↑〉 = 1√

2
(|↑↓↑〉 − |↓↑↑〉) , if ms = 1

2 ,

|0, 0; 1
2〉 ⊗ |↓〉 = 1√

2
(|↑↓↓〉 − |↓↑↓〉) , if ms = −1

2 .

(B.5)

Combining triplet states of Eq. (B.4) with single spin can only yield doublet
and quartet states (S = 1/2 and S = 3/2). Those are:

∣∣1
2 ,ms; 1, 1

2

〉
=

1√
6

2|↑↑↓〉 − |↓↑↑〉 − |↑↓↑〉, if ms = 1
2 ,

2|↓↓↑〉 − |↑↓↓〉 − |↓↑↓〉, if ms = −1
2 ,

(B.6)
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and

∣∣3
2 ,ms; 1, 1

2

〉
=



|↑↑↑〉, if ms = 3
2 ,

1√
3

(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉) , if ms = 1
2 ,

1√
3

(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉) , if ms = −1
2 ,

|↓↓↓〉, if ms = −3
2 .

(B.7)

B.3 NV0 wavefunctions

B.3.1 Ground state

The ground state of NV0 is a spin-doublet of E symmetry (2E) [169, 170]. We
obtain molecular-orbital wavefunctions of this state by antisymmetrizing the
product of Φ

β(3)
Ex/y

and |12 ,ms; 0, 1
2〉 states from Eqs. (B.3) and (B.5).2

As an example, let us derive the ms = 1/2 state. First, we multiply orbital
and spin counterparts, and then we promote each term to a Slater determinant,
as shown below:

∣∣2Ex/y;ms = 1
2

〉
=

1√
2
A
[
(|↑↓↑〉 − |↓↑↑〉)

(
a1a1ex/y

)]
=

1√
2

(∣∣a1ā1ex/y
∣∣− ∣∣ā1a1ex/y

∣∣)
norm

=
∣∣a1ā1ex/y

∣∣ .
In the last step, we have used the antisymmetric property of Slater determinant
|..b..c..| = −|..c..b...| and normalized the final wavefunction (as indicated by
“norm” above last equality). We use the same approach for all other states
derived below.

The four degenerate wavefunctions of the ground 2E manifold are given by:

∣∣2Ex/y;ms

〉
=

|a1ā1ex/y|, if ms = 1
2 ,

|ā1a1ēx/y|, if ms = −1
2 .

Note that we freely chose the sign of normalized wavefunction to highlight the
symmetry between spin states of opposite ms signs.

2Spin states | 1
2
,ms; 1, 1

2
〉 constructed from triplet wavefunctions are not suitable since they

produce wavefunctions where two same-spin electrons occupy one orbital.
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B.3.2 Excited spin-doublet states

The lowest optically excited state is the electronic 2A2 state [169, 170]. The
molecular orbital wavefunction for this state is obtained combining Φ

β(3)
A2

and
|12 ,ms; 0, 1

2〉 wavefunctions:

∣∣2A2,ms

〉
=

1√
6

(|a1ēxey|+ |a1exēy| − 2|ā1exey|) , if ms = 1
2

(|ā1exēy|+ |ā1ēxey| − 2|a1ēy ēx|) , if ms = −1
2 .

The second excited doublet state is of the same symmetry as the NV0

ground state (2E) [170]. The wavefunction for this state can be obtained by
combining Φ

α(3)
Ex/y

orbital wavefunction with doublet spin states. However, Φ
α(3)
Ey

state [see Eq. (B.3)] contains products where two last orbitals are equal (i.e.,
a1exex). Therefore, spin terms |↓↑↑〉 and |↑↓↓〉 combined with such products
would yield unphysical states, where two electrons of the same spin occupy one
orbital. By taking a linear combination of Eqs. (B.5) and (B.6), we obtain the
third form of the spin-doublet wavefunction:

∣∣1
2 ,ms; c

〉
=

1√
2

|↑↑↓〉 − |↑↓↑〉, if ms = 1
2 ,

|↓↓↑〉 − |↓↑↓〉 if ms = −1
2 .

(B.8)

Antisymmetrizing product of Φ
α(3)
Ex/y

with states of Eq. (B.8) we obtain the
following form:

∣∣∣2E′i;ms

〉
=

1√
2


|a1ēxey|+ |a1ēyex|, if ms = 1

2 , i = x,

|ā1exēy|+ |ā1ey ēx|, if ms = −1
2 , i = x,

|a1ey ēy|+ |a1ēxex|, if ms = 1
2 , i = y,

|ā1ēyey|+ |ā1exēx|, if ms = −1
2 , i = y.

Although in this representation, the wavefunction is not a single Slater deter-
minant, one can show that it attains single-determinant form in the “chiral”
representation E± [see Eq. (2.95)]:

∣∣2E±,ms

〉
=

|a1e∓ē∓|, if ms = 1
2 ,

|ā1ē∓e∓|, if ms = −1
2 .

The last spin-doublet wavefunction that contains at least one a1 orbital is
the 2A1 state [170]. This state is obtained combining Eq. (B.8) with Φ

β(3)
A1

:

∣∣2A1,ms

〉
=

1√
2

|a1ēxex|+ |a1ēyey|, if ms = 1
2 ,

|ā1exēx|+ |ā1ey ēy|, if ms = −1
2 .
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Conf. Molecular orbital wavefunction

a2
1e

2 |3A2;ms〉 =


|a1ā1exey|, if ms = 1,

1√
2

(|a1ā1exēy|+ |a1ā1ēxey|) if ms = 0,

|ā1a1ēxēy|, if ms = −1,

|1Ei〉 = 1√
2

{
|a1ā1exēx| − |a1ā1ey ēy|, if i = x,

|a1ā1ēxey| − |a1ā1exēy|, if i = y,

|1A1〉 = 1√
2

(|a1ā1exēx|+ |a1ā1ey ēy|) ,

a1e
3 |3Ei,ms〉 =



|a1exey ēy|, if ms = 1, i = x,
1√
2

(|a1ēxey ēy|+ |ā1exey ēy|) , if ms = 0, i = x,

|ā1ēxēyey|, if ms = −1, i = x,

|a1exēxey|, if ms = 1, i = y,
1√
2

(|a1exēxēy|+ |ā1exēxey|) , if ms = 0, i = y,

|ā1ēxexēy|, if ms = −1, i = y.

Table B.2: Molecular orbital states of the NV− center from Ref. [160].

B.3.3 Metastable quartet state 4A2

Wavefunctions of the 4A2 state are obtained by combining Φ
α(3)
Ex/y

orbitals with
quartet spin functions of Eq. (B.7):

∣∣4A2;ms

〉
=



|a1exey|, ms = 3
2 ,

1√
3

(|ā1exey|+ |a1ēxey|+ |a1exēy|) , ms = 1
2 ,

1√
3

(|a1ēxēy|+ |ā1exēy|+ |ā1ēxey|) , ms = −1
2 ,

|ā1ēxēy|, ms = −3
2 .

B.4 NV− wavefunctions

Molecular orbital wavefunctions of NV− manifold were deduced in Ref. [160].
For convenience we present states of Fig. 1.1(c) in the Table. B.2.
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Appendix C

DEGENERATE PERTURBATION

THEORY FOR E ⊗ (e⊗ e⊗ · · · )
PROBLEM

Let us look at how degenerate perturbation theory applies to the Jahn–Teller
problem. In general, we want to solve the equation:

(Ĥ0 + λĤJT) |nl;E±〉 = E |nl;E±〉 , (C.1)

where λ can take on values ranging from 0 (no perturbation) to 1 (full perturba-
tion). Here nl = {n1l1, . . . , nN lN} stands for vibrational degrees of freedom,
and E± represents electronic manifold. As it is usual, we expand the solutions
in power series:

|nl;E±〉 λ =
∣∣∣nl(0);E±

〉
+ λ

∣∣∣nl(1);E±

〉
+ λ(2)

∣∣∣nl(2);E±

〉
+ · · · ,

En;± = E
(0)
n + λE

(1)
n;± + λ2E

(2)
n;± + · · · . (C.2)

Substituting Eq. (C.2) into Eq. (C.1) yields a set of equations for different
powers of λ:

λ(0) :(Ĥ0 − E(0)
n )

∣∣∣nl(0);E±

〉
= 0,

λ(1) :(Ĥ0 − E(0)
n )

∣∣∣nl(1);E±

〉
= (E

(1)
n;± − ĤJT)

∣∣∣nl(0);E±

〉
,

λ(2) :(Ĥ0 − E(0)
n )

∣∣∣nl(2);E±

〉
= (E

(1)
n;± − ĤJT)

∣∣∣nl(1);E±

〉
+ E

(2)
n;±

∣∣∣nl(0);E±

〉
,

· · · .

Diagonal terms of Jahn–Teller Hamiltonian are zero:〈
nl(0);E±

∣∣∣ ĤJT
∣∣∣nl(0);E±

〉
= 0.
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From the λ1 equation, it follows that the first-order energy correction is zero:

E
(1)
n;± = 0.

The first-order equation for wavefunction becomes:∣∣∣nl(1);E±

〉
=

1

E
(0)
n

(
Ĥ0
∣∣∣nl(1);E±

〉
+ ĤJT

∣∣∣nl(0);E±

〉)
(C.3)

The simplification for E ⊗ (e⊗ e⊗ · · · ) problem comes from the symmetry of
Hamiltonian. The eigenstates of vibronic Hamiltonian must be the eigenstates
of Ĵel [see Eq (2.94)]. Therefore, the correction term |nl(1);E±〉 cannot have
contributions from the degenerate subspace of |nl(0);E±〉 (note that degeneracy
is between different values of l and electronic levels |E±〉). Following this
argument, we write the first-order correction term:

∣∣∣nl(1);E±

〉
=
∑
ñl̃6=nl

〈ñl̃(0);E∓|ĤJT|nl(0);E±〉
E

(0)
ñ − E

(0)
ñ

∣∣∣ñl̃(0);E∓

〉
.

This equation applied to the lowest energy eigenstate yields:∣∣∣00(1);E±

〉
= −A

√
2
∑
k

Kk |E∓〉 |nk=1, lk=±1〉
∏
l 6=k
|nl=0, ll=0〉 , (C.4)

where A = 1/
√

1 + 2
∑

kK
2 is the normalization factor. The second-order

correction for the ground state can be derived by considering λ2 order expres-
sion:(

Ĥ0 − E(0)
0

) ∣∣∣00(2);E±

〉
= −ĤJT

∣∣∣00(1);E±

〉
+ E

(2)
0;±

∣∣∣00(0);E−

〉
.

(C.5)
Multiplying this equation from the left-hand side by 〈nl(0);E±|, we get an
expression for expansion coefficient:

〈
nl(0);E±

∣∣∣00(2);E±

〉
= −〈nl(0);E±|ĤJT|00(1);E±〉

E
(0)
n − E(0)

0

.

Note that 〈nl(0);E∓|00(2);E±〉 = 0. The second-order correction takes the
form: ∣∣∣00(2);E±

〉
= −

∑
nl

〈nl(0);E±|ĤJT|00(1);E±〉
E

(0)
n − E(0)

0

∣∣∣nl(0);E±

〉
.
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Using Eqs. (C.4) and (2.100) (and after some algebra), we arrive at the expres-
sion for the second-order correction:∣∣∣00(2);E±

〉
(C.6)

=
√

2
∑
k

K2
k |00, nk=2, lk=0,00;E±〉

+
√

8
∑
k

∑
q 6=k

KkKq |00, nk=1, lk=1,00, nq=1, lq=−1,00;E±〉 .

Finally, from Eq. (C.5), we can derive the formal expression for the second-
order energy correction:

E
(2)
n;± = −

∑
ñl̃ 6=nl

|〈ñl̃(0);E∓|ĤJT|nl(0);E±〉|2

E
(0)
ñ − E

(0)
ñ

. (C.7)

Substituting Eq. (2.100) and summing over all values of nl, we get a general
expression for energy correction:

E
(2)
nl;± = −

∑
k

2K2
kωk(1± lk). (C.8)

For the ground state, this expression reduces to:

E
(2)
n;± = −2

∑
k

K2
kωk.
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SANTRAUKA

1 Įžanga
Jei pažiūrėtume į kristalą geru mikroskopu, pamatytume, kad jis turi labai
tvarkingą periodinę atominę struktūrą. Tačiau kristale visada galime rasti
defektų, kurie pažeidžia periodinę simetriją ir pakeičia kristalo fizikines savy-
bes. Defektų yra įvairių rūšių, o pati paprasčiausia yra taškiniai defektai. Tokie
defektai sutrikdo artimąją tvarką vieno arba kelių atomų aplinkoje. Pavyzdžiui,
kai kurių atomų gali trūkti (vakansija) arba tam tikri atomai gali būti pakeisti
svetimais (pakaitinis defektas). Puslaidininkiuose taškiniai defektai yra skirs-
tomi į dvi grupes: seklieji (angl. shalow) ir gilieji (angl. deep) defektai. Seklieji
defektai lengvai atiduoda elektronus kristalo laidumo juostai arba juos pasiima
iš valentinės juostos, taip nulemdami puslaidininkio laidumą ir jo tipą. Tuo tar-
pu, giliesiems defektams energija, reikalinga išlaisvinti arba pagauti elektroną,
yra daug didesnė nei charakteringa šiluminė energija. Šių defektų elektroninės
būsenos yra stipriai lokalizuotos ir primena atomų arba molekulių sistemas. Ši
disertacija ir yra apie tokius giliuosius kristalo defektus bei jų teorinį aprašymą.

Žiūrint iš istorinės pusės, gilieji defektai buvo laikomi žalingais, nes jie
dažnai neigiamai veikia medžiagos savybes, pageidautinas technologiniams
taikymams. Tačiau paskutinių dvidešimties metų bėgyje atsirado naujas susi-
domėjimas optiškai aktyviais giliaisiais kristalo defektais (spalviniais centrais).
Visų pirma, tam tikri defektai pasižymi stabilia optine spinduliuote. Ši savybė
leidžia aptikti pavienius centrus ir juos naudoti kaip pavienių fotonų šaltinius
kvantinės optikos taikymuose [4]. Be to, kai kurių giliųjų defektų lokalizuotos
elektroninės būsenos gali būti kontroliuojamos bei nuskaitomos, naudojant
optinius ir/ar elektrinius metodus. Šiuo metu didžiausias technologinis progre-
sas yra pasiektas giliųjų defektų sukininių būsenų valdyme [5–8]. Dėl silpnos
sąveikos su aplinka puslaidininkio defektų sukiniai turi ilgus koherentiškumo
laikus (kartais net kambario temperatūroje). Šių savybių dėka galime valdyti
kvant-mechanines koherentines būsenas laiko skalėse, tinkamose modernioms
kvantinėms technologijoms [9]. Tokie defektai dažnai vadinami tiesiog „kvan-
tiniais defektais“.
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Šioje disertacijoje tiriamas neigiamai įkrautas azoto ir vakansijos komplek-
sas deimanto kristale, kitaip vadinamas NV− centru [10]. Šis gilusis defektas
yra optiškai aktyvus ir pasižymi stabilia optine spinduliuote. NV− centro su-
kininės būsenos gali būti paruoštos (inicializuotos) ir nuskaitytos naudojant
lazerio spinduliuotę, o vėliau ir koherentiškai valdomos mikrobangomis [21].
Sukinių koherentiškumo laikai siekia milisekundes kambario temperatūroje [22]
ir net sekundes kriogeninėse temperatūrose [23]. Šių savybių dėka deimanto
NV− centras tapo viena iš pagrindinių sistemų, taikomų tirti ir realizuoti įvairias
kvantines technologijas [9]. Daug sėkmingų eksperimentų yra pademonstruota
kvantinės metrologijos [11], kvantinės komunikacijos [12] ir kvantinės kom-
piuterijos [13, 14] srityse. Šie pasiekimai įkvėpė ieškoti kitų defektų, tinkančių
kvantinių reiškinių tyrimui bei technologijų kūrimui [15]. Šiuo metu yra aptik-
tos ir kitos sistemos, turinčios panašias kvant-mechanines savybes į NV cent-
rą [6, 8, 16]. Viena iš jų yra neigiamai įkrautas silicio–vakansijos (SiV−) centras
deimante [16, 171], kuris taip pat yra teoriškai nagrinėjamas disertacijoje.

Giliųjų defektų tyrimai reikalauja daug eksperimentinių ir teorinių pastangų.
Visų pirma, defektas kompleksiškai sąveikauja su jį supančia kristalo aplinka,
kurioje apstu kitų struktūrinių ir izotopinių defektų. Todėl eksperimente kartais
yra sunku atskirti tik defektui būdingas savybes nuo jį supančios aplinkos. Net
defekto cheminės struktūros nustatymas yra gana sudėtinga užduotis. Dėl šių
priežasčių defekto teorinis aprašymas yra ir svarbus, ir naudingas.

Ši disertacija yra apie giliųjų defektų elektroninės, virpesinės ir vibroninės1

struktūros teorinį nagrinėjimą. Šios struktūros yra pamatinės ir patikimas jų
nustatymas yra svarbus žingsnis, siekiant suprasti sudėtingą giliųjų defektų
fiziką. Tikslus šių struktūrų aprašymas leidžia modeliuoti defekto sąveiką su
šviesa ir nustatyti spinduliuotės bei sugerties spektrus. Dėl sąveikos su gardele
spalvinio centro liuminescencijos ir sugerties spektrų linijos dažnai turi uni-
kalią formą, kuri yra savotiškas „defekto parašas“. Taigi, lygindami modelinį
spektrą su eksperimentu, galime įvertinti teorinių metodų patikimumą, o tikslus
spektrų nustatymas pasitarnautų defektų identifikavimui. Šioje disertacijoje
tobulinamos ir vystomos ab initio teorinės metodologijos, skirtos: (i) virpesinės
ir vibroninės struktūros, (ii) elektron–fononinės sąveikos, (iii) optinių linijų ir
(iv) fotojonizacijos skerspjūvių aprašymui. Šios metodologijos pritaikomos dei-
manto giliųjų defektų teoriniam nagrinėjimui. Darbe pateiktos kelios svarbios
fizikinės išvados apie SiV− ir NV− centrų virpesinę struktūrą bei NV− centro
sąveiką su šviesa.

1Šioje disertacijoje sąvoka „vibroninis“ reikšia būseną, kurioje negalime adiabatiškai atskirti
elektroninių ir virpesinių laisvės laipsnių.
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1.1 Tyrimo tikslai ir uždaviniai
Pirmasis šios disertacijos tikslas yra išvystyti teorines metodologijas, skirtas
virpesinių struktūrų, optinių linijų ir fotojonizacijos procesų aprašymams. Ant-
rasis tikslas yra šių metodų taikymas paaiškinti SiV− ir NV− centrų virpesinę
struktūrą bei NV− centro fotojonizacijos mechanizmus. Šiems tikslams pasiekti
buvo suformuluoti keli uždaviniai:

(1) Tobulinti teorinę skaitinę metodologiją pavienių defektų virpesinės struk-
tūros nagrinėjimui.

(2) Sukurti praktinę teorinę metodologiją neadiabatinių Jahn–Teller sąveikų
analizei daugelio virpesinių modų sistemoje.

(3) Sukurti teorinę metodologiją giliųjų defektų fotojonizacijos skerspjūvių
kiekybiniam skaičiavimui.

(4) Teoriškai ištirti neigiamai įkrauto silicio–vakansijos (SiV−) centro virpe-
sinę struktūrą bei paaiškinti liuminescencijos spektre stebimą izotopinį
fononų piko poslinkį.

(5) Sumodeliuoti neigiamai įkrauto azoto–vakansijos (NV−) centro liumines-
cencijos ir sugerties spektrus bei paaiškinti eksperimente stebimą asimetri-
ją tarp šių dviejų spektrų.

(6) Ištirti galimus NV− centro fotojonizacijos mechanizmus ir suskaičiuoti
šių jonizacijos procesų slenksčius bei skerspjūvius.

1.2 Ginamieji teiginiai

(I) Deimanto SiV− centro fotoliuminescencijos spektro aštri fononų smailė
atsiranda dėl eu simetrijos virpesinio rezonanso. Šios smailės egzistavi-
mas spektre nepaaiškinamas Frank–Condon artinio ribose ir reikalauja
tikslesnės elektron–fononinės sąveikos teorijos. Galima šios smailės
egzistavimo spektre priežastis yra Herzberg–Teller efektas.

(II) Darbe išvystyta nauja ab initio teorinė metodologija, skirta daugelio modų
Jahn–Teller sąveikų analizei. Ši metodologija patobulina esamus teorinius
metodus, kurie remiasi vienos modos artiniu.

(III) Mūsų ab initio liuminescencijos ir sugerties linijų skaičiavimo metodolo-
gija dideliu tikslumu atkartoja NV− centro eksperimentinius spektrus.

(IV) Jonizavus NV− centrą iš sužadintos 3E būsenos, neutralus NV centras
atsiduria kvartetinėje 4A2 būsenoje. Šio jonizacijos proceso slenksčio
energija yra 1.15 eV. Kvartetinės būsenos modelis paaiškina elektronų
sukinių rezonanso eksperimentus, kuriuose stebima 4A2 būsenos sukinių
poliarizacija.
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(V) Mūsų ab initio fotojonizacijos skerspjūvių skaičiavimai puikiai paaiškina
naujus NV− centro fotojonizacijos eksperimentus ir suteikia naujų svarbių
žinių apie NV krūvio dinamiką.

1.3 Darbo aktualumas ir naujumas

Disertacijoje nagrinėjami optiškai aktyvūs gilieji kristalo defektai ir jų ab
initio teorinio aprašymo galimybės. Darbe pristatomi nauji teoriniai meto-
dai, skirti nagrinėti defekto virpesinę ir vibroninę struktūras. Didelė diser-
tacijos dalis yra apie optinių spektrų modeliavimą, kurių nustatymas turėtų
pasitarnauti naujų defektų analizei ir atpažinimui. Toliau trumpai aptaria-
mos darbe išvystytos metodologijos bei jų praktinis taikymas tiriamoms siste-
moms.

Virpesių ir virpesinių rezonansų analizės metodologija. Doktorantūros
metu tobulinta defekto virpesių skaičiavimo metodologija bei parašytas virpesių
skaičiavimo programinis paketas, kuris tinka aukšo našumo kompiuteriams.
Ši programa skaičiuoja defekto virpesius labai didelėse supergardelėse, kurios
efektyviai aprašo izoliuoto defekto sistemą. Taip pat darbe pristatomas naujas
metodas analizuoti defekto virpesinius rezonansus bei jų izotopinius poslinkius.

Ši virpesių skaičiavimo metodologija buvo praktiškai pritaikyta deimanto
kristalo silicio–vakansijos (SiV) ir azoto–vakansijos (NV) defektų nagrinėjimui.
Tyrimo metu gautos naujos fizikinės išvados apie šių centrų virpesinę struktūrą.

Daugelio modų Jahn–Teller sistemų analizės metodologija. Elektroninės
būsenos išsigimimas lemia Jahn–Teller efektą, dėl kurio negalime efektyviai
atskirti jonų ir elektronų dinamikos, kaip tai daroma adiabatiniame artinyje.
Tokios sistemos analizė yra labai sudėtinga ir iki šiol defektuose Jahn–Teller
efektai nagrinėti naudojant vienos sąveikaujančios modos modelį. Šioje diser-
tacijoje pristatome naują praktinį metodą, pagrįstą tankio funkcionalo teorijos
skaičiavimais, kurio dėka galima aprašyti daugelio virpesinių modų Jahn–Teller
sistemą. Ši metodologija atveria naujas galimybes teoriniam išsigimusių defek-
to būsenų aprašymui.

Disertacijoje Jahn–Teller sistemos analizė pritaikyta modeliuojant NV−

centro emisijos ir sugerties spektrus. Gautos linijos puikiai atitinka eksperimen-
tą ir demonstruoja metodologijos bei tankio funckionalo teorijos skaičiavimų
patikimumą.
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Fotojonizacijos skerspjūvių skaičiavimo metodologija. Kiekybiniai ab ini-
tio fotojonizacijos skerspjūvių skaičiavimai defektams iki šiol nebuvo pade-
monstruoti. Šiame darbe pristatoma nauja metodologija, skirta jonizacijos
skerspjūvių skaičiavimui, naudojant tankio funkcionalo teoriją.

Ši metodologija buvo praktiškai pritaikyta nagrinėjant NV− centro fotojo-
nizacijos mechanizmus. Tyrime suskaičiuoti jonizacijos, sugerties ir stimuliuo-
tos emisijos skerspjūviai. Šių duomenų pagalba parodyta, kuriose energijos
ruožuose fotojonizacija dominuoja prieš stimuliuotą emisiją bei sugertį. Gauti
rezultatai suteikia naujų žinių apie NV krūvio dinamiką bei puikiai sutampa su
naujausiais fotojonizacijos eksperimentais.

1.4 Autoriaus indėlis ir rezultatų pristatymas mokslinei
visuomenei

Disertacijos darbo rezultatai buvo pristatyti penkiose mokslinėse publikacijose:

(I) E. Londero, G. Thiering, L. Razinkovas, A. Gali, and A. Alkauskas, Vi-
brational modes of negatively charged silicon-vacancy centers in diamond
from ab initio calculations, Phys. Rev. B 98, 035306 (2018).

(II) L. Razinkovas, M. W. Doherty, N. B. Manson, C. G. Van de Walle, and
A. Alkauskas, Vibrational and vibronic structure of isolated point defects:
The nitrogen-vacancy center in diamond, Phys. Rev. B 104, 045303
(2021).

(III) L. Razinkovas, M. Maciaszek, F. Reinhard, M. W. Doherty, and A. Al-
kauskas, Photoionization of negatively charged NV centers in diamond:
theory and ab initio calculations, Phys. Rev. B, priduotas (2021).

(IV) L. Skuja, K. Smits, A. Trukhin, F. Gahbauer, R. Ferber, M. Auzinsh,
L. Busaite, L. Razinkovas, M. Mackoit-Sinkeviciene, and A. Alkauskas,
Dynamics of Singlet Oxygen Molecule Trapped in Silica Glass Studied by
Luminescence Polarization Anisotropy and Density Functional Theory, J.
Phys. Chem. C 124, 7244 (2020).

(V) M. Maciaszek, L. Razinkovas and A. Alkauskas, Thermodynamics of
carbon defects in hexagonal boron nitride, Phys. Rev. Mater., priduotas
(2021).

Šios disertacijos autorius yra pagrindinis publikacijų (II) ir (III) autorius. Auto-
riaus darbo rezultatai buvo pristatyti keliose mokslinėse konferencijose:
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(1) L. Razinkovas (pranešėjas), A. Alkauskas, Virpesinės izoliuotų taškinių
defektų savybės, 42-oji Lietuvos Nacionalinė Fizikos konferencija, 2017-
10-04, Vilnius, Lietuva.

(2) L. Razinkovas (pranešėjas), A. Alkauskas, Defektų liuminescencijos linijos
modeliavimas ab initio metodais, FizTech, 2018-10-17, Vilnius, Lietuva.

(3) L. Razinkovas (pranešėjas), G. Thiering, A. Gali, A. Alkauskas, Vibra-
tional modes of negatively charged silicon-vacancy centers in diamond
from ab initio calculations, Diamond Workshop SBDD XXIV, 2019-03-13,
Haseltas, Belgija.

(4) L. Razinkovas (pranešėjas), E. Londero, G. Thiering, A. Gali, A. Alkaus-
kas, Vibrational modes of negatively charged silicon-vacancy centers in
diamond from ab initio calculations, FizTech, 2019-10-23, Vilnius, Lietuva.

(5) L. Razinkovas (pranešėjas), M. Maciaszek, F. Reinhard, M.W. Doherty, A.
Alkauskas, Photoionization of negatively charged NV centers in diamond:
theory and ab initio calculations, ICDS 31, 2021-07-25, Oslas, Norvegija.

2 Disertacijos sandara

Šią disertaciją sudaro penki pagrindiniai skyriai. Įvadiniame skyriuje trumpai
aptariami gilieji kristalo defektai ir jų svarba, kuriant kvantines technologijas.
Čia suformuluojamas tiriamojo darbo tikslas ir pagrindiniai uždaviniai. For-
mali defekto elektroninės, virpesinės ir vibroninės struktūros teorija pristatoma
antrame skyriuje. Šio skyriaus turinys daugiausia remiasi kitais moksliniais
šaltiniais. Autoriaus originalus indėlis yra pateiktas skyreliuose 2.5.3, 2.6.3
ir 2.6.4, kuriuose nagrinėjama NV centro Jahn–Teller sistema. Šiuose skyreliuo-
se pristatomos ir išvedamos lygtys, taikomos nagrinėjant NV centro vibroninę
struktūrą. Trečias disertacijos skyrius pristato defekto virpesinės struktūros
tyrimo metodologiją. Ši metodologija pritaikyta dviems neigiamai įkrautiems
deimanto defektams: azoto–vakansijos (NV) ir silicio–vakansijos (SiV) cent-
rams. Silicio-vakansijos virpesinės struktūros tyrimo medžiaga publikuota
disertacijos straipsnyje [T1]. Ketvirtame skyriuje pristatomi NV− centro liu-
minescencijos ir sugerties spektrų skaičiavimai. Gauti spektrai lyginami su eks-
perimentu ir aptariamas teorijos patikimumas ir trūkumai. Šio tyrimo medžiaga
publikuota disertacijos straipsnyje [T2]. Penktame skyriuje nagrinėjama NV
centro fotojonizacija, kurios metu defektas pakeičia krūvio būseną iš neigiamai
įkrautos (NV−) į neutralią (NV0). Čia pristatomi fotojonizacijos slenksčių ir
skerspjūvių skaičiavimai, kurie publikuoti disertacijos straipsnyje [T3]. Toliau
trumpai apžvelgsime disertacijos turinį ir pagrindines išvadas.
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2.1 Teorijos ir metodologijos apžvalga: elektroninė, virpesinė ir
vibroninė defekto struktūra

Kalbėdami apie virpesių molekulėse ar kietuosiuose kūnuose aprašymą nau-
dojant kvantinę mechaniką, visada turime omenyje adiabatinę aproksimaciją,
kuri efektyviai atskiria branduolių sistemą nuo elektronų. Iš tikrųjų, adiabatinių
aproksimacijų yra keletas rūšių, o pati paprasčiausia yra statinė adiabatinė
aproksimacija (žr. 2.2 skyrelį). Ji naudojama šiame darbe. Nors šis adiabatinis
artinys yra grubiausias iš visų, jis yra labai patogus nagrinėjant sudėtingesnius
neadiabatinius reiškinius (Jahn–Teller efektą). Statinėje aproksimacijoje elekt-
roninės sistemos Schrödinger lygtis yra sprendžiama laikant, kad branduoliai
yra klasikinės nejudančios dalelės. Suradę elektroninės lygties sprendinius,
galime suskaičiuoti adiabatinės potencinės energijos paviršius branduoliams,
o šie paviršiai pilnai apibrėžia kvant-mechaninį uždavinį gardelės dinamikai.
Formaliai, adiabatinis bendrosios sistemos sprendinys užsirašo taip:

Ψi,n(r,R) = ψi(r)χi,n(R),

čia ψi(r) yra elektroninė banginė funkcija, o χi,n(R) yra branduolių banginė
funkcija, elektronams esant būsenoje i. Taigi, kai kalbame apie elektroninę ir
virpesinę struktūrą, visada turime omenyje šias dvi dedamąsias.

Elektroninės sistemos sprendimas: tankio funkcionalo teorija

Adiabatiniame artinyje pirmoji užduotis yra elektroninių būsenų ψi(r) radimas.
Daugelio dalelių sistemoms tikslus elektroninės Schrödinger lygties sprendi-
mas yra neįmanomas, todėl naudojami artutiniai metodai. Šiame darbe mes
pasirinkome tankio funkcionalo teoriją (angl. density functional theory, DFT),
kuri leidžia apytiksliai spręsti elektroninį uždavinį skaitiniais metodais (žr. 2.3
skyrelį). Defekto elektroninių būsenų skaičiavimams naudojamas geometrinis
supergardelės modelis (žr. 2.3.4 skyrelį), kuriame defektas yra patalpinamas į
didelį, periodiškai atsikartojantį kristalo gardelės fragmentą.

Tankio funkcionalo teorija yra griežtai apibrėžta pagrindinės elektroninės
būsenos radimui, o teorijos netobulumai atsiranda dėl apytisklių pakaitos–kore-
liacijos funcionalo formų (angl. exchange–correlation functional). Naudodami
modernius funkcionalus, dideles supergardeles ir šiuolaikinius superkompiute-
rius galime gana tiksliai surasti pagrindinę elektroninę būseną ir suskaičiuoti jos
adiabatinius potencinės energijos paviršius. Tačiau sužadintų būsenų skaičiavi-
mas yra labiau apytikslis ir sudėtingesnis. Šių būsenų modeliavimui naudojame
taip vadinamą ∆SCF metodologiją (2.3.2 skyrelis) ir molekulinių defekto
orbitalių modelį (2.3.5 skyrelis).
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Defekto virpesiai: įterpimo metodologija

Suradus elektroninės sistemos būsenas, defekto gardelės virpesiai skaičiuojami
taikant harmoninę aproksimaciją, kurioje virpesiai atitinka mažos amplitudės
judėjimą apie pusiausvyrąsias padėtis (žr. 2.4 skyrelį). Tokie sprendiniai įprastai
vadinami „fononais“ arba „modomis“. Defektas pakeičia idealios gardelės
virpesinę struktūrą. Įterpus defektą, gali atsirasti lokalios arba rezonansinės
modos, kurių amplitudė defekto aplinkoje yra didesnė, lyginant su erdviškai
išplitusiais kristalo virpesiais. Dėl šios priežasties, tokio tipo virpesiai stipriau
sąveikauja su elektronine sistema ir yra svarbūs, aprašant elektron fononinius
defekto reiškinius. Lokalios modos atsiranda energijos srityje, kurioje idealus
kristalas neturi virpesių. Šios modos yra stipriai lokalizuotos. Tuo tarpu
rezonansinės modos yra perturbuoti kristalo virpesiai. Jos susigrupuoja tam
tikros energijos diapazone. Taigi, kalbėdami apie virpesinį rezonansą, visada
turime omenyje ne vieną modą, o lokalizuotų modų rinkinį.

Deja, praktiniai virpesinės struktūros skaičiavimai supergardelės geomet-
rijoje nėra labai tikslūs. Supergardelėje modeliuojamas tankiai periodiškai
atsikartojantis defektas. Tačiau realiame kristale defektų koncentracija yra labai
maža ir tikslesnis modelis būtų „izoliuotas defektas begaliniame kristale“. Dėl
skaičiavimų sudėtingumo ir laiko, tankio funkcionalo teorijos skaičiavimuo-
se supergardelės dydis negali viršyti šimtų ar tūkstančių atomų. Disertacijos
tyrime parodome, kad tokiose gardelėse virpesinė struktūra netiksliai atspindi
izoliuoto defekto modelį. Šios problemos sprendimui naudojame įterpimo
metodologiją (angl. embedding methodology), kurioje iš skaičiavimų mažose
supergardelėse sukonstruojamas virpesinės struktūros modelis labai didelėms
supergardelės geometrijoms (3.3 skyrelis). Šiose sistemose atomų skaičius gali
siekti dešimtis tūkstančių atomų.

Jahn–Teller sistema ir vibroninės būsenos

Adiabatinė aproksimacija yra gana tiksli, kada energijos skirtumai tarp elektroninių
lygmenų yra daug didesni nei charakteringa virpesinės sistemos sužadinimo
energija. Tačiau aukšta defekto taškinė simetrija dažnai lemia išsigimusias
elektronines būsenas. Šiuo atveju adiabatinė aproksimacija tampa nekorektiška
ir nebegalime atskirai nagrinėti elektronų ir branduolių dinamikos. Paprastai
kalbant, išsigimusios sistemos branduolių dinamika stipriai veikia elektroninę
posistemę ir atvirkščiai. Tokios būsenos literatūroje vadinamos Jahn–Teller
(JT) sistemomis (žr. 2.5 skyrelį), o jų bendra banginė funkcija turi pavidalą:

Ψ(r,R) =
∑
i

ψi(r)χi(R),
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čia i sumuojamas per išsigimusius elektroninius lygmenis ψi(r). Jahn–Teller
sistemos sprendimas yra sudėtingas, todėl dažniausiai defektų fizikoje yra
naudojamas efektyvus vienos modos modelis [106, 111]. Nors šis modelis
paaiškina kokybinę sistemos elgseną, kiekybiniam aprašymui jis tinka tik labai
stiprios Jahn–Teller sąveikos atveju [112]. Dėl šios priežasties disertacijoje
detaliai nagrinėjamas teorinis Jahn–Teller sistemų aprašymas. Čia pirmą kartą
pristatoma ab initio metodologija, skirta teoriniam daugelio modų JT sistemos
nagrinėjimui.

2.2 Virpesinė defekto struktūra

Šios disertacijos trečiame skyriuje nagrinėjama deimanto NV− ir SiV− centrų
virpesinė struktūra. Šiame skyriuje pristatoma įterpimo metodologija (angl. em-
bedding methodology), skirta nagrinėti virpesius efektyviai izoliuotoje defekto
sistemoje. Taikant šią metodologiją, suskaičiuoti centrų virpesiniai spektrai
ir atlikta virpesių lokalizacijos bei simetrijos analizė. NV− defekto virpe-
sinis spektras vėliau naudojamas optinių linijų modeliavimui, kuris pristato-
mas ketvirtame disertacijos skyriuje. SiV− centro virpesinių rezonancų bei
jų izotopinių poslinkių tyrimas buvo publikuotas disertacijos straipsnyje [T1].
Toliau trumpai pristatysime SiV− centro tyrimą ir pagrindines išvadas.

SiV− centro virpesinė struktūra

Per pastarąjį dešimtmetį neigiamai įkrautas silicio–vakansijos (SiV) centras
deimante tapo perspektyviu konkurentu NV centrui [171]. Šis centras turi
geras spektrines charakteristikas: jo liuminescencijos fononinė pajuostė yra
labai silpna ir maždaug apie 70% spinduliuotės intensyvumo tenka befononei
linijai [142] (žr. 3.11(b) pav.). Toks befononės linijos ryškumas yra labai svar-
bus koherentinių fotonų emisijai, kuri reikalinga kvantinės optikos ir kvantinių
technologijų taikymams.

Neseniai atliktame SiV centro eksperimentiniame tyrime buvo stebėtas
liuminescencijos piko, nutolusio nuo befononės linijos per 64 meV, poslin-
kis žemesnių energijų kryptimi [141], atsirandantis keičiant silicio izotopą.
Ankstesni tankio funkcionalo teorijos skaičiavimai aptiko lokalizuotą modą
su panašia energija (56.5 meV) [140], tačiau teoriškai suskaičiuoti izotopiniai
poslinkiai yra daug mažesni nei stebima eksperimente. Eksperimente 29Si ir
30Si izotopams piko energija sumažėjo atitinkamai 1.02 meV ir 2.21 meV. Tuo
tarpu teoriniai poslinkiai yra 0.62 meV ir 1.24 meV.
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1 lentelė: Teorinių skaičiavimų palyginimas su ekperimentiniais duomenimis.
Teorija: a2u ir eu simetrijos virpesinių rezonansų dažniai Ω ir izotopiniai po-
slinkiai. Eksperimentas: liuminescencsijos fononų pikų dažniai Ω ir izotopiniai
poslinkiai. Eksperimentiniai duomenys iš šaltinio [141]. ND = „neužfiksuo-
tas“.

Teorija: virpesiniai rezonansai

simetrija Ω28 (meV) Ω28/Ω29 Ω28/Ω30

a2u 43.4 1.018 1.035
eu 60.1 1.021 1.039

Eksperimentas: fotoliuminescencijos fononų pikai

Ω28 (meV) Ω28/Ω29 Ω28/Ω30

64 1.016 1.036
42 ND ND

Disertacijoje, taikant tankio funkcionalo teoriją ir įterpimo metodologiją,
nagrinėta neigiamai įkrauto SiV centro virpesinė struktūra. Įterpimo metodo-
logijos pagalba tirti defekto virpesiniai spektrai gardelėse, talpinančiose iki
5832 atomų. Tyrime nustatyta, kad defekto perturbacija lemia dviejų a2u ir
eu simetrijos virpesinių rezonansų atsiradimą. Savo skaičiavimuose parodo-
me, kad izotopinio poslinkio nustatymas, nagrinėjant vieną rezonanso virpesį,
nėra korektiškas. Būtent ši priežastis ir lėmė izotopinių poslinkių neatitiki-
mą tarp eksperimento ir ankstesnių teorinių skaičiavimų [140]. Tuo tikslu
darbe pristatyta nauja metodologija virpesinių rezonansų nagrinėjimui ir jų
izotopinių poslinkių nustatymui. Naudojant šią metodologiją suskaičiuotos
virpesinių rezonansų energijos ir izotopiniai poslinkiai. Šie rezultatai, kartu
su eksperimentiniais fononų piko matavimais, pateikti 1 lentelėje. Matome,
kad teorinė eu rezonanso energija ir izotopinis poslinkis puikiai sutampa su
64 meV eksperimentiniu piku ir jo poslinkiu. Šis sutapimas leidžia spėti,
kad liuminescencijos pikas ties 64 meV atsiranda dėl eu virpesinio rezonanso.
Tačiau mūsų tyrimas rodo, kad eu simetrijos modų atsiradimas liuminescen-
cijos spektre yra nepaaiškinamas Franck–Condon artinio ribose. Dėl šios
priežasties, darbe iškelta hipotezė: eu fononai dalyvauja optiniame šuolyje
dėl Herzberg–Teller efekto, kurio metu branduolių virpesys moduliuoja opti-
nio šuolio matricinį elementą. Šis tyrimas publikuotas pirmame disertacijos
straipsnyje [T1].
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2.3 Deimanto NV− centro liuminescencijos ir sugerties linijos

Ketvirtas disertacijos skyrius yra skirtas giliųjų defektų optinio spektro linijų
modeliavimui. Šios linijos turi defektams specifišką formą, kuri yra nulemta
elektroninės ir virpesinės defekto struktūros. Todėl tikslūs tokių linijų skaičia-
vimai turi keleriopą svarbą. Visų pirma, gebėjimas tiksliai atkartoti eksperi-
mentinį spektrą pasitarnautų identifikuojant giliuosius kristalo defektus. Tačiau
ne mažiau svarbus yra ir teorinis aspektas. Tokių spektrinių linijų modeliavimas
remiasi į elektroninės ir virpesinės struktūros teorinį aprašymą. Lygindami
teoriją su eksperimentu mes galime įvertinti teorinių metodų bei artinių patiki-
mumą. Defektų optinių linijų skaičiavimas yra sena teorinės fizikos problema,
nagrinėta jau daugiau nei prieš pusę šimtmečio [124, 125]. Deja, tikslūs šių
linijų skaičiavimai, naudojant pirminius kvantinės mechanikos principus, yra
gana sudėtingi ir iki šiol nėra gerai išvystyti.

Disertacijoje nagrinėjamos neigiamai įkrauto deimanto NV centro optinio
spektro linijos. Šis defektas turi gerai ištirtas spektrines charakteristikas, kurių
fizikinė prigimtis dar nėra iki galo paaiškinta. NV− centras yra įdomus ir
tuo, kad optiškai sužadinta elektroninė būsena yra dvigubai išsigimusi. Šis
išsigimimas lemia dinaminį Jahn–Teller efektą. Todėl, darbe daug dėmesio
skirta Jahn–Teller efekto teoriniam nagrinėjimui. Vienas iš pagrindinių diser-
tacijos pasiekimų yra naujos praktinės metodologijos, skirtos daugelio modų
E ⊗ (e⊕ e⊕ · · · ) Jahn–Teller sistemos analizei, sukūrimas.

Disertacijoje pristatomas NV− centro elektroninės, virpesinės ir vibroninės
sistemos tyrimas naudojant tankio funckionalo teorijos skaičiavimus. Siekiant
didelės optinių linijų spektrinės raiškos, defekto virpesinė struktūra skaičiuota
labai didelėse supergardelėse (iki 64 000 atomų). Skaičiavimai atlikti nau-
dojant PBE ir HSE pakaitos–koreliacijos funkcionalus. Šie funkcionalai yra
dažniausiai naudojami defektų elektroninės struktūros skaičiavimams. Mūsų
tyrimas rodo, kad abu tankio funkcionalai gerai aprašo virpesinę NV centro
struktūrą: teorinės PBE optinio spektro pikų vertės beveik idealiai sutampa
su eksperimentinėmis, tuo tarpu, HSE funkcionalui šios energijos yra šiek
tiek didesnės (žr. 4.9 ir 4.10 pav.). Nors bendra teorinė liuminescencijos ir
sugerties spektrų forma gerai sutampa su eksperimentu, matomas nedidelis
neatitikimas šių spektrų svorių pasiskirstyme. Šis nesutapimas atsiranda dėl
netiksliai įvertintos gardelės relaksacijos po optinio šuolio, o jo priežastis yra
netikslus sužadintos būsenos modeliavimas. Tyrimo metu pastebėta, kad neati-
tikimas, aprašant elektroninės sistemos sąveiką su virpesiais, yra sistemingas ir
maždaug vienodas visoje spektrinėje srityje. Tuo tikslu įvestas fenomenologi-
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1 pav.: Teorinės ir eksperimentinės (a) liuminescencijos ir (b) sugerties linijos.
Teoriniuose skaičiavimuose PBE Huang–Rhys spektrai padauginti iš fenomeno-
loginės konstantos ζ = 1.2: S′a1

= ζSa1(ω) ir S′e = ζSe(ω). Eksperimentiniai
spektrai iš [17], [109] ir [135].

nis daugiklis ζ, iš kurio dauginamos elektron–fononinės sąveikos konstantos
(Huang–Rhys parametrai). Parinkus vertę ζ = 1.2, gautos teorinės kreivės
puikiai sutampa su eksperimentu. 1 paveiksle pavaizduotos galutinės teorinės
(a) liuminescencijos ir (b) sugerties linijos kartu su eksperimentiniais spektrais.
Iš šių palyginimų matome, kad teorija puikiai atkartoja bendrą asimetriją tarp
emisijos ir absorbcijos bei paaiškina skirtingą pirmojo fononų piko struktūrą.
Mūsų skaičiavimai rodo, kad šio piko išplitimas sugerties spektre yra virpe-
sinės struktūros pokyčio sužadintoje būsenoje pasekmė. Šį piką lemia visiškai
simetrinės a1 modos, o ne Jahn–Teller aktyvios modos (kaip buvo manoma
anksčiau [111]).

Šio tyrimo rezultatai parodo, kad naudojant modernius tankio funckionalo
teorijos skaičiavimus galime dideliu tikslumu nustatyti giliųjų defektų optines
linijas. Tačiau iki idealaus tikslumo trūksta geresnių funkcionalų ir metodų,
skirtų sužadintų būsenų skaičiavimams. Neskaitant to, pristatytas tyrimas pato-
bulina pirminių principų skaičiavimo metodologiją elektron–fononinės sąveikos
aprašymams. Šis tyrimas publikuotas antrame disertacijos straipsnyje [T2].

2.4 Deimanto NV− centro fotojonizacija

Dauguma praktinių NV centro taikymų reikalauja optinio sužadinimo. Tačiau
stipriai šviesdami lazeriu, galime sukelti spindulinio centro fotojonizaciją,
kurios metu defekto sistema pakeičia krūvio būseną iš neigiamai įkrautos (NV−)
į neutralią (NV0). Daugumai taikymų šis procesas yra nepageidautinas, tačiau
egzistuoja ir atvejų, kada fotojonizacija yra naudinga. Pavyzdžiui, neseniai
pristatyti du nauji sukinio nuskaitymo protokolai, kurie pagrįsti neigiamo centro
fotojonizacijos mechanizmais [149, 150].
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2 lentelė: Neigiamai įkratuto NV centro fotojonizacijos slenksčiai. Eksperi-
mentiniai duomenys paimti iš šaltinių [148, 153]. Fotojonizacijos iš singletinės
būsenos IP(1E) vertė nebuvo tiesiogiai suskaičiuota, bet nustatyta naudojant
eksperimentinius duomenis iš šaltinio [158].

IP(3A2) IP(3E) IP(1E)

teorija 2.67 1.15 2.2
eksperimentas 2.6a, 2.7b – –

a Šaltinis [148]
b Šaltinis [153]

Eksperimentinis NV centro fotojonizacijos slenksčių ir skerspjūvių matavi-
mas yra sudėtingas. Visų pirma, šviečiant lazeriu pastoviai vyksta jonizacijos
ir rekombinacijos procesai, kurių metu defektas keičia krūvio būsenas. Todėl,
matavimuose yra sunku atskirti šiuos du procesus. Neskaitant to, NV− centro
fotojonizacija iš sužadintos būsenos konkuruoja su stimuliuotos emisijos proce-
su, kas padaro eksperimentinį tyrimą dar sudėtingesniu. Iš visų galimų NV−

centro fotojonizacijos mechanizmų yra žinomas tik jonizacijos iš pagrindinės
būsenos eksperimentinis energijos slenkstis (energija virš kurios prasideda foto-
jonizacijos procesas). Tačiau praktiniams taikymams (kai jonizacija žalinga ir
naudinga) svarbiausias mechanizmas yra jonizavimas iš sužadintos 3E būsenos,
kuris iki šiol nėra gerai ištirtas.

Šios disertacijos penktame skyriuje tiriama neigiamai įkrauto NV centro
fotojonizacija iš trijų elektroninių būsenų: 3A2, 3E ir 1E. Pirmoje tyrimo dalyje
nagrinėjama defekto elektroninė struktūra prieš ir po jonizacijos. Darbe nusta-
tyti procesų mechanizmai ir galutinės neutralaus centro būsenos, pavaizduotos
2 paveikslėlyje. Matome, kad po jonizacijos iš pagrindinės tripletinės (3A2) ir
metastabilios singletinės (1E) būsenų, defektas atsiduria 2E būsenoje, kuri yra
pagrindinė neutralaus centro būsena. Tačiau, jonizavus defektą iš sužadintos
3E būsenos, NV0 centras atsiduria metastabilioje kvartetinėje būsenoje 4A2.
Šis rezultatas prieštarauja nusistovėjusiai nuomonei, kad šio proceso galutinė
būsena irgi yra pagrindinė neutralaus centro būsena 2E. Darbe parodome, kaip
NV− sukinio poliarizacija lemia kvartetinės būsenos sukinio poliarizaciją. Šis
modelis paaiškina iki šiol nesuprastus elektronų paramagnetinio rezonanso
eksperimentus [159].

Antroje tyrimo dalyje skaitmeniškai nagrinėjami fotojonizacijos slenksčiai
ir skerspjūviai. Suskaičiuotos slenksčių vertės pateiktos 2 lentelėje (IP(3E) ir
IP(1E) vertės iki šiol nebuvo žinomos). Fotojonizacijos skerspjūvių nustatymui
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2 pav.: NV− centro fotojonizacijos mechanizmai iš 3A2, 3E ir 1E būsenų.
Horizontalios juodos linijos žymi NV− energetinius lygmenis, o pilkos – NV0

būsenas po jonizacijos. Brūkšniuotos rodyklės žymi galimus fotojonizacijos
perėjimus. EZPL yra befononė tripletinio šuolio energija.

3 pav.: Teoriniai pagavos skerspjūviai. Ištisinė juoda linija (σph): fotojonizacija
iš sužadintos 3E būsenos; tamsiai pilka ištisinė linija (σst): NV− stimuliuota
emisija; šviesiai pilka ištisinė linija (σintra): NV− sugertis; brūkšniuota juoda
linija: fotojonizacija iš singletinės 1E būsenos.
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sukurta nauja metodologija, kuri remiasi tankio funkcionalo teorijos skaičia-
vimais, defekto molekulinių orbitalių modeliu ir elektron–fononinės sąveikos
aprašymu. Šios metodologijos pagalba suskaičiuoti visų trijų mechanizmų
skerspjūviai. Svarbiausias tyrimo rezultatas yra pateiktas 3 paveikslėlyje, kuria-
me atvaizduoti jonizacijos skerspjūviai iš 3E ir 1E būsenų, kartu su tripletinio
šuolio (3A2 ↔ 3E) stimuliuotos emisijos ir sugerties skerspjūviais. Nagrinėjant
santykį tarp 3E jonizacijos ir stimuliuotos emisijos, nustatytos dvi energijos
sritys (∼1.25 ± 1 eV ir ∼1.92 ± 0.25 eV), kuriose fotojonizacija dominuo-
ja prieš stimuliuotą emisiją. Šios teorinės sritys puikiai sutampa su naujais
eksperimentiniais tyrimais, kuriuose efektyvi fotojonizacija buvo užfiksuota,
naudojant 1.93 eV ir 1.17 eV lazerius [167, 168]. Taip pat gautas geras ati-
tikimas su Hacquebard ir Childress eksperimentiniu tyrimu [166], kuriame
įvertintas pavienio centro fotojonizacijos ir stimuliuotos emisijos skerspjūvių
santykis, žadinant infraraudonos spinduliuotės lazeriu (1.62 eV) σst/σph ≈ 13.
Mūsų teorinė vertė, suskaičiuota šiai energijai yra σst/σph = 12. Šis atitikimas
pagrindžia teorinės metodologijos patikimumą.

Šio tyrimo turinys buvo publikuotas trečiame disertacijos straipsnyje [T3].
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9 Saulėtekio Ave., Building III, LT-10222 Vilnius
Email: info@leidykla.vu.lt, www.leidykla.vu.lt

Print run copies 15

212

mailto:info@leidykla.vu.lt
http://www.leidykla.vu.lt

	Contents
	Acknowledgments
	Preface
	Introduction
	Introduction to the NV center
	Main goals and tasks of the thesis
	Statements presented for the defense
	Authors contribution and presentation of the results

	Theory and formal development
	The nature of the problem
	Crude adiabatic approximation
	Electronic structure
	Density Functional Theory
	Kohn–Sham orbitals and excited-states
	Approximate exchange–correlation potentials
	Implementation
	Molecular-orbital model

	Vibrational structure
	Harmonic approximation
	Crystal vibrations
	Defect vibrations

	Degenerate states and vibronic structure
	Vibronic Hamiltonian
	Solution
	Jahn-Teller effect in the NV- center
	Jahn–Teller effect for (Ee) coupling

	Spectral properties
	Interaction with light
	Matrix elements: non-degenerate case
	Matrix elements: degenerate case
	Spectral functions


	Vibrational structure of defect: ab initio approach
	Lattice vibrations of diamond
	Finite-difference approach
	Symmetry considerations
	Phonon structure of diamond

	Supercell vibrational modes of the diamond NV- center
	Electronic structure
	Primary force constants for the excited state
	Vibrational structure
	Discussion

	Embedding methodology
	Description and justification
	Vibrations of the diamond NV- center in the dilute limit

	Isotopic shifts of negatively charged silicon-vacancy
	Introduction
	Electronic states
	Vibrational structure
	Isotopic shifts
	Discussion

	Summary and conclusions

	Luminescence and absorption lineshapes of diamond NV- center
	General formulation
	Coupling to a1 modes
	Vibrational modes and lattice relaxations
	Results: luminescence
	Results: absorption

	Coupling to e modes
	Calculation of coupling parameters
	Luminescence and absorption processes
	Methodology for multi-mode Jahn–Teller coupling
	Spectral functions for absorption and emission

	Optical lineshapes
	Discussion
	Summary and conclusions

	Photoionization of NV-: theory and ab initio calculations
	Introduction
	Photoionization mechanisms
	Photoionization from 3A2 state
	Photoionization from 3E state
	Photoionization from 1E state

	Theory and computational methodology
	Photoionization cross-section
	Electronic structure methods
	Electronic states and optical matrix elements
	The choice of the charge state
	Brillouin zone integration and supercell effects

	Spectral functions of electron–phonon interaction
	Results
	Photoionization thresholds and excitation energies
	Cross-sections

	Discussions
	Ensembles vs. single NV centers
	4A2 state as a state of NV0 directly after photoionization
	Photodynamics: comparison with selected experiments

	Summary and conclusions

	Elements of group theory
	Group and classes
	Group of the Shrödinger equation
	Irreducible representations
	Projection operators
	Irreducible sets of operators
	Clebsh–Gordan coefficients
	Wigner–Eckart theorem

	NV molecular orbital wavefunctions
	Orbital wavefunctions
	Two electrons
	Three electrons

	Spin eigenstates
	Two electrons
	Three electrons

	NV0 wavefunctions
	Ground state
	Excited spin-doublet states
	Metastable quartet state 4A2

	NV- wavefunctions

	Degenerate perturbation theory for E(e x e ...) problem
	Bibliography
	Santrauka
	Ižanga
	Tyrimo tikslai ir uždaviniai
	Ginamieji teiginiai
	Darbo aktualumas ir naujumas
	Autoriaus indelis ir rezultatu pristatymas mokslinei visuomenei

	Disertacijos sandara
	Teorijos ir metodologijos apžvalga: elektronine, virpesine ir vibronine defekto struktura
	Virpesine defekto struktura
	Deimanto NV- centro liuminescencijos ir sugerties linijos
	Deimanto NV- centro fotojonizacija


	Publications of doctoral disertation
	Curriculum vitae

