Home Search Collections Journals About Contact us My IOPscience

Spectroscopic classification of the $5p^5n_1l_1n_2l_2n_3l_3$ autoionizing states in Ba atoms

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 J. Phys.: Conf. Ser. 635 052008 (http://iopscience.iop.org/1742-6596/635/5/052008) View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 193.219.47.56 This content was downloaded on 08/09/2015 at 10:39

Please note that terms and conditions apply.

Spectroscopic classification of the $5p^5n_1l_1n_2l_2n_3l_3$ autoionizing states in Ba atoms

V. Hrytsko^{†1}, A. Kupliauskienė^{‡2}, and A. Borovik^{†3}

 $^\dagger\mathrm{Department}$ of Electron Processes, Institute of Electron Physics, Uzhgorod, 88017, Ukraine

[‡]Institute of Theoretical Physics and Astronomy, Vilnius University, LT-01108 Vilnius, Lithuania **Synopsis** The ejected-electron spectra of Ba atoms were measured in an electron impact energy range 15-100 eV. By comparative analysis of experimental and calculated data on excitation dynamics and excitation thresholds of lines the complete spectroscopic classification and decay channels for autoionizing states in 5p⁵5d6s² and 5p⁵5d²6s configurations were determined.

The accurate spectroscopic classification of the $5p^5n_1l_1n_2l_2n_3l_3$ autoionizing states in Ba atoms faces the challenges of their multichannel decay to the $5p^6nl$ ionic states and of overlapping the lowest single- and double excited configurations (see e.g. [1], [2] and references therein). Consequently, the known spectroscopic classification of the atomic autoionizing states possesses substantially preliminary character [3].

In the present work the spectroscopic classification of lines in ejected-electron spectra of Ba atoms was carried out by comparative analysis of their excitation dynamics in a broad impact energy range and of calculated excitation thresholds, cross sections and decay rates of autoionizing states in $5p^55d6s^2$ and $5p^55d^26s$ configurations. The ejected-electron spectra were studied in an impact energy region from the excitation threshold of the $5p^6$ subshell up to 100 eV. The apparatus and measuring procedure were described in detail earlier [4]. The uncertainties of energy scales were estimated to be ± 0.07 eV and ± 0.05 eV for incident- and ejected electrons, respectively.

The calculations were performed by using singly $5p^{6}6snl$ (n = 6,...12; l = 0,1,2 and nl = 4f,5f) and 5p-core $5p^{5}nln'l'n''l''$ (nl = 6s,5d; n'l' = 6s,7s,6p,5d,6d; n''l'' = 7s,...,10s; 7p,...,10p; 5d,...,10d; 5f) excited configurations to take into account the correlation effects [5].

Of the 59 lines observed in spectra 17 were classified as corresponding to the multichannel electron decay of the $5p^55d6s^2$, $5d^26s$ autoionizing states with excitation thresholds between 15.6 and 16.7 eV. The data for thirteen lowest states are presented in table 1.

The largest excitation efficiency possess the states from the $5p^{5}5d^{2}6s$ configuration. Most

probable decay channel was transition into the $5p^{6}6s \ ^{2}S_{1/2} Ba^{+}$ state.

This research was funded by the National Academy of Sciences of Ukraine (BA, VH).

Table 1. Experimental (E_{exp}) and calculated (E_{calc}) energies, classification, decay channels and Auger yields (A^a) of the 5p⁵5d6s², 5d²6s *LSJ* states of Ba atoms.

or ba atomb.			
E_{exp}	E_{calc}	State	Decay
			channel
15.63	15.60	$5d6s^2 {}^{3}P_0$	$6s^2S_{1/2}$
15.72	15.78	$5d^2(^3F)(^4D)6s^5D_0$	$6s^{2}S_{1/2}$
15.81	15.79	$5d6s^2 {}^{3}P_1$	$6s^2S_{1/2}$
			$5d^{2}D_{3/2}$
15.87	15.82	$5d^2(^{3}F)(^{4}D)6s^5D_1$	$6s^2S_{1/2}$
15.93	15.93	$5d^2(^{3}F)(^{4}D)6s^5D_3$	$6s^{2}S_{1/2}$
			$5d^{2}D_{3/2}$
16.01	15.86	$5d^2(^{3}F)(^{4}D)6s^5D_2$	$5d^{2}D_{3/2}$
16.10	16.09	$5d^{2}(^{3}F)(^{4}D)6s^{5}D_{4}$	$6s^2S_{1/2}$
			$5d^{2}D_{3/2}$
16.16	16.12	$5d6s^2 {}^{3}P_2$	$6s^2S_{1/2}$
16.25	16.27	$5d6s^2 {}^3F_4$	$6s^{2}S_{1/2}$
16.32	16.35	$5d6s^2 {}^3F_3$	$6s^{2}S_{1/2}$
16.42	16.48	$5d6s^{2} {}^{1}D_{2}$	$6s^{2}S_{1/2}$
16.51	16.63	$5d^2(^3F)(^4D)6s^3D_1$	$6s^2S_{1/2}^{-7}$
16.64	16.68	$5d^{2}(^{3}P)(^{4}D)6s^{3}D_{3}$	$6s^{2}S_{1/2}$
		/	$5d^2D_{3/2}$
-			1

References

- [1] D. Rassi and K.J. Ross 1980 J. Phys. B 13 4683
- [2] M.A. Baig et al 1984 J. Phys. B 17 371
- [3] A.A. Borovik et al 1985 Opt. Spektrosc. 58 988
- [4] A.A. Borovik et al 2005 J. Phys. B 38 1081
- [5] M.F. Gu 2008 Can. J. Phys. 86 675-689

¹E-mail: shargov11@gmail.com

²E-mail: alicija.kupliauskiene@tfai.vu.lt

³E-mail: sasha@aborovik.uzhgorod.ua