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Abstract: In this paper, we construct first- and second-order weak split-step approximations for the
solutions of the Wright–Fisher equation. The discretization schemes use the generation of, respectively,
two- and three-valued random variables at each discretization step. The accuracy of constructed
approximations is illustrated by several simulation examples.
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1. Introduction

We are interested in weak first- and second-order approximations for the Wright–Fisher
equation

Xx
t = x +

∫ t

0
(a− bXx

s ) ds + σ
∫ t

0

√
Xx

s (1− Xx
s ) dBs, x ∈ [0, 1], (1)

with parameters 0 ≤ a ≤ b and σ > 0. The Wright–Fisher (WF) process (a solution of
Equation (1)) is well defined in [0, 1] and models the gene frequencies in a population.
The main problem in developing numerical methods for “square-root” diffusions is that the
diffusion coefficient has unbounded derivatives near “singular” points (in our case, 0 and 1),
and therefore standard methods (see, e.g., Milstein and Tretyakov [1]) are not applicable;
typically, discretization schemes involving (explicitly or implicitly) the derivatives of the
coefficients usually lose their accuracy near singular points, especially for large σ.

Alfonsi [2] (Chap. 6) constructed a weak second-order approximation of the WF
process by using its connection with the Cox–Ingersoll–Ross (CIR) [3] process and the
earlier constructed approximations of the latter (Alfonsi [4]). The main result of this
paper is a direct construction of first- and second-order weak split-step approximations
of the WF processes by discrete random variables. We believe that in comparison with
the numerical scheme of Alfonsi [2] (Prop. 6.1.13, Algs. 6.1 and 6.2), our algorithm is
much simpler and easier to implement. In our construction, we follow some ideas of
Lileika and Mackevičius [5,6]. However, we had to overcome a serious additional challenge
(in comparison with CIR or CKLS processes): two “singular” points, 0 and 1, of the diffusion
coefficient make it essentially more difficult to ensure that the approximations take values
in [0, 1] (instead of [0,+∞) as in [5,6]).

The paper is organized as follows. In Section 2, we recall some definitions and results.
In Sections 3 and 4, we construct first- and second-order approximations for the WF
equation by two- and three-valued discrete random variables, respectively. The main
results of these sections are presented as Theorems 4 and 5. We illustrate the accuracy of
our approximations by several simulation examples. In Section 5, we prove an auxiliary
result on the smoothness of solutions of the corresponding backward Kolmogorov PDE
equation. Tedious technical calculations have been performed using Maple and Python.
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2. Preliminaries

In this section, we give some known definitions adapted to our context of the WF
process defined by Equation (1).

Having a fixed time interval [0, T], consider an equidistant time discretization ∆h =
{ih, i = 0, 1, . . . , [T/h], h ∈ (0, T]}, where [a] is the integer part of a. By a discretization
scheme (or approximation) of Equation (1) we mean any family of discrete-time homo-
geneous Markov chains X̂h =

{
X̂h(x, t), x ∈ [0, 1], t ∈ ∆h

}
in [0, 1] with initial values

X̂h(x, 0) = x and one-step transition probabilities ph(x, dz), x ∈ [0, 1]. For convenience, we
only consider steps h = T/n, n ∈ N. For brevity, we sometimes write X̂x

t or X̂(x, t) instead
of X̂h(x, t). Note that because of the Markovity, a one-step approximation X̂x

h of the scheme
completely defines the distribution of the whole discretization scheme X̂x

t , so that we only
need to construct the former. Therefore, we will abbreviate one-step approximations as
approximations. As usual, N and R are the sets of natural and real numbers, N := N∪ {0},
and R+ := [0, ∞).

We will write g(x, h) = O(hn) if, for some C > 0 and h0 > 0,

|g(x, h)| ≤ Chn, x ∈ [0, 1], 0 < h ≤ h0.

Definition 1 (c.f. [4], Def. 1.3, [6], Def. 1). A discretization scheme X̂h is a weak νth-order
approximation for the solution (Xx

t , t ∈ [0, T]) of Equation (1) if for every f ∈ C∞[0, 1],∣∣E f (Xx
T)−E f

(
X̂x

T
)∣∣ = O(hν).

Definition 2 ( c.f. [4], Def. 1.8, [6], Defs. 2, 3). The νth-order remainder of a discretization scheme
X̂x

t for Xx
t is the operator Rh

v : C∞[0, 1]→ C[0, 1] defined by

Rh
ν f (x) := E f

(
X̂x

h
)
−
[

f (x) +
ν

∑
k=1

Ak f (x)
k!

hk
]
, x ∈ [0, 1], h > 0,

where A is the generator of Xx
t ,

A f (x) = (a− bx) f ′(x) +
1
2

σ2x(1− x) f ′′(x).

A discretization scheme X̂x
t is a potential νth-order weak approximation of Equation (1) if

Rh
ν f (x) = O(hν+1)

for all f ∈ C∞[0, 1] and x ∈ [0, 1].

The following two theorems ensure that a potential νth-order weak approximation
is in fact a νth-order weak approximation (in the sense of Definition 1). Note that the
requirement of uniformly bounded moments (see, e.g., [4]) is obviously satisfied by our
approximations since they take values in [0, 1].

Theorem 1 (see Theorem 1.19 of [4]). Let X̂h be a discretization scheme with transition proba-
bilities ph(x, dz) on [0, 1] that starts from X̂x

0 = x ∈ [0, 1]. We assume that

1. the scheme is a potential weak νth-order discretization scheme for the operator A.
2. f ∈ C∞[0, 1] is a function such that u(t, x) = E f (Xx

T−t) defined on [0, T]× [0, 1] solves
∂tu(t, x) = −Au(t, x) for (t, x) ∈ [0, T]× [0, 1].

Then |E f (X̂x
T)−E f (Xx

T)| = O(hν).

Theorem 2 (see Theorem 6.1.12 of [2]). Let f ∈ C∞[0, 1]. Then

ũ(t, x) := E f (Xx
t ), (t, x) ∈ R+ × [0, 1],
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is a C∞ function that solves

∂tũ(t, x) = Aũ(t, x). (2)

We split Equation (1) into the deterministic part

dDx
t = (a− bDx

t )dt, Dx
0 = x ∈ [0, 1], (3)

and the stochastic part

dSx
t = σ

√
Sx

t (1− Sx
t )dBt, Sx

0 = x ∈ [0, 1]. (4)

The solution of the deterministic part is positive for all (x, t) ∈ [0, 1]× (0, T], namely:

Dx
t = D(x, t) =

{
xe−bt + a

b

(
1− e−bt

)
, 0 ≤ a ≤ b 6= 0,

x, a = b = 0.
(5)

The solution of the stochastic part is not explicitly known. However, suppose that Ŝx
t

is a discretization scheme for the stochastic part. We define the first-order composition X̂x
t

of the latter with the solution of the deterministic part as a Markov chain that has the
transition probability in one step equal to the distribution of the random variable

X̂h(x, h) := D(Ŝ(x, h), h). (6)

Similarly, the second-order composition is defined by

X̂h(x, h) := D
(

Ŝ
(

D
(

x, h
2

)
, h
)

, h
2

)
. (7)

Theorem 3 (see [4], Thm. 1.17). Let Ŝx
t be a potential first- or second-order approximation of the

stochastic part of the WF equation. Then, compositions (6) and (7) define, respectively, a first- or
second-order approximation X̂x

t of the WF Equation (1).

From this theorem, it follows that to construct a first- or second-order weak approxi-
mation, we only need to construct a first- or second-order approximation of the stochastic
part, respectively.

Remark 1. For various applications, we may be interested in similar processes with values in [α, β]
satisfying the equation

dX̃t = (ã− bX̃t) dt + σ
√
(X̃t − α)(β− X̃t) dBt, X̃0 ∈ [α, β], (8)

which is well defined when bα ≤ ã ≤ bβ. A popular choice is the Jacobi process with α = −1 and
β = 1. Process (8) can be obtained from the WF process by the affine transformation X̃t = α +
(β− α)Xt (ã = a(β− α)). Clearly, by the same transformation we can get weak approximations
for (8) from weak approximations for the WF process.

3. First-Order Weak Approximation of Wright–Fisher Equation
3.1. Approximation of the Stochastic Part

Let us construct an approximation for the stochastic part of the WF equation, that is,
the solution Sx

t of Equation (1) with a = b = 0. A two-valued discrete random variable Ŝx
h

taking values x1, x2 ∈ [0, 1] with probabilities p1, p2 is a first-order weak approximation if
(see [5] and references therein)

p1 + p2 = 1, (9)
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EŜx
h = x1 p1 + x2 p2 = m1 := ESx

h = x, (10)

E(Ŝx
h)

2 = x2
1 p1 + x2

2 p2 = m2 + O(h2), (11)

E(Ŝx
h − x)3 = (x1 − x)3 p1 + (x2 − x)3 p2 = O(h2), (12)

E(Ŝx
h − x)4 = (x1 − x)4 p1 + (x2 − x)4 p2 = O(h2), (13)

where the second moment m2 = E(Sx
h)

2 can be calculated by Lemma 6 with a = b = 0:

m2 = m2(x, h) = x2e−σ2h + x(1− e−σ2h) (14)

= x2 + x(1− x)σ2h + O(h2), x ∈ [0, 1]. (15)

One of the solutions to the equation system (9)–(11) is (see [5])

x1,2 =
m2

m1
∓

√
m2(m2 −m2

1)

m2
1

,

p1,2 =
x

2x1,2
.

Therefore, in our case, we get

x1,2 = xe−σ2h + 1− e−σ2h (16)

∓

√
xe−σ2h + (1− e−σ2h)

x
(
x2e−σ2h + x(1− e−σ2h)− x2

)
= xe−σ2h + 1− e−σ2h ∓

√
(xe−σ2h + 1− e−σ2h)(1− x)(1− e−σ2h). (17)

Since 1− e−σ2h = σ2h + O(h2), to simplify the expressions, we may try to replace
1− e−σ2h by σ2h and, instead of (17), use

x1,2 = x1,2(x, h) = x(1− σ2h) + σ2h∓
√
(x(1− σ2h) + σ2h)(1− x)σ2h

= x + (1− x)σ2h∓
√
(x + (1− x)σ2h)(1− x)σ2h. (18)

In Lemma 1, we will check that after this replacement, x1,2 and p1,2 still satisfy (9)–(13).
Unfortunately, for the values of x near 1, the values of x2 are slightly greater than 1 (as well
as those defined by (17)), which is unacceptable. We overcome this problem by using the
symmetry of the solution of the stochastic part with respect to the point 1

2 ; to be precise,

Sx
t

d
= 1− S1−x

t for all x ∈ [0, 1] ( d
= means equality in distribution). Therefore, in the interval

[0, 1/2], we can use the values x1,2 defined by (18), whereas in the interval (1/2, 1], we use
the values corresponding to the process 1− S1−x

t , that is,

x̃1,2 = x̃1,2(x, h) := 1− x1,2(1− x, h)

= x− xσ2h±
√
(1− x + xσ2h)xσ2h (19)

with probabilities p̃1,2 = 1−x
2x1,2(1−x,h) . Thus, we obtain the acceptable (i.e., with values

in [0, 1]) approximation Ŝx
h taking the values

x̂1,2 :=

x1,2(x, h) with probabilities p1,2 = x
2x1,2(x,h) , x ∈ [0, 1/2],

1− x1,2(1− x, h) with probabilities p1,2 = 1−x
2x1,2(1−x,h) , x ∈ (1/2, 1].

(20)

Lemma 1. The values x̂1,2 defined by (20) satisfy conditions (9)–(13), and x̂1,2 ∈ [0, 1].
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Proof. We first check that x1,2 defined by (18) obtain values from the interval [0, 1] when
x ∈ [0, 1/2] and h is sufficiently small (0 < h ≤ h0 with h0 > 0 independent from x):

x1 = x + (1− x)σ2h−
√
(x + (1− x)σ2h)(1− x)σ2h ≥ 0

⇔ x + (1− x)σ2h ≥
√
(x + (1− x)σ2h)(1− x)σ2h

⇔ x + (1− x)σ2h ≥ (1− x)σ2h

⇔ x ≥ 0;

x2 = x + (1− x)σ2h +
√
(x + (1− x)σ2h)(1− x)σ2h ≤ 1

⇔
√
(x + (1− x)σ2h)(1− x)σ2h ≤ (1− x)(1− σ2h)

⇔ xσ2h + (1− x)(σ2h)2 ≤ (1− x)(1− σ2h)2

⇔ xσ2h + (1− x)(σ2h)2 ≤ (1− x)(1− 2σ2h + (σ2h)2)

⇔ xσ2h ≤ (1− x)(1− 2σ2h)

⇔ xσ2h + 1− x− 2σ2h ≥ 0.

If x ∈ [0, 1/2], then

xσ2h + 1− x− 2σ2h ≥ 1/2− 2σ2h ≥ 0, where 0 < h ≤ h0 :=
1

4σ2 . (21)

Thus 0 ≤ x1 < x2 ≤ 1 for x ∈ [0, 1/2] and 0 < h ≤ h0 = 1/4σ2. So, if x ∈ (1/2, 1], then
1− x ∈ [0, 1/2), and according to (19), instead of x1,2, we can take x̃1,2 = 1− x1,2(1− x, h)
for 0 < h ≤ h0. Thus, as we have just checked, we have 0 ≤ x1,2(1− x, h) ≤ 1, that is,
0 ≤ x̃1,2 ≤ 1 for x ∈ (1/2, 1] and 0 < h ≤ h0.

Now we check conditions (9)–(13) for x1,2:

p1 + p2 =
x

2x1
+

x
2x2

= 2x(x+(1−x)σ2h)
2((x2+2x(1−x)σ2h+(1−x)2(σ2h)2−(x(1−x)σ2h+(1−x)2(σ2h)2)

=
2x(x + (1− x)σ2h)

2((x2 + x(1− x)σ2h)
= 1;

x1 p1 + x2 p2 = x1
x

2x1
+ x2

x
2x2

= x,

x2
1 p1 + x2

2 p2 = x2
1

x
2x1

+ x2
2

x
2x2

=
x
2
(x1 + x2)

=
x
2
· 2(x + (1− x)σ2h) = x2 + x(1− x)σ2h

= m2 + O(h2);

(x1 − x)3 p1 + (x2 − x)3 p2 = 2x(1− x)2(σ2h)2 = O(h2),

(x1 − x)4 p1 + (x2 − x)4 p2 = x(1− x)2(x + 4(1− x)σ2h)(σ2h)2 = O(h2).

The last two equalities were obtained by using the Python SymPy package. The condi-
tions for x̃1,2 follow automatically from the symmetry.

For the initial Equation (1) we obtain an approximation X̂x
h by the “split-step” proce-

dure defined by (6):
X̂x

h := Ŝx
he−bh + a

b (1− e−bh). (22)

Now we can state our first main result.
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Theorem 4. Let X̂x
t be the discretization scheme defined by one-step approximation (22). Then, X̂x

t
is a first-order weak approximation of Equation (1) for functions f ∈ C∞[0, 1].

3.2. Algorithm

In this section, we provide an algorithm for calculating X̂(i+1)h given X̂ih = x at each
simulation step i:

1. Draw a uniform random variable U from the interval [0, 1].
2. If x ≤ 1

2 , then

– calculate x1, x2 according to (18),

else

– calculate x1, x2 according to (18) with x := 1− x,
– x1,2 := 1− x1,2.

3. Calculate p1,2 := x
2x1,2(x,h) .

4. If U < p1, then Ŝ := x1 else Ŝ := x2.
5. Calculate (see (6) and (22))

X̂(i+1)h = D
(
Ŝ, h
)
= Ŝe−bh + a

b (1− e−bh).

3.3. Simulation Examples

We illustrate our approximation for the test functions f (x) = x5 and f (x) = e−x.
Since we do not explicitly know the moments Ee−Xx

t , we use the approximate equality
e−x ≈ 1− x + x2

2 −
x3

6 + x4

24 −
x5

120 . We have chosen the parameters of the WF equation so
that the fifth moment of Xx

t is nonmonotonic as a function of t to see how the approximated
fifth moment “follows” the bends of the true one as t varies. In Figures 1–3, we compare
E f (X̂x

t ) and E f (Xx
t ) as functions of t (left plots) and as functions of a discretization step h

(right plots) in terms of the relative error
∣∣∣1− E f (X̂x

t )
E f (Xx

t )

∣∣∣. As expected, the approximations
agree with exact values pretty well. Note an impressive match between the approximated
and true values of Ee−Xx

t in Figure 3 even for rather large discretization step h.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.0008

0.0009

0.0010

0.0011

0.0012

EX
^5

1st-order approximation
exact

0.000 0.025 0.050 0.075 0.100 0.125 0.150
h

0.0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

tiv
e 

er
ro

r, 
t=

1

1st-order approximation

Figure 1. Comparison of E f (X̂x
t ) and E f (Xx

t ) as functions of t and h for f (x) = x5: x = 0.24,
σ2 = 0.6, a = 0.8, b = 5, the number of iterations N = 1,000,000. Left: h = 0.001; Right: the relative
error at t = 1.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.40

0.41

0.42

0.43

0.44

0.45

EX
^5

1st-order approximation
exact

0.00 0.01 0.02 0.03 0.04 0.05
h

0.00

0.01

0.02

0.03

0.04

0.05

0.06

re
la

tiv
e 

er
ro

r, 
t=

1

1st-order approximation

Figure 2. Comparison of E f (X̂x
t ) and E f (Xx

t ) as functions of t and h for f (x) = x5: x = 0.83,
σ2 = 2, a = 4, b = 5, N = 1,000,000. Left: h = 0.001; Right: the relative error at t = 1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.45

0.50

0.55

0.60

0.65

ex
p(

-X
)

1st-order approximation
exact

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
h

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

re
la

tiv
e 

er
ro

r, 
t=

1

1st-order approximation

Figure 3. Comparison of E f (X̂x
t ) and E f (Xx

t ) as functions of t and h for f (x) = e−x: x = 0.4,
σ2 = 1.6, a = 4, b = 5, N = 100,000. Left: h = 0.1; Right: the relative error at t = 1.

4. Second-Order Weak Approximation of Wright–Fisher Equation
4.1. Approximation of the Stochastic Part

Let Ŝx
h be any discretization scheme. Applying Taylor’s formula to f ∈ C∞[0, 1],

we have

E f (Ŝx
h) = f (x) + f ′(x)E

(
Ŝx

h − x
)
+

f ′′(x)
2

E
(
Ŝx

h − x
)2

+
f ′′′(x)

6
E
(
Ŝx

h − x
)3

+
f (4)(x)

4!
E
(
Ŝx

h − x
)4

+
f (5)(x)

5!
E
(
Ŝx

h − x
)5

+
1
5!
E
∫ Ŝx

h

x
f (6)(s)

(
Ŝx

h − s
)5 ds.

The generator A0 and its square of the stochastic part are

A0 f (x) =
1
2

σ2x(1− x) f ′′(x),

A2
0 f (x) = −1

2
σ4x(1− x) f ′′(x) +

1
2

σ4x(1− x)(1− 2x) f ′′′(x)

+
1
4

σ4x2(1− x)2 f (4)(x).
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Thus, the second-order remainder of the discretization scheme Ŝx
h is

Rh
2 f (x) = E f (Ŝx

h)−
[

f (x) + A0 f (x)h + A2
0 f (x)

h2

2

]
= f ′(x)E

(
Ŝx

h − x
)

+
f ′′(x)

2

[
E
(
Ŝx

h − x
)2 − σ2x(1− x)h

(
1− 1

2 σ2h
)]

+
f ′′′(x)

6

[
E
(
Ŝx

h − x
)3 − 3

2
σ4h2x(1− x)(1− 2x)

]
+

f (4)(x)
4!

[
E
(
Ŝx

h − x
)4 − 3σ4(x(1− x)h)2

]
+

f (5)(x)
5!

E
(
Ŝx

h − x
)5

+ r2(x, h), x ≥ 0, h > 0,

where

|r2(x, h)| = 1
5!

∣∣∣∣∣E
∫ Ŝx

h

x
f (6)(s)

(
Ŝx

h − s
)5 ds

∣∣∣∣∣ ≤ 1
6!

max
s∈[0,1]

∣∣ f (6)(s)∣∣E(Ŝx
h − x

)6.

This expression shows that Ŝx
h is a potential second-order approximation of the stochas-

tic part (4) if

E
(
Ŝx

h − x
)
= O(h3), (23)

E
(
Ŝx

h − x
)2

= σ2x(1− x)h
(

1− 1
2

σ2h
)
+ O(h3), (24)

E
(
Ŝx

h − x
)3

=
3
2

σ4h2x(1− x)(1− 2x) + O(h3), (25)

E
(
Ŝx

h − x
)4

= 3σ4(x(1− x)h)2 + O(h3), (26)

E
(
Ŝx

h − x
)5

= O(h3), (27)

E
(
Ŝx

h − x
)6

= O(h3). (28)

Let us denote z = σ2h for brevity. Converting the central moments of Ŝx
h to noncentral

moments, from (23)–(28) we get

E
(
Ŝx

h
)i
= m̂i + O(h3), i = 1, . . . , 6, (29)

where

m̂1 = x,

m̂2 = x2 + zx(1− x)(1− 1
2 z),

m̂3 = x3 + 3
2 xz2(3x2 − 4x + 1)− 3xz(x2 − x),

m̂4 = x4 + 9x2z2(2x2 − 3x + 1)− 6x2z(x2 − x), (30)

m̂5 = x5 + 10x3z2(5x2 − 8x + 3)− 10x3z(x2 − x),

m̂6 = x6 + 75
2 x4z2(3x2 − 5x + 2)− 15x4z(x2 − x).

Our aim is to construct a potential second-order approximation for the WF equation by
discrete random variables at each generation step. Therefore, we look for approximations
Ŝx

h taking three values x1, x2, x3 from the interval [0, 1] with probabilities p1, p2, p3 satisfying
the following conditions:

p1 + p2 + p3 = 1, (31)
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xi
1 p1 + xi

2 p2 + xi
3 p3 = m̂i + O(h3), i = 1, . . . , 6. (32)

In anticipation, note that when solving system (31)–(32), a serious challenge is ensuring
the first equality p1 + p2 + p3 = 1. A simple way out of this situation is relaxing the latter
by the inequality

p1 + p2 + p3 ≤ 1 (33)

and, at the same time, allowing Ŝx
h to take the additional trivial value 0 with probability

p0 = 1− (p1 + p2 + p3). Notice that this does not change Equation (32) in any way.
Solving the system

xi
1 p1 + xi

2 p2 + xi
3 p3 = m̂i, i = 1, 2, 3,

with respect to x1, x2, x3, we obtain (cf. [6])

p1 =
m̂1x2x3 − m̂2x2 − m̂2x3 + m̂3

x1(x1 − x3)(x1 − x2)
,

p2 = − m̂1x1x3 − m̂2x1 − m̂2x3 + m̂3

x2(x1 − x2)(x2 − x3)
, (34)

p3 =
m̂1x1x2 − m̂2x1 − m̂2x2 + m̂3

x3(x2 − x3)(x1 − x3)
.

Note that, here, differently from [6], we used approximate “moments” m̂i instead of
the true moments mi. This eventually allows us to get simpler expressions because m̂i are
polynomials in x and z.

Now we have to find x1,2,3 that, together with p1,2,3 defined by Equations (34), satisfy
the remaining conditions

x4
1 p1 + x4

2 p2 + x4
3 p3 − m̂4 = O(h3),

x5
1 p1 + x5

2 p2 + x5
3 p3 − m̂5 = O(h3),

x6
1 p1 + x6

2 p2 + x6
3 p3 − m̂6 = O(h3).

(35)

Motivated by the first-order approximation (20) and [6], we look for x1,2,3 of the
following form:

x1 = x + zA1(1− x) + A2xz−
√
(z(1− x)(Bx + Cz(1− x))), (36)

x2 = x + A3xz, (37)

x3 = x + zA1(1− x) + A2xz +
√
(z(1− x)(Bx + Cz(1− x))), (38)

with unknown parameters A1, A2, A3, B, C ≥ 0.

4.2. Calculation of the Parameters

Substituting (36)–(38) into the left-hand sides of (35), we have (for technical calcula-
tions, using Maple and Python)

x4
1 p1 + x4

2 p2 + x4
3 p3 − m̂4 =

[
(BA3 + B + 2A1 − 2A2 − A3 − 6)x4

+
(

A3 − 2B− A3B− 4A1 + 2A2 +
21
2
)
x3

+
(

B + 2A1 − 9
2
)
x2
]
z2 + O(h3), (39)

x5
1 p1 + x5

2 p2 + x5
3 p3 − m̂5 =

[
(8A1 + (4B− 4)A3 + 5B− 8A2 − 27)x5

+
(
(−4B + 4)A3 − 10B + 8A2 − 16A1 + 48

)
x4

+ (8A1 + 5B− 21)x3
]
z2 + O(h3), (40)
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x6
1 p1 + x6

2 p2 + x6
3 p3 − m̂6 =

[
(20A1 + (10B− 10)A3 + 15B− 20A2 − 75)x6

+
(
(−10B + 10)A3 − 30B + 20A2 − 40A1 + 135

)
x5

+ (15B + 20A1 − 60)x4
]
z2 + O(h3). (41)

To ensure equalities (35), we need to choose A1, A2, A3, B such that expressions at z2

would be equal to 0. Equating the coefficients at the lowest powers of x to zero, we get the
system for the parameters A1 and B:

B + 2A1 − 9
2 = 0,

8A1 + 5B− 21 = 0,
15B + 20A1 − 60 = 0.

Although the system contains three equations with respect to two unknowns, it has
the solution A1 = 3

4 , B = 3. Substituting these values back to Equations (39)–(41), we get
the relation A3 = A2 +

3
4 , which makes all the expressions at z2 vanish. Summarizing, we

have that x1,2,3 of the form (36)–(38) and p1,2,3 defined by (34) satisfy all of Equation (32),
provided that the parameters satisfy the following relations:

A1 =
3
4

, A2 ≥ 0, A3 = A2 +
3
4

, B = 3, C ≥ 0. (42)

4.3. Positivity of the Solution

Now we would like to choose the values of free parameters A2 and C so that all
x1, x2, x3, p1, p2, p3 are positive and p1 + p2 + p3 ≤ 1. We first consider the latter restriction.

Lemma 2. We have p1 + p2 + p3 ≤ 1 if

A2 ≥
(3 + 2

√
2)

1
3

4
+

1

4(3 + 2
√

2)
1
3
≈ 0.58883 (43)

and

0 ≤ C ≤
3(32A3

2 − 6A2 − 3)
16A2

2(16A2
2 + 24A2 + 9)

.

Proof. We have

p1 + p2 + p3 =
N
D

with numerator

N = 64x2 +
(
(192A2 + 144)x2 − 96x

)
z

+
(
(192A2

2 − 64C + 96A2 + 108)x2 + (128C− 144)x− 64C + 36
)
z2

+
(
48 + (−96A2 + 24)x2 + (96A2 − 72)x

)
z3

and denominator

D = 64x2 +
(
(192A2 + 144)x2 − 96x

)
z

+
(
(192A2

2 − 64C + 96A2 + 108)x2 + (128C− 144)x− 64C + 36
)
z2

+
(
(64A3

2 − 64CA2 − 48A2
2 − 48C− 36A2 + 27

)
x2

+
(
128CA2 + 96A2

2 + 96C− 54)x− 64A2C− 48C + 36A2 + 27
)
z3.
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The numerator and denominator differ only by the coefficients at z3. Thus, it suffices
to show that their difference D− N is nonnegative, that is,

(64A3
2 − 48A2

2 + (−64C + 60)A2 − 48C + 3)x2

+ (96A2
2 + (128C− 96)A2 + 96C + 18)x

+ (−64C + 36)A2 − 48C− 21 =: a1x2 + a2x + a3 ≥ 0. (44)

Inequality (44) is satisfied for all x ∈ R if

a1 > 0 and a3 ≥
a2

2
4a1

. (45)

Solving inequality (45), we get

A2 > 0, C ≤
3(32A3

2 − 6A2 − 3)
16(16A2

2 + 24A2 + 9)A2
2

.

Since C must be nonnegative, we obtain condition (43) for A2.

Remark 2. We observe that possible values of C are rather small (see Figure 4). Therefore, to sim-
plify the expressions for x1, x2, x3, we simply take C = 0 and A2 = 2

3 .

Figure 4. Possible values of A2 and C.

We have now arrived at the following expressions for x1, x2, x3:

x1 = x +
3(1− x)z

4
+

2xz
3
−
√

3x(1− x)z, (46)

x2 = x +
17xz

12
, (47)

x3 = x +
3(1− x)z

4
+

2xz
3

+
√

3x(1− x)z. (48)



Mathematics 2022, 10, 125 12 of 20

However, the game is not over. At this point, we only have that x1, x2, x3 defined
by (46)–(48), together with p1, p2, p3 defined by (34), satisfy conditions (32) and (33). From nu-
merical calculations it appears that for “small” x, it happens that x1 > x2 and thus p1, p2 < 0.
Moreover, on the other hand, for “not small” x and “large” h, it happens that x3 > 1. We
can see a typical situation in Figure 5 with z = σ2h = 1

5 , where for small x, p1 and p2 take
values outside the interval [0, 1], whereas x3 > 1 for x near 1

2 .

0.0 0.1 0.2 0.3 0.4 0.5
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

ie
s

p1
p2
p3

0.0 0.1 0.2 0.3 0.4 0.5
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x1
, x

2,
 x

3
x1
x2
x3

Figure 5. Graphs of p1,2,3 (Left) and x1,2,3 (Right) as functions of x with fixed z. Gray area shows
the region where first-order approximation is used to avoid negative probabilities. Parameters:
K = 1

3 , z = 1
5 .

Due to these reasons, similarly to [4], for small x below the threshold Kz (with some
fixed K > 0), we will switch to the first-order approximation (20), which behaves as a
second-order one for such x. We also have to consider z ≤ z0, where z0 is to be sufficiently
small to ensure that x3 ≤ 1. To be precise, for 0 ≤ x ≤ Kz, 0 < z ≤ z0, we will use
scheme (20), whereas for Kz ≤ x ≤ 1

2 , 0 < z ≤ z0, we will use scheme (46)–(48) together

with (34); finally, for x ∈ ( 1
2 , 1], we will use the symmetry Sx

t
d
= 1− S1−x

t as in the first-order
approximation. The following lemmas justify such a switch for K = 1

3 and z0 = 1
6 .

Lemma 3. The first-order approximation (20) in the region x ≤ Kσ2h (with arbitrary fixed K > 0)
satisfies conditions (29). In other words, in this region, it behaves as a second-order approximation.

Proof. We prove equalities (29) in the region x ≤ Kz = Kσ2h, where Ŝh
x and m̂i, i = 1, . . . , 6,

are defined by (20) and (30), respectively:

E(Ŝx
h)

2 − m̂2 = x2
1 p1 + x2

2 p2 − m̂2

= x2 + x(1− x)z− (x2 + zx(1− x)(1− 1
2 z))

= 1
2 x(1− x)z2 = O(h3),

E(Ŝx
h)

3 − m̂3 = x3
1 p1 + x3

2 p2 − m̂3

= x3 − 3xz(x2 − x) + 2z2x2(x− 1)

− (x3 + 3
2 xz2(3x2 − 4x + 1)− 3xz(x2 − x))

= 1
2 xz2(5x2 − 8x + 3) = O(h3),

E(Ŝx
h)

4 − m̂4 = x4
1 p1 + x4

2 p2 − m̂4 = x4 − 6x2z(x2 − x)

+ x2z2(9x2 − 10x + 1)− 4x3z3(x− 1)

− (x4 + 9x2z2(2x2 − 3x + 1)− 6x2z(x2 − x))

= x2z2(−4x2z− 9x2 + 4xz + 17x− 8) = O(h4),

E(Ŝx
h)

5 − m̂5 = x5
1 p1 + x5

2 p2 − m̂5 = x5 − 10x3z(x2 − x)
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+ 5x3z2(5x2 − 6x + 1) + 4x3z3(−6x2 + 7x− 1)

+ 8x4z4(x− 1)

− (x5 + 10x3z2(5x2 − 8x + 3)− 10x3z(x2 − x))

= x3z2(x2(8z2 − 24z− 25)− 2x(4z2 − 14z− 25)− 4z− 25) = O(h5),

E(Sx
h)

6 − m̂6 = x6
1 p1 + x6

2 p2 − m̂6 = x6 − 15x4z(x2 − x)

+ 5x4z2(11x2 − 14x + 3)

+ x3z3(−85x3 + 111x1 − 27x + 1)

+ 12x4z4(5x2 − 6x + 1)− 16x5z5(x− 1)

− (x6 + 75
2 x4z2(3x2 − 5x + 2)− 15x4z(x2 − x))

= 1
2 x3z2(x− 1)(−32x2z3 + 120x2z2 − 170x2 z

− 115x2 − 24xz2 − 170xz + 120x− 2z) = O(h6).

Lemma 4. For z ∈ [0, 1
6 ] and x ∈ [0, 1

2 ], x1, x2, x3 defined in (46)–(48) take values in the
interval [0, 1].

Proof. Obviously, x2 ∈ [0, 1]. Thus, we focus on x1 and x3. Since x1 ≤ x3, it suffices to
prove that x1 ≥ 0 and x3 ≤ 1.

The condition x1 ≥ 0 is equivalent to the inequality(
x +

3(1− x)z
4

+
2xz

3

)2
− 3x(1− x)z ≥ 0.

By denoting y = 1− x > 0, this becomes

(
x +

3yz
4

+
2xz

3

)2
− 3xyz

= x2 +
9

16
y2z2 +

4
9

x2z2 − 3
2

xyz +
4
3

x2z + xyz2 ≥ 0.

We will prove the stronger inequality

x2 +
9

16
y2z2 +

4
3

x2z− 3
2

xyz ≥ 0,

which after substitution y = 1− x becomes(
1 +

17
6

z +
9
16

z2
)

x2 −
(

3
2

z +
9
8

z2
)

x +
9z2

16
≥ 0. (49)

The discriminant of the quadratic polynomial (49) in x is

D =
(3

2
z +

9
8

z2
)2
− 4
(

1 +
17
6

z +
9

16
z2
)
· 9z2

16
= −3z3,

which is negative for all z > 0. This means that the left-hand side (49) is positive and thus
x1 > 0 for all x ∈ [0, 1] and z ≥ 0 except for x = z = 0, where x1 = 0.

Let us now prove that x3 ≤ 1. For z ∈ [0, 1
6 ] and x ∈ [0, 1

2 ], we have

x3 = x +
3(1− x)z

4
+

2xz
3

+
√

3x(1− x)z

≤ x +
1
8
(1− x) +

1
18

+

√
x(1−x)

2
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≤ 1
8
+

7
8
· 1

2
+

1
18

+
1√
8
≈ 0.972 < 1.

Lemma 5. For x ∈ ( z
3 , 1

2 ] and z ≤ 1
6 , we have p1, p2, p3 ∈[0, 1].

Proof. From Lemma 2, we already have that p1 + p2 + p3 ≤ 1. Therefore, it suffices to
prove that p1, p2, p3 ≥ 0. Because of the complex expressions of p1, p2, p3, we prefer to
show this graphically by using the Maple function plot3d. See Figure 6, where the 3D
graphs of p1, p2, p3 as functions of (x, z) are plotted in the domain {(x, z) : z/3 ≤ x ≤
1/2, 0 ≤ z ≤ 1/6}.

(a) (b) (c)

Figure 6. Graphs of p1, p2, p3 as functions of x and z. (a) p1, (b) p2, (c) p3.

4.4. The Second Main Result

Now let us summarize the results of this section. For clarity, recall the main notations:

x1 = x1(x, h) = x +
3(1− x)σ2h

4
+

2xσ2h
3
−
√

3x(1− x)σ2h, (50)

x2 = x2(x, h) = x +
17xσ2h

12
, (51)

x3 = x3(x, h) = x +
3(1− x)σ2h

4
+

2xσ2h
3

+
√

3x(1− x)σ2h. (52)

To distinguish the functions x1,2,3 from x1,2 given by (18), here we denote the latter by

y1,2 = y1,2(x, h) = x + (1− x)σ2h∓
√
(x + (1− x)σ2h)(1− x)σ2h. (53)

Using the symmetry Sx
t

d
= 1− S1−x

t for x ∈ [0, 1], we define the approximation of the
stochastic part of the WF equation as follows:

Ŝx
h :=



x1,2,3(x, h) with probabilities p1,2,3 (34) and

0 with probability p0 = 1− (p1 + p2 + p3), x ∈ ( σ2h
3 , 1

2 ],
1− x1,2,3(1− x, h) with prob. p1,2,3(1− x, h) and

1 with probability p0 = 1− (p1 + p2 + p3), x ∈ ( 1
2 , 1− σ2h

3 ),

y1,2(x, h) with probabilities p̃1,2(x, h) := x
2y1,2(x,h) , x ∈ [0, σ2h

3 ],

1− y1,2(1− x, h) with probabilities p̃1,2(1− x, h), x ∈ [1− σ2h
3 , 1].

(54)

Now in view of Theorem 3 and Lemmas 2–5, we can state the main result on the
second-order approximation of the WF process.
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Theorem 5. Let X̂x
t be the discretization scheme defined by one-step approximation

X̂x
h = D(Ŝ(D(x, h/2), h), h/2), (55)

where D(x, h) is defined by (5), and Ŝ(x, h) = Ŝx
h is defined by (54). Then, X̂x

t is a second-order
weak approximation of Equation (1).

4.5. Algorithm for Second-Order Approximation

In this section, we provide an algorithm for calculating X̂(i+1)h given X̂ih = x at each
simulation step i:

1. Draw a uniform random variable U from the interval [0, 1].
2. x := D(x, h/2) (where D is given by (5))
3. If x ≤ 1

2 , then

3.1. if x > σ2h
3 , then

x0 := 0,
calculate x1, x2, x3 according to (50)–(52),
calculate p1, p2, p3 according to (34),
if U < p1 then Ŝ := x1 else if U < p1 + p2 then Ŝ := x2

else if U < p1 + p2 + p3 then Ŝ := x3 else Ŝ := x0
else

calculate y1, y2 according to (53),
p1,2 := x

y1,2(x,h) ,

if U < p1 then Ŝ := y1 else Ŝ := y2
else

3.2. do step 3.1 with x := 1− x, x0,1,2,3 := 1− x0,1,2,3,
y1,2 := 1− y1,2.

4. X̂(i+1)h := D
(
Ŝ, h/2

)
.

4.6. Simulation Examples

We illustrate our approximation for the test function f (x) = x5. In Figures 7 and 8,
we compare the moments E f (X̂x

t ) and E f (Xx
t ) as functions of t (left plots, h = 0.01) and as

functions of a discretization step h (right plots) in terms of the relative error. We observe that
with a rather small number of iterations, the second-order approximation agrees with the
exact values pretty well. These specific examples have been chosen to illustrate the behavior
of approximations with small (σ2 = 0.6) and high (σ2 = 2) volatility. In comparison with
the simulation results for the first-order approximation (Section 3.3), we see that to get a
similar accuracy, we can use the second-order approximation with a significantly smaller
number of iterations N and larger step size h, which in turn requires significantly less
computation time.
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Figure 7. Comparison of E f (X̂x
t ) and E f (Xx

t ) as functions of t and h for f (x) = x5: x = 0.24,
σ2 = 0.6, a = 0.8, b = 5, the number of iterations N = 100,000. Left: h = 0.01; Right: the relative
error at t = 1.
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Figure 8. Comparison of E f (X̂x
t ) and E f (Xx

t ) as functions of t and h for f (x) = x5: x = 0.83,
σ2 = 2, a = 4, b = 5, the number of iterations N = 100,000. Left: h = 0.01; Right: the relative error
at t = 1.

5. Probabilistic Proof of Regularity of Solutions of the Kolmogorov
Backward Equation

Theorem B is in fact Theorem 1.19 of [4] stated based on the results of [7], which are
proved by methods of partial differential equation theory. Here, we provide a significantly
simpler probabilistic proof of the theorem for a rather wide subclass of C∞[0, 1], which
practically includes all functions interesting for applications, for example, polynomials
or exponentials.

Definition 3. We denote by C∞
∗ [0, 1] the class of infinitely differentiable functions on [0, 1] with

“not too fast” growing derivatives:

C∞
∗ [0, 1] :=

{
f ∈ C∞[0, 1] : lim sup

k→∞

1
k!

max
x∈[0,1]

| f (k)(x)| = 0
}

.

Every f ∈ C∞
∗ [0, 1] is the sum of its (uniformly convergent) Taylor series:

f (x) =
∞

∑
k=0

ckxk, x ∈ [0, 1], (56)
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where ck = f (k)(0)/k!, k ∈ N. This easily follows from the Lagrange error bound for
Taylor series.

Remark 3. Clearly, every f ∈ C∞
∗ [0, 1] is a real analytic function; see [8].

Denote mk(x, t) := E(Xx
t )

k, k ∈ N. Then, from (56), we formally have

ũ(t, x) = E f (Xx
t ) =

∞

∑
k=0

ckmk(x, t), x ∈ [0, 1], t ≥ 0. (57)

If ũ is infinitely continuously differentiable, then it satisfies Equation (2) (see, e.g., [9]
(Thm. 8.1.1)). Therefore, it suffices to show that

(1) the moments mk(x, t) are infinitely continuously differentiable and
(2) all formal partial derivatives of the series in (57),

∞

∑
k=0

ck∂
p
t ∂

q
xmk(x, t), (58)

converge uniformly for (x, t) ∈ [0, 1]× [0, T] (for any fixed T > 0).

Lemma 6. The moments of the WF process Xx
t satisfy the following recurrence relation:

m1(x, t) =

{
xe−bt + a

b (1− e−bt), 0 ≤ a ≤ b 6= 0,
x, a = b = 0,

(59)

mk(x, t) = e−bkt
(

xk + ak

∫ t

0
ebksmk−1(x, s) ds

)
, k ≥ 2, (60)

where bk = kb + k(k− 1) σ2

2 , ak = ka + k(k− 1) σ2

2 .
In particular, by induction on k it follows that mk(x, t) are infinitely continuously differentiable

with respect to (x, t) ∈ [0, 1]×R+.

Proof. Taking the expectations of both sides of Equation (1) and then differentiating with
respect to t, we get

∂tm1(x, t) = a− bm1(x, t), m1(x, 0) = x.

Solvingthe latter, we get (59).
When k ≥ 2, by Itô’s formula, we have

(Xx
t )

k = xk + k
∫ t

0
(Xx

t )
k−1 dXx

s +
1
2

k(k− 1)
∫ t

0
(Xx

t )
k−2 d〈Xx〉s

= xk + k
∫ t

0
(Xx

t )
k−1(a− bXx

s )ds + kσ
∫ t

0
(Xx

t )
k−1
√

Xx
s (1− Xx

s )dBs

+
1
2

k(k− 1)σ2
∫ t

0
(Xx

t )
k−2 Xx

s (1− Xx
s )ds

= xk + k
∫ t

0

(
a(Xx

t )
k−1 − b(Xx

s )
k
)

ds + kσ
∫ t

0
(Xx

t )
k−1
√

Xx
s (1− Xx

s )dBs

+
1
2

k(k− 1)σ2
∫ t

0

(
(Xx

t )
k−1 − (Xx

s )
k)ds.

By taking the expectations, we get

mk(x, t) = xk +
∫ t

0

{
[ka + k(k− 1) σ2

2 ]mk−1(x, s)− [kb + k(k− 1) σ2

2 ]mk(x, s)
}

ds
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= xk +
∫ t

0

{
akmk−1(x, s)− bkmk(x, s)

}
ds,

and thus

∂tmk(x, t) = −bkmk(x, t) + akmk−1(x, t), mk(x, 0) = xk.

Solving the latter with respect to mk, we arrive at (60).

Lemma 7. All formal partial derivatives of the series (57),

∞

∑
k=0

ck∂
p
t ∂

q
xmk(x, t), (61)

converge uniformly for (x, t) ∈ [0, 1]× [0, T] (for any fixed T > 0).

Proof. It is obvious that 0 ≤ mk(x, t) ≤ 1, x ∈ [0, 1], k ∈ N. First, consider the derivatives
with respect to x. Let us prove by induction on k that

∂xmk(x, t) ≤ k, x ∈ [0, 1], k ∈ N.

For k = 1, we have m′1(x, t) = e−bt ≤ 1. Suppose

∂xmk−1(x, t) ≤ k− 1, x ∈ [0, 1].

Then,

∂xmk(x, t) = e−bkt
(

kxk−1 + ak

∫ t

0
ebks∂xmk−1(x, s)ds

)
≤ e−bkt

(
k + ak(k− 1)

∫ t

0
ebks ds

)
= e−bkt

(
k +

ak
bk
(k− 1)(ebkt − 1)

)
≤ e−bktk + k(1− e−bkt) = k,

where we used the fact that 0 ≤ ak ≤ bk, since 0 ≤ a ≤ b.
Similarly, by induction on k, we can prove that

∂l
xmk(x, t) ≤ (k)l = k(k− 1) . . . (k− l + 1), x ∈ [0, 1], k ∈ N, l ∈ N.

Indeed, for k = 1, ∂xm1(x, t) = e−bt ≤ 1 = (1)1, and ∂l
xmk(x, t) = 0 = (1)l for l ≥ 2.

Now suppose that for some k,

∂l
xmk−1(x, t) ≤ (k− 1)l , x ∈ [0, 1], l ∈ N.

Then,

∂l
xmk(x, t) = e−bkt

(
k(k− 1) . . . (k− l + 1)xk−l + ak

∫ t

0
ebks∂l

xmk−1(x, s)ds
)

≤ e−bkt
(

k(k− 1) . . . (k− l + 1) +
ak
bk

k(k− 1) . . . (k− l + 1)(ebkt − 1)
)

≤ k(k− 1) . . . (k− l + 1) = (k)l .

Now let us differentiate the moments with respect to t. We have

|∂tm1(x, t)| =
∣∣∣(e−bt(x− a

b
)
+

a
b

)′
t

∣∣∣ = ∣∣− be−bt(x− a
b
)∣∣

= |(a− bx)e−bt| ≤ b, x ∈ [0, 1];
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|∂tmk(x, t)| =
∣∣∣− bke−bkt

(
xk + ak

∫ t

0
ebksmk−1(x, s)ds

)
+ e−bktakebktmk−1(x, t)

∣∣∣
≤ bke−bktxk + akbke−bkt

∫ t

0
ebks ds + ak

≤ bk + ake−bkt(ebkt − 1) + ak ≤ 3bk;

|∂2
t mk(x, t)| =

∣∣∣b2
k e−bkt

(
xk + ak

∫ t

0
ebksmk−1(x, s)ds

)
− akbkmk−1(x, t) + ak∂tmk−1(x, t)

∣∣∣
≤ b2

k + bkak + bkak + 3akbk ≤ 6b2
k ,

|∂3
t mk(x, t)| ≤

∣∣∣b3
k e−bkt

(
xk + ak

∫ t

0
ebksmk−1(x, s) ds

)
+ akb2

k mk−1(x, t)

+ akbk∂tmk−1(x, t) + ak∂2
t mk−1(x, t)

∣∣∣ ≤ 12b3
k ,

and by induction

|∂l
tmk(x, t)| ≤ 3× 2l−1bl

k.

Finally, for all mixed partial derivatives, we have

|∂p
t ∂

q
xmk(x, t)| =

∣∣∣∂p
t ∂

q
xe−bkt

(
xk + ak

∫ t

0
ebksmk−1(x, s) ds

)∣∣∣
≤
∣∣∣∂p

t e−bkt
(

k(k− 1) . . . (k− q + 1)

+ ak(k− 1)(k− 2) . . . (k− q)
∫ t

0
ebks ds

)∣∣∣
≤
∣∣∣∂p

t e−bkt
(

k(k− 1) . . . (k− q + 1)
(

ak

∫ t

0
ebks ds + 1

))∣∣∣
=
∣∣∣(−bk)

pe−bkt
(

k(k− 1) . . . (k− q + 1)
(

ak

∫ t

0
ebks ds + 1

))
+ k(k− 1) . . . (k− q + 1)ak

∣∣∣
= (bp

k + 1)k(k− 1) . . . (k− q + 1)ak = O(k2p+q+2), k→ ∞.

Since ck = o(1/k!), we have that

∞

∑
k=1

ckk2p+q+2 < +∞,

and by the Weierstrass M-test it follows that, indeed, the function series (61) converges
uniformly for all p, q ∈ N.

6. Conclusions

We have constructed first- and second-order weak split-step approximations of the
Wright–Fisher (WF) process. The approximations use generation of a two- or three-valued
random variable at each discretization step. The main difficulty was ensuring that the
values of approximations take values in [0, 1], the domain of the WF process. Illustrative
simulations show perfect accuracy of the constructed approximations.
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Abbreviations
The following abbreviations are used in this paper:

WF Wright–Fisher model
CIR Cox–Ingersoll–Ross model
PDE Partial differential equation
B Brownian motion
N The set of positive integers {1, 2, . . .}
N The set of nonnegative integers, N∪ {0}
R The set of real numbers
R+ The set of positive real numbers
C∞
∗ [0, 1] A subclass of C∞[0, 1], see Definition 3.

O(hn) g(x, h) = O(hn) if, for some C > 0 and h0 > 0,
|g(x, h)| ≤ Chn, x ∈ [0, 1], 0 < h ≤ h0.

X̂h A discretization scheme of the WF process
Dx

t The solution of the deterministic part of the WF equation
Sx

t The solution of the stochastic part of the WF equation
Ŝh A discretization scheme of Sx

t
E(X) The mean of a random variable X
Rh

v The νth-order remainder of a discretization scheme X̂x
t

A The generator of the WF process
A0 The generator of the stochastic part of the WF process
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