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Abstract: Password hygiene plays an essential part in securing systems protected with single-factor
authentication. A significant fraction of security incidents happen due to weak or reused passwords.
The reasons behind differences in security vulnerable behaviour between various user groups remains
an active research topic. The paper aims to identify the impact of age and gender on password strength
using a large password dataset. We recovered previously hashed passwords of 102,120 users from a
leaked customer database of a car-sharing company. Although the measured effect size was small,
males significantly had stronger passwords than females for all age groups. Males aged 26–45 were
also significantly different from all other groups, and password complexity decreased with age for
both genders equally. Overall, very weak password hygiene was observed, 72% of users based their
password on a word or used a simple sequence of digits, and passwords of over 39% of users were
found in word lists of previous leaks.

Keywords: passwords; password hygiene; data leak; password strength; gender impact

1. Introduction

Cybercriminals target vulnerabilities that are easiest to exploit, and humans continue
to constitute both a huge attack surface and the weakest component in any organisation [1].
Password authentication is the most common protection method in organisations’ internet-
based systems, mobile applications, and internal or local applications. Therefore, weak and
reused passwords open doors even in the most hardened systems, and the security vulner-
able behaviour of humans remains an active research subject. Compromised credentials
represented 19% of initial attack vectors to organisations in 2020 [2], with identity theft
reported representing 65% of all social engineering breach incidents [3]. Surveys show that
in Germany, 33% of working adults rotate five to 10 passwords and 10% use the same one
to two passwords for most/all online accounts [4]. In Japan, 21% of working adults rotate
the same one to two passwords. Based on the global 2020 survey, 57% of employees use an
employer-issued device to check e-mails and respond to them [5]. In addition, employees
allow their friends and family members to check e-mails (33% worldwide and 52% in the
US) and do online shopping (22% worldwide and 38% in the US) on their employer-issued
devices. In contrast, only 58% of employees in Australia do not allow their friends and
family members to check e-mails, do online shopping, do streaming or research, check
social media, and perform other activities on their employer-issued devices [6,7].

1.1. Related Work

The relationship between gender and security risk remains inconclusive. Some sta-
tistical data show no difference in behaviour. For example, 67% of adult women and 66%
of adult men restricted applications from accessing private data on their smartphones [8].
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Other research showed that women understood the threat impact better than men, but they
believed to be less vulnerable, expecting other people to implement security measures [9,10].
In another case, self-reporting results showed men having higher levels of knowledge of
secure passwords and lower levels of conscientiousness [11]. A study of employees at a
medium-sized American company observed no differences between gender-related security
vulnerability risk when job-specific factors were taken into account [12]. Similarly, a study
of spam messages on the Facebook platform found that in general, women were more
likely to click on spam messages, but the results differed depending on a topic, with more
men opening media- or pharma-spam [13].

Statistical data suggest a higher vulnerability of young and older people. For example,
60% of French teenagers (11–18 years) do not change passwords after choosing them [14].
On the other hand, the implementation of password hygiene training programmes for
youth (13–16 years) show changes in password-setting behaviour [15]. Researchers found
that there is a high percentage of reused passwords in both groups of older and younger re-
spondents [16]. The researchers emphasise that public campaigns about password security
have not been successful, as the problem continues to exist. Older adults are keen to protect
themselves and understand the risk of not doing so, but they do feel anxiety, e.g., fear of
forgetting the password [17]. A user becomes less security compliant when they are more
security fatigued [18]. The fatigue is noticeable when security becomes superfluous. The
enforcement of regular password changes does not increase security significantly and does
not influence the creation of stronger passwords. Users cope with a password-changing
policy by applying simple modifications to their current password and cycling through a
dedicated set of passwords [19]. Researchers identified a large set of distinctive password
pre-/post-fix patterns of various categories, for example, people, locations, digits, and
culture-specific substitutions [20].

Little research exists on the analysis of password strength in the context of languages
other than English. Doucek et al. [21] presented a password estimation engine based on the
zxcvbn [22] algorithm for Czech and Slovak languages. They presented the methodology
that can be used to adapt the zxcvbn algorithm for smaller European languages.

Previous research regarding the cyber hygiene of different age groups and genders
has a few recurring limitations. As a rule, the studies are limited to several hundred data
points, and they use self-reported user behaviour or insufficiently validated data such as
gender or age from social media platforms where users have the freedom to misrepresent
their demographic characteristics. The novelty of our work lies in the scale and validity
of the data that we use in obtaining password strengths of all age and gender groups. It
is primarily based on the large set (over 100,000) of user passwords that we managed to
recover together with every user’s accurate date of birth and gender.

1.2. Contribution

Our paper presents research on password hygiene based on a set of leaked data of
Lithuanian users. The analysed dataset exceeded 100,000 records. According to Euro-
barometer data [23], Lithuanian users represent an average European user from a cyber
hygiene perspective; e.g., 65% of Lithuanian users changed their passwords for online
services during the previous 12 months, while the European average is 67%. Nowadays,
security breaches and data leaks are commonplace. In social media and advertisements
of security companies, lists of top passwords are presented every half a year. In addition,
yearly reports of the National Cyber Security Centre of Lithuania show rising numbers
of cyber security incidents. Information technology (IT) as a mandatory subject for high
school pupils in Lithuania was introduced in 1986. At that time, schools did not have a
sufficient amount of computers, and teachers were struggling to ensure the development
of practical skills. In 1995, the school graduation IT exam was introduced. The national
association of IT teachers was established in 2000. In 2005, the IT subject was already taught
from the 5th grade of secondary school. Therefore, we assume the varying exposure to IT
of different generations to be visible in their password hygiene measurements.
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The work aims to investigate password strength and identify the impact of age and
gender properties using an extensive password dataset. We raise the following research
questions in the context of the leaked dataset:

• Do older users have weaker passwords considering their lack of general IT education
compared to younger generations?

• Has gender no impact on password strength, as previous studies did not find conclu-
sive evidence of any significant differences?

• What is the password hygiene in general?

Our applied research has practical implications for service developers and providers.
They should know and understand the distribution of security-related behaviour of their
users. Corresponding technical measures should be adapted to ensure the security of
systems and the privacy of their customers.

The paper is structured as follows. Section 2 covers the sample data and methodology
of how leaked passwords were recovered. Section 3 provides statistical insights about the
password strength from the perspective of age and gender differences. Section 4 discusses
the implications of our findings and similarities with other research. Section 5 concludes
the paper and offers directions for future work.

2. Materials and Methods
2.1. Dataset of Leaked Passwords
2.1.1. Data Leak and Ethical Concerns

In February of 2021, a car-sharing service CityBee acknowledged a leak of a misplaced
database archive [24]. UAB Prime Leasing operates the service in Lithuania. The leaked
archive dates back to 2018 and includes private data such as hashed passwords, names,
driver’s license ID, and other personally identifiable information. The quality of the data is
exceptional due to the financial implications of the car-sharing service—the company has
to validate its users before permitting the ride.

Ethics concerns may be raised due to the actual qualitative data used in this research
paper. Several aspects eliminate any negative impact of the results on the individuals. First
of all, the article does not reveal any personally identifiable data, and only aggregated
statistical data are presented. Secondly, the data are sufficiently old (2018), and all affected
users were already urged to change their passwords by the car-sharing company after the
leak. The company publicly announced that the disclosure of the data would not impact
the financial security of their customers [24]. The data were made publicly available by
cybercriminals. They had the opportunity and better resources to obtain identical statistics
as presented in our paper. In addition, some of the least secure passwords had been
available on social media immediately after the disclosure.

The State Data Protection Inspectorate of Lithuania already imposed an administrative
fine [25] on the company under the General Data Protection Regulation [26] due to “Insuf-
ficient technical and organisational measures to ensure information security”. However,
we argue that the general population and especially business companies should utilise the
incident to their full advantage and improve their cyber security practices using the results
presented here.

2.1.2. Data Description and Validity Checks

The leaked dataset contains 110,302 records in total. Each record includes a unique
sequence ID, the user’s first and last name, a password hash, the state-issued personal
identification number (similar to the social security number used in the US), and an email.
The sequence ID ranges from 1 to 111,052. Gaps in the sequence are small, and there are
only 750 deleted records (below 1% of all records). Some of the first records were clearly
used for testing purposes with incorrect hashes (5 records) and emails of the developers of
the car-sharing company itself (17 records).

The Lithuanian personal identification number consists of 10 digits, revealing the
person’s gender and date of birth followed by a control digit. Furthermore, most male
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Lithuanian names and surnames end with the letter s, giving us an additional criterion
for the validity check. Records with empty, invalid (foreign or inconsistent), or duplicate
personal codes were excluded from gender and age analysis.

We found over 91% of the 110,302 records containing a valid Lithuanian state-issued
personal code revealing the user’s gender and date of birth. Passwords were stored using a
fast SHA1 hashing algorithm [27], giving us the possibility of recoveing most of them (92%)
in a reasonable time. This created a unique opportunity to analyse password hygiene and
habits of a large set of technologically savvy Lithuanian users of various ages and genders.

2.2. Password Recovery

Figure 1 presents the generalised workflow of password recovery. The central Hash-
ing/Recovery executes the Brute Force method. Additionally, the component uses words
transformed by the Transformations component. This component depends on the localised
dictionary, anthology, word/character statistics, and data from known leaks. Recovered
passwords are evaluated according to the password strength metrics. The Analytics com-
ponent ends the workflow.

Figure 1. The flow of password recovery and analysis.

We used a computer with a single NVidia GeForce RTX 3070 video card and the
Hashcat software package to recover 89,556 passwords (91.71%) out of 97,654 unique SHA1
hashes found in the leaked archive. This revealed passwords from 102,120 records out of
110,302 (92.6%). The hashing rate varied from 11 GH/s for brute-force attacks to 7.5 GH/s
for dictionary attacks. It took around one week (180 h) to brute-force all passwords with
8 characters or less (45% of all unique hashes) using the complete Latin character set
(2 × 26 letters), digits (10), and all printable special characters from the ASCII table, includ-
ing space (33 characters). Ever-decreasing character sets were used to brute-force longer
passwords of up to 14 characters in length. Based on the character frequency and pattern
analysis of the already recovered passwords, we first eliminated some special characters,
then all special characters, then upper-case letters, and finally, a digits-only set was used for
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lengths 13 and 14. This brute-force attack revealed an additional 33% of passwords and took
11 weeks (1900 h of computer time). In total, 78% of hashes were cracked using the brute-
force attack. Further brute-force attacks become unfeasible; e.g., it would take 200 years
to hash all 10-character-long combinations of the full character set (95 characters), and
currently, even the most advanced hashing rigs would be unable to tackle SHA1 hashes of
11 or 12 character-long random passwords.

To recover longer passwords, we used a dictionary attack with various word-mangling
rules added on top, such as appending up to 4 characters at the beginning or the end of
each word, reversing words, or using other rule sets included in the default Hashcat
package. Most of the default rules work well for the Lithuanian language with several
minor improvements possible due to the following idiosyncrasies:

• Making l33tsp34k-like transformations: AaĄą→ 4, EeĖė→ 3, IiĮį→ 1, SsŠš→ 5, etc.;
• Changing letters to numbers based on their keyboard layout: Ąą→ 1, Čč→ 2, Ęę→ 3,

Ėė→ 4, Įį→ 5, Šš→ 6, Ųų→ 7, Ūū→ 8, Žž→ 0;
• Simply dropping the diacritics: Ąą→ Aa, ĖėĘę→ Ee, Įį→ Ii, ŲŪųū→ Uu, and Žž

→ Zz.

Dictionary attacks with word-mangling rules work because usually, people create
memorable passwords based on their social environment and native language [28]. We
used several different dictionaries for this purpose. Table 1 presents their list, sizes, and the
number of passwords found in each of them. It should be noted that some dictionaries—
and therefore, the passwords found in them—overlap, because we wanted to measure the
effectiveness of each of them. The table shows the number of passwords directly matching
some word in the corresponding dictionary and the number of unique passwords not
present in any other dictionary. In practice, the number of passwords recoverable from
dictionaries is larger, because many passwords had fragments from the dictionaries; e.g.,
37,452 passwords had fragments found in the Top500k dictionary, and 8789 users had
their name as a part of their password. Overall, 30,265 unique passwords could have
been extracted from all the dictionaries (the master dictionary) directly, although most of
them (27,582) had been already found via the brute-force attack. However, the application
of word-mangling rules revealed an additional 6815 passwords. Surprisingly, the rules
applied to already recovered passwords gave an extra 81 passwords. Together, these simple
dictionary attacks recovered an extra 10% of passwords and took just several hours of
computer time.

Table 1. Dictionaries used and the corresponding number of matching passwords.

Dictionary Words Passwords Unique Description

Lithuanian words 83,256 1530 0 Microsoft’s spell checker

↪→ Latin version 81,093 3044 0 Same, with diacritic symbols removed

Anthology 144,716 1852 10
Most frequent words (without
diacritics) from Lithuanian classic
literature

CityBee users 145,401 3044 464 Names and e-mail patterns

Top500k Lithuanian passwords 523,267 21,152 1745 Breaches of 2019–2020

Extended Lithuanian leaks 1,944,927 24,045 4084
Names and passwords of previous
breaches (388,327 words overlap with
the Top500k dictionary)

Rockyou 14,344,392 8145 2797 Social games site’s leak, 2009

All Lithuanian words 33,170,533 3823 154 Generated using Lithuanian language
grammar rules (without diacritics)

Master dictionary 49,705,914 30,265 Unique words from all
dictionaries together
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Finally, we concluded the extraction with two of the so-called “combinator” attacks
performed by adding together words from different (or the same) dictionaries. A simple
combination of all our dictionaries uncovered around 3% of passwords in less than 6 h.
The remaining 1% was obtained by using a more advanced combination technique called
PRINCE, which combines an arbitrary number of words into passwords of a predefined
length. If the words are sorted by their frequency with single letters concluding the dictio-
nary, then asymptotically, this algorithm is equal to the usual brute forcing, but it uncovers
passwords faster in the beginning. We stopped this attack after 7 days when the recovery
speed dropped to less than one password per hour.

During the analysis after the run, passwords of 80,213 records were found to be
composed of digits only or have fragments present in one of the dictionaries used. In other
words, passwords of more than 72% of the users could be found using a combination of
dictionary attacks, making them unsafe even for stronger hashing algorithms.

2.3. Strength Metrics

Password length alone is definitely not a good indicator of the password strength.
Our intention was to choose a password strength meter that would be both accurate and
easily implementable by any web or mobile service provider. The zxcvbn meter satisfied
both the accuracy [29] and usability criteria. This low-budget password strength estimation
method [22] uses a heuristic probability model employing the sum of two components—the
number of patterns the attacker might know and the number of guesses the attacker has to
make in the worst case scenario as multiplicative penalty.

argmin
S⊆S

D|S|−1 + |S|! ∏
m∈S

m.guesses

where |S| is the length of sequence S, and D is a constant representing the number of the
most common passwords the attacker already has in the dictionary.

A very important feature of the algorithm is the possibility of supplying custom-made
dictionaries reflecting the predicted environment of the users. If a fragment of a password
is found in one of the dictionaries, the score (number of predicted guesses) is negatively
impacted, perfectly corresponding to the attack methods we used. In addition, the closer to
the top of the dictionary a word is found, the lower the score. The implementation of the
zxcvbn algorithm we used takes into account the possibility that a user chose a word from
a dictionary unknown to us (a different language, a specific slang, or a dialect), so it lowers
the score of random-looking passwords by giving each character a cardinality of 10; e.g.,
the number of guesses predicted by the algorithm to recover a 4-character-long password
would be equal to 10,000. Therefore, we use a base-10 logarithm of the number of guesses
to measure the password strength (denoted by log10). One additional convenient feature
of this scale is an easy interpretation of the results, as the score of a randomly generated
password is equal to its length (the number of its characters).

3. Results
3.1. Description of the Data

There was no apparent password policy in place because the lengths of the recovered
passwords ranged from one to 28 characters (see Table 2). We discarded 536 records with
zero-length passwords, assuming they belong to users who have not completed a full
registration process. There were 100,317 records with valid Lithuanian personal codes and
non-zero passwords (91% of the whole set), with 67,997 records belonging to male users
and 32,320 records belonging to female users.

We failed to recover 8.5% of male user passwords, and this fraction remains almost
the same (7%–9%) for all age groups. Alternatively, we did not recover 5.2% of female user
passwords. Interestingly, the most advanced group consisted of the 20-year-old females
with 10% of their passwords left unknown. All other female age groups have 8% or less of
unrecovered passwords, with the fraction dropping down to 1% for the 49-year-old females.
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Further analysis of password strength by age and gender is limited to 92,816 records with
recovered non-zero passwords: 62,185 records of male users and 30,631 records of female
users. It should be emphasised that the leaked archive dates back to 2018. Therefore, we
calculated the users’ age at the time.

Table 2. Distribution of password lengths (all 110,302 records).

Length All Records Male Female Foreign/Unknown
Count Proportion Count Proportion Count Proportion Count Proportion

0 536 0.49% 322 0.45% 95 0.28% 119 2.54%
1 1 0.001% 1 0.001%
3 24 0.02% 8 0.01% 9 0.03% 7 0.15%
4 253 0.23% 30 0.04% 115 0.34% 108 2.30%
5 607 0.55% 246 0.34% 174 0.52% 187 3.99%
6 5490 4.98% 3442 4.78% 1641 4.88% 407 8.68%
7 5578 5.06% 3484 4.84% 1760 5.24% 334 7.12%
8 38,594 34.99% 25,004 34.73% 11,509 34.24% 2,081 44.36%
9 17,659 16.01% 11,730 16.29% 5451 16.22% 478 10.19%

10 13,687 12.41% 9024 12.53% 4363 12.98% 300 6.40%
11 8727 7.91% 5705 7.92% 2841 8.45% 181 3.86%
12 5187 4.70% 3329 4.62% 1771 5.27% 87 1.85%
13 2732 2.48% 1730 2.40% 955 2.84% 47 1.00%
14 1597 1.45% 974 1.35% 599 1.78% 24 0.51%
15 770 0.70% 449 0.62% 313 0.93% 8 0.17%
16 357 0.32% 217 0.30% 137 0.41% 3 0.06%
17 155 0.14% 81 0.11% 72 0.21% 2 0.04%
18 99 0.09% 60 0.08% 37 0.11% 2 0.04%
19 34 0.03% 21 0.03% 11 0.03% 2 0.04%
20 20 0.02% 10 0.01% 10 0.03%
21 6 0.01% 1 0.001% 5 0.01%
22 3 0.003% 2 0.003% 1 0.003%
24 1 0.001% 1 0.001%
25 1 0.001% 1 0.001%
26 1 0.001% 1 0.003%
28 1 0.001% 1 0.001%

Unknown 8182 7.42% 6130 8.51% 1738 5.17% 314 6.69%

Total 110,302 100.00% 72,003 100.00% 33,608 100.00% 4691 100.00%

3.2. Analysis of Dictionaries and Patterns

Dictionaries sorted by word frequency have a substantial impact on the recovery speed
(see Figure 2), as the curves representing the fraction of found passwords against their
position in the dictionary drop faster than an exponential. Half (50%) of 8145 passwords
found in the Rockyou dictionary are within the first 5% of its words. Similarly, half of
the matched passwords are within the first 15% of the Lithuanian Top500k dictionary and
within the first 20% of the Lithuanian Anthology dictionary. This finding also illustrates
the persistence of the password reuse problem because the Rockyou breach occurred in
another country a decade ago, but passwords of more than 7% of unique CityBee hashes are
present in the dictionary. Quite often, the same password is used by many users. There are
17,328 records (15.71% of all records) with shared passwords. As a consequence, 14,206 users
(12.88% of all users) have their passwords in the Rockyou dictionary. In total, passwords of
40,229 users (39.39%) were found in at least one of the previously leaked databases.
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Figure 2. Distribution of matched passwords in sorted dictionaries.

Analysis of various patterns found in the recovered passwords is presented in Table 3.
Each row independently lists a common pattern and the fraction of passwords observed
among all recovered 102,120 passwords. Some patterns overlap. If a word from any
dictionary listed in Table 1 is present somewhere in a password, then the password is
assigned to the word based pattern class. All others except the digit only passwords are
assigned to the random class. Therefore, the measurements of the two classes are imprecise.
Manual inspection shows that up to 25% of the supposedly random passwords may have
some semantic meaning, so it is difficult to determine the exact number of users who use
password generators and managers.

Table 3. Pattern frequency of 102,120 recovered passwords (examples do not disclose real data).

Class Fraction Example Description

random 21.45% 9q7FZ!OTkE A sequence of random characters
digits only 4.00% 1234500 Any sequence of digits
↪→ phone 0.75% 860012345 Possibly a phone number
↪→ personal code 0.10% State-issued code, 11 digits
date of birth 1.24% me19720101 User’s date of birth in any format
special symbol 2.58% password! At least one special character
spatial 0.11% 1q2w3e Keyboard walks
lowercase only 23.82% apassword a–z letters only
uppercase only 0.09% PASSWORD A–Z letters only
ULS pattern 3.05% Password1 One A–Z, then many a–z, then any

non-letter
ULS+ pattern 12.21% Password!1 One A–Z, then many a–z, then many

non-letters
repeat 5.19% Pass121212 Repeated groups of one or more

characters
word based 74.55% Password123 Some part is a dictionary word
↪→ name/email 8.61% Someuser!1 User’s name or email
↪→ reversed name 0.23% resUemoS123 User’s name in reverse
↪→ l33t ≈ 1.5% P455w0rd L33tsp34k, somewhat ambiguous

We had enumerated all the possible key-spaces of eight-character-long passwords and
shorter using the 95 printable ASCII characters (including space). Therefore, we could
extract the frequency distribution of all characters (see Table 4). Letter a is the most popular
character both among the recovered passwords (with the frequency of 10.12%) and in
password dictionaries Rockyou (7.05%) and Top500k (10.64%). This is unusual, because the
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most frequent English letter is e (12.09%) followed by t (8.95%) and then a (8.50%) [30], and
the most frequent Lithuanian letter is i (14%) followed by a (11.1%) [31]. The period was
the most popular special character, which was similar to Rockyou and Top500k. Separately,
we extracted the first digits of all numbers found in the passwords. The digit 1 exceeds the
value of Newcomb–Benford’s law (probability 0.376 instead of 0.301), as well as digits 7, 8,
and 9. The order of all first digits by their diminishing frequency is 1203879564.

Table 4. Character count and frequency within 50,547 passwords of eight characters or less.

Char Count Freq % Char Count Freq % Char Count Freq % Char Count Freq %

a 31,081 8.08 4 6012 1.56 V 2568 0.67 # 19 0.005
s 20,521 5.33 v 5753 1.49 C 2553 0.66 % 18 0.005
i 17,970 4.67 p 5583 1.45 N 2544 0.66 / 15 0.004
1 15,516 4.03 c 4768 1.24 I 2526 0.66 ) 14 0.004
e 14,785 3.84 y 4749 1.23 U 2486 0.65 space 11 0.003
r 11,869 3.08 z 4641 1.21 J 2437 0.63 : 10 0.003
u 11,467 2.98 j 4589 1.19 H 2413 0.63 = 8 0.002
n 10,956 2.85 f 3482 0.90 O 2391 0.62 ; 8 0.002
t 10,787 2.80 h 3478 0.90 F 2389 0.62 & 6 0.002
l 10,466 2.72 x 3236 0.84 Z 2375 0.62 ( 5 0.0013
2 10,287 2.67 w 3071 0.80 X 2325 0.6 > 3 0.0008
k 10,215 2.65 A 3029 0.79 W 2313 0.6 \ 3 0.0008
o 10,163 2.64 M 2866 0.74 Q 2289 0.59 ’ 2 0.0005
0 8864 2.30 S 2844 0.74 Y 2239 0.58 [ 2 0.0005
m 8847 2.30 L 2724 0.71 . 151 0.04 ∼ 2 0.0005
3 8202 2.13 K 2654 0.69 @ 131 0.03 { 2 0.0005
9 7742 2.01 P 2630 0.68 - 87 0.02 ] 2 0.0005
d 7727 2.01 R 2626 0.68 ! 80 0.02 < 1 0.0003
5 6981 1.81 D 2624 0.68 * 75 0.02 | 1 0.0003
7 6367 1.65 q 2623 0.68 ? 50 0.01 ˆ 1 0.0003
b 6294 1.64 T 2619 0.68 _ 44 0.01 " 1 0.0003
8 6283 1.63 E 2615 0.68 + 40 0.01 } 1 0.0003
g 6202 1.61 B 2605 0.68 $ 24 0.01 ` 0 0
6 6158 1.60 G 2597 0.67 , 19 0.005

3.3. Age and Gender Analysis

Due to the sample size (N = 92, 816), one could consider the distribution of the data to
represent a normal population distribution [32]. Except for the peaks of randomly generated
passwords of strength 8, both genders visually show normal distributions (Figure 3) but
violate the Kolmogorov–Smirnov goodness-of-fit-test for normality (KS = 0.122 p < 0.001).
Due to the number of cases, parametric analysis can be used since power, the low prob-
ability of type I errors, and a realistic effect size estimation are present with large sam-
ples [33]. Descriptive statistics is given in Table 5. Overall, the average strength of pass-
words (5.91± 2.16) corresponds to a six-character-long random password and should be
considered as very weak, even though the average length of recovered passwords is 9.12
characters. Some differences between genders could be observed. The password strength
of male users consistently exceeds the password strength of female users for every age
group (see Figure 4). Males significantly had stronger passwords than females (t = −17.66,
p < 0.001 Cohen’s d = 0.123). This observation entails that 55% of males have stronger
passwords than females, which is higher than chance alone (50%). On average, the dif-
ference of strengths measured as the base 10 logarithm of the number of guesses is 0.266.
In other words, male users are more likely to use passwords almost twice as difficult to
guess compared with those of female users (100.266 = 1.85). As a result, we recovered 91.5%
passwords of male users and 94.8% of female users.
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Figure 3. Histogram of password strengths.

Table 5. Descriptive statistics.

Password Strength (log10)

Female Male

Valid 30,631 62,185
Missing 0 0

Mean 5.731 5.997
Std. Error of Mean 0.013 0.009

Std. Deviation 2.191 2.142
Minimum 0.301 0.301
Maximum 17.260 16.284

Figure 4. Password strength dependency on person’s age.

Users between 25 and 35 years old had the strongest passwords. The average strength
is reduced for younger users. This was not statistically significant for females, but it fol-
lowed a well-pronounced linear path for male users (Male, 25 years or younger: R = 0.044,
F = 33.82, p < 0.001, β = 0.044). For both genders above age 25, password complexity
decreased with age equally (Male R = 0.043, F = 86.31, p < 0.001, β = −0.043; Female
R = 0.048 F = 51.03, p < 0.001, β = −0.048). The difference in regression coefficients
(Fisher’s Z) to test if females and males as they get older differ in password strength was
not significant, showing that older persons have increasingly less complex passwords
irrespective of their gender.
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The sample was separated into three distinct ranges (<26, 26–45, >45) to investigate
further how age and gender influenced password complexity. The first segment was chosen
based on our observation of the password strength development of young persons, while
the age of 45 years was an approximate divider between persons who had exposure to
IT during their school years and those who had not. Results show that age and gender
have a significant interaction (F = 9.92, p =< 0.001) where the males aged 26–45 were
significantly different from all other groups regardless of gender (see Figure 5).

Figure 5. Password strength of different age groups.

4. Discussion

Our research answered the question about general cyber hygiene. The results showed
weak password selection within most groups of users; i.e., most passwords were either
short, based on a dictionary, using a limited set of characters, or found in leaked databases.
Many human factors influence poor password hygiene. Service providers focus on attract-
ing people via ease-of-use of systems. They do not want to scare new customers away
by forcing them to create inconveniently complex passwords. In turn, customers rarely
consider possible risks that arise from entire dataset theft. In addition, the I have nothing
important for hackers to take mindset could explain the noticeable drop in password strength
that we observed for young (in particular male) persons of ages 18 to 25. Concerning the
research question about older users, our assumptions regarding the influence of their lack
of general IT education on their password hygiene align with our findings. The analysis
showed a decrease in users’ password strength above 45 years old regardless of gender.

Based on the analysis between genders and their password choices, certain patterns
and implications arise. Males generally have stronger passwords, and our results show
that males between 26 and 45 have the strongest passwords. One trend that this study
uncovered is that passwords regardless of gender become less complex as people get older,
with the biggest difference being between males aged 26–45 and females over 45 (mean
difference µ = 0.482± 0.045), translating to 3.03 times more complex passwords for males.
A more worrisome finding is that females used the weakest passwords regardless of the age.
This supports the findings of other researchers [34] that showed that females in Turkey and
China had less complex passwords, although females in the UK had stronger passwords
than their male counterparts. Petrie and Merdanyan [34] concluded that females in the
UK might have more use of secured systems due to the digitisation of the society, whereas
females in Turkey and China have less access to such systems. Regarding the research
question about gender impact, our findings show a statistical difference in password-
related behaviour between genders, although the effect is minimal. This aspect could
explain ambivalent results in other studies of smaller samples.
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It should be emphasised that adding a single random character to a password would
increase its brute force time by two orders of magnitude. Every user, no matter the
gender, has to be encouraged to use substantially stronger passwords because a large
fraction of both genders in this research had shown especially risky behaviour, including
passwords shorter than eight characters, extensive use of their own personal data while
creating passwords (names, dates of birth, emails, and even personal codes), and an overall
reliance on dictionary words. However, the largest cause for concern is password reuse.
Nearly half of identified females (46%) and a slightly smaller fraction of males (40%) used
passwords found in previously leaked databases, and about 16% of all users had a non-
unique password. Apparently, this is not a culture-dependent behaviour, because analysis
of a breached Chinese dataset (130,000 passwords) showed that trivial passwords such as
111111 or 123456 are in the list of the most common passwords of this culturally specific
dataset [35]. Even their average password length (8.4 symbols) was similar to our findings
(9.12 symbols). To mitigate the use of weaker passwords, one might consider informing
users to use more complex passwords, but in our opinion, the only viable solution is to
adopt password manager programs that generate strong and unique passwords for each
different service. Websites and databases should also require more complex passwords
through the use of algorithms such as zxcvbn that analyse password complexity. The
adoption of these approaches would help secure data in case of breaches regardless of age
and gender.

Our research also confirmed known user habits of password creation. The research of
a small university staff and students showed that only 30% of users use special characters,
while uppercase letters tend to be placed at the beginning, and numbers are placed at the
end of a password [36], which is a pattern we called ULS+. In our research, only 2.58%
of recovered passwords had a special symbol. It is possible that many more of the 8%
of passwords that we failed to crack have these characters, but this will not change the
statistics substantially. However, we only found 12.21% of our investigated passwords
to use the ULS+ pattern. On the other hand, we noticed the propensity of Lithuanian
users to limit their alphabet to English letters, disregarding the opportunity to strengthen
their passwords with specific Lithuanian characters. Table 1 lists two similar dictionaries:
Lithuanian words and the Latin version of the same dictionary where diacritic marks were
dropped from all letters. The results show that the first dictionary with correctly spelled
words has a smaller number of passwords in it. Only 12 passwords having the Lithuanian
letters with diacritics (ą, č, ž, and similar) were recovered in total, and none of them were
from these two dictionaries. The use of ASCII-only symbols is a historical artefact of how
information technology was developed. Early keyboards and operating systems had only
English letters, and the post hoc implementation of various other character sets led to many
complications in standardisation. In turn, this taught users to fall back to the simplified
alphabet to avoid encoding errors in sensitive areas such as password creation. The same
is true for other nationalities; e.g. an exceptionally small number of Rockyou words have
specific Spanish letters.

Limitations and Strengths

The analysed data sample represents an active and technologically advanced part of
the Lithuanian population. Thus, the findings related to cyber hygiene may overestimate
the general population’s behaviour. There were twice as many males in this study as
females, which could cause skewed results, although the statistical analysis takes the
differences into account, and every age group of up to 55 years old has at least 100 women.
In addition, we cracked only 92% of all leaked hashes. The remaining passwords are
stronger and therefore could influence our findings. However, the main conclusions are
unlikely to change, because a larger fraction of males (8.51%) have unrecovered passwords
compared to females (5.17%), which is consistent with the main findings. Even though the
effect sizes in the statistical analysis are considered small, the number of cases can lead
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to strong generalisations of the findings and might better reflect the differences between
genders regarding password complexity.

5. Conclusions and Future Work

Based on the analysis of over 100,000 passwords recovered from a high-quality leaked
database, we determined that persons above 45 years old have the weakest passwords,
and the strength decreases with age. One reason may be the lack of exposure to IT during
their youth, although the exact reasons are left for further research. Although the effect
size was small, females had significantly weaker passwords than males for all age groups.
In general, the users’ password hygiene could be considered very weak. Passwords of
around 40% of users were found in previously leaked databases, including the old Rockyou
dictionary.

Several additional conclusions arise from the analysed data. Firstly, users could be
encouraged to use their entire national alphabet whenever possible—the introduction of
special letters (ą, č, ñ, ø) considerably improves password strength. Nevertheless, words
or word fragments must be avoided at all costs, no matter their language, spelling, or
mangling. It is important to check newly generated passwords against collections of
previously leaked passwords.

The strength of the hashing algorithm has little influence on the security of the hashed
password because over 70% of user passwords are vulnerable to dictionary attacks. Neither
the gender nor age of the user changes the statistics significantly. It might be impossible
to persuade every person to use password managers and unique randomly generated
passwords for every different application. Hence, the responsibility for password security
mainly falls to service providers who should implement password strength meters and
enforce password policies. The suggestion to force users to choose stronger passwords via
specific means implemented by system developers has been raised before, as simple visual
nudges do not influence them to choose longer or stronger passwords [37]. However, our
results show that password alone is no longer a viable option, and the only reasonable
alternative is multi-factor authentication.

The future directions of the work would be to investigate the development, usage,
and policies on password enforcement mechanisms. The qualitative research of selected
systems would provide insights into the user behavioural patterns from psychological
and educational perspectives. Another possible direction is to research the impact of
multi-factor authentication systems on future password complexity and develop methods
to encourage more complex passwords. Finally, future research should delve into the
underlying causes of the observed insecure user behaviour. In particular, trust in the
technology and implications of trust to the complexity of passwords could be explored
from the perspective of different age groups and genders.
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