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Abstract We obtain a Lundberg-type inequality in the case of an inhomogeneous renewal
risk model. We consider the model with independent, but not necessarily identically distributed,
claim sizes and the interoccurrence times. In order to prove the main theorem, we first formu-
late and prove an auxiliary lemma on large values of a sum of random variables asymptotically
drifted in the negative direction.

Keywords Inhomogeneous model, renewal model, Lundberg-type inequality, exponential
bound, ruin probability

2010 MSC 91B30, 60G50

1 Introduction

The classical risk model and the renewal risk model are two models that are tra-
ditionally used to describe the nonlife insurance business. The classical risk model
was introduced by Lundberg and Cramér about a century ago (see [8, 14, 15] for the
source papers and [18] for the historical environment). In this risk model, it is as-
sumed that interarrival times are identically distributed, exponential, and independent
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Fig. 1. Behavior of the surplus process.

random variables. In 1957, the Danish mathematician E. Sparre Andersen proposed
the renewal risk model to describe the surplus process of the insurance company. In
the renewal risk model, the claim sizes and the interarrival times are independent,
identically distributed, nonnegative random variables (see [2] for the source paper
and [22] for additional details). In this paper, we assume that interoccurrence times
and claim sizes are nonnegative random variables (r.v.s) that are not necessarily iden-
tically distributed. We call such a model the inhomogeneous model and present its
exact definition. It is evident that the inhomogeneous renewal risk model reflects bet-
ter the real insurance activities in comparison with the classical risk model or with
the renewal (homogeneous) risk model.

Definition 1. We say that the insurer’s surplus U(t) varies according to the inhomo-
geneous renewal risk model if

U(t) = U(ω, t) = x + ct −
Θ(t)∑
i=1

Zi

for all t � 0. Here:

• x � 0 is the initial reserve;

• claim sizes {Z1, Z2, . . . } form a sequence of independent (not necessarily iden-
tically distributed) nonnegative r.v.s;

• c > 0 is the constant premium rate;

• Θ(t) = ∑∞
n=1 1{Tn�t} = sup{n � 0 : Tn � t} is the number of claims

in the interval [0, t], where T0 = 0, Tn = θ1 + θ2 + · · · + θn, n � 1, and
the interarrival times {θ1, θ2, . . .} are independent (not necessarily identically
distributed), nonnegative, and nondegenerate at zero r.v.s;

• the sequences {Z1, Z2, . . .} and {θ1, θ2, . . .} are mutually independent.

A typical path of the surplus process of an insurance company is shown in Fig. 1.
If all claim sizes {Z1, Z2, . . .} and all interarrival times {θ1, θ2, . . .} are identically

distributed, then the inhomogeneous renewal risk model becomes the homogeneous
renewal risk model.
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The time of ruin and the ruin probability are the main critical characteristics of
any risk model. Let B denote the event of ruin. We suppose that

B =
⋃
t�0

{
ω : U(ω, t) < 0

} =
⋃
t�0

{
ω : x + ct −

Θ(t)∑
i=1

Zi < 0

}
,

that is, that ruin occurs if at some time t � 0 the surplus of the insurance company
becomes negative or, in other words, the insurer becomes unable to pay all the claims.
The first time τ when the surplus drops to a level less than zero is called the time of
ruin, that is, τ is the extended r.v. for which

τ = τ(ω) =
{

inf{t � 0 : U(ω, t) < 0} if ω ∈ B,

∞ if ω /∈ B.

The ruin probability ψ is defined by the equality

ψ(x) = P(B) = P(τ = ∞).

Usually, we suppose that the main parameter of the ruin probability is the initial
reserve x, though actually the ruin probability, together with time of ruin, depends on
all components of the renewal risk model.

All trajectories of the process U(t) are increasing functions between times Tn and
Tn+1 for all n = 0, 1, 2, . . . . Therefore, the random variables U(θ1 + θ2 + · · · + θn),
n � 1, are the local minimums of the trajectories. Consequently, we can express the
ruin probability in the following way (for details, see [9] or [16]):

ψ(x) = P

(
inf
n∈NU(θ1 + θ2 + · · · + θn) < 0

)
= P

(
inf
n∈N

{
x + c(θ1 + θ2 + · · · + θn) −

Θ(θ1+···+θn)∑
i=1

Zi

}
< 0

)

= P

(
inf
n∈N

{
x −

n∑
i=1

(Zi − cθi)

}
< 0

)

= P

(
sup
n∈N

{ n∑
i=1

(Zi − cθi)

}
> x

)
.

Further, in this paper, we restrict our study to the so-called Lundberg-type inequa-
lity. An exponential bound for the ruin probability is usually called a Lundberg-type
inequality. We further give the well-known exponential bound for ψ(x) in homo-
geneous renewal risk model (see, for instance, Chapters “Lundberg Inequality for
Ruin Probability”, “Collective Risk Theory”, “Adjustment Coefficient,” or “Cramer–
Lundberg Asymptotics” in [21]).

Theorem 1. Let the net profit condition EZ1 − cEθ1 < 0 hold, and let EehZ1 < ∞
for some h > 0 in the homogeneous renewal risk model. Then, there is a number
H > 0 such that

ψ(x) � e−Hx (1)

for all x � 0. If EeR(Z1−cθ1) = 1 for some positive R, then we can take H = R in (1).
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There exist a lot of different proofs of this theorem. The main ways to prove
inequality (1) are described in Chapter “Lundberg Inequality for Ruin Probability”
of [21]. Details of some existing proofs were given, for instance, by Asmussen and
Albrecher [3], Embrechts, Klüppelberg, and Mikosch [9], Embrechts and Veraver-
beke [10], Gerber [11], and Mikosch [16]. We note only that the bound (1) can be
proved using the exponential tail bound of Sgibnev [19] and the inequality ψ(0) < 1.

The following theorem is the main statement of the paper.

Theorem 2. Let the claim sizes {Z1, Z2, . . . } and the interarrival times {θ1, θ2, . . . }
form an inhomogeneous renewal risk model described in Definition 1. Further, let the
following three conditions be satisfied:

(C1) sup
i∈N

EeγZi < ∞ for some γ > 0,

(C2) lim
u→∞ sup

i∈N
E

(
θi1{θi>u}

) = 0,

(C3) lim sup
n→∞

1

n

n∑
i=1

(EZi − cEθi) < 0.

Then, there are constants c1 > 0 and c2 � 0 such that ψ(x) � e−c1x for all x � c2.

The inhomogeneous renewal risk model differs from the homogeneous one be-
cause the independence and/or homogeneous distribution of sequences of random
variables {Z1, Z2, . . . } and/or {θ1, θ2, . . . } are no longer required. The changes de-
pend on how the inhomogeneity in a particular model is understood. In Definition 1,
we have chosen one of two possible directions used in numerous articles that deal
with inhomogeneous renewal risk models. This is due to the fact that an inhomo-
geneity can be considered as the possibility to have either differently distributed or
dependent r.v.s in the sequences.

The possibility to have differently distributed r.v.s was considered, for instance,
in [5, 6, 12, 17]. In the first three works, the discrete-time inhomogeneous risk model
was considered. In such a model, the interarrival times are fixed, and the claims
{Z1, Z2, . . . } are independent, not necessary identically distributed, integer valued
r.v.s. In [17], the authors consider the model where the interarrival times are identi-
cally distributed and have a particular distribution, whereas the claims are differently
distributed with distributions belonging to a particular class. Bernackaitė and Šiaulys
[4] deal with an inhomogeneous renewal risk model where the r.v.s {θ1, θ2, . . . } are
not necessarily identically distributed, but the claim sizes {Z1, Z2, . . . } have a com-
mon distribution function. In this article, we consider a more general renewal risk
model. In the main theorem, we assume that not only r.v.s {θ1, θ2, . . . } are not neces-
sarily identically distributed, but also the same holds for the sequence of claim sizes
{Z1, Z2, . . . }.

There is another approach to inhomogeneous renewal risk models, which implies
the possibility to have dependence in sequences and mainly found in works by Chi-
nese researchers. In this kind of models, the sequences {Z1, Z2, . . . } and {θ1, θ2, . . . }
consist of identically distributed r.v.s, but there may be some kind of dependence
between them. Results for such models can be found, for instance, in [7] and [23].
Another interpretation of dependence is also possible, where r.v.s in both sequences
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{Z1, Z2, . . . } and {θ1, θ2, . . . } still remain independent. Instead of that, the mutual
independence of these two sequences is no longer required. The idea of this kind of
dependence belongs to Albrecher and Teugels [1], and this encouraged Li, Tang, and
Wu [13] to study renewal risk models having this dependence structure.

The rest of the paper consists of two sections. In Section 2, we formulate and
prove an auxiliary lemma. The proof of the main theorem is presented in Section 3.

2 Auxiliary lemma

In order to prove the main theorem, we need an auxiliary lemma. In Lemma 1, the
conditions for r.v.s η1, η2, η3, . . . are taken from articles by Smith [20] and Bernac-
kaitė and Šiaulys [4].

Lemma 1. Let η1, η2, η3, . . . be independent r.v.s such that(
C1∗) sup

i∈N
Eeδηi < ∞ for some δ > 0,(

C2∗) lim
u→∞ sup

i∈N
E

(|ηi |1{ηi�−u}
) = 0,

(
C3∗) lim sup

n→∞
1

n

n∑
i=1

Eηi < 0.

Then, there are constants c3 > 0 and c4 > 0 such that

P

(
sup
k�1

k∑
i=1

ηi > x

)
� c3e−c4x

for all x � 0.

Proof. First, we observe that, for all x � 0,

P

(
sup
k�1

k∑
i=1

ηi > x

)
= P

( ∞⋃
k=1

{ k∑
i=1

ηi > x

})

�
∞∑

k=1

P

( k∑
i=1

ηi > x

)
. (2)

By Chebyshev’s inequality, for all x � 0, 0 < y � δ, and k ∈ N, we have

P

( k∑
i=1

ηi > x

)
= P

(
ey

∑k
i=1 ηi > eyx

)
� e−yx

k∏
i=1

Eeyηi . (3)

Moreover, for all i ∈ N, 0 < y � δ, and u > 0, we have

Eeyηi = 1 + yEηi + E
(
eyηi − 1 − yηi

)
(4)
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and

E
(
eyηi − 1 − yηi

)
= E

((
eyηi − 1

)
1{ηi�−u}

) − yE(ηi1{ηi�−u})
+ E

((
eyηi − 1 − yηi

)
1{−u<ηi�0}

) + E
((

eyηi − 1 − yηi

)
1{ηi>0}

)
.

In order to evaluate the absolute value of the remainder term in (4), we need the
following inequalities: ∣∣ev − 1

∣∣ � |v|, v � 0,∣∣ev − v − 1
∣∣ � v2

2
, v � 0,

∣∣ev − v − 1
∣∣ � v2

2
ev, v � 0.

Using them, we get∣∣E(
eyηi − 1 − yηi

)∣∣
� 2yE

(|ηi |1{ηi�−u}
) + y2

2
E

(
η2

i 1{−u<ηi�0}
) + y2

2
E

(
η2

i eyηi 1{ηi>0}
)

� 2y sup
i∈N

E
(|ηi |1{ηi�−u}

) + y2u2

2
+ y2

2
sup
i∈N

E
(
η2

i eyηi 1{ηi>0}
)
, (5)

where i ∈ N, 0 < y � δ, and u > 0.
Since

lim
v→∞

eδv/2

v2
= ∞,

we have

eδv/2 � v2

for all v � c5, where c5 = c5(δ) > 0.
Therefore,

sup
i∈N

E
(
η2

i eδηi/21{ηi>0}
)

� sup
i∈N

E
(
η2

i eδηi/21{0<ηi�c5}
) + sup

i∈N
E

(
η2

i eδηi/21{ηi>c5}
)

�
(
c2

5 + 1
)

sup
i∈N

Eeδηi < ∞. (6)

Choosing u = 1
4√y

in (5) and using (6), we get∣∣E(
eyηi − 1 − yηi

)∣∣
� 2y sup

i∈N
E

(
|ηi |1{ηi�− 1

4√y
}
)

+ y
3
2

2
+ y2

2
sup
i∈N

E
(
η2

i eyηi 1{ηi>0}
)
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� y

(
2 sup

i∈N
E

(|ηi |1{ηi�− 1
4√y

}
) + y

1
2

2
+ y

2

(
c2

5 + 1
)

sup
i∈N

Eeδηi

)
=: yα(y), (7)

where i ∈ N, y ∈ (0, δ/2], c5 = c5(δ), and

α(y) = 2 sup
i∈N

E

(
|ηi |1{ηi�− 1

4√y
}
)

+ y
1
2

2
+ y

2

(
c2

5 + 1
)

sup
i∈N

Eeδηi .

Conditions (C1∗) and (C2∗) imply that α(y) ↓ 0 as y → 0.
For an arbitrary positive v, we have

sup
i∈N

E
(|ηi |1{ηi<0}

) = sup
i∈N

E
(|ηi |1{−v<ηi<0} + |ηi |1{ηi�−v}

)
� v + sup

i∈N
E

(|ηi |1{ηi�−v}
)
.

So, condition (C2∗) implies that

sup
i∈N

E
(|ηi |1{ηi<0}

)
< ∞. (8)

Denote

ŷ = min
{
δ/2, 1/

(
2 sup

i∈N
E

(|ηi |1{ηi<0}
))}

.

If y ∈ (0, ŷ ], then

y
(
Eηi + α(y)

)
> yEηi

= yE
(
ηi1{ηi�0} + ηi1{ηi<0}

)
� yE

(
ηi1{ηi<0}

)
� ŷ inf

i∈NE
(
ηi1{ηi<0}

)
= −ŷ sup

i∈N
E

(|ηi |1{ηi<0}
)

� −1/2

for all i ∈ N.
Therefore, (3), (4), (7), and the well-known inequality

ln(1 + u) � u, u > −1,

imply that
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P

( k∑
i=1

ηi > x

)
� e−yx

k∏
i=1

(
1 + yEηi + E

(
eyηi − 1 − yηi

))
� e−yx

k∏
i=1

(
1 + y

(
Eηi + α(y)

))
= exp

{
−yx +

k∑
i=1

ln
(
1 + y

(
Eηi + α(y)

))}

� exp

{
−yx + y

k∑
i=1

Eηi + ykα(y)

}
, (9)

where k ∈ N, x � 0, and y ∈ (0, ŷ ].
By estimate (8) and condition (C3∗) we can suppose that

lim sup
n→∞

1

n

n∑
i=1

Eηi = −c6

for some positive constant c6. Then we have

1

k

k∑
i=1

Eηi � −c6

2

for k � M + 1 with some M � 1. Moreover, there exists y∗ ∈ (0, ŷ ] such that
α(y∗) � c6/4 since α(y) ↓ 0 as y → 0.

Using results from (2), (3), and (9), we derive

P

(
sup
k�1

k∑
i=1

ηi > x

)

�
M∑

k=1

P

( k∑
i=1

ηi > x

)
+

∞∑
k=M+1

P

( k∑
i=1

ηi > x

)

�
M∑

k=1

e−y∗x
k∏

i=1

Eey∗ηi +
∞∑

k=M+1

P

( k∑
i=1

ηi > x

)

�
M∑

k=1

e−y∗x
k∏

i=1

Eey∗ηi +
∞∑

k=M+1

e−y∗x+y∗ ∑k
i=1 Eηi+y∗kα(y∗)

� e−y∗x
( M∑

k=1

k∏
i=1

Eey∗ηi +
∞∑

k=0

e−ky∗c6/4
)

� e−y∗x
( M∑

k=1

k∏
i=1

Δ + 1

1 − e−y∗c6/4

)
= e−y∗x

(
Δ(ΔM − 1)

Δ − 1
+ ey∗c6/4

ey∗c6/4 − 1

)
=: c3e−c4x,
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where

x � 0,

Δ = 1 + sup
i∈N

Eeδηi ,

c3 = Δ(ΔM − 1)

Δ − 1
+ ey∗c6/4

ey∗c6/4 − 1
,

c4 = y∗ ∈ (0, ŷ ]
with M � 1, c6 > 0, and ŷ > 0 defined previously. The lemma is now proved.

3 Proof of Theorem 2

In this section, we prove Theorem 2.

Proof. Since

ψ(x) = P

(
sup
n�1

{ n∑
i=1

(Zi − cθi)

}
> x

)
,

the desired bound of Theorem 2 can be derived from auxiliary Lemma 1.
Namely, supposing that r.v.s Zi − cθi , i ∈ {1, 2, . . .}, satisfy all conditions of

Lemma 1, we get
ψ(x) � c7e−c8x

for all x � 0 with some positive c7, c8 independent of x.
Therefore,

ψ(x) � c7e−c8x/2e−c8x/2 � e−c8x/2,

with x � max{0, (2 ln c7)/c8},
Thus, it suffices to check all three assumptions in our lemma with random vari-

ables Zi − cθi, i ∈ N. The requirement (C3∗) of Lemma 1 is evidently satisfied by
condition (C3).

Next, it follows from (C1) that

sup
i∈N

Eeγ (Zi−cθi ) � sup
i∈N

EeγZi < ∞.

So, the requirement (C1∗) holds too.
It remains to prove that

lim
u→∞ sup

i∈N
E

(|Zi − cθi |1{Zi−cθi�−u}
) = 0. (10)

To establish this, we use the inequality

sup
i∈N

E
(|Zi − cθi |1{Zi−cθi�−u}

)
� sup

i∈N
E

(
Zi1{Zi−cθi�−u}

)
+ c sup

i∈N
E

(
θi1{Zi−cθi�−u}

)
. (11)
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Taking the limit as u → ∞ in the first summand of the right side of inequality
(11), we get

lim
u→∞ sup

i∈N
E

(
Zi1{Zi−cθi�−u}

)
� lim

u→∞ sup
i∈N

E
(
Zi1{Zi−cθi�−u}1{θi� u

2c
}
)

+ lim
u→∞ sup

i∈N
E

(
Zi1{Zi−cθi�−u}1{θi>

u
2c

}
)

� lim
u→∞ sup

i∈N
E

(
Zi1{Zi�−u/2}

)
+ lim

u→∞ sup
i∈N

E
(
Zi1{Zi−cθi�−u}1{θi>

u
2c

}
)

= lim
u→∞ sup

i∈N
E

(
Zi1{Zi−cθi�−u}1{θi>

u
2c

}
)

� lim
u→∞ sup

i∈N
E

(
Zi1{θi>

u
2c

}
)

= lim
u→∞ sup

i∈N
EZiP

(
θi >

u

2c

)
� sup

i∈N
EZi lim

u→∞ sup
i∈N

P

(
θi >

u

2c

)
. (12)

Since x � eγ x/γ , x � 0, condition (C1) implies that

sup
i∈N

EZi < ∞. (13)

In addition,

lim
u→∞ sup

i∈N
P

(
θi >

u

2c

)
= lim

u→∞ sup
i∈N

E

(
θi1{θi>

u
2c

}
θi

)
� lim

u→∞
2c

u
sup
i∈N

E
(
θi1{θi>

u
2c

}
)=0 (14)

by condition (C2).
Therefore, relations (12), (13), and (14) imply that

lim
u→∞ sup

i∈N
E

(
Zi1{Zi−cθi�−u}

) = 0. (15)

Now taking the limit as u → ∞ in the second summand of the right side of
inequality (11), by condition (C2) we have

lim
u→∞ sup

i∈N
E

(
θi1{Zi−cθi�−u}

) = lim
u→∞ sup

i∈N
E

(
θi1{θi� 1

c
(Zi+u)}

)
� lim

u→∞ sup
i∈N

E
(
θi1{θi� u

c
}
)=0. (16)

We now see that the desired equality (10) follows from (11), (15), and (16). This
means that all requirements of Lemma 1 hold for r.v.s Zi − cθi , i ∈ N.
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