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Introduction

The concept of exciton defines a collective and delocalized electronic excitation
in the solid state or molecular systems. Such excitations are coherent, that is,
the phase relationship of the quantum wavepackets, established on two or more
spatially separated atoms or molecules, is maintained to some extent both in
space and time. However, the quantum superposition state is not immune from
the dephasing, that might be caused by many different factors, usually related to
the interaction with the surroundings.

Many spectroscopic phenomena of electronic nature in organic molecular as-
semblies, for example, the motional narrowing in J-aggregates1,2 or band forma-
tion of the absorption spectrum,3 have been understood by employing the Frenkel
exciton concept.4 In the Frenkel exciton, an electron–hole pair is localized over
a single constituent of the molecular crystal.5 It is different from the large-radius
Wannier–Mott excitons that are created in the solid state upon electronic excita-
tion.6

In contrast to static and ordered solid state systems, molecular complexes
are prone to static or/and dynamic disorder, and nuclear (intermolecular and
intramolecular) rearrangements, which accompany the exciton dynamics, such
as the photo-induced energy transfer.6–8 Coupling to vibrational degrees intro-
duces a distinct complexity into the (vibronic) exciton theory;9 such electronic–
vibrational interaction is often a dominating factor, shaping the molecular spec-
trum. The effects of vibrational borrowing, which allows forbidden electronic
transitions through simultaneous excitation of certain asymmetric vibrations,10

or the Jahn–Teller effect, regarding nuclear instability of degenerate electronic
states,11 are just a few physical situations, where the electronic–vibrational inter-
action beyond the adiabatic approximation becomes very important.

Recent advances of the ultrashort laser spectroscopy, allowing preparation of
picosecond or femtosecond laser pulse sequences, have opened a wide window
for studying coherent properties of molecular systems on ultrafast time scales.
Together with the available high-resolution information of the structure of these
complexes, direct evaluation of coherent exciton dynamics became possible. For
example, using femtosecond pulses, one can generate a superposition of molecular

9



10 Introduction

eigenstates and directly observe it as quantum beats (also referred to as coher-
ences) in the transient absorption12–14 or the two-dimensional spectrum.15,16 Due
to the interaction of the wavepacket with the surroundings (for pigment molecules
of biological origin it is usually the protein scaffold), quantum superposition has to
be considered within the theoretical framework of open quantum systems.6,8, 17,18

At the heart of this theory it is shown, that the superposition state is entangled
with the surroundings and is very fragile due to energy fluctuations of the thermal
energy reservoir. The resulting decay of the established superposition state is
governed by the phenomenon of decoherence,18 which is taken as a more specific
term than dephasing, referring to a general loss of the phase relationship due to
decoherence, exciton relaxation or ensemble averaging. In this thesis, both terms
of decoherence and dephasing will be used in description of coherent dynamics of
vibronic excitons and its signatures in spectra. Decoherence is more pronounced
in weakly disordered systems at low temperatures. All these mechanisms are si-
multaneously active and shape the spectra of molecular systems, therefore the
coherent exciton dynamics become extremely complicated.

The topic of dephasing and decoherence in open quantum systems recently
received a significant boost when the coherent beatings persisting beyond the
characteristic decoherence time scale of quantum electronic state were reported
for the monumental Fenna–Matthews–Olson (FMO) complex.15,19 The FMO
complex is a photosynthetic antenna, involved in excitation transfer to the reac-
tion center of membranic photosynthetic apparatus of the green sulfur bacteria.20

The nature (whether electronic19 or vibrational21–25) and role (in energy26–29 and
charge30,31 transfer) of the long-lived dynamic coherences are still being debated
along with the suggestion, that electronic–vibrational mixing29,32–35 could main-
tain it for as long as a few picoseconds. Therefore, the question, regarding the role
of dephasing of coherence and its interplay with the nuclear degrees of freedom
in molecular systems, remains open.

The main goal of this thesis is to determine the significance of dephasing and
decoherence of vibronic excitons in molecular systems and define the signatures of
electronic–vibrational interaction in the two-dimensional electronic spectra regard-
ing the evolution of molecular excitation and quantum coherences. To achieve
this goal, the following tasks were formulated:

• Establish and develop a theoretical framework, based on the perturbative
response function formalism, for theoretical simulations of linear and nonlin-
ear spectra of systems consisting of an arbitrary number of molecules and
different levels of abstraction of the description of the bath.

• Extend the developed formalism to describe the vibronic coupling in molec-
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ular aggregates and assess its signatures in the two-dimensional electronic
spectroscopy.

• Develop methods or find signatures, how to identify and distinguish between
spectral properties that are of electronic, vibrational or quantum mechanically
mixed nature.

• Apply the obtained knowledge to the analysis of the experimental results of
the molecular six-porphyrin nanoring.

Novelty and relevance of the results

In an adiabatic framework (i. e., assuming the Born–Oppenheimer approximation),
the motion of electrons in molecules is decoupled from the slow intramolecular
and intermolecular vibrations. Such a treatment gives us the picture of the poten-
tial energy surface of an electronic state; nonadiabatic changes occur only when
the molecules approach the region on the potential surface where the adiabatic
approximation breaks down, for example, at a conical intersection or in an avoided
crossing region at the electronic–vibrational resonance of vibronic excitons. Such
effects play an important role in photochemistry36 and various theoretical methods
have been developed to account it for.35,37 However, the theory of vibronic cou-
pling and its implications in the novel method of the two-dimensional electronic
spectroscopy is still being developed. In this thesis, the perturbative response
function theory of the two-dimensional spectroscopy for the Frenkel excitons is
derived (chapters 1 and 2). In Chapter 3, it is extended to describe vibronic
excitons with the two-particle description of vibrational states and the Redfield
relaxation theory for a molecular aggregate consisting of an arbitrary number of
chromophores.

Knowledge about the signatures of the static energy disorder in the two-
dimensional spectra is limited. Signatures of the static energy disorder can be
directly estimated from the spectrum, since the separation of the inhomogeneous
and the homogeneous lineshapes is inherently given by the experimental tech-
nique itself. In this thesis we show, how the static energy disorder influences the
coherences of molecular systems: the presence of decoherence and dephasing,
controlled by the static energy disorder, can provide both short-lived and long-
lived quantum coherences (Section 2.3.3), but the effect on electronic, vibrational
and mixed coherences is essentially different38 (Section 3.3.3). We are able to
explain the lifetimes and origins of coherent beatings in a number of recently
reported experiments.30,39–42
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Regarding the discussion of a possible role of electronic versus vibrational co-
herences, it is crucial to find a strong criterion for identification of the nature of the
experimentally observed coherences. It was proposed, that the distinction can be
obtained by analyzing the so-called rephasing and nonrephasing two-dimensional
spectra,43 temperature dependence of the spectra,44 or by applying the short-time
Fourier transform of the time-resolved spectroscopic signals.45 Here, in sections
3.1 and 3.2, we propose the method of distinction between electronic and vibra-
tional coherences by means of the so-called coherence maps, which are constructed
from a set of the time-dependent two-dimensional spectra.34,46,47 Our method
has already aided in the identification of experimentally observed vibrational and
mixed coherences which were shown to be responsible for speeding up the charge
transfer in photosynthesis.30

Vibronic exciton theory does not rule out the electronic and vibrational coher-
ences to simultaneously co-exist in the same system. However, clear experimental
characterization of coherences with different origin and their interconnection has
been elusive. Experimental results, supported by our theoretical considerations
of the molecular six-porphyrin nanoring presented in Chapter 4, demonstrate the
co-existence of electronic, vibrational and mixed coherences for the first time.48

Our elaborate considerations of the beatings in the two-dimensional spectra is
also a novel principle, how the analysis of coherences can aid in determining the
energy states of the system.49

Statements of the thesis

1. Quantum coherences of electronic, vibrational or mixed nature can be dis-
criminated by analyzing coherent oscillations in the two-dimensional spec-
trum. For each type of coherence, these differences appear as typical ampli-
tude and phase patterns in the constructed coherence maps.

2. The effect of static energy disorder on the coherences depends on the nature
of the states involved in the quantum superposition. The amplitude and the
lifetime of the coherences of purely electronic origin is dramatically reduced by
the disorder; coherences of vibrational origin weakly depend on the disorder.
However, the lifetime of the electronic coherences can be extremely enhanced
if the conditions for the decoherence-limited quantum beats are fulfilled.

3. For vibronically coupled systems, the lifetime of excitonic coherences is de-
termined by the coupling to discrete modes of intramolecular vibrations and
by the proximity of the system parameters to the electronic–vibrational res-
onance, as it leads to the coherence lifetime borrowing phenomenon.
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4. The electronic and vibronic energy level structure of the six-porphyrin nanor-
ing is determined by the non-trivial combined effect of the static energy
disorder, vibronic coupling and small geometric deformations of the nanor-
ing. These properties can be directly assessed from the analysis of quantum
coherences in the two-dimensional spectra.
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Chapter 1

Two-dimensional electronic
spectroscopy

The idea of the two-dimensional (2D) spectroscopy came from the nuclear mag-
netic resonance (NMR) studies of geometric information of molecular structure
in solution and atomic arrangements in the solid state. Already in 1950s it was
concluded, that it is impossible to spectrally distinguish between the independent
resonances, caused by the spin–spin interactions, by measuring the linear response
and nonlinear methods are required.50 Experimental techniques, which employed
pulse pair interactions with the systems, were suggested. The goal was to repro-
duce the correlation maps, or the “two-dimensional spectra”, which would show
the amplitude S(ω1,ω2) of the response, depending on the frequencies of the
applied “pumping” (ω1) and the “probing” (ω2) electromagnetic fields at radio
frequencies. 2D NMR techniques, such as COSY (correlation spectroscopy) and
NOESY (nuclear Overhauser enhancement spectroscopy) have been extensively
used to study structural and dynamical properties of proteins in solutions.51 The
importance of the multidimensional NMR spectroscopy is reflected by the fact,
that in 1991 the Nobel prize in chemistry was awarded to one of the founders of
the 2D NMR spectroscopy Richard R. Ernst “for his contributions to the develop-
ment of the methodology of high resolution nuclear magnetic resonance (NMR)
spectroscopy”.52

The multidimensional NMR techniques are the excellent tools to study the
structural information of systems, which evolve slowly (millisecond time scale).
If the time scales of the dynamical processes (such as fluctuations of solvent
environment, excitation and charge transfer, etc.) in the systems are shorter,
transient fluorescence or absorption spectroscopies are able to provide more in-
sight, however, with a huge trade-off in the structural resolution. 2D infrared (IR)
spectroscopy can then be used, since it provides chemical bond-specific structural
resolution with the time resolution ranging from femtoseconds to milliseconds.53

17



18 1. Two-dimensional electronic spectroscopy

Its structural sensitivity stems from the coupling between vibrational modes that
give characteristic infrared bands in the 2D IR spectrum.54–56

2D electronic spectroscopy (ES)—an analogue of the 2D NMR or 2D IR tech-
niques with electromagnetic fields in the visible region—was a logical further
extension in order to probe the molecular dynamics triggered by the optical exci-
tations.57

In 2D ES, an experimental four-wave mixing (FWM) scheme with the het-
erodyne detection is applied (Fig. 1.1). Three noncollinear, weak, ultrashort,
phase-controlled laser pulses interact with the sample at times τ1, τ2 and τ3. The
induced third-order polarization within the sample is the source of the outgoing
electric field, radiated in multiple directions ±k1±k2±k3, where k1, k2 and k3 are
the wavevectors of the three incoming pulses. Signal, exclusively generated in the
kPE ≡ −k1 + k2 + k3 direction, is denoted as the photon echo (PE) signal. Since
the absolute interaction time is irrelevant due to the system being in the thermal
equilibrium before the first interaction, the PE signal can be characterized as a
three-variable function W (τ , T , t) of positive delay times between the successive
laser pulses τ ≡ τ2 − τ1 and T ≡ τ3 − τ2, and the detection time t. The time
delays between the adjacent laser pulses (τ and T ) are controlled with a high pre-
cision. Additional heterodyne pulse kh usually does not pass through the sample,
but aids in the signal detection and noise reduction. A two-dimensional one-sided
Fourier transform of the first delay time interval and the signal detection time,
that is, τ → ωτ and t → ωt , is applied to the signal.58–62 Then, the transformed
data can be plotted as the two-dimensional spectrum at the fixed waiting time T ,
which is the parameter of the exciton wavepacket time evolution.15,26,43,60,62–67

Schematic examples of the 2D spectrum at the initial (T = 0) and long (T �
0) waiting times are shown in Fig. 1.2. The diagonal peaks (positioned at ωτ = ωt)
reflect the energy eigenstates; the off-diagonal peaks (or the so-called cross-peaks)
(ωτ 6= ωt) show correlations and coherences within the system. Energy transfer
between the eigenstates is manifested by the decrease of the diagonal peak and
simultaneous increase of the corresponding cross-peak with the waiting time T .
The inhomogeneous and the homogeneous broadenings (indicated as σinh and σh,
respectively) can be separated in the 2D spectrum as the peak elongation along
and across the diagonal, respectively. The nomenclature of the 2D spectrum
representation, used in Fig. 1.2 (direction of axes, color scales and contour lines),
will be further used throughout this thesis.

Since different delay times are independent parameters, the time resolution
of the 2D spectrum (waiting time T ) is in principle unrelated to the frequency
resolution (ωt and ωτ ), what is never available in a classical pump–probe signal.
In experiments, however, the resolution is limited by the pulse lengths and higher-
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of the outgoing electric field are indi-
cated by the gray arrows.
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Fig. 1.2. Example of the absorptive 2D spectrum with inhomogeneous and ho-
mogeneous lineshape widths identified as σinh and σh, respectively, at the initial
(T = 0) and long (T � 0) waiting times. Excitation relaxation through the
eigenstates is indicated by the energy level diagram on the right. Spectra are
drawn using the different color scales, normalized to the maximum of each spec-
trum. Contour lines are drawn at every 10% (±5%, ±15%, ..., 95%) with respect
the maximum value; contours for negative values are shown by dashed lines.

order effects. The pulse overlap regions induce variations in 2D spectra due to
mixing with various interaction sequences;68 higher order contributions induce
intensity-dependence and exciton–exciton annihilation.63

Using the reduced system density operator (σ̂) formalism (detailed further
in Section 1.3.1), the sequence of the three system–field interactions can be
represented as follows. At the initial time the system is in the thermal equilibrium,
population state σ̂ = |g〉 〈g|. After the first interaction with a weak ultrashort
pulse the coherence state |e〉 〈g| is created. The second pulse after time τ creates
a population in the ground state |g〉 〈g| or in the excited state |e〉 〈e|, or a dynamic
coherence in the excited state |e〉 〈e′|, which might be observed as beatings over
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the waiting time T in the 2D spectrum. The third interaction creates a great
variety of coherent states and the electromagnetic field is radiated by a stimulated
emission, leaving the system in the population state |e〉 〈e| or |g〉 〈g|. During the
time between the interactions, various processes on different time scales can occur:
dephasing and decoherence, excitation, coherence and charge transfer, chemical
exchange, etc. As it will be shown later, the 2D ES signals can be directly linked
to the dynamics of the reduced system density operator.

In the experiment, both positive and negative values of the delay time τ can
be introduced. For a positive delay τ > 0, the rephasing signal WkI(ωτ , T ,ωt)
is obtained in the PE direction kI ≡ kPE. It shows the opposite system density
operator phase rotation (dephasing) at τ and t time intervals and so it “rephases”
the system density operator and eliminates inhomogeneous broadening at t = τ

(the photon echo69). The inhomogeneous broadening is observed as peak elon-
gation along the diagonal, while the peak width in the anti-diagonal direction is
purely due to the homogeneous broadening. Signal, denoted as the nonrephasing,
is generated at the non-PE direction kII = +k1 − k2 + k3. It does not have the
inhomogeneous contribution eliminated and the peak lineshapes are oriented in
the anti-diagonal direction. The same signal is measured in the kPE direction if
the first and the second pulses are mutually interchanged (assuming τ < 0). The
sum of the rephasing and nonrephasing signals gives the pump–probe-like, or the
absorptive 2D spectrum.43,67,70 Usually the absorptive or rephasing spectrum is
the most useful in the spectral analysis.

However, meeting the requirements for the phase stabilized laser excitation
pulses was challenging71 and the first experiments of the 2D ES were performed
on the Fenna–Matthews–Olson (FMO) complex only in 2004 by Brixner et al.62,72

1.1 Objects

During the last decade, 2D ES has been applied to many different systems, ranging
from nanostructures in the solid states to the whole photosynthetic bacteria. Let
us review the key objects of the recent researches and highlight the outcomes of
this technique.

Photosynthetic systems. The first results of 2D ES on the FMO complex pro-
posed a very detailed scheme of the energy transfer between bacteriochlorophylls
(BChls) and the subsequent theoretical considerations by Cho et al.73 estimated
the exciton delocalization and transfer rates of the complex. No beatings in the
spectra were observed in this particular experiment due to poor temporal resolu-
tion. However, in 2007 oscillations in the 2D spectrum of the FMO complex were
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extracted by Engel et al.15

At the time of the first experiments of the 2D ES performed on the photo-
synthetic FMO complex, knowledge about the features in the time-resolved 2D
electronic spectra was plain (just as simplified, as introduced up to this point
of the thesis; the whole truth is given below). The waiting time dependence
of the diagonal peaks was thought to represent the dynamics of the eigenstate
populations solely and dynamics of the off-diagonal peaks—only dynamics of the
coherences, site couplings and energy transfer. In the context of this picture,
the opposite phase oscillations of the diagonal and off-diagonal peaks observed
in the first FMO experiments15 have been suggested to witness the ultra-efficient
excitation transfer in an oscillating, or the wavelike13, manner. However, this idea
and the fact, that the observed oscillations persisted for at least 660 fs at the
temperature of 77 K (later, the coherence lifetime was found to be even longer,
1.5 ps19), was contradicting the fact that the electronic coherences at non-special
conditions decay so rapidly that they are unable to affect the electronic energy
transfer (EET).74 Especially at physiological temperatures, electronic coherences
should be very fragile due to energy fluctuations and inhomogeneities induced by
the environment.

The observed long-lived quantum beatings in the photosynthetic complexes has
gained much attention from the quantum information community, since one of
the main obstacles of the quantum computing devices is the short-lived quantum
superposition states,75 that cannot be stored, transmitted or processed. At the
same time biophysicists raised the idea that quantum effects are significant for
biological purposes and are being favored by the natural selection.76,77 Quantum
coherence in photosynthesis, magnetoreception of the migrating birds, olfaction
and other biological phenomena that are questioned to be substantially influenced
by the quantum effects are now referred as the subjects of the new discipline of
“Quantum biology”.78,79

The long-lived electronic coherences have cause headaches for many theoreti-
cal chemists and physicists for years, since the standard Förster80 and Redfield81

relaxation theories did not provide coherence lifetimes anything close to a few hun-
dreds of femtoseconds at the physiological conditions. Non-secular mechanism of
quantum transfer, that enables the interaction between coherences and popula-
tions,8,82 inherently neglected in the Redfield theory, was proposed to explain the
phase shifts of oscillatory features in the spectra.27 Spatially correlated environ-
ment motion was employed to explain the long lifetime of electronic coherences,83

however this mechanism was later reported as being of a minor significance in the
realistic pigment–protein complexes.84 The concept of the proposed purely quan-
tum coherence-induced energy transfer speed-up has been intensively criticized85
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and other mechanisms of environment-assisted quantum transport (ENAQT),32

which defines the optimal amount of environmental noise, leading to the enhance-
ment of excitation transfer, or supertransfer,86 which amounts to the enhance-
ment of the long-range incoherent transport by the short-range coherence, were
proposed.

Since the first results of 2D ES on the FMO complex, the method has been
successfully applied for studies of a number of different photosynthetic systems;
2D ES essentially helped to establish or update existing kinetic schemes of light-
harvesting antennae and reaction centers of plants30,31,87,88 and bacteria.64,89,90

2D ES was also performed on the whole photosystem I complex demonstrating
signatures of fast energy transfer91 and on the whole intact green sulfur bacteria,92

uncovering the connection between the chlorosome, the FMO complex and the
reaction center.

Most of these findings were obtained from experiments and theoretical simula-
tions performed using (or assuming) the knowledge of structural organization of
the pigment molecules (often with resolution of a few angströms). Thus, these
studies were valuable not only for widening a general understanding of the phys-
ical mechanisms within molecular systems, but also were convenient for testing
and interpreting the outcomes of the new method of 2D ES. As the method itself
has already been well approved and appreciated,93 it only recently became use-
ful to apply the developed tools of analysis of the 2D spectra for more obscure
molecular systems. For instance, for the fucoxanthin–chlorophyll protein (FCP)
complex, the information on the molecular structure of which is very limited.94–97

The FCP complex is the intrinsic membrane light-harvesting protein in diatoms—
unicellular chromophyte algae inhabiting marine environment and accounting for
nearly a quarter of the global primary production.98–100 In our studies of the two-
dimensional spectroscopy,49,101,102 many properties of this complex were resolved.
From analysis of dynamics of the two-dimensional spectra of Chl a and Chl c Qy
absorption bands at room temperature we have reported ultrafast energy trans-
fer between Chl c and Chl a with signatures of excitonic coupling.101 Also, by
applying the two-color two-dimensional spectroscopy103–107, we have mapped the
carotenoid–chlorophyll energy transfer pathways and resolved spectral heterogene-
ity of carotenoids in FCP.102 It was found, that carotenoids fucoxanthins in FCP
are spectrally distinguishable and yet transfer energy to chlorophylls (Chls) very
efficiently. Additional analysis of the coherence dynamics in spectra measured at
77K temperature allowed us to identify chlorophyll a and fucoxanthin intramolec-
ular vibrations dominating over the first few picoseconds and revealed previously
not identified mutually non-interacting chlorophyll c states participating in fem-
tosecond or picosecond energy transfer to the Chl a molecules.49 Consideration of
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separated coherent and incoherent dynamics allowed us to propose the vibrations-
assisted coherent energy transfer between Chl c and Chl a and the overall spatial
arrangement of chlorophyll molecules, as well.

Conjugated polymers. Conjugated polymers have their great potential in var-
ious organic photovoltaic devices. The basic principle of photovoltaic devices is
that exciton, created by photoexcitation, at the interface of the conjugated poly-
mer and electron acceptor dissociates into an electron and a hole. This charged
potential can then be converted to electricity via electron transfer.108 However,
ultrafast processes of exciton delocalization and vibrational relaxation can occur
on time scales preceding or accompanying the electron transfer.109 Both processes
are closely related to vibrational phenomena and influence the exciton dissocia-
tion. Therefore, the interest to understand the role of interaction of electronic
and vibrational degrees of freedom on the excited state dynamics in conjugated
polymers stays high.

The carbon–carbon (C−C and C=C) vibrational stretchings as well as the
torsional modes are the most significant for vibrational relaxation in conjugated
polymers.110 Population relaxation of the torsional mode has a long relaxation
time scale of 1-100 ps,111 while relaxation time scale of C−C and C=C stretching
modes were found to be shorter than 100 fs.112,113 As the vibrational relaxation
has a significant effect on exciton dynamics in conjugated systems, it was also
suggested to be responsible for a “hot” electron transfer process, allowing to
avoid the recombination of electrons and holes in organic polymers. There are
also strong evidences that quantum coherences have a dominating role in the early
stages of the charge transfer dynamics in optical photovoltaic materials.

One of the first experiments of the 2D electronic spectroscopy on conjugated
polymers (MEH–PPV∗) were performed by Milota et al.114 The results suggested
a perceptible role of energetic disorder in the optical response of MEH–PPV.
Later, Collini et al. studied electronic energy transfer in MEH–PPV115 and ob-
served coherences, persisting over 250 fs at room temperature and concluded,
that quantum transport effects could occur along conjugated polymer chains. 2D
ES study of electron transfer dynamics in P3HT/PCBM† blends have proposed
a significant role of vibrational coherence in the ultrafast charge transfer, as the
vibrational coherence was observed to be directly transferred from the P3HT ex-
citon to the P3HT hole polaron in the crystalline domain and exciton exceeded
other photophysical dynamics including vibrational relaxation.116

∗poly[2-methoxy,5-(2´-ethyl-hexoxy)-1,4-phenylenevinylene]
†poly(3-hexylthiophene)/[6,6]-phenyl-C61 butyric acid methyl ester
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J-aggregates. Despite the obvious differences between linear J-aggregates of
spatially coupled molecules and conjugated polymers—chains of chemically cou-
pled molecules—the photophysical properties of both systems are similar.117 J-
aggregates were discovered in 1936 independently by Jelley118 and Scheibe,119

who observed concentration-dependent (i. e. aggregation-dependent) narrowing
and red-shift of the main absorption peak (the so-called J-band) in spectrum of
pseudoisocyanine dye. During the recent decades, J-aggregates have been exten-
sively studied both experimentally and theoretically with the aim to disclose their
potential as nonlinear optical materials and artificial light harvesters.120

2D ES was applied in studies of cylindrical (bi-tubular) J-aggregates.26,121–123

Apart from clear identification of exciton transfer between tubes, quantum co-
herences and population oscillations were also observed. By analyzing only the
J-band of one-dimensional J-aggregate it was demonstrated that 2D ES visualizes
the intra-band, heterogeneous dephasing dynamics and the non-uniform broaden-
ing of the J-band with respect to the main diagonal is a signature of an interplay
of population transfer and the spectral diffusion124 and intra-band coherences.26

Analysis of the 2D spectra of the J-aggregate provides the possibility to determine
the exciton delocalization size due to the J-band.125

Based on the analysis of the coherence maps, constructed from time-resolved
2D spectra (will be introduced here in Section 2.3.2), vibrational coherence dy-
namics in the electronic ground and excited states were distinguished.122 Polari-
zation-controlled 2D electronic spectroscopy has recently yielded in uncovering
the vibronic origin of long-lived coherences of the bi-tubular J-aggregate.123

Other systems. Two-dimensional spectroscopy was applied in studies of iso-
lated molecules in solution with the aim to analyze their vibrational and solvent-
dependent properties in both ground and excited states. From the 2D spectrum
of the Q-band of chlorophyll a, which is dominated by the Qy electronic tran-
sition and a few known discrete vibrational modes, the solvent-dependent inho-
mogeneous broadening was reported and the solvent response time scales were
estimated.126 In the 2D ES study of isolated porphyrin molecules in solution,
phase of quantum beatings was exactly mapped by using the coherence maps.
The results further questioned the reliability of assignments on coherence to an
electronic or vibrational origin solely on the basis of phase shifts between peaks
in the 2D spectrum.127

Semiconductors are an ideal system for studying excitonic many-body effects,
which are essential for developing a general understanding of physics of optoelec-
tronic devices such as laser diodes. The low-temperature spectrum of semicon-
ductor quantum wells is dominated by excitons, the dynamics of which can be
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probed by using various methods of coherent multi-dimensional spectroscopy.128

In a 2D ES study of quantum wells in bulk GaAs by Cundiff et al,129 different hole
spin states, known as heavy holes and light holes due to their different effective
masses, were probed in the IR region. It was show, that in most situations the
many-body effects dominate the response, but they can be suppressed using the
polarization-controlled experiment techniques.

Semiconductor quantum dots are also the subjects of the coherent multidimen-
sional spectroscopy. Especially due to their potential as components of solar cells
and quantum computing devices. 2D ES was recently used in a study of self-
assembled InAs/GaAs quantum dots by Fingerhut et al.130 By probing the cross-
peaks in the 2D ES signals, coupling between various transitions was revealed.
These findings were beyond what could be inferred from linear and nonlinear 1D
techniques. The PbS quantum dot photocell was recently studied by the means
of the coherent 2D photocurrent spectroscopy.131 Theoretical studies regarding
heterogeneity of the quantum dot sizes132 and the vibronic content133 have also
been reported.

Recently, 2D ES experiments on the negatively charged nitrogen–vacancy cen-
ters in diamond were reported by Huxter et al.134 The observed picosecond re-
laxation within the phonon sideband and beatings due to strongly coupled local
vibrational modes provided new insights into the dephasing and relaxation pro-
cesses in these systems, which are very attractive for various applications, ranging
from quantum computing to biological sensing.135

1.2 Theory of signal detection

The whole multi-pulse experiment can be conceptually partitioned into two stages.
In the first stage the system interacts with the classical incoming field, which
modifies the optical properties—induces dynamic nonlinear polarization—of a ma-
terial.136 If the magnetic system properties are neglected, this interaction is de-
scribed by the quantum mechanical polarization operator. In the second stage the
expectation value of the induced polarization is treated as a source of the emission
field. This stage is captured by classical electrodynamics and is described by the
Maxwell equations.

The set of the Maxwell–Liouville equations describes both stages of system
excitation and signal generation processes:

∇2E(r, t) + 1
c2

∂2

∂t2E(r, t) = −4π
c2

∂2

∂t2P(r, t), (1.1a)

P(r, t) = Tr
[
P̂(r)ρ̂(t)

]
, (1.1b)
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∂ρ̂(t)
∂t = − i

~
[
Ĥ , ρ̂(t)

]
. (1.1c)

They read as follows: the first equation (1.1a) is the relationship between the
induced nonlinear polarization P(r, t) of the system and the outgoing electric field
(signal E(r, t)). It is derived from the Maxwell equations in the Gaussian units.
Equation (1.1b) is the definition of the induced nonlinear polarization P(r, t) as
the expectation value of the polarization operator P̂(r), represented by the trace
of its product with the system density operator ρ̂(t). The third expression (1.1c)
is the equation of motion of the system density operator under the influence of the
excitation field. Here Ĥ is the semi-classical (SC) Hamiltonian, that describes the
quantum system under the influence of the classical electric field as an external
force.

It is obvious that having the density operator described properly, we would be
able to obtain the nonlinear polarization and the outgoing electric field, which (or
its intensity) is an actual measurable quantity. Thus, an adequate description of
the system density operator ρ̂(t) can be formulated as the main goal of the theory
of nonlinear spectroscopy.

Equations (1.1a)–(1.1c) describe an arbitrary spectroscopy experiment and are
fundamental for the microscopic theory of spectroscopy. In the following sec-
tions of this chapter, the first two Maxwell–Liouville equations will be separately
described. Special requirements for the two-dimensional electronic spectroscopy
will allow us to simplify Eq. (1.1a) for the nonlinear polarization considerably
(Sec. 1.2). The general formulas for the 2D ES signals in the framework of the
perturbative third-order response function theory will be derived in Sec. 1.3.

1.2.1 Nonlinear polarization

The incoming optical electric fields induce the dynamic nonlinear polarization in
the medium. We can expand the polarization in the time domain in terms of the
different orders of nonlinearity:

P(r, t) = P(1)(r, t) + P(2)(r, t) + ... = P(1)(r, t) + PNL(r, t). (1.2)

Here PNL denotes all nonlinear contributions. Similar expansion can be made in
the frequency domain in terms of harmonic components of the incoming field:

P(r,ω) = χ̂(1)(ω)E(r,ω) + χ̂(2)(ω;ω1,ω2)E(r,ω1)E(r,ω2) (1.3)
+ χ̂(3)(ω;ω1,ω2,ω3)E(r,ω1)E(r,ω2)E(r,ω3) + ...
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Here χ̂(1), χ̂(2) , and χ̂(3) are the linear, the second-order and the third-order sus-
ceptibility tensors, respectively. We will drop the vector notations of polarization
and electric fields assuming, that

• the medium is isotropic and nondispersive (this allows us to replace the
susceptibility tensors by constants), and

• the polarizations of the incident excitation pulses are equal (we will come
back to this question in Sec. 2.2.1).

The optical field in principle may be given as a superposition of harmonic compo-
nents. Then Eq. (1.3) will involve summations (integrals) over the incoming field
frequencies.

For example, let us consider the second-order contribution

P(2)(r,ω) = χ(2)(ω;ω1,ω2)E (r,ω1)E (r,ω2) (1.4)

and the incoming field

E (r, t) = E(t) exp(ik0r − iω0t) + E(t) exp(−ik0r + iω0t), (1.5)

which represents a single linearly polarized pulse with wavevector k0 and frequency
ω0. E(t) is the slowly-varying amplitude of the pulse. The Fourier transform of
the field gives

E (r,ω) = E(ω − ω0) exp(ik0r) + E(ω + ω0) exp(−ik0r). (1.6)

In the case of the ultrashort pulse we may substitute the Fourier frequency ω (it
can be both positive and negative) by ±ω0. By neglecting the dispersion in the
material and by inserting Eq. (1.6) into Eq. (1.4), we obtain

P(2)(r,ω) ∝ exp (i(k0 + k0)r)χ(2)(ω;ω0,ω0) (1.7)
+ exp (i(k0 − k0)r)χ(2)(ω;ω0,−ω0)
+ exp (i(−k0 + k0)r)χ(2)(ω;−ω0,ω0)
+ exp (i(−k0 − k0)r)χ(2)(ω;−ω0,−ω0).

The obtained expression shows, that the incoming fields are mixed together and
the induced polarization may involve various combinations of their wavevectors.
Additionally, we can associate these polarization configurations with various non-
linear processes. For instance,

χ(2)(ω;ω0,ω0) = δ(ω − 2ω0)χ(2)(2ω0;ω0,ω0) (1.8)
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is the second harmonic generation and

χ(2)(ω;ω0,−ω0) = δ(ω)χ(2)(0;ω0,−ω0) (1.9)

represents the creation of the constant optical polarization of the sample, known
as the optical rectification.136 For the higher orders of polarization, we would
get a similar mixing of the incoming fields (multiwave mixing) and would obtain
different sets of the signal wavevectors.

1.2.2 Phase-matching

We would like to rewrite the Maxwell–Liouville equation (1.1a) in a simpler form.
To do that, a few assumptions have to be made. First, the polarization term in
Eq. (1.1a) contains all terms of the nonlinear polarization, given by Eq. (1.2), but
the second-order polarization is zero due to the isotropy of the sample,69 that is,

P(r, t) = χ(1)E (r, t) + PNL(r, t). (1.10)

Second, we neglect the linear absorption losses of the sample by postulating that
the first-order susceptibility χ(1)(ω) is a real quantity. Third, we assume that
the linear response is local in space for all relevant frequencies and the dielectric
function is expressed as the refraction index,

n2(ω) = ε(ω) = 1 + 4πχ(1)(ω). (1.11)

Then Eq. (1.1a) can be rewritten for all higher-order polarizations PNL(r, t):

∇2E (r, t) + n2

c2
∂2

∂t2E (r, t) = −4π
c2

∂2

∂t2PNL(r, t). (1.12)

Second-order polarization in the case of interaction of the material and a single
laser pulse with wavevector k0 was described previously and resulted in four terms
with frequencies ω = ±ω0 ± ω0 (Eq. (1.7)). The wavevector ks = ±k0 ± k0 in
these terms also defines the direction of the outgoing signal due to the phase-
matching condition.

In the case of the interaction with three pulses with different wavevectors k1,
k2 and k3 (and the corresponding angular frequencies ω1, ω2 and ω3), the third-
order polarization and the signal would be relevant only for the frequency and
wavevector combinations ωs = ±ω1 ± ω2 ± ω3 and ks = ±k1 ± k2 ± k3, and the
two-photon interactions such as ±2k1 ± k2, ±2k1 ± k3, etc.

The third-order polarization, relevant for the four-wave mixing signal of the 2D
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ES, can be expanded as a series of components according to their propagation
direction {ks} and frequency {ωs}, summed over the index s in the following way:

P(3)(r, t) =
∑
s

P(3)
s (t) exp (iksr − iωst) , (1.13)

Since the electric field is linear in polarization, each nonlinear component of the
polarization is defined by Eq. (1.12). For a single term in the third-order polar-
ization expansion,

PNL(r, t) ≡ Ps(t) exp (iksz − iωst) , (1.14)

which propagates along the z axis parallel to ks , we look for a solution of the
electric field (Eq. (1.1a)) in one dimension in the form of

E (r, t) = Es(r, t) exp(ik ′sz − iωst) + c.c., (1.15)

where k ′s = ωs
c n(ωs) is the wavevector of the emitted field, expressed via the

refractive index of the medium n(ωs) for frequency ωs and the speed of light c .

The rapidly oscillating part of the third-order polarization is extracted making
Ps(t) in Eq. (1.14) a slowly-varying envelope of the temporal third-order polar-
ization dynamics. For the slowly-varying envelope function, the relation∣∣∣∣∣ ∂∂t Ps(t)

∣∣∣∣∣� |ωsPs(t)| (1.16)

holds. The same approximation is valid for the electric field envelope Es(z , t).
Similarly, the slowly-varying spatial amplitude of the electric field makes its sec-
ond derivative negligible. Insertion eqs. (1.14) and (1.15) into Eq. (1.12), and
application the approximations gives us

ik ′s
∂

∂z Es(z , t) = −2πω
2
s

c2 Ps(t) exp(i∆ksz), (1.17)

where ∆ks ≡ ks − k ′s . By integrating this over the sample length from z = 0 to
z = L we get

Es(L, t) = i 2πωs
n(ωs)c

LPs(t)sinc
(
∆ksL

2

)
exp

(
i∆ksL

2

)
. (1.18)

The sinc(x) ≡ sin(x)/x function is related to the phase-matching condition. If the
sample size is smaller than the wavelength (i. e. L� λ), the signal field is radiated
with an arbitrary wavevector since ∆ksL� 1 and the sinc function is equal to 1.
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For macroscopic samples (L� λ), the sinc function can be approximated as the
Dirac δ function with respect to ∆ks . In that case, the signal is generated only
in the k ′s = ks direction.69,137

We have treated the experimental setup as one-dimensional, but at this point
we can make generalizations for signals in three dimensions. For microscopic
samples, smaller than the wavelength of the incident field, the signal is not
direction-selective. This has implications, for instance, in the nonlinear single-
molecule spectroscopy, where the selectivity of the signals cannot be achieved by
the phase-matching of the optical signal.138 Thus, collinear excitation geome-
try and the phase-cycling technique,139 fluorescence detection (photon counting)
and photocurrent detection (electron counting) can be employed to perform non-
linear spectroscopy on single molecules.140,141 For macroscopic samples (much
larger than the field wavelength) the direction-selective signal contains a multi-
ple interference, stemming from each point in the sample. The interference is
positive only at the signal wavevector equal to the wavevector of the polariza-
tion. Collinear excitation pulse geometry is also used in experimental realizations
with the pulse shapers and the phase-matching contributions are obtained via the
phase-cycling.107,142

1.2.3 Homodyne and heterodyne detection

Phase-matching provides a powerful utility in the multiwave mixing experiment:
while the total polarization may cause electric field radiation in many spatial
directions, the detector can be in a position, where only one specific component
of the total signal field is captured. Equation (1.18) reflects, that the electric field
Es(L, t) detected along the direction of wavevector ks will be linearly proportional
to the corresponding component of the induced polarization due to the phase-
matching. The detected intensity of the electric field Is(t) is then proportional to
the amplitude of the polarization squared:

Is ∝ |Es(L, t)|2 ∝ L2 |Ps(t)|2 . (1.19)

This is a very convenient result since it shows that any spectroscopic measure-
ment can be simulated just by knowing the time dependence of the nonlinear
polarization of the system. This relationship holds for the homodyne detection
regime where the intensity of the polarization-induced electric field is measured.

In the heterodyne detection scheme the detector measures a superposition of
the electric field, emitted from the sample, and the external local oscillator (LO)
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pulse, applied in the signal direction ks . Then the detected intensity is

Is ∝ |ELO(t) + LPs(t)|2 = |ELO(t)|2 + L2 |Ps(t)|2 + 2LRe [E ∗LO(t)Ps(t)] .
(1.20)

The first two terms of this expression can be neglected since the polarization is
very weak and the LO pulse is well known, and can be subtracted. The measured
quantity is then defined by the integral

W (t) ≡ Re
∞̂

−∞

dτ [E ∗LO(τ)Ps(τ)] . (1.21)

If we treat the LO as a δ-shaped, the measurement will give

W (t) = RePs(t). (1.22)

This result also involves the phase difference between the polarization and the LO
pulse φ. If the phase difference is fixed, we can also probe the imaginary part of
the induced polarization by taking φ = π/2. From Eq. (1.21) it is then possible
to extract both real and imaginary parts of the induced polarization. In that case
we define the heterodyne signal as the complex signal, equivalent to the induced
polarization.

The above given relationships and considerations might not work in some cer-
tain cases. The generated signal must be very weak, compared the incoming
laser radiation, so that the incoming field is not affected by the multiwave mixing.
Electric field and the induced polarization dependence (Eq. (1.19)) is incorrect
for the optically dense samples since the reabsorption effects are significant: then
the polarization induction is not separable from the field propagation.

1.3 Response function theory

1.3.1 Reduced density operator

When the components of a molecular system are smaller than the optical wave-
length of the incident electric field, the interaction of a molecule and a the field can
approximately described as the interaction of an electric dipole and electromag-
netic field. This is known as the dipole approximation. The total semi-classical
Hamiltonian can then be written as follows:

Ĥ = ĤS + ĤB + ĤSB + Ĥint = Ĥmat − µ̂E (t). (1.23)
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Here ĤS is the system’s Hamiltonian, containing all degrees of freedom (DoF),
which have to be included explicitly. The second term, ĤB represents the reservoir
(bath). The bath has infinite number of degrees of freedom, they are not directly
observable and, thus, must be treated approximately. ĤSB is the interaction
between the system and the reservoir. These terms of the Hamiltonian constitute
the material part of the system Ĥmat, which does not include the optical field.
The last term, Ĥint = −µ̂E (t), is the dipolar system–field (SF) interaction.

The dynamics of the system governed by the Hamiltonian is more conveniently
described using superoperators.6,69 Superoperators perform certain operation on
“traditional” operators. For example, a commutator with the semi-classical Hamil-
tonian can be written as a superoperator in the following way:

LÂ ≡
[
Ĥ , Â

]
= ĤÂ− ÂĤ . (1.24)

This particular superoperator L is denoted as the Liouville superoperator (Liou-
villian). We will need a few more superoperators, which can be introduced in a
similar way:

LmatÂ ≡
[
Ĥmat, Â

]
, (1.25)

LintÂ ≡
[
µ̂, Â

]
E (t) = VÂE (t). (1.26)

The equation of motion for the density operator ρ̂(t), which represents the system
and the bath, is the Liouville–von Neumann equation:

∂

∂t ρ̂(t) = − i
~
[
Ĥmat − µ̂E (t), ρ̂(t)

]
= − i

~
Lmatρ̂(t) + i

~
Lintρ̂(t). (1.27)

This equation is equivalent to the Schrödinger equation except that the wave-
function and the Hamiltonian is replaced by the density operator and the Liouville
superoperator, respectively. Thus, all the formalism of quantum mechanics can
be directly applied in the Liouville space, which is a direct product space of two
Hilbert spaces. A regular operator, that can be represented as the N × N matrix
in the Hilbert space, is replaced by a N2 length vector in the Liouville space. An
arbitrary superoperator can then be written as a N2 ×N2 size matrix. The oper-
ation of a superoperator on an operator then amounts to the matrix and vector
multiplication.

However, this equation cannot be solved exactly since the number of DoF of
the bath is infinite. Instead, the reduced density operator σ̂(t) is introduced,
which is defined only within the system’s DoF. This is accomplished by averaging
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over the reservoir DoF:
σ̂(t) = TrB {ρ̂(t)} . (1.28)

Assuming that the bath is in the thermodynamical equilibrium at all times we can
write the bath density operator as

ρ̂B = Z−1B exp(−βĤB), (1.29)

where
ZB =

∑
ν

exp(−βE (B)
ν ) (1.30)

is the bath partition function in terms of its eigenstates with energies E (B)
ν ; β =

(kBT )−1 is the inverse thermal energy. The density matrix of the whole system is
now a direct product of the system and the bath density matrices: ρ̂ = σ̂ ⊗ ρ̂B.
This level of description is known as the Born approximation.8

We will be interested in the dynamics of the reduced density operator. It is
possible to derive the equation of motion for the system density operator using
an approximate perturbation theory method with respect to the system–bath
(SB) interaction. The time-local equation of motion is obtained in the Markov
approximation, where the system correlation time is accepted to be much smaller
than the time scale of the relevant system dynamics.

1.3.2 Series expansion of density operator

In this section, we will perform a perturbative expansion of the reduced density
operator. We will account for the system–field interaction perturbatively while
keeping the material part as the reference. Also, we will temporally neglect the
bath and assume, that the material Hamiltonian describes the system only. The
reduced density operator is then equal to the full density operator, σ̂(t) = ρ̂(t).

The following steps of the time-dependent perturbation theory application is
typical for the most spectroscopic calculations. For this type of description, the
interaction picture in the Liouville space is more useful than the Schrödinger or the
Heisenberg picture in the Hilbert space. Essentially it represents the description of
the problem in a rotating frame and the evolution of the whole system can then be
described as of the reference. As the reference Hamiltonian is time-independent,
the evolution operator in the Liouville space can be defined as69

Umat(t) ≡ exp
{
− i
~
Lmatt

}
(1.31)

and any time-dependent quantity (e. g. a system density operator) can be trans-
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formed into the interaction picture like

ρ̂I(t) = U †mat(t)ρ̂(t). (1.32)

Here U †mat(t) denotes a Hermitian conjugate operator. The transition between
the Liouville and the Hilbert space is accomplished by

U †mat(t)ρ̂(t)⇔ Û†(t)ρ̂(t)Û(t). (1.33)

Here the evolution operator

Û† = exp
{ i
~

Ĥmatt
}

(1.34)

acts on density operator’s bra from the left and Û – on ket from the right. Having
defined the material evolution operator, we are able to move to the interaction
picture and write down the Liouville–von Neumann equation for the full density
operator with respect to the perturbative interaction Liouvillian:

∂

∂t ρ̂
I(t) = i

~
LIint(t)ρ̂I(t) = i

~
V(t)ρ̂I(t)E (t). (1.35)

Here V(t) = U †mat(t)VUmat(t). The system part (Lmat) is included into the
evolution operator and the interactional term is left in the equation of motion.
This expression can be formally integrated:

ρ̂I(t) = ρ̂I(t0) + i
~

tˆ
t0

dτV(τ)ρ̂I(τ)E (τ). (1.36)

Now we can move back to the Schrödinger picture. Since we treat the system
density operator as describing an equilibrium system state at the initial time t0,
the molecular evolution operator does not affect it. Thus, by repeatedly inserting
the right hand side portion of Eq. (1.36) into the ρ̂I(t) term within the integral,
one would obtain an infinite series, which in the Schrödinger picture is

ρ̂(t) = ρ̂eq + i
~

tˆ
t0

dτUmat(t)V(τ)ρ̂eqE (τ) (1.37)

+
( i
~

)2 tˆ
t0

dτ
τˆ

t0

dτ ′Umat(t)V(τ)V(τ ′)ρ̂eqE (τ)E (τ ′)
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+
( i
~

)3 tˆ
t0

dτ
τˆ

t0

dτ ′
τ ′ˆ

t0

dτ ′′Umat(t)V(τ)V(τ ′)V(τ ′′)ρ̂eqE (τ)E (τ ′)E (τ ′′) + ...

This expression is the series expansion of the system density operator. Further we
will consider the first few terms of the expansion separately.

1.3.3 Linear and third-order response functions

The second term of Eq. (1.37) is the first-order density operator expansion term.
Linear polarization can be expressed, using Eq. (1.1b):

P(1)(t) = Tr

µ̂ ·
i
~

tˆ
t0

dτUmat(t)V(τ)ρ̂eqE (τ)

 =
tˆ

t0

dτS(1)(t, τ)E (τ), (1.38)

where we have changed the polarization operator P̂(r) to µ̂ and defined the linear
response function S(1)(t, τ) as

S(1)(t, τ) = i
~

Tr {µ̂Umat(t)V(τ)ρ̂eq} = i
~

Tr {µ̂Umat(t − τ)V ρ̂eq} . (1.39)

By defining the variable change t1 ≡ t − τ and sending the initial time (system
is in unaffected by the interactions then) to t0 → −∞, one would obtain

P(1)(t) =
∞̂

0

dt1S(1)(t1)E (t − t1). (1.40)

In the expression of the system response function (Eq. (1.39)) the superoperators
are replaced by commutators of the Hilbert space:

S(1)(t1) = i
~

Tr{µ̂Umat(t1)V ρ̂eq} ⇐⇒
i
~

Tr
{
µ̂U(t1)[µ̂, ρ̂eq]U†(t1)

}
(1.41)

or
S(1)(t) = i

~
θ(t) {J(t)− J∗(t)} (1.42)

with
J(t) ≡ Tr {µ̂(t)µ̂(0)ρ̂eq} . (1.43)

For the third-order polarization we get

P(3)(t) =
tˆ

t0

dτ
τˆ

t0

dτ ′
τ ′ˆ

t0

dτ ′′S(3)(t, τ , τ ′, τ ′′)E (τ)E (τ ′)E (τ ′′). (1.44)
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Here we have defined the third-order system response function S(3)(t, τ , τ ′, τ ′′).
In the Liouville space it is given by

S(3)(t, τ , τ ′, τ ′′) =
( i
~

)3
Tr [µ̂Umol(t)V(τ)V(τ ′)V(τ ′′)ρ̂eq] . (1.45)

By changing the time variables to t3 ≡ t − τ , t2 ≡ τ − τ ′, t1 ≡ τ ′ − τ ′′ (the
Jakobian is equal to −1) and t0 → −∞, we obtain

P(3)(t) =
∞̂

0

dt3
∞̂

0

dt2
∞̂

0

dt1S(3)(t3,t2,t1)E (t−t3)E (t−t3−t2)E (t−t3−t2−t1).

(1.46)
This formula is the most useful expression of the third-order polarization. It
was obtained by applying a perturbative scheme upon the equation of motion
of the system density operator. It is a convolution of the third-order response
function and a product of the electric field functions. In Eq. (1.46) the third
order polarization is a function of t, but it is also dependent on T and τ via the
electric field components, representing the laser pulse configuration (see Fig. 1.1).
Now we must find an efficient way to calculate the system response function and
express the multiplication of electric fields in a convenient form.

In the expression of the third-order system response function (Eq. (1.45)) the
superoperators are replaced by commutators of the Hilbert space:

S(3)(t3, t2, t1) =
( i
~

)3
Tr [µ̂Umol(t3)VUmol(t2)VUmol(t1)V ρ̂eq] (1.47)

=
( i
~

)3
Tr
{
µ̂U(t3)

[
µ̂, U(t2)

[
µ̂, U(t1) [µ̂, ρ̂eq] U†(t1)

]
U†(t2)

]
U†(t3)

}
.

By expanding the commutators we get

S(3)(t3, t2, t1) =
( i
~

)3
θ(t1)θ(t2)θ(t3)

4∑
α=1

[Rα(t3, t2, t1)− R∗α(t3, t2, t1)] , (1.48)

where

R1(t3, t2, t1) = Tr [µ̂(t1)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(0)ρ̂eq] , (1.49a)
R2(t3, t2, t1) = Tr [µ̂(0)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(t1)ρ̂eq] , (1.49b)
R3(t3, t2, t1) = Tr [µ̂(0)µ̂(t1)µ̂(t1 + t2 + t3)µ̂(t1 + t2)ρ̂eq] , (1.49c)
R4(t3, t2, t1) = Tr [µ̂(t1 + t2 + t3)µ̂(t1 + t2)µ̂(t1)µ̂(0)ρ̂eq] . (1.49d)

Heaviside functions in Eq. (1.48) emphasize the principle of causality: as it is
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seen in Eq. (1.46), the third-order polarization on time t depends on the electric
field at earlier times. In other words, the electric field in the past determines
the polarization in the future, so if any of system response function arguments is
negative, the function must be zero. Also one can notice that the system response
function is always real. It is clear from the experiment, since the polarization is
a measurable quantity and has a corresponding Hermitian quantum mechanical
operator, the average of which is always real.

However, the whole system response depends on electric field (i. e. the direction
and time of incident pulses). So it is possible to express all permutations of
interaction orders and directions in the selected base by the so-called double-sided
Feynman diagrams. It will be shown in Sec. 2.2.

1.3.4 Overlapping electric fields in perturbative expansion

Let us consider the product of the total incoming field (from Eq. (1.46))

E (r, t − t3 − t2 − t1)E (r, t − t3 − t2)E (r, t − t3). (1.50)

For convenience we can separate a spatial phase Φj = kjr from the time-dependent
factors and identify the interaction sequence:68

Ej(r, t − t3 − t2 − t1) ≡ E [1]
j eiΦj + E [1]

j e−iΦj , (1.51a)

Ej(r, t − t3 − t2) ≡ E [2]
j eiΦj + E [2]

j e−iΦj , (1.51b)

Ej(r, t − t3) ≡ E [3]
j eiΦj + E [3]

j e−iΦj , (1.51c)

where E [1]
j denotes a forward-propagating pulse, which interacts first with the

system; E [2]
j stands for the second-interacting pulse and E [3]

j – for the third.
E [m]

j = E [m]∗
j indicates the backward propagation (conjugate part); here both

j , m = 1, 2, 3. The expressions for E [m]
j are as follows:

E [1]
j ≡ Ej(t − t3 − t2 − t1 − τj)e−iωj(t−t3−t2−t1−τj)eiφj , (1.52a)

E [2]
j ≡ Ej(t − t3 − t2 − τj)e−iωj(t−t3−t2−τj)eiφj , (1.52b)

E [3]
j ≡ Ej(t − t3 − τj)e−iωj(t−t3−τj)eiφj . (1.52c)

Here τj indicates the absolute times of the system–field interactions, i. e. τ1 ≡
τ+T +t, τ2 ≡ T +t and τ3 ≡ t (see Fig. 1.1). Since we are considering a response
in the PE direction −k1 + k2 + k3, we can neglect terms which have different
from −Φ1 +Φ2 +Φ3 spatial phase factors after substituting eqs. (1.51a)–(1.51c)
into Eq (1.46). Assuming that all electric field pulses being the same frequency
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(ω0 ≡ ω1 = ω2 = ω3) and phases are not tuned (φ1 = φ2 = φ3 = 0), the product
of the total incoming field (Eq. (1.50)) is

{(
E [1]
1 E [2]

2 E [3]
3 + E [1]

1 E [2]
3 E [3]

2

)
eiω0(t3−t1) (1.53)

×
(

E [1]
2 E [2]

1 E [3]
3 + E [1]

3 E [2]
1 E [3]

2

)
eiω0(t3+t1)

×
(

E [1]
2 E [2]

3 E [3]
1 + E [1]

3 E [2]
2 E [3]

1

)
eiω0(t3+2t2+t1)

}
eiω0(t−τ).

Terms in this product lie in three groups according to their phase factors. They are
eiω0(t3−t1), eiω0(t3+t1) and eiω0(t3+2t2+t1). As it will be shown later in Sec. 2.2.4, the
system response function can be decomposed into components having opposite
phase factors. In a multiplication of the system response function and the electric
field product, some of these phase factors will cancel making that term slowly-
varying, while the others will be modulated by the sum frequencies. Integration
over time (Eq. (1.46)) makes the latter ones negligible compared to the inte-
grals of the slowly-varying terms. This elimination is known as the rotating-wave
approximation (RWA).

1.3.5 Two-dimensional photon echo signal at impulsive limit

The two-dimensional photon echo spectrum is obtained by performing the 2D
Fourier transform of polarization P(3)(τ , T , t), detected in the kI = −k1+k2+k3
direction, over the time variables τ and t. As it was mentioned in the introduc-
tion, separation of the rephasing (kI) and nonrephasing (kII) signals is possible
according to the range of the waiting time τ . For the rephasing signal (τ > 0),

WkI(ωτ , T ,ωt) =
∞̂

0

dτeiωτ τ
∞̂

−∞

dteiωttP(3)
kI

(τ , T , t). (1.54)

In the scheme of the nonrephasing signal generation, the first two pulses are
interchanged, but the detection still takes place in the kI direction:

WkII(ωτ , T ,ωt) =
∞̂

0

dτeiωτ τ
∞̂

−∞

dteiωttP(3)
kII

(τ , T , t). (1.55)

The integration over t is carried out only along the positive axis since the third-
order response is not created before the third laser pulse.

For ultrashort excitation pulses, the electric field can be approximated as the
δ functions, which allows us to get rid of the integration in the third-order polar-
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ization expression (Eq. (1.46)). Then the third-order polarization is equal to the
system response function itself and variables of the time delays in the experiment
(τ , T and t) are equivalent to those of the system response function (t1, t2 and
t3). Then the rephasing and nonrephasing spectra can calculated as

WkI(ω1, t2,ω3) =
∞̂

0

dt1eiω1t1

∞̂

−∞

dt3eiω3t3S(3)
kI

(t1, t2, t3) (1.56)

and

WkII(ω1, t2,ω3) =
∞̂

0

dt1eiω1t1

∞̂

−∞

dt3eiω3t3S(3)
kII

(t1, t2, t3) (1.57)

respectively. This approximation is denoted as the impulsive limit and is very
useful for simulations of the 2D spectra if the pulse overlap effects72 are negligible.
Implications of the finite laser pulses to the 2D spectra of molecular systems
were broadly discussed by us elsewhere.68 In the following considerations we will
always assume the impulsive limit conditions for simulations and use the new
time variables t1 ≡ τ , t2 ≡ T and t3 ≡ t, and frequency variables ω1 ≡ ωτ and
ω3 ≡ ωt .





Chapter 2

Spectroscopic signals of basic
electronic systems

In this chapter, we will apply the third-order system response function formalism
for a few model systems. We will account for the system–bath coupling in different
ways, but will not pass over the Born–Oppenheimer approximation which prevents
the electronic–vibrational mixing and all the consequent non-adiabatic phenomena
(let us leave that for Chapter 3).

For a general electronic two-level system (Section 2.1), we will describe the
bath only phenomenologically—i. e. assume that coupling to the nuclear degrees
of freedom induces simple dephasing of the system response, represented by the
Kubo lineshape model. That will allow us to obtain elegant analytical expressions
for spectroscopic signals of the linear absorption and the 2D spectroscopy in some
cases.

In Section 2.2, the general multi-level system in contact with a harmonic bath
is considered. We will assume the bilinear coupling of system’s electronic degrees
of freedom to the nuclear coordinates of the bath, defined as the infinite set of
harmonic oscillators. Spectral density will be introduced and its properties will be
described. In Section 2.2.4, we will apply the developed formalism for the 2D ES
of general molecular (Frenkel) excitonic systems.

The simplest excitonically coupled system—an electronic dimer—will be thor-
oughly analyzed in Section 2.3. Apart from its two-dimensional spectrum (Sec-
tion 2.3.1), the coherent beatings (Section 2.3.2) and the dephasing under the
influence of the static energy disorder (Section 2.3.3) will be considered.

2.1 Two-level system

A molecule in solution can be represented as a simple quantum system of two
energy states. Let us define its ground state as |g〉 and electronically excited state

41
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Fig. 2.1. Potentials of the two-level system under consideration.

as |e〉. We will express the nuclear DoF through the vector q of some generalized
bath coordinates. These coordinates could represent the bath, lattice structure
kinetics, etc. In the adiabatic regime the material Hamiltonian is

Ĥmat = Hg(q)|g〉〈g|+ He(q)|e〉〈e|. (2.1)

The electronic ground and excited states are not coupled, since the rates of
phenomena related to such coupling (for example, excited state relaxation to |g〉)
are usually by a few orders longer compared to the electronic phenomena in the
excited state, we are interested in.

The full energy of the electronic ground and excited states is the sum of the
excitation energies εg and εe at the potential minima, kinetic energy of nuclear
vibrations T (q) and the vibrational potential energy (adiabatic potential) Vg (q)
and Ve (q) (Fig. 2.1).

The material Hamiltonian of the two-level system,

Ĥmat = [εg + T (q) + Vg (q)] |g〉〈g|+ [εe + T (q) + Ve (q)] |e〉〈e|, (2.2)

can be split into parts representing the system, the bath and the system–bath
interaction as it was defined in Eq. (1.23):

Ĥmat = ĤS + ĤB + ĤSB. (2.3)

These parts of the Hamiltonian can be written as

ĤB = [T (q) + Vg (q)] (|g〉〈g|+ |e〉〈e|) , (2.4)
ĤS = εg|g〉〈g|+ [εe + 〈Ve(q)− Vg(q)〉q] |e〉〈e|, (2.5)

ĤSB = [Ve (q)− Vg (q)− 〈Ve(q)− Vg(q)〉q] |e〉〈e|. (2.6)
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The average energy gap, defined as 〈Ve(q)−Vg(q)〉q, was added to the system’s
part and subtracted from ĤSB (thus making a zero contribution in the material
Hamiltonian). It ensures, that the interaction part is zero at the thermodynamical
equilibrium. The system–bath coupling term is expressed via the energy gap
fluctuation term

∆Veg(q) = Ve(q)− Vg(q)− 〈Ve(q)− Vg(q)〉q. (2.7)

We will treat the system–bath coupling as the perturbation later on. The molec-
ular Hamiltonian in the matrix notation for the two-level system is very simple:

Ĥmat = HB(q)
 1 0

0 1

+
 εg 0

0 εe

+ ∆Veg(q)
 0 0

0 1

 . (2.8)

Here εe ≡ εe + 〈Ve(q)− Vg(q)〉q.

The dipole moment operator of the two-level system is written assuming the
Franck–Condon (FC) approximation. That is, the electronic transition occurs in-
stantaneously, without any changes in nuclear DoF, and the polarization operator
in the dipole approximation is equivalent to the dipole operator, which does not
depend on the nuclear coordinates:

µ̂ = deg (|e〉〈g|+ |g〉〈e|) . (2.9)

Here deg is the norm of the molecular dipole vector∗.

The last ingredient for the Maxwell–Liouville equations (1.1a)–(1.1c) is the
system density operator. Since the energy of the electronic transition usually is in
the UV or visible region and the energy gap is greater than the thermal energy,
we can assume that initially the system is in the equilibrium state, defined by the
equilibrium ground state density operator,

ρ̂eq = |g〉〈g| ⊗ ρ̂B, (2.10)

which, in turn, is defined as the tensor product of the ground state density operator
|g〉〈g| and the density operator of the whole bath ρ̂B.

∗In general, the dipole moment operator should be a vector, as well as deg.
However, in Section 1.2.1 we chose to neglect the polarization of the incoming
electric field. Therefore, the scalar product in the system–field interaction term
in Hamiltonian (1.23), turns into a simple product of an operator and the electric
field function.
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2.1.1 Linear response

The system linear response function is given by eqs. (1.42) and (1.43). Substi-
tuting our definitions of the Hamiltonian (eqs. (2.4)–(2.6)), the dipole moment
operator (Eq. (2.9)) and system density operator (Eq. (2.10)) into Eq. (1.43)
gives

J(t) = Tr [µ̂(t)µ̂(0)ρ̂eq] = d2
egTr

[
e i

~Hg(q)te− i
~He(q)t ρ̂eq

]
(2.11)

= d2
ege−iωegtTr

[
e− i

~∆Veg(q)t ρ̂eq

]
.

Here, we extracted the energy gap ~ωeg = εe − εg, and in the exponential of the
evolution operators only the vibrational part was left.

Within the trace operation in Eq. (2.11), in the exponential we have a pertur-
bative part (system–bath coupling) of the excited state Hamiltonian, therefore, it
is the excited state evolution operator in the interaction picture. It is known from
the time-dependent perturbation theory, that it can be written as a positive time
ordered exponential of the perturbation term,69

Uge(t) = e i
~Hgte− i

~Het = exp+

− i
~

tˆ

0

dτ∆V̂eg(τ)

 . (2.12)

We have dropped the notation of the nuclear coordinate q here. Similarly,

Ueg(t) = e i
~Hete− i

~Hgt = exp−

 i
~

tˆ

0

dτ∆V̂eg(τ)

 . (2.13)

By inserting this into J(t) expression (Eq. (2.11)) and expanding it to the second
order we obtain

J(t) = d2
ege−iωeg t

1− i
~

tˆ

0

dτTr
[
∆V̂eg(τ)ρ̂eq

]

+
( i
~

)2 tˆ

0

dτ
τˆ

0

dτ ′Tr
[
∆V̂eg(τ)∆V̂eg(τ ′)ρ̂eq

] . (2.14)

The second term in Eq. (2.14) is zero at the thermodynamical equilibrium.69 After
performing the second-order cumulant expansion143 of this expression, we obtain

J(t) = d2
ege−iωegt−g(t), (2.15)



2.1. Two-level system 45

where

g(t) ≡
(1
~

)2 tˆ

0

dτ
τˆ

0

dτ ′Tr
[
∆V̂eg(τ)∆V̂eg(τ ′)ρ̂eq

]
(2.16)

is the so-called lineshape function, defined as the double integral

g(t) =
tˆ

0

dτ
τˆ

0

dτ ′C(τ) (2.17)

of the two-point energy gap correlation function

C(τ) = 1
~2

Tr
[
∆V̂eg(τ)∆V̂eg(0)ρ̂eq

]
. (2.18)

Having the linear response function derived, we are now able to obtain the full
expression of our first observable—the absorption coefficient of the two-level sys-
tem.

The absorption coefficient κa(ω) determines the decrease of the intensity of
monochromatic radiation of frequency ω when propagating through the sample
according to the Beer–Lambert law,

I(ω) = I0(ω)e−κa(ω)L. (2.19)

Here I0(ω) is the intensity of the light source and I(ω) is the intensity of light
after the sample and L is the distance of light propagation in the sample. κa(ω) is
related to the imaginary part of the linear susceptibility.6,69 Therefore, according
to eqs. (1.3) and (1.40), the linear absorption coefficient is proportional to the
imaginary part of the Fourier transform of the linear response function:

κa(ω) = ω

n(ω)c Imχ(1)(ω) = ω

n(ω)c ImP(1)(ω)
E (ω) (2.20)

= ω

n(ω)c Im
∞̂

0

eiωtS(1)(t)dt.

Refractive index n(ω) can be assumed to be constant in the narrow-bandwidth
spectra.

We can derive analytical expressions for the absorption coefficient in a few
asymptotic cases of the so-called fast modulation (homogeneous) limit and slow
modulation (inhomogeneous) limit. Both of these limits can be demonstrated by
the Kubo lineshape model,55,144 which assumes exponential form of the energy
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Fig. 2.2. Absorption spectrum of
the two-level system, calculated us-
ing Kubo lineshape model with pa-
rameters ∆ω · τc = 0.1, 0.5 and
10, keeping ∆ω constant. Dashed
and dashed–dotted lines show ab-
sorption spectra calculated using an-
alytical formulas at the homogeneous
and inhomogeneous limits (equations
(2.24) and (2.26), respectively).
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gap correlation function,
CKubo(t) = ∆ω2e− t

τc , (2.21)

where ∆ω is the amplitude of energy fluctuations and τc is the correlation time.
The Kubo lineshape function is then

gKubo(t) = ∆ω2τ 2c

(
e− t

τc + t
τc
− 1

)
. (2.22)

Homogeneous limit. Homogeneous limit accounts for the case when the fre-
quency fluctuations are uncorrelated or very rapid with respect to the correlation
time, i. e., τc � ∆ω−1. Then the energy gap correlation function narrows down
to the δ function and the corresponding lineshape function simplifies to

gfast(t) = ∆ω2τct ≡ γt, (2.23)

where γ is denoted as the pure dephasing rate. The absorption coefficient is then
given by

κa−fast(ω) =
ωd2

eg
n(ω)c~

(
γ

γ2 + (ω − ωeg)2
− γ

γ2 + (ω + ωeg)2
)

. (2.24)

Since γ � ωeg, the prefactor in this equation can be treated as a constant through
the width of the peak. Thus, the resulting lineshape is the Lorentzian function
(shown in Fig. 2.2 by the dashed line) centered at ωeg with 2γ for the full width
at half maximum (FWHM).

Inhomogeneous limit. In the inhomogeneous limit the opposite relationship
between the system fluctuation amplitude and the correlation time is assumed,
τc � ∆ω−1. Expanding the exponential in Eq. (2.22) to the second order of
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small parameter t/τc gives the lineshape function

gslow(t) = 1
2∆ω

2t2. (2.25)

The corresponding energy gap correlation function is constant, Cslow(t) = ∆ω2,
and the absorption coefficient is

κa−slow(ω) =
√
πωd2

eg√
2∆ωn(ω)c~

(
e−

(ω−ωeg)2

2∆ω2 − e−
(ω−ωeg)2

2∆ω2

)
. (2.26)

The spectral lineshape of the absorption spectrum (show in Fig. 2.2 as dashed-
dotted line) is Gaussian with the standard deviation ∆ω.

The absorption spectrum in the intermediate case (∆ωτc = 0.5, see Fig. 2.2)
corresponds to neither ideal Gaussian nor the Lorentzian lineshapes.

2.1.2 Third-order response and 2D spectrum

To obtain the expression for the 2D spectrum we have to perform the same steps
as for the absorption spectrum, just considering the third-order response function
in Eq. (1.48). The expressions for auxiliary functions Rα(t3, t2, t1) (α = 1 ... 4)
can be generalized by introducing the four-point correlation function

F (τ1, τ2, τ3, τ4) = Tr [µ̂(τ1)µ̂(τ2)µ̂(τ3)µ̂(τ4)ρ̂eq] . (2.27)

By inserting the definitions of the dipole moment and the system density operator
of the two-level system (equations (2.9) and (2.10), respectively), the four-point
correlation function can be rewritten as

F (τ1, τ2, τ3, τ4) = d4
ege−iωeg(τ1−τ2+τ3−τ4) (2.28)

× Tr [Uge(τ1)Ueg(τ2)Uge(τ3)Ueg(τ4)ρ̂eq] .

Insertion of the evolution operators from eqs. (2.12) and (2.13) and the cumulant
expansion gives

F (τ1, τ2, τ3, τ4) = d4
ege−iωeg(τ1−τ2+τ3−τ4) (2.29)

× e−g(τ12)+g(τ13)−g(τ14)−g(τ23)+g(τ24)−g(τ34),

which is now suitable to calculate the full response function. The lineshape func-
tion is real and the response function simplifies to

S(3)(t3, t2, t1) = −4~−3d4
egθ(t1)θ(t2)θ(t3)e−g(t3)−g(t1) (2.30)
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×
[
sinωeg(t3 + t1)ef (t3,t2,t1) + sinωeg(t3 − t1)e−f (t3,t2,t1)

]
,

where

f (t3, t2, t1) = −g(t2) + g(t2 + t3) + g(t1 + t2)− g(t1 + t2 + t3). (2.31)

In contrast to the calculation of the absorption coefficient, where we treated
the sample exciting radiation as a continuous monochromatic wave of tunable
frequency, here we have the impulsive excitation signal.

The components of the system response function, that survive RWA and con-
tribute to the kI = −k1 + k2 + k3 pulse propagation direction are determined
by Eq. (1.53). Thus, the first and the second term in brackets in Eq. (2.30) will
contribute to the rephasing and nonrephasing spectrum, respectively:

S(3)
kI

(t1, t2, t3) = −
4d4

eg
~3

sinωeg(t3 − t1)e−g(t3)−g(t1)−f (t3,t2,t1), (2.32)

S(3)
kII

(t1, t2, t3) = −
4d4

eg
~3

sinωeg(t3 + t1)e−g(t3)−g(t1)+f (t3,t2,t1). (2.33)

The two-dimensional spectrum at the impulsive limit is calculated by performing
the Fourier transform of the third-order system response function (eqs. (1.56) and
(1.57)). In the homogeneous limit, the lineshape function is linear with respect to
the time argument (Eq. (2.23)), thus, f (t3, t2, t1) = 0 and the Fourier transforms
yield

WkI(ω1, t2,ω3) =
2id4

eg
~3

 1
γ − i(ω1 − ωeg)

· 1
γ − i(ω3 + ωeg)

(2.34)

− 1
γ − i(ω1 + ωeg)

· 1
γ − i(ω3 − ωeg)


and

WkII(ω1, t2,ω3) =
2id4

eg
~3

 1
γ − i(ω1 + ωeg)

· 1
γ − i(ω3 + ωeg)

(2.35)

− 1
γ − i(ω1 − ωeg)

· 1
γ − i(ω3 − ωeg)

.

As discussed above, in the experiment the relative phase of the local oscillator
pulse with respect to the sample exciting pulses defines the measured real and
imaginary parts of the signal (Eq. (1.21)). It is customary to define the real
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Fig. 2.3. Rephasing (WkI) and nonrephasing (WkII) spectra in the homogeneous
limit (eqs. (2.34) and (2.35)) for both positive and negative excitation and emis-
sion frequencies. Quadrants of the (ω1, ω3) plane are enumerated as I through IV.
Contours are plotted at ±10%, ±30%, ±50%, ... of maximum value of spectrum;
contours for negative values are shown by dashed lines.

part of the spectrum as the absorption-type signal, maintaining positive peaks
in different parts of the (ω1,ω3) plane, and the imaginary part as the dispersive
signal, representing changes of the refractive index for specified excitation and
detection frequencies. Real parts of the rephasing and nonrephasing signals in the
homogeneous limit are represented in Fig. 2.3 using the most common convention;
this amounts to multiplying eqs. (2.34) and (2.35) by (−i) and changing the sign
of the signal at ω3 < 0. The rephasing and nonrephasing signals contribute to
different quadrants of the (ω1,ω3) plane. The rephasing signal in the second
quadrant is completely symmetric to the peak in the fourth quadrant with respect
to ω3 = ω1 line; nonrephasing signal contributes to quadrants I and III with
symmetry with respect to ω3 = −ω1 line. By convention, signals of the upper
plane (ω3 > 0) are considered, and the rephasing spectrum is drawn with the
excitation axis inverted (ω1 → −ω1).

For the absorptive spectrum, summation of the rephasing (inverted with respect
to the ω1 axis) and the nonrephasing contributions:

W (|ω1| , t2,ω3) = WkI(−ω1, t2,ω3) + WkII(ω1, t2,ω3). (2.36)

Absorptive, rephasing and nonrephasing spectra calculated using Kubo model
at the waiting time t2 = 0 are shown in Fig. 2.4. Dependence of the spectrum on
t2 of a two-level system in the Kubo model is included in the auxiliary function
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Fig. 2.4. Real parts of the absorptive (a, d, g), the rephasing (b, e, h), and the
nonrephasing (c, f, i) two-dimensional spectra, calculated using Kubo model with
∆ω · τc = 0.1, 0.5 and 10. Spectra in each row are shown using the same color
scale, normalized to the maximum of the corresponding absorptive spectrum.
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Fig. 2.5. Real parts of the absorptive two-dimensional spectra at waiting time
t2 = 0 fs, 100 fs, 1 ps and 2 ps, calculated using Kubo lineshape model with cor-
relation time τc = 1 ps and amplitude ∆ω = 0.005 ps−1. Spectra are normalized
to the maximum of spectrum at t2 = 0; normalization factors are indicated at the
upper left corner of each spectrum.
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f (t1, t2, t3) only (Eq. (2.31)). It is easily shown, that in case of the homogeneous
and the inhomogeneous limits, the function does not depend on the waiting time.
Such picture shows how spectral diffusion is reflected in the absorptive 2D spec-
trum. In the homogeneous limit, no correlation of energy fluctuations exists and
the peak in the spectrum (Fig. 2.4a) is “round” (its diagonal and anti-diagonal
widths are equal). In the inhomogeneous limit, a complete correlation of the en-
ergy gap fluctuations is assumed; therefore, the diagonal (inhomogeneous) and
anti-diagonal (homogeneous) widths of the diagonally elongated peak (Fig. 2.4g)
is constant in the waiting time.

The intermediate case with correlation time τc = 1 ps and amplitude ∆ω =
0.005 ps−1 (∆ω · τc = 5) is demonstrated in Fig. 2.5 at waiting times t2 = 0,
100 fs, 1 ps and 2 ps. The absorptive spectrum being elongated along the diagonal
becomes round at t2 ≈ τc indicating spectral diffusion and the loss of correlation
of energy fluctuations.

A few important factors were not included into consideration of the two-level
system. This does not allow us to establish a direct link between the calculated
spectra using the Kubo lineshape model and the real experimental observables of
a simple two-level molecule. These are the static energy disorder and the waiting
time dynamics. Static energetic disorder is caused by molecules interacting with
slightly different environment in the sample, thus, having different energies ωeg
and and results in inhomogeneous lineshape broadening. In calculations, this is
taken into consideration by performing averaging of spectra with random energy
gaps of the Gaussian distribution34 or including an additional mode of slow bath
fluctuations to the spectral density.145 In spectra, the static energy disorder
contributes to the diagonal peak elongation, but not the anti-diagonal. Therefore,
inhomogeneously broadened peaks will not become round at long waiting times,
as shown here. The waiting time dynamics amount to additional mechanisms
apart from the spectral diffusion, responsible for the decay of the signal in the
waiting time. Both of these components of the theoretical description of the 2D
ES will be thoroughly discussed in the following chapters.

2.2 Multi-level system in contact with harmonic bath

Let us consider a general system, given by a set of the energy eigenstates |m〉,
where m = 1, ... , N and the ground state |g〉 . The system Hamiltonian is:

ĤS =
N∑
m
εmB̂†mB̂m. (2.37)
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Here B̂†m and B̂m are the electronic excitation at the m-th eigenstate creation and
annihilation operators, respectively; εm is the energy of the m-th eigenstate. The
ground state energy is zero. We choose to describe the bath as an infinite set
{α} of harmonic oscillators with the unitary effective mass. The Hamiltonian of
the bath is then:

ĤB =
∑
α

1
2
(
p̂2
α + w2

αx̂2
α

)
. (2.38)

Here p̂α is the momentum and x̂α is the coordinate operators and wα is the
frequency of the α-th bath oscillator. The Hamiltonian can be quantized using
bosonic creation/annihilation operators of the bath oscillators

â†α ≡
√

wα

2~ x̂α − i 1√
2~wα

p̂α (2.39)

and
âα ≡

√
wα

2~ x̂α + i 1√
2~wα

p̂α. (2.40)

The system–bath interaction is given in the bilinear form

ĤSB =
N∑

m,n=0

∑
α

√
2wαdmn,αx̂αB̂†mB̂n. (2.41)

It describes the coupling of electronic excitation to the bath coordinates via cou-
pling constant dmn,α. The dipole moment operator is given in its general form

µ̂ =
N∑
m

µm
(
B̂†m + B̂m

)
. (2.42)

Diagonal fluctuations. First we neglect the off-diagonal fluctuations by as-
suming that energy fluctuations of different sites are uncorrelated, i. e.,

dmm,α = δmndmn,α. (2.43)

In that case the system dynamics is adiabatic, i. e., the system eigenstates are
not affected by the fluctuations of the environment. Applying the four-point cor-
relation function (Eq. (2.27)) to a general scheme of the system–dipole moment
operator interactions (Fig. 2.6), one can obtain

F (τ1, τ2, τ3, τ4) =
∑
cba

〈
µgcµcbµbaµag

〉
F (C)

cba (τ1, τ2, τ3, τ4). (2.44)
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Fig. 2.6. Double-sided Feynman diagrams, corresponding to the components of
the nonlinear response function in eqs. (1.49a)–(1.49d) for a general multilevel
system (a) and a general Feynman diagram for a population transfer process (b).

Here indices a, b, c and d enumerate the arbitrary system eigenstates; index “C”
denotes the coherent limit with the population transfer not included. Angular
brackets here indicate the orientationally averaged scalar product of the dipole
vectors and the polarizations of the laser pulses. We will come back to the
description of this product in Sec. (2.2.1).

The four-point correlation function is then

F (C)
cba (τ1, τ2, τ3, τ4) = e− i

~ (εcτ43+εbτ32+εaτ21)f (C)cba (τ1, τ2, τ3, τ4), (2.45)

where

f (C)cba (τ1, τ2, τ3, τ4) = TrB
{

e−
i
~
´ τ1

0 dτ∆Vgc(τ)
+ e−

i
~
´ τ2

0 dτ∆Vcb(τ)
+ (2.46)

× e−
i
~
´ τ3

0 dτ∆Vba(τ)
+ e−

i
~
´ τ4

0 dτ∆Vag(τ)
+

}
.

The second-order cumulant expansion of this expression results in70

f (C)cba (τ1, τ2, τ3, τ4) = exp
[
− gcc(τ43)− gbb(τ32)− gaa(τ21)− gcb(τ42) (2.47)

+ gcb(τ43) + gcb(τ32)− gca(τ41) + gca(τ42) + gca(τ31)

− gca(τ32)− gba(τ31) + gba(τ32) + gba(τ21)
]
.

The lineshape function gab(t) is given by the correlation function Caa,bb(t) inte-
gral:69

gab(t) =
ˆ t

0
dτ
ˆ τ

0
dτ ′Caa,bb(τ − τ ′), (2.48)

where
Cab,cd(τ) = 1

~2
Tr
[
∆V̂ab(τ)∆V̂cd(0)ρ̂eq

]
. (2.49)
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Because of the trace operation being invariant under the cyclic permutations,
chronologically with respect to their time arguments the ordered dipole moment
operators can act upon the bra or ket of the density operator. These sequences for
eqs. (1.49a)–(1.49d) are conveniently expressed schematically using the abstract
double-sided Feynman diagrams54,59,69,146 (Fig. 2.6a). Vertical arrows denote
the time direction; variables t1, t2 and t3 are the time intervals between two
successive interactions of the dipole operator and the system density operator;
horizontal lines show the side of the dipole operator’s action upon the density
operator. A ket and a bra during the same time interval (|m〉〈n|) denotes a state
of coherence if m 6= n, or population if m = n, corresponding to an element of
the system density matrix being affected.

Off-diagonal fluctuations. Let us consider now additional off-diagonal fluctu-
ations. The system dynamics are now of two types: the coherence evolution and
the population transport. During the coherence evolution, the diagonal fluctu-
ations modulate the oscillation frequency and the off-diagonal fluctuations add
the lifetime-induced dephasing. During the population evolution, the off-diagonal
fluctuations induce the population transport and the effect of the diagonal fluc-
tuations is included in the transport rate. Feynman diagrams with incoherent
transport (indicated by superscript “I”) are used145 to describe the population
transfer. The addition to the system response function (Eq. (1.48)) is obtained:

T (t3, t2, t1) = −
( i
~

)3
θ(t1)θ(t2)θ(t3)

∑
cbe′e

〈
µcbµνν′µ

2
eg
〉

Ge′e(t2)F (I)
cbe′e(t3, t2, t1).

(2.50)
Here indices c and b denote states in the coherence |b〉〈c| during t3 in population
transfer diagrams; νν ′ has to be changed to e′b when the signal is generated
on the left side of the diagram, and to ce′, when it is generated on the right.
Ge′e(t2) is the Green’s function that is a probability of population state |e〉〈e|
to be transferred to |e′〉〈e′| in time t2 (or population survival probability when
e′ = e). The four-point correlation function, describing incoherent population
dynamics during the waiting time, is

F (I)
cbe′e(t3, t2, t1) = eiωcbt3−iωegt1−(γc+γb)t3−γet1+f (I)

cbe(t3,t2,t1), (2.51)

where

f (I)cbe(t3, t2, t1) = exp
[
− gee(t1)− gbb(t3)− g∗cc(t3) (2.52)

− gbe(t1 + t2 + t3) + gbe(t1 + t2) + gbe(t2 + t3)
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+ gce(t1 + t2 + t3)− gce(t1 + t2)− gce(t2 + t3)

+ gcb(t3) + g∗bc(t3) + gce(t2)− gbe(t2)
]
.

γν is the dephasing constant, that is a sum of an inverse state lifetime and the
pure dephasing145

γν = |Kνν |/2 + ∼
γν . (2.53)

2.2.1 Orientational averaging

So far we have neglected the polarizations of the incoming laser fields. Also,
by assuming the scalar dipole moment operator (Eq. (2.9)), we were able to
express the system–field interaction term in Eq. (1.23) as the product of the
scalar dipole moment operator µ̂ and the scalar electric field E (t). However, for
each double-sided Feynman diagram in Fig. (2.6), all interactions of the dipole
moment operator and the density operator (eqs. (1.49a)-(1.49d)) carry the scalar
products of the unitary vectors ej , representing the polarization of the j-th laser
pulse kj †, and the dipole moment vector µj , corresponding to the j-th transition.

Obviously, laser pulse polarizations are defined in the reference frame of the
laboratory and are fixed, while the dipole moment vectors of each molecular
complex in the sample can have an arbitrary random orientation with respect to
them‡. It means, that we cannot neglect the orientations of the dipole moment
vectors with respect to the laser pulse polarizations and have to perform the
averaging over isotropic distribution of the former. In eqs. (2.44) and (2.50) such
averaging was denoted as

〈µ1µ2µ3µ4〉 ≡ 〈(µ1 · e1) (µ2 · e2) (µ3 · e3) (µ4 · e4)〉 . (2.54)

One obvious, but expensive, way to perform such averaging is to directly integrate
this product of scalar products over all possible orientations of the molecular sys-
tem, represented by the Euler angles. Alternatively, one can perform orientational
averaging using an appropriate matrix transformation.147

In a traditional 2D ES, polarizations of each laser pulse are linear and identical
and the detection takes place along the same direction (e1 = e2 = e3 = e4). Such
a scheme is often denoted as the XXXX or “all-parallel” configuration of the laser

†Actually, e1, e2 and e3 are the linear polarization vectors of the first three laser
pulses in the FWM experiment and e4 is the linear polarization of the detection.
‡Of course, it is not true if the molecules in the solution are aligned. For

example, in the continuously flowing liquid sample;123 however, such conditions
are met exceptionally rarely.
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pulses. In this case, the product in Eq. (2.54) reduces to a simple expression:6,148

〈µ1µ2µ3µ4〉XXXX = 2
15

[
(µ1 · µ2) (µ3 · µ4) . (2.55)

+ (µ1 · µ3) (µ2 · µ4) + (µ1 · µ4) (µ2 · µ3)
]
.

Actually, the manipulation of the polarization of each individual pulse ej in the
2D ES can be used to suppress or enhance some specific double-sided Feynman
diagrams. For example, the so-called “cross-polarization” (CP) configuration, in
which the relative polarization orientations of the laser pulses and the detector
e1–e4 are π/4, −π/4, π/2 and 0, respectively, can be used to suppress these
contributions, where the first two dipole moment vectors are parallel.39,149 The
expression for the corresponding product is:

〈µ1µ2µ3µ4〉CP = 1
15 [(µ1 · µ3) (µ2 · µ4)− (µ1 · µ4) (µ2 · µ3)] . (2.56)

Even more sophisticated polarization configurations can be used to promote or
suppress the desired contributions in the spectrum.150 In this thesis, only XXXX
polarization configuration is considered.

2.2.2 Spectral density

The system–bath coupling represented by Eq. (2.41) introduces fluctuations into
the energy of the electronic excited state due to low-frequency bath modes at the
fixed temperature. The most convenient form to describe such fluctuations is the
time correlation operator

C(t) = TrB
{
Q̂e(t)Q̂e(0)ρ̂eq

}
. (2.57)

Here the normalized thermally equilibrated density operator of the bath is given
by Eq. 1.29:

ρ̂eq = Z−1 exp
(
−
∑
α
β~wα

(
â†αâα + 1

2

))
(2.58)

and
Q̂e(t) =

∑
α
~wα
√sα

(
â†α(t) + âα(t)

)
(2.59)

is the fluctuating collective bath coordinate in the Heisenberg representation.
Here, sα is the so-called Huang–Rhys factor, which indicates the strength of the
α-th vibrational mode. The exact form of the correlation function describes the
high-frequency modes as well. Trace in Eq. (2.57) amounts to averaging over the
infinite set {α} of harmonic oscillators. Inclusion of eqs. (2.58) and (2.59) into
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the trace gives

C(t) =
∑
α
~2w2

αsα
(

coth β~wα

2 cos wαt − i sin wαt
)

, (2.60)

which is the well-known form of the two-point correlation function of generalized
bath coordinates.8 The Fourier transform of the equation is a real function

C(ω) =
∞̂

−∞

dteiωtC(t) ≡ C′(ω) + C′′(ω), (2.61)

where C′(ω) and C′′(ω) are even and odd functions of ω. C′′(ω) is the temperature-
independent function. We denote it as the spectral density:

C′′(ω) = −2
ˆ ∞
0

sinωtImC(t)dt. (2.62)

Note, that the different definition of the spectral density, namely J(ω) ≡ ω2C′′(ω),
might also used.8 C′(ω) and C′′(ω) are related by the fluctuation–dissipation
theorem8

C′(ω) = coth (β~ω/2) C′′(ω) (2.63)

and the system reorganization energy is defined as

λ = 1
π

∞̂

0

C′′(ω)
ω

dω. (2.64)

The lineshape function g(t) is an integral transformation of the correlation
function C(t) of system-bath fluctuations, or for its Fourier transform (Eq. (2.61)),

g(t) ≡ − 1
2π

∞̂

−∞

dωC(ω)
ω2 [exp(−iωt) + iωt − 1] . (2.65)

Assuming that the system is coupled to a continuous spectrum of bath fre-
quencies, the correlation function Eq. (2.60) can be calculated for a predefined
distribution. We introduce the density of the Huang–Rhys parameter as a func-
tion of vibrational frequency, {sα} → s(ω)dω, which may have a peak at some
dominant normal-mode frequency ω0. Then, from eqs. (2.60) and (2.62) the
spectral density is obtained as

C′′(ω) = π~2ω2 [s(ω)− s(−ω)] . (2.66)
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For instance, if we consider a vibrational damped mode it will be represented by
a broad peak in the spectral density of the system–bath coupling. In case of the
Gaussian-type coupling

sG(ω) = 1√
2πγ

e−
(ω−ω0)2

2γ2 (2.67)

the spectral density function is

C′′G(ω) = λµ ·
√
π√
2γ

e−
(ω−ω0)2

2γ2 − e−
(ω+ω0)2

2γ2

 , (2.68)

while the Lorentzian-type coupling

sL(ω) = 1
π

1
(ω − ω0)2 + γ2

(2.69)

leads to
C′′L(ω) = λµ · 4ωω0γ

(ω2 − ω2
0 − γ2)

2 + 4ω2γ2
. (2.70)

µ is just a scaling constant inserted here for convenience: the expression of µ is
later chosen in order for λ to be equal to the reorganization energy.

At this point, no approximations regarding the description of the bath were
applied—equations (2.68) and (2.70) are consistent with the fluctuation–dissipati-
on theorem. The inverse Fourier transform of them would give the time corre-
lation functions, which in the case of Gaussian and Lorentzian couplings, decay
as e−γ2t2/2 and e−γt , respectively. The spectral densities include the damping
parameter γ and vibrational frequency ω0. By taking various limits with respect
to these parameters, different damping regimes can be achieved representing dif-
ferent conditions of the bath, and both spectral densities (eqs. (2.68) and (2.70))
can be used in numerical simulations.

We further analyze different regimes of undamped, damped and overdamped
vibrational motion considering the Lorentzian-type coupling, since it is related
to the exponentially-decaying time correlation function, which is a natural decay
pattern in most physical situations. When a single bath mode is assumed, i. e.,
when the spectral density function is obtained as a Fourier transform of a single
term of Eq. (2.60), the spectral density is given by

C′′u (ω) = πsω2
0 [δ(ω − ω0)− δ(ω + ω0)] . (2.71)

The reorganization energy in this case is sω0 and the lineshape function is

gu(t) = s
[
coth β~ω0

2 (1− cosω0t) + i (sinω0t − ω0t)
]

. (2.72)
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This vibrational mode leads to non-decaying, undamped, vibrational motion. Such
spectral density, given by δ functions, is not realistic because the dissipation, which
leads any vibrational motion due to the molecular interaction with its environment,
is neglected. Damping induces the decay of the correlation function over time
and the corresponding spectral density should have a finite-width smooth peak.
Such damped regime is achieved by taking γ < ω0 in Eq. (2.70), leading to

C′′d (ω) = 2
√

2λωω2
0γ

(ω2 − ω2
0)

2 + 2γ2ω2
. (2.73)

This spectral density function with reorganization energy λ has a peak at ω0 and
the peak width is defined by the damping strength γ, differently from Eq. (2.71),
where the peak is the δ function (Fig. 2.7a).

The opposite, overdamped, regime is usually represented by the Brownian os-
cillator model. This regime can be postulated semi-classically, i. e., by using the
exponentially decaying classical correlation function

Ccl(t) = 2λkBT exp(−γ|t|). (2.74)

Its Fourier transform,

Ccl(ω) = 4γλkBT (ω2 + γ2)−1, (2.75)

now represents the even (classical) part C′(ω) of the total quantum correlation
function. Since the classical trajectory reflects the high temperature limit, we have
C′′(ω) = 1

2β~ωC
′(ω) and obtain the Drude–Lorentz spectral density representing

the classical Brownian particle8

C′′o−sc(ω) = 2λγω
ω2 + γ2

(2.76)

with reorganization energy λ and the relaxation rate γ. The full quantum cor-
relation function in the frequency domain can now be constructed by the direct
application of the fluctuation–dissipation relation Eq. (2.63). Therefore, we de-
note the bath described by such spectral density as the overdamped semi-classical
bath. At the high-temperature limit69 the corresponding lineshape function is
approximated as

go−sc(t) = λ

γ

( 2
βγ
− i

)
(e−γt + γt − 1). (2.77)

Evidently, the overdamped bath can also be obtained from Eq. (2.70). In the
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Fig. 2.7. (a) Undamped (C′′u (ω), red dashed line) and damped (C′′d (ω), black
solid line) spectral density functions. (b) Overdamped quantum (C′′o−q(ω), red
dashed line) and overdamped semiclassical (C′′o−sc(ω), black solid line) spectral
density functions. The real and imaginary parts of the corresponding lineshape
functions are shown in (c) and (d), respectively. Notice the different scale for
the imaginary parts.

limit of γ � ω0 it yields a rather different spectral density function

C′′o−q(ω) = 4λωγ3
(ω2 + γ2)2 . (2.78)

We denote this regime as the quantum overdamped. The reorganization energies
are equal to λ for both types of the overdamped spectral density. The semi-
classical spectral density function is equal to λ at its maximum at ω = γ, while
the quantum function has its maximum value C′′o−q(ωpeak) = 3

√
3

4 λ ≈ 1.3λ, where
ωpeak =

√
3/3γ ≈ 0.58γ (see Fig. 2.7b). The quantum overdamped spectral

density converges to zero faster at high frequency, therefore, it is more suitable for
numerical applications. At the high-temperature limit the corresponding lineshape
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function is given by

go−q(t) = λ

γ

( 2
βγ
− i

) (
e−γtγt + 2e−γt − 2 + γt

)
(2.79)

+ λβ

2

(
1 + 4

β2γ2

) (
e−γt + γt − 1

)
.

2.2.3 Relaxation in multi-level system

Let us describe the relaxation through the eigenstates of the multi-level system.
The concept of the Green’s function was introduced above, in the discussion
about the off-diagonal energy fluctuations. The Green’s function is a solution of
the Pauli master equation

d
dt Ge′e(t) =

∑
j 6=e′

Ke′jGje −
∑

j 6=e′
Kje′

Ge′e, (2.80)

where Kij are the population transport rates, that can be calculated using different
relaxation theories. This equation can be represented in the matrix form

d
dt Ĝ(t) = −

∼̂
KĜ(t), (2.81)

where the population transport rates matrix is constructed as:
∼
K ab = −Kab +

δab
∑

j Kjb. By applying an unitary transformation upon the explicit solution of
Eq. (2.81), we obtain

Ĝ(t) = Q̂ exp(−Q̂−1
∼̂
KQ̂t)Q̂−1 (2.82)

and
Ge′e(t) =

∑
j

Qe′jQ−1je e−λj t . (2.83)

Here, Q̂ is the eigenvector matrix of
∼̂
K , Q̂−1 is its inverse and λj are the eigen-

values. Population transport rates can be calculated using traditional Redfield
relaxation theory:70,151

Kab = C ′′ab,ab(ωab)[coth(β~ωab/2)− 1], (2.84)

where ~ωab = εa − εb and

C ′′ab,cd(ω) = 1− exp(−β~ω)
2

ˆ ∞
−∞

dteiωtCab,cd(t). (2.85)
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2.2.4 Molecular excitons

Let us consider a general multi-chromophore system consisting of N electronically
interacting two-level systems. Nonlinear optical properties of such complexes of
coupled chromophores (e. g., molecular aggregates, proteins, etc.) are described
using a Frenkel exciton model,5,152 which defines the following material Hamilto-
nian:

Ĥmat =
N∑

m=1
εmB̂†mB̂m +

N∑
m

N∑
n 6=m

JnmB̂†mB̂n + Ĥint. (2.86)

Here, εm and Jmn are the site energy of the m-th chromophore and the reso-
nant coupling constant between n-th and m-th chromophores, respectively. If
the intermolecular distances are much larger than intramolecular, the resonant
interaction can be calculated as the Coulomb coupling between charge densities
of the molecules, approximated as electric dipoles (the dipole–dipole approxi-
mation).6,153 Then, the resonance coupling constant can be expressed by the
molecular transition dipoles:

Jmn = (µm · µn)
|Rmn|3

− 3(µm · Rmn) (µn · Rmn)
|Rmn|5

. (2.87)

Here Rmn is a vector, drawn from the middle point of µm to the middle point of
vector µn. Extended dipole approximation,154 transition density cube method155

or the transition charge from electrostatic potential (TrEsp)156,157 method can be
used to calculate the excitonic coupling beyond the dipole–dipole approximation.

The theory used to describe the spectroscopic properties of such systems is
essentially the same as for a general multi-level system described previously, only
here we have to calculate the eigenstates and transform other quantities (transi-
tion dipole moments, correlation coefficients, etc.) to the eigenstate basis from
the Frenkel excitonic Hamiltonian.

Thus, the system eigenstates will consist of the zero-vibrational ground state
|g〉 and the bands (manifolds) of the singly-excited and the doubly excited states.
Each state of the singly-excited state manifold is denoted as |ej〉 (j = 1 ... N)
with corresponding optical transition to the ground state ωejg. The number of
the doubly-excited states is N(N − 1)/2 and they are denoted as |fk〉 with optical
transitions to the singly-excited states ωfkej ; the direct transition to the ground
state is forbidden. The Hamiltonian matrix ĥ(1) of the singly-excited states is
simply the reference Hamiltonian of Eq. (2.86): h(1)

jk = δjkεj + ζjkJjk , where
ζjk = 1 − δjk . The matrix elements of the doubly-excited state Hamiltonian are
h(2)
(kl),(mn) ≡ (εk + εl)δkmδln + Jkmδlnζkm + Jlnδkmζln. Transition from the site basis

to the exciton basis as well as eigenenergies are obtained by using the unitary
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transformations,

Û−1ĥ(1)Û = Ω̂ , (2.88)
V̂−1ĥ(2)V̂ = Ŵ . (2.89)

As previously, we assume that the system–bath interaction Hamiltonian ĤSB
describes the diagonal fluctuations of the molecular transition energies, each
molecule has its own independent set of fluctuating coordinates uncorrelated to
the other molecules, and fluctuations of different molecules are statistically in-
dependent. In the exciton basis, we obtain fluctuating transition energies and
couplings between the eigenstates. These fluctuations are characterized by the
spectral densities

C ′′e1e2,e3e4(ω) =
[∑

m
U−1me1U

−1
me2U

−1
me3U

−1
me4

]
C′′(ω), (2.90a)

C ′′e1e2,f3f4(ω) =
∑

m
U−1me1U

−1
me2

k 6=m∑
k
ν
(f3)
mk ν

(f4)
mk

 C′′(ω), (2.90b)

C ′′f1f2,e3e4(ω) = C ′′e3e4,f1f2(ω), (2.90c)

C ′′f1f2,f3f4(ω) =
∑

m

k 6=m∑
k
ν
(f1)
mk ν

(f2)
mk

l 6=m∑
l
ν
(f3)
ml ν

(f4)
ml

 C′′(ω). (2.90d)

Here ν(k)nm denotes the element of V̂−1 of the k-th row and and the column, corre-
sponding to the diagonal element εn + εm of the doubly-excited state Hamiltonian
matrix. The explicit relation is ν(k)mn = V−1kγ , where γ = 1

2(2N−m)(m−1)+n−m,
n, m = 1, 2 ... N . We have also extended the eigenvector matrix of the doubly-
excited states by taking ν(f )mn ≡ ν(f )nm , which lets us simplify the expressions consid-
erably.

The transition dipoles of the interband transitions (eigendipoles) are obtained,
by applying the same unitary transformation:

µgej =
∑
m

U−1jm µm (2.91)

µej fk =
N−1∑
m=1

N∑
n=m+1

ν(k)mn (U−1jn µm + U−1jm µn). (2.92)

We will only consider the electronic transitions between the excitonic bands
and the ground state. Therefore, the response function components (eqs. (1.49a)-
(1.49d)) will only contain oscillating terms of the evolution operator of frequencies,
corresponding to these interband energy gaps (approximately the same frequency
ω for all interband transitions). One can see that in the expressions there are two
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types of phase factors, −iω(t1 + t3) and −iω(t1− t3). The opposite phase factors
of electromagnetic field oscillations of frequency ω0 are in the electromagnetic field
expression Eq. (1.53). In the experiment, ω0 ≈ ω is satisfied. Multiplication of
the system response function and electric field part under integration in Eq. (1.46)
then results in terms of the sum\ phase factors. In the case of constructive (or
destructive) interference of phase factors, rapidly (or slowly) oscillating terms
are obtained. Integrals of rapidly-varying functions are much smaller and can be
neglected (RWA). The third-order polarization then reads

P(3)(τ , T , t) = e−iω0(t−τ)
∞̂

0

∞̂

0

∞̂

0

dt3dt2dt1 (2.93)

×
{
S(3)

kI
(t3, t2, t1)×

[
E [1]
1 E [2]

2 E [3]
3 + E [1]

1 E [2]
3 E [3]

2

]
eiω0(t3−t1)

+ S(3)
kII

(t3, t2, t1)×
[
E [1]
2 E [2]

1 E [3]
3 + E [1]

3 E [2]
1 E [3]

2

]
eiω0(t3+t1)

+ S(3)
kIII

(t3, t2, t1)×
[
E [1]
2 E [2]

3 E [3]
1 + E [1]

3 E [2]
2 E [3]

1

]
eiω0(t3+2t2+t1)

}
,

where S(3)
kI

(t3, t2, t1) = −R∗1 + R2 + R3, S(3)
kII

(t3, t2, t1) = −R∗2 + R1 + R4 and
S(3)

kIII
(t3, t2, t1) = −R∗3 + R4 are the system response functions for the k I, k II and

k III interaction sequences, respectively. Auxiliary response functions Rα are re-
lated to the four-point correlation functions158 (eqs. (2.44) and (2.50)). These
interaction sequences of the evolution operator and the dipole moment operator
can be expressed by the double-sided Feynman diagrams (Fig. 2.6). They corre-
spond to different physical processes – excited state absorption (ESA, diagrams
−R∗1 and −R∗2 ), stimulated emission (SE, diagrams R2 and R1), ground state
bleaching (GSB, diagrams R3 and R4) or double quantum coherence pathways
(DQC, diagrams −R∗3 and R4). Additionally, ESA′ and SE′ diagrams involving
population transfer are indicated in Fig. 2.6. In the further discussion we will
use the notations of the ESA, SE, GSB or DQC diagrams instead of auxiliary Rα
functions, introduced in eqs. (1.49a)–(1.49d). Complete expressions for S(3)

kI
–S(3)

kIII

can be found elsewhere.159

2.3 Electronic dimer

We denote a pair of electrostatically-only interacting molecules an electronic dimer
(ED). It is the simplest system for which excitonic effects can be demonstrated.
We assume the dipole–dipole coupling between the molecules and that both dipole
vectors lie in a single plane. Therefore the geometry of the dimer can fully be
described by the dipole strengths |µ1|

2 and |µ2|
2, interdipole distance vector
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Fig. 2.8. Double-sided Feynman diagrams, illustrating a repetitive dipole moment
interaction with the both sides of the system density operator. Contributions to
the spatial kI (a), kII (b) and kIII (c) directions. Indices α, β, and γ denote
different arbitrary numbers, representing all possible orderings of the system–field
interactions.

R12, and the mutual angle φ (see Fig. 2.9a). In the Frenkel exciton Hamiltonian
(Eq. (2.86)) the chromophore site energies are denoted as ε1 = ε+ δ0 and ε2 = ε:

Ĥmat =
ε+ δ0 J

J ε

 . (2.94)

The Hamiltonian is diagonalized and the eigenenergies for the singly- and doubly-
excited states are

εe2 = 1
2 (ε1 + ε2) + 1

2∆
0
e, (2.95)
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εe1 = 1
2 (ε1 + ε2)−

1
2∆

0
e (2.96)

and
εf = εe1 + εe2 = ε1 + ε2. (2.97)

Here
∆0

e ≡
√
δ20 + 4J2 (2.98)

is the excitonic energy gap, dependent on the site energy difference δ0 and the
resonance coupling constant J .

It is sometimes convenient to express the variables using the so-called mixing
angle, defined as:67,160,161

θ = 1
2 arctan

(2J
δ0

)
. (2.99)

Then the eigenstate transformation matrix is

Û−1 =
 − sin θ cos θ

cos θ sin θ

 (2.100)

The singly-excited state energies can then be written as

εe1 = ε1 sin2 θ + ε2 cos2 θ − 2J cos θ sin θ (2.101)

and

εe2 = ε1 cos2 θ + ε2 sin2 θ + 2J cos θ sin θ. (2.102)

According to Eq. (2.92), the transition dipole moments between the eigenstates

φ

R12

µ1 µ2

(a) (b)

|f〉

|e1〉

|e2〉

ε+ δ0 ε
J

εe1

εe2

εf

Site basis Exciton basis
|g〉

Fig. 2.9. Definitions of geometric (a) and energy (b) variables of the electronic
dimer.
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and transition dipole moments in the site basis are related as

µge1 = − sin θµ1 + cos θµ2, (2.103)
µge2 = cos θµ2 + sin θµ2 (2.104)

and

µe1f = cos θµ1 − sin θµ2, (2.105)
µe2f = sin θµ1 + cos θµ2. (2.106)

If the dipole moments are of the unit length, |µ1| = |µ2| = 1, the squares of the
transition dipoles represent the oscillator strengths and read:

∣∣∣µe1g
∣∣∣2 =

∣∣∣µfe1

∣∣∣2 = 1− 2J√
δ20 + 4J2

cosφ, (2.107)

∣∣∣µe2g
∣∣∣2 =

∣∣∣µfe2

∣∣∣2 = 1 + 2J√
δ20 + 4J2

cosφ. (2.108)

2.3.1 2D spectrum of electronic dimer

For demonstrative purposes, let us use the electronic dimer parameters similar to
those in Ref.159 Site energies ε1 = 11800 cm−1 and ε2 = 12200 cm−1, resonant
coupling constant J = 100 cm−1 and the angle between the molecular dipoles φ =
π
6 . We use the semiclassical overdamped Brownian oscillator model (Eq. (2.76))
with the relaxation rate and the reorganization energy set to γ = 50 cm−1 and
λ = 30 cm−1, respectively. The population transfer rates, calculated using the
secular Redfield theory (Eq. (2.84)) for the eigenstates at εe1 = 11776 cm−1 and
εe2 = 12224 cm−1 are: K1←2 = 4 ps (downward) and K2←1 = 17 ns (upward) at
temperature T = 77 K.

The calculated rephasing 2D electronic spectra of the electronic dimer at wait-
ing times t2 = 0, 1 ps, 4 ps and 10 ps are shown in Fig. 2.10. The spectra contain
both diagonal and off-diagonal elements. Since the angle between the transition
dipoles is smaller than π/2 and the sign of the resonance coupling constant is
positive, such a dimer is of the so-called “H” type with a typical signature of
larger oscillator strength for the transition to the higher energy state. This is also
related to the lower off-diagonal peak being negative at initial waiting times.

The most evident picosecond dynamics in the spectra are the redistribution
of the peak intensities. It can be clearly seen in Fig. 2.10b–c, where the fem-
tosecond and picosecond time-dependent traces of amplitudes of all four peaks
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Fig. 2.10. (a) 2D electronic spectra of ED at waiting times t2 = 0, 1 ps, 4 ps
and 10 ps. Spectra are normalized to the maximum value of spectrum at t2 = 0;
normalization factors are indicated above each spectrum. (b–c) Intensities of
diagonal (A11 and A22) and off-diagonal (A21 and A22) peaks in calculated 2D
spectra of the electronic dimer: (b) waiting time range t2 = 0− 500 fs and (c)
t2 = 0− 10 ps. Exponential fit of the upper diagonal peak dynamics is shown by
the red dashed line (see text for details).

of the spectrum are shown separately. All peaks decay and broaden due to spec-
tral diffusion, but for the coupled system the amplitude changes because of the
population transfer, as well. Therefore, the two-exponential fit of the evolution
of the upper diagonal peak gives two time scales of τ1 = 92 fs and τ2 = 3.9 fs.
The time scale closely matches the bath relaxation time γ−1 = 106 fs and the
downward population transfer rate K1←2 = 4 ps.

As can be seen from the dissection of the spectra into components correspond-
ing to different Feynman diagrams (Fig. 2.11), most of the changes comes from
the ESA and SE diagrams—that is, from those, which contain population evolu-
tion during the waiting time. Only the GSB contribution is not affected by the
population transport and the peaks only broaden with the waiting time.

At the short waiting time (t2 = 0), the population transport is negligible and
the diagonal peaks consist solely of the SE and GSB contributions (Fig. 2.11e-
f). These two diagonal peaks represent two singly-excited states and are created
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when ej = ei , while the off-diagonal peaks correspond to ej 6= ei . The cross-
peaks are created by the superposition of positive GSB and SE and negative ESA
(Fig. 2.11d) contributions.

At the long waiting time (t2 = 10 ps) we see signatures of the downhill popu-
lation transfer. The ESA contribution refers to transition from the population of
the lowest single-exciton state |e1〉〈e1| to the double-excited state |f1〉〈e1| solely.
This is clearly indicated by an upper off-diagonal element in Fig. 2.11g, while
the off-diagonal peak for |e2〉〈e2| → |f1〉〈e2| transition is dominant at the waiting
time t2 = 0 fs (Fig. 2.11a). The similar explanation holds for the population
transfer-related lower off-diagonal peak that is seen in the SE diagram spectrum
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Fig. 2.11. Double-sided Feynman diagrams: (a) ESA, (b) SE and (c) GSB, and
their contributions to the rephasing 2D spectrum at waiting time t2 = 0 (d–f)
and t2 = 10 ps (g–i). The spectra in rows are drawn using the same color scale.
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at t2 = 10 ps (Fig. 2.11h). The GSB contribution does not involve population
transfer, thus, the waiting time dependence reflects the spectral diffusion only
(compare Fig. 2.11f and i).

2.3.2 Phase of coherent beatings in 2D spectrum

In Fig. 2.10a it is clearly seen, that the coherent beatings of the cross-peaks have
phase shift with respect to each other. Such phase difference was first experimen-
tally observed in 2D spectra of marine algae by Collini et al.162 and opposite phase
beats in the spectral regions, symmetric with respect to the diagonal line, were
claimed to be witnessing (or having a role in) the wavelike quantum transport
and ultra-efficient excitation transfer. However, we have shown,46 that the phase
difference can be explained by the properties of coherences in the 2D spectrum
without invoking any sophisticated quantum mechanisms.

If the environment-induced relaxation is neglected, the 2D signal (response
function at the impulsive limit) can be written as a sum of resonant contributions
of the type

W (ω3, t2,ω1) =
∞̂

0

dt1eiω1t1

∞̂

−∞

dt3eiω3t3G3(t3)G2(t2)G1(±t1). (2.109)

The propagator (Green’s function) of the density matrix Gj(tj) for the j-th (j =
1, 2, 3) time delay is of the one-sided exponential function type

Gj(tj) = θ(tj) exp(−iωjtj − γjtj) (2.110)

Here ωj coincides with the energy gap ωab between the left and right states
(|a〉 〈b|) of the system density matrix relevant to the time interval tj ; γj is
the dephasing constant added phenomenologically to the evolution. The Fourier
transforms in Eq. (2.109) map the contributions to the frequency–frequency plot
(t1, t3)→ (ω1,ω3) ∼ (∓|ω1|,ω3) (the upper sign is for the rephasing, kI, signal,
the lower – for the nonrephasing, kII, signal). Diagonal peaks at ω1 = ∓ω3 are
usually distinguished, while the anti-diagonal line is defined as ∓ω1 +ω3 = const.
The whole 2D signal is a function of the waiting time t2: either oscillatory for
coherences |a〉〈b| with characteristic oscillation energy ω2 = ωab 6= 0, or static
for populations |a〉〈a| (ω2 = 0).

Eq. (2.109) together with the Green’s function definition in Eq. (2.110) can
be analytically integrated. For a single contribution W (ω3, t2,ω1) giving rise to a
peak at (ω1,ω3) = (∓ω1,ω3) we shift the origin of the (ω1,ω3) plot to the peak
center by introducing the displacements (ω1 + ω1 = −s1, ω3 − ω3 = s3 for the
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rephasing pathways, and ω1 − ω1 = s1, ω3 − ω3 = s3 for the nonrephasing). For
γ = γ1 = γ3 we get the peak profile for the real part of the cross-peak:

W (s3, t2, s1) = L(s1, s3)e−γ2t2 cos [ω2t2 + φ(s1, s3)] , (2.111)

where the lineshape and phase for the kI signal are

L(s1, s3) =
√

(γ2 − s1s3)2 + γ2(s3 + s1)2
(s23 + γ2) (s21 + γ2) (2.112)

and

φ(s1, s3) = −sgn (s3 + s1) · arccos
 γ2 − s1s3√

(γ2 − s1s3)2 + γ2(s3 + s1)2

 , (2.113)

respectively. Analogous expressions for the kII signal can be found elsewhere.46

The 2D spectra of a single oscillatory contribution, defined by eqs. (2.111)–
(2.113) with ε2 6= 0 are shown in Fig. 2.12a at different delay times. It follows,
that the oscillation of a single peak is not of the “breathing” type, where each
point follows harmonic oscillations with the same phase, but rather a “wavelike”
propagation along the axis perpendicular to the diagonal. Indeed, the phase
φ(s1, s2) of the cosine in Eq. (2.111) changes from −π to π when going across the
diagonal, while the amplitude L(s1, s2) is symmetric and positive (see Fig. 2.12b).
At the center of the peak (s1 = s3 = 0), we have φ = 0, leading to W ∝
cos(ω2t2). However, for s1 6= 0 and s3 6= 0 we find W ∝ cos(|ω2| t2 + φ(s1, s3))
with φ(s1, s3) 6= 0. Thus, the displacement from the peak center determines the
phase of the spectral oscillations. Note that the sign of the phase φ is opposite
for the peaks above (ω2 < 0) and below (ω2 > 0) the diagonal line, and this
applies for all contributions.

A very convenient way to represent the overall complexity of oscillations in
the 2D spectrum is by using the so-called coherence maps,27,46,122,127,132,163–166

shown in Fig. 2.12c. With the 2D spectrum at some fixed delay time t2 drawn
as contours, the phase and amplitude of oscillations can be represented by color
using the hue–saturation scale. Setting the hue value to the oscillation phase
and the saturation to the oscillation amplitude, one obtains a colored map, which
bleaches out in the regions where no oscillations are present (Fig. 2.12c, left). If
the information of the phase is not needed, it is more representative to plot only
the amplitude, as it is shown on the right panel of Fig. 2.12c. We will use both
representations of the coherence map further in this thesis.

The link between the theoretical coherence map and the experimental observ-
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the phase information. 2D spectrum at t2 = 0 is shown by contours.

ables is direct, since the experimental coherence maps can be constructed by
performing the Fourier transform of each data point in the 2D spectrum over the
waiting time t2 after subtraction of the slow exponential decay contributions:

A(|ω1| ,ω2,ω3) =
∞̂

0

e−iω2t2Sresiduals(|ω1| , t2,ω3)dt2. (2.114)

The amplitude and the phase which completely describes the oscillations of ev-
ery point of the 2D spectrum are then extracted from the complex function
A(|ω1| ,ω2,ω3). As the dependence of the amplitude on frequency ω2 oscilla-
tion is available for every point of ω1 and ω3. The maximum of the coherence
map as a function of ω2 can be used as a representative variable that would
characterize oscillation frequencies of the importance:

Amax(ω2) = max [Abs A(|ω1| ,ω2,ω3)]ω2=const. . (2.115)

Then, the oscillation map is a Fourier amplitude, plotted against the excitation
and detection frequencies ω1 and ω3 for a fixed Fourier frequency ω2 (in the case
discussed here, ω2 = ω2). Each coherence map can then be integrated over ω1
and ω3 and the integral value represented as a function of coherence frequency
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Ã12 Ã22
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ω2. Such a dependency would show the averaged distribution of various oscillation
frequencies.

Alternatively, one can choose to represent the amplitude of the observed oscil-
lations by the value of the coherence map norm (Frobenius norm), which is equal
to the square root of the sum of squares of the data points of coherence maps at
frequency ω2:

Anorm(ω2) =
ˆ
|A(|ω1| ,ω2,ω3)|2 dω1dω2. (2.116)

It immediately follows, that the experimentally observed phase of the cross-
peak oscillations is sensitive to a position, at which the temporal dynamics of
the spectrum is probed. Experimentally observed phase relations of the beatings
detected at separate points in the vicinity of the same cross-peak of the photo-
synthetic LH2 complex167 is the result of the measurement away from the peak
center and are not related to the energy transfer pathways and their efficiency.
This also explains the opposite-phase beatings reported by Collini et al.,162 while
the results of Turner et al.168 are ambiguous.

To reveal the oscillatory contributions in the ED system we have grouped all
contributions into either oscillatory or static as shown in Fig. 2.13a. As a function
of t2, the ED system has only 4 oscillatory and 8 static contributions which give
four peaks in both rephasing and nonrephasing spectra. The net result is that the
diagonal peaks in the kI and cross-peaks in the kII signals are non-oscillatory in
the ED (refer to Appendix A for analytical expressions of oscillation amplitudes
for all peaks). The rephasing coherence map of the electronic dimer (Fig. 2.13b)
proves the assignment of oscillatory peak positions.
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It might look that consideration of the simple quantum beats in spectra of
electronic dimer using coherence maps is somewhat too complicated or redundant,
but here we just wanted to introduce the principle of such analysis, which will
prove to be very useful for more sophisticated systems.

2.3.3 Influence of static disorder on coherences

As it was highlighted in the Introduction, coherently established exciton states
are sensitive to the static and dynamic disorder, induced by the environment.
Distribution of the energies and mutual orientations of the molecules, that do not
change during the investigated time intervals, are often referred to as the diagonal
and the off-diagonal static disorder, respectively. Dynamic disorder arises from
the time-dependent changes of system’s electronic and nuclear parameters.

Both static and dynamic disorder participates in a disruption of the phase
relationships (dephasing) of the coherent excitons and influences the extent of
exciton delocalization. In large molecular crystals and aggregates,152,169 the ex-
citon delocalization amounts for a significant influence to excitation transfer and
photochemical properties. For example, substantial exciton delocalization was
shown to be crucial for the robust, efficient and untrapped excitation transfer
through a network of coupled molecules in photosynthetic complexes;170,171 the
enhancement of the quantum transport32 can be ensured by the environmental
noise, driving the system to optimal regime with respect to the exciton localiza-
tion.

Static disorder significantly reduces the lifetime of the electronic beats. How-
ever, recently Dong and Fleming172 have theoretically demonstrated the opposite
effect, that in the presence of substantial static disorder, the lifetime of electronic
coherences can increase, resulting in the long-lived integrated two-color photon
echo signals. For the proposed mechanism, overlap of inhomogeneously broadened
spectral lineshapes is necessary allowing for a part of systems in the disordered
ensemble to possess full exciton delocalization and, thus, give a strong long-lived
signal.

In this section, we extend the two-color PE study of Dong and Fleming172

for electronic two-dimensional spectroscopy, which can be related to the PE sig-
nal through the projection–slice theorem.59 We analyze the competition between
static and dynamic disorder, both responsible for the decay of the observed quan-
tum beats, and demonstrate that the lifetime and the amplitude of such electronic
coherences might be significantly enhanced. We also show, that at this regime
the observed beats in the 2D spectra will signify the double value of the resonant
coupling, but not the excitonic splitting. We suggest explanations for the out-
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comes of a few relevant experiments and discuss, why the electronic or vibrational
coherences were or were not observed.

Let us consider the molecular dimer in the theoretical frame of Frenkel excitonic
model. If the diagonal or off-diagonal static disorder is neglected, the excitonic
splitting ∆e is fixed and depends on the gap between the site energies of each
molecule δ0 ≡ ε2 − ε1, and the resonant coupling constant J as

∆e = ∆0
e ≡

√
δ20 + 4J2. (2.117)

In an ensemble of molecules with the uncorrelated static energy disorder, we
assume that the individual distributions of the site energies of both molecules are
Gaussian with the same standard deviation σD, i. e.,

P(εi) =
(
2πσ2D

)− 1
2 e
− (εi−εi )2

2σ2
D . (2.118)

Here εi is the energy of the i-th (i = 1, 2) molecule, εi – its mean value. The
statistical distribution of the excitonic energy gap ∆e can then be derived172 and
yields:

P(∆e) = e
−

(
δ0+
√

∆2e−4J2
)2

2σ2
D + e

−

(
δ0−
√

∆2e−4J2
)2

2σ2
D

∆−1e
√

2πσD
√
∆2

e − 4J2
. (2.119)

This distribution function is shown in Fig. 2.14 for chosen parameters (J =
150 cm−1, δ0 = 400 cm−1) and at a few different values of the static disorder:
σD = 40 cm−1, 80 cm−1 and 160 cm−1.

The distribution has a singularity at ∆e = 2J , which becomes significant
at larger values of the static disorder (see the blue line in Fig. 2.14). Such a
distribution has two well-expressed parts: a narrow peak at ∆e = 2J and a
wide distribution, centered at ∆0

e. These two contributions represent two sub-
ensembles of the pool of dimers in the sample and have very different coherent
properties. The narrow part of distribution at ∆e = 2J represents a sub-ensemble
of homo-dimers, for which the site energy gap δ0 is zero. In homo-dimers, excitons
are completely delocalized over the two sites. This means, that their energy
correlation functions are identical and decoherence rate is significantly lower than
of systems with the large site energy gap.29,172 The remaining broad part of
distribution represents a sub-ensemble of hetero-dimers. Wide distribution of their
site energies will result in a negligible contribution to the total spectral signal due
to dephasing, caused by the averaging over the coherent oscillatory signals of
different frequencies of excitonic splittings, represented by the distribution. From
Fig. 2.14 it is evident, that increasing the disorder results in a relative enhancement
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Fig. 2.14. Excitonic splitting en-
ergy distribution P(∆e) for different
values of static disorder σD.

P
(∆

e
)

0.020

0.015

0.010

0.005

0.000

Excitonic splitting ∆e (cm−1)

300 400350 450 500 550 600

σD =
40 cm−1

80 cm−1

160 cm−1

2J ∆0
e

of the total signal, stemming from the sub-ensemble of the homo-dimers.
For simulations of the 2D spectra, we used the third-order system response

function formalism, described above. The dynamic disorder was accounted for by
treating the dynamics of the bath as the overdamped Brownian oscillator and using
the Drude–Lorentz spectral density (Eq. (2.76)). The reorganization energy λ and
relaxation rate γ were both set to 50 cm−1. Secular Redfield theory was used to
account for the excited state lifetime and population transfer at 77 K temperature.
As the excitation transfer rates are not directly related to the discussed effect, the
limitations of the secular Redfield theory173 are not crucial. Static energy disorder
was simulated by averaging over 1000 realizations of spectrum calculations using
randomly Gaussian-distributed (Eq. (2.118)) site energies.

The 2D spectra, simulated using the same values of static disorder as for
Fig. 2.14 and the waiting time t2 traces of the lower cross-peaks are shown in
Fig. 2.15a-c. In all these cases the spectral oscillations (beats) show significant
changes with the disorder: the lifetime of coherent beatings when σD = 80 cm−1
(Fig. 2.15b) is significantly shorter than for σD = 40 cm−1 (Fig. 2.15a), however,
increasing the static disorder to σD = 160 cm−1 obviously results in much longer
coherence lifetime (Fig. 2.15c).

The lifetime of electronic coherent beats are determined by the excitonic gap
distribution in Eq. (2.119). In order to characterize the beats at different sys-
tem’s parameters, we performed the Fourier transform over the waiting time t2
dynamics of each point in spectrum, calculated by taking into account only the
coherent contributions (coherent double-sided Feynman diagrams69). The Fourier
amplitude Anorm, integrated over all excitation/detection frequencies, for the fixed
coherence frequency ω2 (definition in Eq. 2.116) is shown in Fig. (2.16) for the
three parameter sets used as in the example above. The width, center frequency
and height of these Lorentzian peaks in the dependency will represent the lifetime,
the observed frequency and the intensity of the beats, respectively.

In order to study the whole parameter space, we chose to fix the resonance
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coupling constant at J = −150 cm−1 and perform the Fourier analysis of the phase
space with respect to the site energy gap δ0 and the standard deviation of the
molecular energy distribution, σD. The resulting coherence intensity, frequency
and lifetime dependencies are shown in Fig. 2.17a-c.

As it can be seen in Fig. 2.17a, the amplitude of the quantum beats decrease
both with the disorder and the site energy gap. However, for high values of δ0,
the coherence amplitude has its minimum at σD 6= 0 (see black line in Fig. 2.17a).

A remarkable result is shown in the coherence frequency dependence on the
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site energy difference and static disorder in Fig. 2.17b. It follows, that in the
case of large disorder (σD ? 100 cm−1), the observed oscillation frequency is 2J
instead of the excitonic gap ∆0

e and does not depend on δ0.
The lifetime dependence (Fig. 2.17c) shows, that the longest coherence lifetime

of ∼ 1.4 ps is achieved for just slightly disordered homo-dimers (σD → 0, δ0 → 0).
Changing the disorder and the energy gap parameters gives a complicated pattern
of the coherence lifetime dependence (note the solid line marking the longest
lifetime in Fig. 2.17c). First of all, for the large disorder, the lifetime of beats
(0.8 − 1.0 ps) is virtually independent on site the energy gap δ0. The shortest
lifetime of coherent beats is for those systems, which are slightly disordered, but
the monomer site energy difference is large. Interestingly, the area in the phase
space which signifies short (< 300fs) lifetime overlaps with the area of systems,
which give oscillations with frequency > 2J in Fig. 2.17b.

Thus, the properties of coherent beats, illustrated by the phase space analysis in
Fig. 2.17, gives a clear picture of interplay between the static and dynamic disorder
in molecular systems. The longest coherence lifetimes and highest intensities will
be for those dimers, where the effect of static disorder is negligible. As discussed
above, such a regime is achieved in two cases: when the dimer is composed
of identical molecules of similar energies (δ0 > 50 cm−1) and the distribution
of the site energies is narrow, or, on the contrary, when the disorder value is
high, resulting in signal, dominated by the contribution of the homo-dimeric sub-
ensemble.

We have defined the spectral dephasing as the effect of decay of quantum beats
in spectrum, caused by the averaging over the ensemble, and decoherence as the
disruption of coherent exciton, caused by the quantum entanglement of the system
and the thermal bath. Thus, the concurrence of dynamic and static disorder
translates into interplay of decoherence and spectral dephasing, respectively. The
situation, when the static energy disorder is effectively excluded and long-lived
quantum beats are observed, can be referred to as the “decoherence-limited”
regime of quantum coherences.

We propose, that the regime of decoherence-limited quantum beats (σD =
500 cm−1) was fulfilled for the biscyanine homo-dimer, studied by the 2D elec-
tronic spectroscopy by Halpin et al.41 However, the proposed electronic coherence
of 2J ≈ 1600 cm−1 could not be extracted due to its overlap with strong vibra-
tional mode of 1400 cm−1.

Following the same logic, quantum beats in the 2D spectra of synthetic dimers,
recently reported by Hayes et al.,40 were influenced by both dynamic and static
disorder, since the frequencies of observed coherences (lifetimes of 60 − 90 fs)
almost perfectly matched the site energy differences, not the double values of the
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Fig. 2.17. Dependencies of (a) normalized amplitude, (b) frequency and (c)
lifetime of coherences on site energy difference δ0 and static disorder σD. Results
are obtained from simulations with δ0 and σD steps of 10 cm−1 and then interpo-
lated. The error—mean square deviation of the Lorentzian fit—is shown in (d)
as ratio to the amplitude maximum. Solid black lines in (a) and (c) trace minimal
amplitude and maximal lifetime, respectively.

resonant coupling constants.
Another system that can be discussed in the perspective of the considered

effect is the bacteriochlorophyll–bacteriopheophytin dimer of the bacterial reaction
center. The resonant coupling constant and the amount of static disorder were
suggested to be174 J = 202 cm−1 and σD = 55 cm−1 and the site energy gap175

δ0 = 650 cm−1. With such parameters, our scheme proposes quantum beats that
are formed by both static and dynamic disorder with a similar extent at the same
time giving supposedly weak beats at frequencies, different than the excitonic
energy gap of ∆0

e = 665 cm−1. Therefore it is natural, that no such beatings
has ever been extracted, only the long-lived coherences of vibrational or mixed
origin.39,176 For the same reason electronic coherences of 305 cm−1 and 610 cm−1
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witnessing quantum superpositions between known energy states we not observed
for the water soluble chlorophyll-binding protein.42

In the special pair of the photosystem II reaction center, strong electronic–
vibrational mixing with vibrational mode of 250 cm−1 results in overlap in the
frequency domain with the decoherence-limited quantum beats of electronic na-
ture of 2J ≈ 240 cm−1,30,31 which were not extracted experimentally, as well.

The considered effect has many implications and complications regarding the
experimental observation of coherent beats. Firstly, the frequencies of the de-
tected beats do not necessarily match the frequencies of the corresponding exci-
tonic energy gaps, which can be estimated, for example, as differences between
resolved peaks in the absorption spectrum. Secondly, these beats in 2D spec-
trum at initial waiting times might still be overwhelmed by the short-lived quan-
tum beats of frequencies, corresponding to the excitonic energy gaps, making
the observed oscillation frequency waiting time-dependent. The time-averaged
short-time Fourier transform45 might be an useful approach for analysis of such
dependencies.

In conclusion, exciton delocalization is the decisive phenomenon, controlling
the amplitude and lifetimes of coherences, affected both by dephasing and de-
coherence. If a complete exciton delocalization is not ensured by the system’s
parameters and static disorder is negligible, electronic quantum coherences will
be too weak or short-lived to be captured. However, a certain amount of static
disorder can drive the system to the decoherence-limited regime, where the long-
lived electronic quantum coherences will be observed in time-resolved coherent
spectroscopy.



Chapter 3

Molecular vibronic excitons

Electronic excitations in molecular aggregates are often denoted as excitonic po-
larons. These are the localized Frenkel excitons, which comprise vibronically
(electronically and vibrationally) excited molecule and vibrationally (but not elec-
tronically) excited surrounding molecules. Vibrationally excited molecule has its
geometry distorted along some symmetric vibrational coordinates. As it was pic-
turesquely illustrated by Spano177 for the linear J-aggregates, such a Frenkel ex-
citon can be imagined as a bowling ball on a mattress: the ball and a particular
spring beneath it represents vibronic excitation of a molecule, while the neigh-
boring compressed springs are vibrationally excited (although vibrationally excited
molecules are elongated, not squeezed). Propagation of such vibronic exciton is
complicated and often results in nontrivial spectral signatures. Although the the-
ory of molecular vibronic coupling was extensively developed to capture properties
of linear spectroscopic signals of molecular complexes, knowledge about nonlinear
spectra (especially 2D ES) is rather limited. Therefore, our goal here is to inves-
tigate the properties of 2D spectra, given by the vibronic excitons in molecular
complexes.

In this chapter, we will account for the electronic–vibrational coupling in molec-
ular aggregates and by extending the response function formalism for the vibronic
excitons. The presented results are based on our reported studies.34,38,46,47,178,179

Following the presentation logic of the previous chapter, we will start with the
description of a single molecule: in Sec. 3.1 we will introduce the displaced oscil-
lator (DO) model and will carry out numerical simulations of a single molecule,
coupled to one discrete vibrational mode, using two different approaches.46,47 In
Sec. 3.2 we will derive the response function for a general vibrational aggregate
(VA).34 In Sec. 3.3 we will analyze the properties of the model and the resulting
spectra by assuming the most simple system—two vibronically coupled molecules,
i. e., a vibrational dimer (VD).38,179 Four different parameter sets will be used
to highlight the possible spectroscopic outcomes and the effects of static energy

81
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disorder will be discussed.

3.1 Harmonic vibrational model of a single molecule

Electronic excitations in molecules are typically approximated as the Franck–
Condon transitions: it is considered that the (slow) nuclear degrees of freedom
remain frozen during the electronic transition and the fixed molecular nuclear
configuration adjusted to the ground electronic state emerges in non-equilibrium
conditions with respect to the new electronic state. As the electronic potential
energy surface is assumed to be parabolic depending on the nuclear displacement
in the vicinity of the equilibrium, a displaced (harmonic) oscillator model can be
used in the description of the electronic transition (Fig. 3.1). In one dimension
the ground state Hamiltonian is

ĥm = 1
2
(
p̂2

m + ω2
mq̂2

m
)

. (3.1)

Here we have added the index m only for the later convenience, since in Sec.3.2
we will describe the coupled harmonic oscillators and will use index m to enumer-
ate them. ωm, q̂m and p̂m is the frequency, coordinate operator and momentum
operator of the oscillator. The Hamiltonian can be quantized using bosonic cre-
ation/annihilation operators as in eqs. (2.39)–(2.40), yielding

ĥm = ~ωm

[
â†mâm + 1

2

]
. (3.2)

The excited state is described by the same Hamiltonian, just shifted by the energy
gap ε = ~ωeg and displaced by the coordinate displacement d :

Ĥ = ĥm|g〉〈g|+
[
ε+ D̂†ĥmD̂

]
|e〉〈e|. (3.3)

Here, the excited state Hamiltonian of a single molecule was constructed by trans-
forming the ground state Hamiltonian ĥm with the coordinate displacement op-
erator D̂† = exp

(
− i

~dp̂
)
.8

Quantum mechanical problem of these harmonic potentials has exact solutions.
They constitute an infinite set of wavefunctions |ψm〉 with quantum number m =
0 ...∞ and the corresponding energies Em = ~ω0(m + 1/2) with respect to the
bottom of the corresponding potential surface. For convenience, here we have
introduced vibrational frequency ω0 ≡ ωm. Transitions between the sub-states of
the electronic ground state and the ones of the electronic excited state determine
the vibrational progression in the absorption spectrum. The intensity of each
transition is represented by the transition dipole moment µmn, which is directly
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ĥm|g〉〈g|

Fig. 3.1. Energy level structure of the displaced oscillator.

related to the overlap integral of the wavefunction |ψm〉 in the ground state
and D̂† |ψn〉 in the excited state. It is the Franck–Condon wavefunction overlap
integral:

Fmn = 〈ψm| exp
(
− d√

2
(
â† − â

))
|ψn〉 (3.4)

= e− 1
2 s (−1)m−n s m−n

2
√

m!n!
n∑

i=0

(−s)i

i ! (n − i)! (m − n + i)!,

where the Huang–Rhys factor is

s = 1
2d2. (3.5)

With these assumptions, the absorption spectrum of a single isolated molecule
can be given by

κFCabs(ω) ∝ ω
∞∑

m,n=0
e−βmω0|Fmn|2Re

∞̂

0

dtei(ω−ωeg)t−iω0(n−m)t−γt , (3.6)

where the phenomenological line-broadening parameter (pure dephasing rate) is
γ. Here we could derive the expressions for the 2D spectrum of a single two-level
system similarly as we have done in Sec. 2.1.2 with a phenomenological bath, but
instead let us formulate the problem for a molecule coupled to a more realistic
phonon bath. With the developed theory, we will be able to easily step back to
the description of the phenomenological bath, anyway.

To describe the optical properties of a single not isolated molecule (i. e. cou-
pled to the phonon bath) we would require to utilize the response function and
spectral density formalism introduced before. Here, a very handy property is that
the quantum correlation functions of the polarization operator representing the
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spectroscopic observables are exactly given in terms of the second-order cumu-
lant expansion with respect to the vibrational modes. Therefore, it is exact for
our molecule and we can calculate the shapes of electronic transition bands and
the bath-induced time dependence of the spectrum by using the formalism of the
lineshape functions. The latter directly comes from the perturbative second-order
cumulant expansion of the system density operator propagation, which allows to
describe various types of vibrational baths and include these effects explicitly.69

The absorption coefficient is then given by Eq. (2.20), that is

κCabs(ω) ∝ ωRe
∞̂

0

dtei(ω−ω0)t−g(t). (3.7)

Here the choice of the lineshape function g(t) reflects the properties of the bath
and vibrations. We will restrict ourselves to the lineshape functions corresponding
to different damping regimes represented by the spectral density functions in
eqs. (2.71), (2.73), (2.76) or (2.78).

In the case when a molecule is coupled to a single undamped or damped high-
frequency vibrational mode and a continuum of low-frequency overdamped modes,
the spectral density consists of two parts:

C′′(ω) = C′′o (ω) + C′′vib(ω). (3.8)

Here the C′′o (ω) mode corresponds to the semi-classical C′′o−sc(ω) or quantum
overdamped C′′o−q(ω) bath. The second term, C′′vib(ω), represents spectral density
of molecular vibrations (undamped C′′u (ω) or damped C′′d (ω)). The total lineshape
function then contains two parts as well. Then, for a single two-level system the
complete expressions for the rephasing contributions of 2D spectrum is given by
Eq. (2.34).

As it was shown, for a general multi-level system the response function is a
sum of many contributions, which can be grouped into ESA, SE and GSB terms.
Additionally, the pathways responsible for the population transfer are present.145

Here, we have only two contributions, since the excited state absorption contri-
bution producing negative peaks in the 2D spectrum is not available due to the
absence of the doubly-excited state.

3.1.1 Undamped vs. damped harmonic bath

It was shown by us,47 that the absorption lineshapes of the two-level system,
obtained by using solely the quantum or semi-classical overdamped bath models
(i. e., C′′(ω) ≡ C′′o−q(ω) or C′′(ω) ≡ C′′o−sc(ω)), differ negligibly despite of a
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Fig. 3.2. Absorption spectrum of the displaced harmonic oscillator (s = 0.3) for
different damping strengths γ/ω0 = 0.25 − 1.5 of the damped bath (black solid
lines) and for the undamped bath (red dashed line). Inset: the widths of three
main peaks at different damping strengths; the third peak becomes unresolvable
for γ > 0.5ω0.

substantial difference of the shapes of the corresponding spectral density functions
(Fig. 2.7b). The peak shape in the absorption spectrum is mainly determined by
the imaginary part of the corresponding lineshape function (Fig. 2.7d).

Let us discuss the properties of the undamped and damped harmonic baths by
assuming the composite spectral density given by Eq. (3.8) and setting the Huang–
Rhys factor of the vibrational mode to s = 0.3. In the absorption spectrum, such
a system demonstrates three well-resolved peaks of vibrational progression at
frequencies ω = ωeg, ωeg + ω0 and ωeg + 2ω0 (Fig. 3.2).

The case when the composite spectral density is C′′o−sc(ω)+C′′u (ω) corresponds
to the overdamped semi-classical bath with undamped vibrations is a commonly
used approach, discussed in detail in the literature.47,180,181 The produced vibra-
tional progression in the absorption spectrum is drawn as the red dashed line in
Fig. 3.2.

The effects caused by damping of vibrations are significant. The peaks in
the progression broaden gradually when the damping strength γ is increased.
However, the broadening is not uniform – peaks that are at higher energies are
broadened more. This is evident in evaluation of the peak width dependence on
the damping strength (inset of Fig. 3.2), obtained by fitting the spectra with
multiple Lorentzian functions. As a result, the total spectral lineshape becomes
asymmetric: the higher-energy shoulder of the vibrational progression is reduced
due to additional broadening. Such broadening indicates a more sophisticated
lifetime-induced decay of vibrational states as the model includes the relaxation
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Damped vibrations + overdamped bath, γ = ω0/4
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Fig. 3.3. 2D rephasing spectra at t2 = 0 of a single harmonic oscillator with
damped (a) and undamped (c) vibrations and coupled to a semi-classical bath.
Intensities of the peaks, indicated as “A11”, “A21”, etc. are depicted as functions
of the waiting time t2 in the case of damped vibrations (b) and undamped vibra-
tions (d) coupled to with semi-classical (solid lines) and quantum (dashed lines)
overdamped bath. Peak intensity values are normalized to the maximum of the
rephasing spectrum at t2 = 0 in both cases.

phenomenon exactly.34

The peak lineshapes in the 2D spectrum, obtained by using the damped case,
show slightly larger broadenings compared to those of the undamped vibrations
(Fig. 3.3). The non-uniform broadening, as follows from the absorption sim-
ulations, shows up in the 2D spectrum, as well. For the vibrational bath we
separately study two cases: the damped vibrations (γ = ω0/4, Fig. 3.3a-b) and
the undamped vibrations (γ → 0, Fig. 3.3c-d). In both cases the lineshape func-
tion representing the semi-classical overdamped bath is added to the vibrational
part. Other parameters are such that the reorganization energy in all cases was
the same (λ = 2sω0).

3.1.2 Vibrations-induced quantum beats in 2D ES

The vibrational wavepacket (coherence) beats show up as temporal oscillations
in the 2D spectrum, just like for the ED system. Decay of the coherences in
the case of the damped vibrations results in the decay of cross-peaks (Fig. 3.3b).
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Considering the phases of oscillations corresponding to different peaks, it is clearly
observed that the model of the vibrational bath does not change the phase re-
lationships of peak oscillations. However, the oscillation phase is not the same
for all peaks, even if the dynamics are probed at the very centers of the spectral
resonances. For example, the phase of the lower diagonal peak “A11” oscillations
is opposite to all the other peaks (Fig. 3.3b,d). In the nonrephasing signal both
cross-peaks would oscillate with the same phase, while both diagonal peaks – with
the opposite phase.47

In order to unravel the oscillatory properties (phases) of the 2D spectra we thus
need to construct the entire 2D signal from the first principles and recover the
source of oscillations in the spectrum, since in the lineshape function approach,
the information about phases of oscillations is not explicitly available.

We disassemble the whole 2D spectrum as a sum of all relevant contributions.
Assuming that the dephasing is identical for all states, different contributions to
the same peak can be summed, as they will have the same shapes. We can then
simplify the 2D plot by writing the signal as a sum of all contributions ∑, which
have static (from populations) and oscillatory (from coherences) parts in terms,
represented by Eq. (2.111):

W (ω3, t2,ω1) = e−γ2t2
∑

m,nLmn(ω1,ω3) (3.9)

×
[
Ap

mn + Ac
mn cos(ω0t2 + φmn(ω1,ω3))

+ Acc
mn cos(2ω0t2 + φ(2)mn(ω1,ω3)) + ...

]
.

Here Ap
mn, Ac

mn, Acc
mn, etc. are the orientationally averaged prefactors (amplitudes)

of different diagrams, contributing to the “Amn” peak. We will restrict ourselves
to the analysis of vibrational coherences for the system and consider excitation
evolutions that include transitions only between the first two lowest energy levels
of the excited and ground state. The only possible coherences in the 2D spectrum
are then due to the harmonic oscillator frequency ω0 and the expansion of different
harmonics of coherent beatings in Eq. (3.9) can be truncated down to 2 terms:

W (ω3, t2,ω1) = e−γ2t2
∑

m,nLmn(ω1,ω3) (3.10)

×
[
Ap

mn + Ac
mn cos(ω0t2 + φmn(ω1,ω3))

]
.

As it follows from Eq. (2.113), the phase factor φmn(ω1,ω3) is zero at the peak
center. Then, the relative Aij peak oscillation phase is solely determined by the
coefficient Ac

mn.
In order to get the full picture of oscillations in the 2D spectrum of the displaced
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Ã12 Ã22
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dependencies.

harmonic oscillator, we have to go through all the double-sided Feynman diagrams,
that give coherent contributions of frequency ω2 = ω0 during the waiting time
t2, and assign them to the corresponding peaks in the spectrum. Such a picture
is given in Fig. 3.4a for the kI and kII signals. If compared to an analogous
scheme for the ED system in Fig. 2.13, it is evident, that the DO system has
many more oscillatory contributions in the 2D spectrum. We can show, that the
coefficients Ac

mn can be expressed via the products of transition dipole moments
of various diagrams and, evidently, depend on the Huang–Rhys factor.46 The
analytic expressions of Ac

mn and Ap
mn for the DO system are derived in Appendix B

and their dependencies on the Huang–Rhys factor s are plotted in Fig. 3.5a-c.
For the kI signal, the amplitudes Ac

11 and Ac
22 maintain the opposite sign when

s < 2 and are both positive when 2 < s < 3 (note that Ac
22 = 0 when only two
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vibrational levels are considered). The oscillation amplitudes Ac
11 and Ac

22 change
sign at s = 1, and both Ac

12 and Ac
21 are always positive. Quantum beatings with

t2 for both diagonal peaks in the k II signal will be in-phase for the whole range
of the HR factor. The same pattern holds for the A12 and A21 cross-peaks, which
will oscillate in-phase, but will be of the opposite phase compared to the diagonal
peaks in the region of s < 1. Note that the sign of the amplitudes changes with the
Huang–Rhys factor, since the overlap integral between vibrational wavefunctions
can be both positive and negative. The amplitudes of the static contributions are
positive in the whole range of parameters and are identical for both kI and kII
signals.

Contrary to the studied case, the transition dipole properties of the ED result in
the picture where all the static amplitudes of the ED are positive and Ap

11 =
∼
Ap
11,

Ap
22 =

∼
Ap
22, Ap

12 = Ap
21 =

∼
Ap
21 =

∼
Ap
12 (see Appendix A for analytical expressions of

the coefficients). The oscillatory amplitudes are equal: Ac
12 = Ac

21 =
∼
Ac
11 =

∼
Ac
22.

The spectral beats with t2 can thus only have the same phases in the kI or kII
spectrum, when measured at peak centers. As these relationships do not depend
on coupling J and the transition dipole orientations, all ED systems should behave
similarly. This property can also be proven to hold for hetero-dimers.

We thus find a very different behavior of oscillatory peaks of the DO and ED
systems. The above analysis applies for the central positions of the peaks, which
may be difficult to determine if the broadening is large. The phase φ varies from
−π/2 to +π/2 (Eq. (2.111) and Fig. 2.12c) when probing in the vicinity of the
peak. However, φ = 0 along the diagonal line for kI and along the anti-diagonal
line for kII. These lines can thus be used as guidelines for reading phase relations
of distinct peaks in the 2D spectrum. For instance, the two diagonal peaks can
be calibrated by reading their amplitudes at the diagonal line, or the two opposite
cross-peaks can be compared by drawing anti-diagonal lines.

The up-to-date experiments are capable of creating broad-band pulses. Thus,
the overtones in DO can be excited and beats of kω0 frequencies (k is integer)
observed. This may become important in the case of large HR factors. Such
frequencies are absent in the spectrum of ED. In the case of the finite pulses
the pulse overlap region may affect the phase of the oscillatory components in
the 2D spectrum. This effect should be considered when the pulse bandwidth is
comparable to the system absorption spectrum.

Thus, the analysis presented in this section provides a clear physical picture of
electronic and vibrational coherence beatings in the 2D spectra. Based on our
simulations, the following conclusions can be drawn:

1. Dynamics of the diagonal peaks and cross-peaks as well as relative phases
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between them in the rephasing signal can be classified for vibrational and
excitonic systems as follows. (i) Static diagonal peaks and oscillatory off-
diagonal peaks signify pure electronic coherences, not involved in energy
transport. (ii) Oscillatory diagonal peaks in accord with off-diagonal peaks
(0 or π phase relationships) signify vibrational origins.

2. The oscillation phase is 0 for electronic coherences and 0 or π for vibrational
coherences. These outcomes hold if the signal is probed at the very center
of the spectral resonance. The observed phase of the beatings varies as the
signal value is recorded away from the center of an oscillating peak.

3. Consideration of high-frequency damped molecular vibrations instead of un-
damped is a more realistic description since it includes dephasing of vibronic
motion in a solvent. This correction induces non-uniform peak broadening,
changes the position of peaks within the vibrational progression in the ab-
sorption, and results in the decay of coherences in the 2D spectrum. The
significance of the effect depends on the width of the spectral density func-
tion in the vicinity of the resonance. Therefore, having the coherence decay
rate and the peak broadening quantitatively evaluated from the experiment,
one would be able to estimate the damping parameters of vibrations.

4. The suggested model of the overdamped quantum bath is represented by
the spectral density, which is directly obtained from the quantum-mechanical
correlation function of bath coordinates without invoking the classical corre-
lation function as in the overdamped semi-classical bath model. The spectral
density of the overdamped quantum bath decays as ω−3 at large frequencies,
which is preferable to ω−1 used in the overdamped semi-classical model. In
two-dimensional photon echo signals, it results in increased homogeneous
broadening of peaks. Dynamics of quantum beats are not affected by this
spectral density; however, the peak intensities and the ratio of rephasing and
nonrephasing signals does change.

5. Damping of vibrations causes the decay of beatings; its influence on the peak
shape and correlation/anticorrelation of the diagonal peak width and intensity
is reported to be insignificant compared to the description of undamped
vibrations. Further increase of the damping strength results in instantaneous
disappearance of the vibrational coherences and this limit corresponds to
purely overdamped vibrational motion.
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3.2 Vibrational aggregate model

In the previous chapter, we have introduced two different approaches for simulat-
ing the optical response of a molecule with vibrations. In Sec. 3.1.1 the bath was
described by the spectral density function, which represented auto-correlations
of the electronic site energy fluctuations due to the environment. This model
is usually sufficient to obtain proper spectral lineshapes in simulations of un-
coupled systems; vibrational modes can be introduced by adding a δ-shaped or
finite-bandwidth peaks to the bath spectral density function. In Sec. 3.1.2 the vi-
brational content was included explicitly into the system Hamiltonian. For a single
molecule these two approaches give identical results. However, the first method
has two deficiencies when considering coupled molecules. Firstly, it neglects the
effects caused by the quantum-mechanical mixing of the vibronic levels of differ-
ent molecules. Secondly, it does not include vibrational population relaxation as
the vibrations are assumed to be in the thermal equilibrium at fixed temperature.
These effects could be important if the coupling to vibrations is strong or the
vibronic splitting is comparable to the intermolecular excitonic coupling.

Thus, let us develop a general description applicable for molecular aggregates
with an arbitrary number of chromophores. We start with the displaced oscillator
model of a molecule, introduced in the previous section. The Hamiltonian of an
aggregate of realistic molecules then involves three components: electronic states,
vibrational structure for each electronic state and the Coulomb coupling between
all electronic and vibronic levels. The first two are described by extending the
Hamiltonian of a single molecule into the space of a set of molecules and invok-
ing the Heitler–London approximation, which assumes that the aggregate states
are constructed from the direct products of the molecular single excitations.5 Such
a Hamiltonian is known as the the Holstein-type electronic–vibrational Hamilto-
nian.9,182,183 We consider only manifolds of singly and doubly-excited states. The
Coulomb coupling between the m-th and n-th molecule is denoted by the reso-
nance electronic coupling constant Jmn and the corresponding term is as follows:

ĤCoulomb =
∑

m 6=n
JmnB̂†mB̂n. (3.11)

We neglect electrostatic interactions between vibrations in the ground state.
Within this model, the Hamiltonian for vibrational aggregate (VA) is given by

ĤVA =
∑
m

[
εm + δεm + λm − ωm

√sm
(
â†m + âm

)]
B̂†mB̂m (3.12)

+
∑
m
ωm

(
â†mâm + 1

2

)
+
∑

m 6=n
JmnB̂†mB̂n.
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Here εm is the energy, ωm is the vibrational frequency, dm is the displacement
in the excited state of the m-th molecule. δεm is the random excitation energy
offset, which will be used later (in Sec. 3.3.3) to incorporate the static disor-
der of monomeric site energies. For now, we will keep it equal to zero. The
reorganization energy is

λm = ω2
md2

m
2 = ωmsm, (3.13)

where sm is the Huang–Rhys factor of the m-th molecule. Similarly to the elec-
tronic aggregate, we get bands corresponding to electronic states, but now the
ground state |g〉 of the aggregate is not a single quantum level, but a band of
vibrational states. Thus, there are states with all chromophores in their electronic
ground states, while vibrational excitations are arbitrary:

|g(i1i2...iN)〉 ≡ |
∏
m

gm
im〉 =

∏
m

(
â†m
)im

√
im!

 |0〉. (3.14)

Here im is a quantum number of a vibrational excitation of the m-th molecule and
|gm

im〉 denotes the electronic ground state of the m-th molecule being in the im-th
vibrational level.

The singly-excited states are obtained by promoting one of the molecules into
its electronic excited state, while the other molecules are in their electronic ground
states (vibrational states are arbitrary). We thus get the set of states

|en,(i1i2...iN)〉 ≡ |en
in
∏
m

m 6=n

gm
im〉 = B̂†n

∏
m

(
â†m
)im

√
im!

 |0〉. (3.15)

The doubly-excited states are obtained similarly,

|fkl ,(i1i2...iN)〉 ≡ |ek
ik e

l
il
∏
m

m 6=k,l

gm
im〉 = B̂†kB̂†l

∏
m

(
â†m
)im

√
im!

 |0〉. (3.16)

State ordering k < l is satisfied here.
The proper set of molecular, or site, basis states for the Hamiltonian of the

vibrational aggregate is crucial for an accurate treatment of the dynamics of the
vibronic excitons. The simplest choice is the so-called one-particle states,3 some-
times also referred to as coherent exciton scattering approximation.184 It assumes
only states, that account for one vibronically excited molecule leaving all other in
their vibrationally unexcited electronic ground states. The two-particle approxima-
tion (TPA) of the vibronic states includes the fact that the unexcited molecule can
be in an arbitrary vibrational ground state. Thus, the two-particle basis set for the
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vibrational aggregate consists of NN2
v states (here Nv accounts for vibrational lev-

els in each ground and excited state potentials and N is the number of molecules
in VA). In the case of the one-particle approximation, the basis set size is NNv,
which is a great simplification, allowing to significantly reduce the computational
cost.185 Therefore, the one-particle description is a common choice in calcula-
tions of spectroscopic signals of vibronically-coupled systems.23,26,186 Qualitative
comparison between various such approximations was discussed by considering
linear response in the molecular aggregates by Spano185 and a model dimer by
Schultze et al.187 The detailed analysis, whether this approximation is proper for
the nonlinear response of small molecules, was performed by Bašinskaitė et al.179

It was shown that for a vibrational dimer, one-particle approximation is too crude
to represent the coherent signatures of vibrational and mixed states. Therefore,
here we use the complete basis in the model and consider all possible combinations
(multi-particle states) of electronic and vibrational excitations.

We simplify the index notation by introducing the N-component vector i =
(i1i3...iN). The basis states can then be written as |gi〉, |en,i〉 and |fkl ,i〉. In
the given setup, electronic and vibrational subsystems are coupled only through
the term

(
â†m + âm

)
B̂†mB̂m in the Hamiltonian (Eq. (3.12)). It thus induces the

shifts of electronic energies by creation or annihilation of a vibrational quantum.
Otherwise, electronic and vibrational subsystems are independent. The basis set is
chosen accordingly. The other basis set is possible by using the shifted vibrational
coordinates in the electronic excited states.179,186,188 However, our approach gives
a convenient form for various matrix elements and allows us to easily incorporate
the environment as shown below.

The Hamiltonian of the ground state manifold in this basis is diagonal, yielding
its matrix elements

H (gg)
i,j =

[∑
m
ωm

(
im + 1

2

)]
δij, (3.17)

where δij ≡
∏

m δimjm . Similarly, the Hamiltonian of the singly-excited states is
given by

H (enek)
i,j = δnk

[
εn + λn +

∑
m
ωm

(
im + 1

2

)]
δij (3.18)

− δnkωn
√sn〈in, jn〉

∏
m

m 6=n

δimjm + (1− δnk)Jnkδij,

where we have defined the vibrational wavefunction overlap integral as

〈in, jn〉 ≡ 〈in|(â†n + ân)|jn〉 =
√

inδin,jn+1 +
√

jnδin,jn−1. (3.19)
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For the doubly-excited states we have

H (fkl fk′ l′)
i,j = δkk ′δll ′

[
εk + εl + λk + λl +

∑
m
ωm

(
im + 1

2

)]
δij (3.20)

− δkk ′δll ′ωk
√sk〈ik , jk〉

∏
m

m 6=k

δimjm + δkk ′δll ′ωl
√sl〈il , jl〉

∏
m

m 6=l

δimjm

+ [δkk ′(1− δll ′)Jll ′ + δll ′(1− δkk ′)Jkk ′] δij.

The exciton energies (in the eigenstate basis) εe and εf are obtained by nu-
merically diagonalizing the matrices defined above. The bands of singly- and
doubly-excited states are, however, much more complicated than those of the
electronic aggregate due to the coupling between the singly-excited vibronic sub-
bands. In the eigenstate basis all these substates become mixed. The unitary
transformation to the eigenstate basis is

|ep〉 =
∑
n

∑
i
ψn

p,i|en,i〉, (3.21)

|fr〉 =
∑

kl
k<l

∑
i
Ψkl

r ,i|fkl ,i〉. (3.22)

Note that for high vibronic numbers i , j the Franck–Condon parameter becomes
small and these states do not contribute to the spectra. In general, this results in
NNN

v singly-excited states and N(N − 1)NN
v /2 doubly-excited states, enumerated

by indices p and r in the previous expressions, respectively.
For electronic excitations we consider the dipole operator defined by Eq. (2.42):

µ̂ =
N∑
m

µm
(
B̂†m + B̂m

)
. (3.23)

The dipole moments representing transitions from the ground state to the singly-
excited states and from the singly-excited state to the doubly-excited states are
given by

µgiep = 〈gi|µ̂|ep〉 =
N∑
m

µmψ
m
p,i (3.24)

and

µepfr = 〈ep|µ̂|fr〉 =
N∑

m,n

∑
i

µkψ
n
p,iΨ

(mn)
r ,i . (3.25)

The transition amplitudes thus have the mixed electronic–vibrational nature en-
coded in the eigenvectors ψn

p,i and Ψ
(mn)
r ,i .



3.2. Vibrational aggregate model 95

Note, that in the Hamiltonian used, no transformation of canonical variables
into symmetric and antisymmetric components is performed that would allow us to
decouple the Schrödinger equations of the excited and ground states. Therefore,
the presented model contains states which are not separated into diabatic or
adiabatic ones.

3.2.1 Coupling to the bath

We next include the relaxation using the microscopic dephasing theory, based
on the model of linear coupling to the harmonic overdamped bath, described in
Sec. 2.2 for a general multi-level system. The system–bath interaction is given in
the bilinear form

ĤSB =
∑
mα

zmαx̂αq̂m +
∑
mα

√
2wαdmm,αx̂αB̂†mB̂m. (3.26)

We add the bath and the system–bath interaction Hamiltonians to complete the
vibrational aggregate Hamiltonian in Eq. (3.12). From the SB interaction Hamil-
tonian it immediately follows, that coupling z (the first term in Eq. (3.26)) induces
the vibronic off-diagonal couplings and causes intramolecular vibrational popula-
tion relaxation. Resonance intermolecular interaction J will extend the relaxation
into the electronic energy transfer between different molecules. The second term
in Eq. (3.26) describes the coupling of the electronic excitation to the bath coor-
dinates via coupling constant dmm,α and results in diagonal fluctuations. Energy
fluctuations are treated as identical for each chromophore and, yet, uncorrelated
with respect to each other. The non-zero fluctuating matrix elements in the site
basis (eqs. (3.14)–(3.16)) are then very simple:

(
ĤSB

)(gg)
i,j = 〈gi|ĤSB|gj〉 = H(i, j), (3.27a)(

ĤSB
)(ekel)

i,j = 〈ek,i|ĤSB|el ,j〉 = δkl [H(i, j) +Kk(i, j)] , (3.27b)(
ĤSB

)(fkl fk′ l′)
i,j = 〈fkl ,i|ĤSB|fk ′l ′,j〉 = δkk ′δll ′ [H(i, j) +Kk(i, j) +Kl(i, j)] . (3.27c)

Here, we defined the auxiliary operators of the bath–space fluctuations

H(i, j) =
∑
mα

√√√√ z2mα
2ωm
〈im, jm〉x̂α

N∏
s

s 6=m

δis js (3.28)

and
Kk(i, j) =

∑
α

√
2wαdkk,αx̂αδij. (3.29)
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Notice that interband fluctuations are absent, so the interband relaxation (elec-
tronic relaxation to the ground state) is not included. Transformation to the
eigenstate basis yields the characteristics of the eigenstate fluctuations. In the
ground state manifold we have eigenstates equivalent to the site basis since the
corresponding Hamiltonian is diagonal (Eq. (3.17)). For the manifold of the
singly-excited states we get

(
ĤSB

)(ee)
p1p2

=
N∑
m

∑
i,j
ψm∗

p1,iψ
m
p2,j [H(i, j) +Kk(i, j)] , (3.30)

and for the manifold of the doubly-excited states

(
ĤSB

)(ff)
r1r2

=
N∑

m,n
m>n

∑
i,j

Ψ
(mn)∗
r1,i Ψ

(mn)
r2,j [H(i, j) +Kk(i, j) +Kl(i, j)] . (3.31)

The quantities of interest, which describe the relaxation properties, are the cor-
relation functions of fluctuating Hamiltonian elements. Firstly, we assume that
fluctuations of different chromophores are independent. Therefore, we can sort
out and assign the bath coordinates to the specific molecules. Since the bath
oscillators are independent, correlation functions of the fluctuating operators in
the Heisenberg representation with respect to the thermal equilibrium are uncor-
related, i. e.,

〈x̂α(t)x̂β(0)〉 = δαβ〈x̂α(t)x̂α(0)〉. (3.32)

Secondly, we assume that the energy fluctuations of different molecules are uncor-
related, but the molecules have statistically the same surroundings. The fluctua-
tion correlation function can be introduced, representing vibrational off-diagonal
fluctuations:

C0(t) =
∑
mα

z2mα
2ωm
〈x̂α(t)x̂α(0)〉. (3.33)

For the infinite number of bath oscillators they can be conveniently expressed
using the spectral density C′′ (ω):69

C0 (t) = 1
π

+∞ˆ
−∞

1
1− e−βω e−iωtC′′(ω)dω. (3.34)

Using these functions we get the eigenstate fluctuation correlation functions
Cab,cd(t) = 〈

(
ĤSB(t)

)
ab

(
ĤSB

)
cd〉 = C0(t)hab,cd for different manifolds, where

hab,cd is the so-called lineshape broadening coefficient. For the electronic ground
state manifold where a single eigenstate is equivalent to the original basis state
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|gi〉, it yields

C (gg)
ij,kl (t) = C0(t)

N∑
m
〈im, jm〉〈km, lm〉

N∏
s

s 6=m

δis jsδks ls . (3.35)

We use the shorthand vector notations i−s = (i1, i2, ..., is−1, is − 1, is+1, ..., iN) and
i+s = (i1, i2, ..., is−1, is + 1, is+1, ..., iN), which allow us to explicitly write:

C (gg)
ij,kl (t) = C0(t)

N∑
s

{√
is jsδij+s δkl+s +

√
(is + 1)jsδi+s jδkl+s (3.36)

+
√

is(ks + 1)δij+s δk+
s l +

√
(is + 1)(ks + 1)δi+s jδk+

s l

}
.

Similarly, one can obtain the correlation functions involving the singly- and doubly-
excited states: C (ee)

p1p2,p3p4(t), C (ef)
p1p2,r1r2(t) and C (ff)

r1r2,r3r4(t) (see Appendix C for the
corresponding expressions).

3.2.2 Excitation transfer

As the bath induces off-diagonal fluctuations in all three bands of states, one
has to consider the population relaxation and excitation transfer inside the ex-
cited and ground state manifolds (the populations of the doubly-excited states
are never created so the transport is not relevant there). In this model, the bath
is considered as the intermolecular modes which should be Markovian while in-
tramolecular vibrational coordinates are considered explicitly. Hence, the Redfield
theory applies for the Markovian bath. Within the secular Redfield theory,8 both
types of propagators satisfy the Pauli master equation (Eq. (2.80)).

Using the secular Redfield relaxation theory, one can obtain simple expressions
for the excited state population transfer rates:

Kep2ep1
= hep2ep1 ,ep1ep2

C′′
(
ωep1ep2

) [
coth

(
βωep1ep2

2

)
+ 1

]
. (3.37)

See Appendix C for hep2ep1 ,ep1ep2
. For the ground state vibrational relaxation, one

has only two subsets of nonzero terms:

Kgi−s
gi = isC′′(ωs)

[
coth

(
βωs
2

)
+ 1

]
(3.38)

and
Kgi+s

gi = (is + 1) C′′(−ωs)
[
coth

(
−βωs

2

)
+ 1

]
. (3.39)

With these expressions now it is possible to obtain the Green’s functions Gep2ep1
(t)
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Fig. 3.6. System response function of the rephasing signal of the vibrational
aggregate is represented by coherent (a) and population transfer (b) double-
sided Feynman diagrams.

and Ggjgi(t) for the description of relaxation, and develop the general theory
describing the spectroscopic properties of vibronic aggregates.

In Section 2.2.4, the system response function of an electronic-only aggregate
was obtained as a sum of response functions, visualized by using the double-
sided Feynman diagrams, representing ESA, SE and GSB contributions. In these
diagrams (Fig. 2.8), ground- or excited-state populations or coherences evolve
during delay time t2. Additionally, the population transfer pathways ESA′ and
SE′ were added up since population state can be transferred during t2 in the
excited state. In the case of vibrational aggregate, this formalism has to be
extended to take into account the multi-level electronic ground state. Therefore,
additional diagrams with coherences and population transfer in the ground-state
manifold have to be included (Fig. 3.6). The following derivation of the response
function for the 2D ES is presented in Appendix D.

3.3 Vibrational dimer

To discuss the outcomes of the developed system response function theory for the
vibrational aggregate, we consider a vibrational dimer as the simplest molecular
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complex exhibiting the vibronic phenomena, as well as the electronic–vibrational
interference. Using the notation introduced in eqs. (3.14)–(3.16), we denote the
electronic ground state as the state where both molecules are in their ground
states with arbitrary vibrational excitations, |g(ij)〉. Here indices i and j indicate
vibrational excitation of the first and the second molecule, respectively. |e1,(ij)〉
denotes the state of the first molecule being in the vibronic excited state main-
taining the i-th vibration quantum and the second molecule being in the j-th
vibrational ground state; analogously, |e2,(ij)〉 corresponds to the state where the
second molecule is vibronically excited. Doubly-excited states |f(ij)〉 ≡

∣∣∣f11,(ij)〉
are constructed in a similar way. In terms of these definitions the vibronic set of
eigenstates for the singly- and doubly-excited states (state vectors |ep〉 and |fr〉,
correspondingly) can be obtained by using the relevant transformations defined
by eqs. (3.21) and (3.22):

|ep〉 =
∑
ij

(
ψ
(1)
p,(ij)|e1,(ij)〉+ ψ

(2)
p,(ij)|e2,(ij)〉

)
, (3.40)

|fr〉 =
∑
ij
Ψr ,(ij)|f(ij)〉. (3.41)

The corresponding transformation coefficients ψ(n)
p,(ij) and Ψr ,(ij) are acquired from

the diagonalization of the singly-excited and doubly-excited blocks of the Hamil-
tonian. The transition dipole moments can then be calculated using eqs. (3.24)
and (3.25).

For the demonstrational purposes, the vibrational frequencies, site energies and
Huang–Rhys factors of the constituent molecules are taken to be the same and
are denoted by ω0 ≡ ω1 = ω2, ε ≡ ε1 = ε2 = 12000 cm−1 and s = s1 = s2,
respectively. Also, we analyze the models in the extreme cases of weak and strong
system–bath coupling (with Huang–Rhys factor equal to s = 0.05 and s = 0.5).
The Huang–Rhys factor at around s = 0.05 is typical for many photosynthetic
pigment–protein (P–P) complexes, while in dye molecules, large organic oligomers
(for example, J-aggregates) or films it can reach s = 0.3–1.0 or more.189–191

Four distinct parameter sets are used and we denote the corresponding models
as D1-D4. The motivation of our choice is reflected in Fig. 3.7, where the range
of recently experimentally and theoretically investigated systems is represented
as points on a schematic two-dimensional phase space with the axes indicating
vibrational frequency and electronic resonance interaction constant. The points
(systems) can be classified by considering the possible time-resolved experiment
with ultra-short laser pulses of typical bandwidth of ∼ 1000− 2000 cm−1. In the
upper–left corner of the figure we then have the weakly-coupled systems with high-
frequency vibrations. In this case the experiment would resolve a few peaks of the
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Fig. 3.7. Recently experimentally and theoretically investigated molecular sys-
tems (� – dimeric dyes,4 – weakly-coupled P–P complexes, � – J-aggregates and
films), characterized by different electronic resonance coupling constants J and
vibrational frequencies ω0. Dashed line indicates the region of possible electronic–
vibrational resonance (ω0 = 2J). The numbers next to symbols are the references
to the corresponding studies. Parameters of model dimer systems D1–D4 con-
sidered in Section 3.3 are indicated by asterisks.

vibrational progression at most and the splittings due to electronic coupling would
be overlapping. The mixed case, where electronic resonance interactions and
vibronic progression would be resolvable along with strong quantum–mechanical
mixing of both types of transitions, is present in the upper–right part of the
scheme. The laser spectrum would cover only a few peaks in this case. On the
lower–left corner we have the mixed systems again, but the laser pulse spectrum
could cover all peaks. And, finally, on the lower–right corner we have the case
where the full vibrational progression could be observed in the experiment and the
electronic splitting should be well-separated.

Thus, the two from our selected parameter sets are considerably away from the
electronic–vibrational resonance (D1 and D2) and another two corresponding to
mixed conditions (D3 and D4). As one can observe, these models represent
four typical molecular systems: weakly-coupled P–P complex with high- and low-
frequency vibrations (D1 and D3), the J-aggregate (D2) and molecular dye (D4).
By studying features and peak patterns of the 2D spectra of these systems we will
be able to determine separation or mixing of excitonic and vibrational coherences
as well as to correlate these properties with coherence lifetimes. Therefore, the
theory and the conclusions drawn from the results of these model systems is going
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to be general in terms of its application to different molecular aggregates.
In the D1 model the resonant coupling constant is taken to be J = 100 cm−1

and the vibrational frequency is chosen to be ω0 = 1400 cm−1. Such parameters
are typical for the photosynthetic P–P complexes, for example, the photosyn-
thetic antenna of cryptophyte protein phycoerythrin 545 (the Huang–Rhys factor
is 0.1).28 We denote this model as the weakly-coupled P–P complex with high-
frequency vibration.

In the D2 model resonant coupling of J = 600 cm−1 and vibrational frequency
ω0 = 250 cm−1 is used. These numbers are typical parameters of, e. g., J-
aggregates, coupled to low-frequency intramolecular vibrations. For example, in
2D electronic spectra of PVA/C8O3 tubular J-aggregates, oscillations associated
to the 160 cm−1 vibration is observed and the strongest coupling between the
molecules is in a range of 640–1110 cm−1 as it was shown by Milota et al.122 In
the same study, the experimental coherence maps were obtained. In J-aggregates
the coupling to vibrations for individual chromophores is known to decrease due
to exciton delocalization.185 It means that, if the aggregate is reduced to a dimer,
the Huang–Rhys factor of the monomer should be multiplied by factor of N/2
where N is a number of chromophores in the aggregate in the case of complete
state delocalization. Therefore, a very strong coupling to vibrations should be
considered. In our case, D2 model with s = 0.5 represents the features of a
typical J-aggregate.

Parameters of the D3 model (J = 100 cm−1, ω0 = 250 cm−1) are, as in the
D1 model, typical for the P–P complexes. However, strong coupling to discrete
low-frequency vibrations is considered in the D3. For example, in the measure-
ments of two-color photon echo of the light-harvesting complex phycocyanin-645
from cryptophyte marine algae, long-lived oscillations possibly associated to the
194 cm−1 vibrational mode were observed.196 Similar parameters were also con-
sidered to be relevant for the FMO photosynthetic light-harvesting complex.23,29

Therefore, we assume that the D3 model effectively represents the weakly-coupled
P–P complex coupled to a low-frequency vibrational mode.

Presence of strong resonance electronic interaction between molecules and
strong coupling with high-frequency vibrations is typical for many dimeric dyes.
Hence, in the D4 model, the main parameters are set to J = 600 cm−1 and
ω0 = 1400 cm−1 to be similar to ones of perylene bisimide dye with the Huang–
Rhys factor of 0.6.202

The bath, whose degrees of freedom are not treated explicitly, is represented
by the Drude–Lorentz spectral density (Eq. (2.76)) which characterizes the low-
frequency fluctuations. In order to get the similar homogeneous broadening in all
cases of Huang–Rhys factors, the value of the reorganization energy λs = 25 cm−1
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Fig. 3.8. Dependencies of the singly excited state energies on the electronic
resonance interaction (J coupling) in the case of the vibrational frequency ω0 =
250 cm−1 (a) and 1400 cm−1 (b). The Huang–Rhys factor is s = 0.05 (black
lines) and s = 0.5 (gray lines). Resonant coupling constants corresponding to
models D1–D4 are indicated by the red dashed vertical lines.

is kept constant throughout all simulations. The solvent relaxation rate is set to
γ = 50 cm−1. To enhance the effects of damped vibrations we set the site energy
fluctuations off in simulations (dmm,α = 0). The damping then originates from the
z part only (Eq. (3.26)). The molecular transition dipole vectors are taken to have
unitary lengths and their orientations are spread by an angle 2π/5. Temperature
is set to 150 K (β−1 ≈ 104 cm−1).

Let us consider the manifold of singly-excited states of all D1–D4 models. It
consists of superpositions of electronic singly-excited states and vibrational ex-
citations of the constituent molecules. The energy dependence on the resonant
coupling constant reveals a complex composition of the states within the singly-
excited state manifold (Fig. 3.8). For uncoupled molecules (J = 0) the ladder-type
pattern of vibrational energy states is present as the energies are equally separated
by ω0. Increasing coupling produces the excitonic splitting which can be seen as
the red shift of the lowest energy state and appearance of two ladder-type pro-
gressions. However, the intermolecular interaction induces repulsion of the energy
levels, which is mostly evident where the ladders experience crossing, i. e., in the
vicinity of the so-called avoided crossing regions.179,186,203 We denote the corre-
sponding parameters for which the crossings occur as the electronic–vibrational
resonances. The complete mixing of the electronic and vibronic substates is ob-
tained for these resonances. The energy level repulsion effect is more pronounced
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Fig. 3.9. Absorption spectra of dimers D1-D4 in case of Huang–Rhys factors
s = 0.05 (black solid line) and s = 0.5 (red dashed line).

in the case of s = 0.5 (see the gray lines in Fig. 3.8).
In models D1 and D2 the vibrational frequency ω0 and resonant coupling

constant J differs significantly and we are reasonably away from the resonances as
can be seen in Fig. 3.8 (the corresponding resonant coupling values are indicated
by vertical lines). Therefore, these models can be considered as rather pure
systems. On the contrary, parameters of the D3 and D4 models assure that the
system is very close to the electronic–vibrational resonances and the spectroscopic
signals will be more complex due to mixing.179

Properties of the model dimers are reflected in the linear absorption spectra
(Fig. 3.9). The D1 system has intermolecular coupling of the same order as the
absorption linewidth. Hence, both electronic transitions (and excitonic splitting)
become hidden inside the single peak at ∼ 12000 cm−1 when the Huang–Rhys
factor is s = 0.05. Another peak at ∼ 13500 cm−1 comes from the one-quantum
level of the vibrational progression and becomes stronger for s = 0.5 (red dashed
line).

The D2 model is completely opposite to the D1. The excitonic splitting is
large and two absorption peaks approximately at 11500 cm−1 and 12700 cm−1
show the excitonic system character. As the vibrational frequency is small, we
find the vibrational progression on both excitonic lines dependent on the Huang–
Rhys factor. The D1 and D2 systems, more or less, behave “additively” where the
excitonic contributions and the vibrational progressions add up in the absorption.

Models D3 and D4 are very different from D1 and D2. In the D3, both pa-
rameters, the resonance interaction and the vibrational frequency, are small and
the absorption spectrum shows a single broad line at ∼ 12000 cm−1. While exci-
tonic and vibrational contributions are mixed, as shown in Fig. 3.8a, surprisingly,
the absorption spectrum is relatively simple with a single electronic peak shaped
by the vibrational progression. However the shape is strongly dependent on the
Huang–Rhys factor: for s = 0.05, one can resolve two excitonic bands (black
solid line), while for s = 0.5, the excitonic spectrum disappears and instead the
vibrational progression is observed. Hence, the spectrum is more “electronic” for
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small s and more “vibronic” for large s.
The fine features of mixed system are expected to be better observed in the

model D4, which has large energy splittings between levels compared to the
D3. Indeed, the D4 model shows non-trivial spectrum even for small value of the
Huang–Rhys factor. There is a single lower-excitonic peak at 11500 cm−1, but the
higher-excitonic peak is split into two (∼ 12500 cm−1 and ∼ 13000 cm−1). The
large Huang–Rhys factor makes the spectrum even more complicated where we
find four peaks and they all are due to superpositions of vibrational and electronic
nature. Similar electronic–vibrational mixing and nontrivial spectral properties
were obtained for perylene bisimides by Seibt et al.204 The transition frequencies
and intensities are redistributed due to sensitivity of the energy–level spectrum at
the avoided crossing region. Hence both D3 and D4 systems reflect the mixed
vibronic features of the vibrational dimer.

The 2D spectra reveal a set of peaks and all of them contain oscillatory contri-
butions in the waiting time, which can be visualized by using the coherence maps,
introduced in Sec. 2.3.2.

The amplitudes A(ω2) ≡ Amax(ω2) (Eq. (2.115)) of oscillations for the D1–
D4 models are depicted in Fig. 3.10 and the coherence maps of several dominant
frequencies are presented in Fig. 3.11. We next discuss the models separately.

D1 model. Weakly-coupled P–P complex with high-frequency vibration.
Two dominant frequencies of 190 cm−1 and 1400 cm−1 representing oscillations in
spectra of the D1 system are resolved when s = 0.05 (Fig. 3.10a). We consider
coherence maps at these two frequencies. The former corresponds to the excitonic
energy splitting, but the frequency is smaller than 2J (190 cm−1 ≈ 1.8J) due to
slight energy level repulsion, present even away from the electronic–vibrational
resonance (Fig. 3.8a). The map for ω2 = 190 cm−1 is typical for electronic co-
herence, as the oscillating features corresponding to the excited state absorption
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and ground state bleaching contributions are positioned symmetrically with re-
spect to the diagonal line and the oscillations are in-phase (Fig. 3.11a). Since
the distance between the positions is smaller than the homogeneous linewidth,
the most intensive oscillations are present on the diagonal due to the constructive
interference. The coherence map at ω2 = 1400 cm−1 is a typical reflection of
the vibrational coherence, since the oscillations are present both on the diago-
nal line and on the cross-peaks, characterized by complex phase dependence.38

The phase of oscillations is shifted by π at the center of the lower diagonal peak
compared to the centers of the other peaks, what is also typical for beatings of
vibrational coherences.46 Two more off-diagonal oscillating features at around
ω3 = 10500 cm−1 are out of the frequency range in presented coherence maps,
hence they would be off-resonant.

Increasing the Huang–Rhys factor to s = 0.5 causes stronger mixing in the
system. The shape of the coherence map at ω2 = ω0 does not change notably,
however, its amplitude increases by factor of ∼ 3. The coherence map at ω2 =
120 cm−1 ≈ 1.2J closely resembles the map at ω2 = 190 cm−1 when s = 0.05.
Additional contributions of the excited state absorption appear above the diagonal.
Features in this map are not very smooth since the lifetime of oscillations is much
shorter (note that symbol sizes in Fig. 3.10a, representing the amplitudes of
contributions in the schemes for s = 0.05 and s = 0.5 are, however, similar).

D2 model. J-aggregate. The strongest frequencies for model D2 are 250 cm−1
and 1250 cm−1 (Fig. 3.10b). The coherence map of the D2 system at ω2 =
ω0 = 250 cm−1 clearly shows the large contribution from the ground state and
excited state vibrations on the diagonal and less significant excited state absorp-
tion features in the cross-peaks (Fig. 3.11b). The oscillations are more intensive
below the diagonal, which is consistent with the maps of the above-mentioned
PVA/C8O3 J-aggregate.122 Regarding the relative intensities of oscillations asso-
ciated with electronic (ω2 ≈ 2J) and vibrational (ω2 ≈ ω0) coherence, one finds
that the relative intensity of electronic coherences has a tendency to decrease
when increasing the Huang–Rhys factor. Thus, for s � 1, maps would be com-
pletely dominated by the vibrational coherences. The maps at ω2 = 1200 cm−1
and ω2 = 1230 cm−1 in Fig. 3.11b are typical for electronic coherences as the
oscillations are diagonal-symmetric. Note that the energy splitting is much larger
than the homogeneous linewidth and the two peaks in the maps are distinguished,
c. f. to the corresponding coherence maps in the D1 model.

D3 model. Weakly-coupled P–P complex with low-frequency vibra-
tion. Assignment of oscillations in the D3 model with strongest peaks shown
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Fig. 3.11. (a) Oscillations in 2D spectra of a weakly-coupled P–P complex with
high-frequency vibration (D1 model) and (b) J-aggregate (D2 model) in case
of weak and strong coupling to vibrations (s = 0.05 and s = 0.5, respectively).
2D rephasing spectra at t2 = 0 and two most significant coherence maps are
represented in rows of every model. Schemes of the oscillations-providing contri-
butions (◦ – excited state absorption, � – stimulated emission and � – ground
state bleaching) are presented next to the maps. The size of the symbols are
proportional to the amplitude of the corresponding contribution. Continued on
page 107...

in Fig. 3.10c is complicated since the parameters are close to the electronic–
vibrational resonance (Fig. 3.8a). It might appear that there is only a continuum
of low-frequency oscillations in the spectra for s = 0.05 since the maximum am-
plitude dependence on the frequency does not contain any peaks. However, there
are short-lived oscillations at ω2 = 180 cm−1 and ω2 = 250 cm−1, but their co-
herence maps are not distinguishable due to their small amplitudes (Fig. 3.11c).
Increasing the Huang–Rhys factor to s = 0.5 enhances the ω2 = ω0 oscillation
which, as it can be seen in the scheme next to the map in Fig. 3.11c, is a mixture
of many different contributions.
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Fig. 3.11. (continued) (c) Oscillations of a weakly-coupled P–P complex with
low-frequency vibration (D3 model) and (d) a strongly-coupled dimeric dye (D4
model).

D4 model. Strongly-coupled dimeric dye. In the 2D spectra of the D4
model for s = 0.05, there are 3 clearly separable long-lived oscillations of frequen-
cies ω2 = 0.8J ≈ 470 cm−1, ω2 = 1.8J ≈ 1060 cm−1 and ω2 = ω0 (Fig. 3.10d).
The later two correspond to the excitonic energy splitting and vibrational coher-
ence, respectively, while the 470 cm−1 oscillation signifies beatings between the
lower and upper states in the avoided crossing region (the corresponding energy
level gaps are indicated in Fig. 3.8b). For s = 0.5 the level repulsion effect is even
more pronounced, as the gap between the lowest energy states decreases from
1.8J to 1.1J and the gap of the avoided crossing region increases from 0.8J to
1.3J .

The coherence maps allow us to separate electronic and vibrational coherences
in this particular mixed case. When s = 0.05 (Fig. 3.11d) the coherence map
for ω2 = 1060 cm−1 is typical for electronic coherence. There is an additional
signature of the vibronic system, i. e., the oscillatory contribution of the excited
state absorption appearing above the stimulated emission. It indicates that the
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doubly-excited state manifold is effectively shifted up due to vibronic coupling
and, therefore, the peaks are elongated along ω3 axis in the coherence maps.
The ω2 = 1400 cm−1 map is exceptionally created by the ground state vibrations,
however, the distances between some oscillating features in the coherence maps
are found to be equal to 1060 cm−1 (see the labels with arrows in Fig. 3.11d).

The ω2 = 1400 cm−1 oscillation becomes mixed if s = 0.5. As it can be
seen in the corresponding scheme of oscillations, contributions from all types of
diagrams appear and heavily congest the coherence map. The lowest diagonal
peak becomes oscillating due to the stimulated emission and ground state bleach-
ing contributions. The map for the ω2 = 640 cm−1 oscillation is similar to one
for ω2 = 1060 cm−1 presented above. Stronger coupling to vibrations induces
appearance of additional oscillations in the excited state manifold, seen as two
peaks above the diagonal.

Since we consider aggregates of identical molecules, we use the homodimer
systems which are symmetric with respect to Hamiltonian parameters (identi-
cal energies, couplings and vibrational frequencies). It is well established that
for asymmetric heterodimers the chromophore energy difference leads to more
quantum mechanical mixing and, thus, vibronic effects are more significant if the
resonant coupling and the Huang–Rhys factors are low.22,205 However, restricting
ourselves to the analysis of the homodimer systems allows us to decrease the num-
ber of arbitrary parameters and makes the whole discussion more clear without
losing significant relevance for physics of realistic systems.

3.3.1 Nature of coherences

There have been many attempts to unambiguously distinguish between vibrational
and electronic coherences visible as oscillations in the 2D spectra. However, the
question of how to do that is proper only if mixing in the system is low. As we
find, two conditions for low mixing can be distinguished:

1. The coupling between vibrational and electronic subsystem has to be weak
(small Huang–Rhys factor).

2. The system must not be in a vicinity of electronic–vibrational resonance,
represented by the avoided crossing region in the energy spectrum.

These conditions are best to be fulfilled for high-frequency intramolecular vibra-
tions in weakly-coupled P–P complexes and low-frequency vibrations in strongly-
coupled aggregates, the D1 and D2 models, respectively.

The information about the transition composition can be evaluated from co-
herent oscillations in some more mixed cases. In the D4 model, which stands as
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an equivalent of the strongly-coupled dimeric dye, the mixture of coherences for
ω2 = 1060 cm−1 and ω2 = 1400 cm−1 can be disentangled (s = 0.05, Fig. 3.11b).
Firstly, the coherence map at ω2 = 1060 cm−1 contains diagonal-symmetric peaks,
which would suggest, that this particular coherence is rather electronic. Secondly,
there are features in the map at ω2 = 1400 cm−1 separated by 1400 cm−1 and
1060 cm−1 as well as the peak on the diagonal exhibiting high-frequency oscil-
lations. The later fact as well as the obviously stronger oscillations below the
diagonal shows that the origin of the 1400 cm−1 oscillation is rather vibrational.
The similar analysis can be applied to s = 0.5 case, where the evidence of vibra-
tional content is the diagonal oscillating peak in the ω2 = 1400 cm−1 map.

One cannot discriminate between coherences of dominating electronic or vibra-
tional character in weakly-interacting photosynthetic complexes, coupled to low-
frequency vibrations. This is clearly demonstrated by the D3 model in both cases
of weak and strong coupling to vibrations (first and second rows in Fig. 3.11a,
respectively). The coherences in the system are highly mixed and no typical pat-
terns, which were present in the coherence maps of the other systems, are found
here. The coherence map in case of strong coupling to vibrations is composed of
many contributions, evolving in the ground and excited states (the second row in
Fig. 3.11a), thus, indicating complete state character mixing. Hence, the elec-
tronic or vibrational transitions are proper concepts, while electronic/vibronic or
how-much-vibronic for coherences in this particular system is a vague concept and
should be avoided. Instead one should treat such coherences as simply mixed or
entangled, which is a completely proper concept in quantum mechanics.

3.3.2 Lifetime of coherences in aggregates

The fact that some coherences are less visible in the coherence maps is to high
degree related to their lifetimes. Obviously, oscillations which decay fast will
be poorly captured by the Fourier transform or even will not be present in the
maps at all. Let us now concentrate on the maximum of the Fourier amplitude
dependence on frequency, Amax(ω2), in case of s = 0.05, presented by the solid
lines in Fig. 3.10. The widths of the peaks are given by the lifetime of the
corresponding oscillations.

The lifetime of the vibrational ground state coherence depends only on the
overlap of vibrational frequency and the bath spectral density. It can be deduced
from eqs. (3.38) and (3.39). For example, the lifetime of |g(00)〉〈g(01)| coherence
τ01 = 2(γg(00) + γg(01))−1 is ∼ 3 ps for ω0 = 1400 cm−1 and the width of the
corresponding peak in the Amax(ω2) dependence is ∼ 40 cm−1 (Fig. 3.10a and
d). The lifetime of ω0 = 250 cm−1 coherence is ∼ 500 fs, thus, the corresponding
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peak in Amax(ω2) is very broad and, therefore, hardly distinguishable (Fig. 3.10b
and c). This effect essentially depends on the spectral density function (includ-
ing the shape and the amplitude) and its value at the corresponding vibrational
frequency. The Drude–Lorentz spectral density decays as ω−1 at high frequencies
and using some other faster decaying spectral density instead, for example, quan-
tum overdamped47 or log-normal,206 is likely to influence the lifetimes coherences
at higher frequency.

The lifetimes of coherences in the excited state manifold are not that triv-
ial. On one hand, transfer rates relating electronic states of purely electronic
aggregates depend on the absolute value of the bath spectral density at the cor-
responding frequency. Additionally, they depend on the extent of delocalization
of the particular states. On the other hand, transfer rates between vibronic states
of a single molecule are the same as of the ground state vibrational states. In our
case, these two pictures are merged and the lifetimes of mixed coherences cannot
be expressed in simple terms.

It has been shown, that the lifetimes of the excited state vibrational coherences
increase significantly, if the electronic level splitting is close to vibrational frequen-
cies even if the Huang–Rhys factor is small (s < 0.1).22,29,33 This is evident in the
Amax(ω2) dependencies, as well: the lifetime of the ω2 = 1.8J oscillation in the
D1 model is smaller than the corresponding lifetime of the frequency oscillation
in the D4 model by factor of ∼ 1.8 while the lifetimes of the ω2 = ω0 coherences
are identical. If compared, ω2 = 2J oscillations in the D2 model decay at least 3
times faster than the ω2 = 1.8J oscillations in the D4 model. This phenomenon
is easy to understand since in the resonance conditions the oscillatory amplitude
should be transferred from vibrational to electronic coherences due to coupling; as
vibrational coherences have long lifetime, they support the electronic coherence.

If the Huang–Rhys factors are large (s & 0.5), low-frequency vibrational co-
herences in the ground state decay faster than in the case of weak coupling to
vibrations discussed above (see dashed lines in Fig. 3.10). This is due to the
lower value of the reorganization energy, which is λ = 50 cm−1 for s = 0.5 (c. f.
λ = 500 cm−1 for s = 0.05). Stronger interaction with vibrations induces more
mixing in the system. Therefore, we can see long-lived coherences of ω2 = 2.05J
in the D2 model. We can thus conclude that the electronic coherences effec-
tively borrow some lifetime from the vibrational coherences due to the quantum
mechanical mixing. The mixing and borrowing of the dipole strength in excitonic
systems is a well-known phenomenon, however the lifetime borrowing has been
poorly discussed so far.

The vibrational dimer model is convenient for simulation purposes of typical
systems in a wide range of parameters to reflect pigment–protein complexes, J-



3.3. Vibrational dimer 111

aggregates or dimeric molecular dyes. From analysis presented in this chapter, we
can conclude, that

1. Regarding the question of distinguishing the electronic or vibrational coher-
ences, the separation is fully defined and proper only if the excitonic and
vibrational mixing is small. We have shown that such separation is indeed
possible for systems, where the resonant coupling and vibrational frequency is
off-resonant, i. e., the system is away from the so-called electronic–vibrational
resonance.

2. Lifetime of excitonic coherences is determined by the coupling to discrete
modes of intramolecular vibrations. The resonance conditions lead to co-
herence lifetime borrowing from the vibrational subsystem. The vibrational
modes, on their own, are coupled to the continuum of low-frequency bath
fluctuations, represented by the spectral density. Thus, the overlap of the
spectral density function and frequencies of intramolecular vibrations as well
as the form of the spectral density function directly influences the lifetime of
electronic coherences.

3.3.3 Influence of static energy disorder on coherences

We have already shown, that the coherent oscillations of electronic and vibra-
tional character are mixed due to intermolecular interactions, especially when the
condition of electronic–vibrational resonance is satisfied. Out of the resonance
condition, electronic and vibrational coherences exhibit very distinct oscillation
patterns. Here we will show, that the coherences have crucially different behav-
ior with respect to the energetic disorder, when the resonance condition is not
fulfilled.

Once again, let us consider the vibrational dimer with the Huang–Rhys factors
equal for both monomers, s ≡ s1 = s2 = 0.05. We set vibrational frequency ω0 =
600 cm−1 as the reference parameter and choose the resonant coupling strength
J = −ω0/2 = −300 cm−1. We also choose that electronic site energies are sepa-
rated by the same value as vibrational frequency, ε2− ε1 = ~ω0. Such parameters
gives the energy splitting between the states of the most significant transitions of
the vibrational dimer ~ωMD ≈ 867 cm−1, which is approximately equal to the split-
ting of the vibration-less electronic dimer ~ωED =

√
(ε2 − ε1)2 + 4J2 ≈ 849 cm−1.

The parameter set used in our calculations describes a very general vibrational
system. Indeed, the chosen absolute values of parameters are typical for many
molecular aggregates of interest, including the photosynthetic pigment–protein
complexes. Similar parameters have already been used by investigating the vi-
bronic transition dipole moment borrowing and coherence enhancement effects in
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vibrational dimer systems.22,23,34,186

We consider 2D signals of the vibrational dimer, which are calculated using the
theory described above. For the sake of simplicity, we assume the pure dephas-
ing as the only mechanism responsible for the homogeneous lineshape formation,
also suggesting the same dephasing rates for all coherences and not taking the
population transfer into consideration. The static disorder of site energies δεm
in Eq. (3.12) is considered to be responsible for the inhomogeneous broadening
that is taken into account by averaging over ensemble (1000 realizations of inde-
pendent simulations) with the Gaussian distribution with standard deviation σD
of excitation energies for every molecule.

The dependence of the singly-excited state energies on the resonance interac-
tion is shown in Fig. 3.12a, where our case (|J |ω−10 = 0.5) is indicated by the
gray vertical line. A clear separation of electronic excited states (denoted as e−
and e+, respectively, in Fig. 3.12a) and vibronic states (denoted as e±+m, where
m – the number of vibrational quanta) is observed.

We assume that the strengths of the transition dipole moments of the monomers
are equal and constitute the inter-dipole angle 2π

5 . The dephasing rate determining
the homogeneous linewidth is set to γ = ω0/6 and central absorption frequency
is ωeg = 11500 cm−1. One should notice that the model and analysis presented
here does not contain any constraints regarding the pigment–pigment coupling
strengths and our choice to consider a strongly-coupled vibrational dimer over a
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Table 3.1. Mixed character of the lowest singly-excited states (p = 0 ... 5) of the
vibrational dimer. ωp ≡ ~−1 (Ep − E0) corresponds to the energy gap between
the sates that defines the beating frequency, µg(00)ep is the transition dipole mo-
ment. χp describes the state character, ϕp denotes the angle of the corresponding
transition dipole vector with respect to the electronic transition dipole of the first
monomer. The square values of the basis transformation coefficients ψ(1)

p,(ij) and
ψ
(2)
p,(ij) are also presented, with the most significant values in bold.

p ωp µg(00)ep χp
ϕp States in site basis

(cm−1) (deg)
∣∣∣e1,(00)〉 ∣∣∣e2,(00)〉 ∣∣∣e1,(10)〉 ∣∣∣e2,(01)〉 ∣∣∣e1,(01)〉 ∣∣∣e2,(10)〉

0 0 1.08 0.96 19.0 0.82 0.14 0.03 0.00 0.00 0.00
1 867 0.84 0.90 -81.8 0.15 0.76 0.02 0.01 0.05 0.01
2 581 0.26 0.06 69.3 0.00 0.06 0.37 0.09 0.37 0.06
3 600 0.17 0.02 19.0 0.02 0.00 0.38 0.07 0.41 0.07
4 1467 0.13 0.02 -81.3 0.00 0.02 0.09 0.36 0.06 0.36
5 1480 0.11 0.01 69.8 0.00 0.01 0.08 0.33 0.08 0.36

weakly-coupled complex have no critical reason.
The electronic interaction with the high-frequency vibrational mode is almost

indistinguishable in the absorption spectrum for small Huang–Rhys factor as the
only evidence of vibrational content is a sole weak shoulder in the absorption
spectrum at ∼ 12600 cm−1 (Fig. 3.12b). For the larger Huang–Rhys factor the
stronger vibrational progression would clearly appear in the spectrum, as it was
shown previously.

The transformation coefficients ψ(n)
p,(ij) and Ψr ,(ij) in eqs. (3.40) and (3.41)

provide us with the information about the eigenstate composition which allows
the estimation of the amount of mixing between vibrational and electronic states.
Transition amplitudes µg(ij)ep between the ground state manifold of the vibrational
states and the manifold corresponding to the singly-excited states signify pos-
sible interaction configurations. The “vibronic content” in a specific electronic
transition can be quantified by the transformation coefficients combined as

χp ≡
(
ψ
(1)
p,(00)

)2
+
(
ψ
(2)
p,(00)

)2
. (3.42)

The maximum value of this quantity (χp = 1) indicates the pure electronic char-
acter of the transition, while χp = 0 reflects that the corresponding state is
vibronic. In a similar manner, the character of coherence of two arbitrary states
was defined by Chenu et al.23 Transitions originating from the zero-vibrational
state, i. e. |g(00)〉 are described in Table 3.1. The two strongest transitions cor-
respond to mostly electronic transitions with χ ≥ 0.9, while the other transitions
are of dominant vibrational character (χ < 0.1).
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The real part of the rephasing 2D spectrum contains three positive features:
two diagonal peaks and a clearly distinguishable cross-peak below the diagonal
reflecting the coherent resonance coupling between the molecules (Fig. 3.13a).
The higher cross-peak is less visible due to the overlap with the excited state
absorption contribution. As usual, apparently simple structure of the spectrum
disguises the complicated pattern of various overlapping stationary and oscilla-
tory contributions. The multitude of the oscillatory contributions is illustrated in
Fig. 3.14a by a scheme, analogous to ones of the electronic dimer (Fig. 2.13a) or
the displaced oscillator (Fig. 3.4a).
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Coherence maps of the 2D spectra at frequencies corresponding to ω2 = ω0 and
ω2 = ωMD are presented in figures 3.14b-c in case of no disorder. The oscillation
map at ω2 = ωMD = ~−1(E1− E0) involves two states with the most pronounced
electronic character (p = 0 and p = 1 in Table 3.1) and is the same as the purely
electronic coherence map of an excitonic dimer, show in Fig. 2.13b and in Ref.,46

i. e., oscillations appear only in the cross-peaks. As we find in the disordered
system (σD = 200 cm−1) the oscillating patterns are completely dominated by the
vibrational frequency ω0, while the oscillations with the electronic gap frequency
ωMD are at least 20 times weaker and, thus, their contribution is negligible.38

Visibility of different-character oscillations in the ensemble measurement strong-
ly depends on system inhomogeneity. This can be clearly seen in Fig. 3.13b-c,
where the time traces of the A12 and A21 cross-peaks for different values of the
Gaussian disorder (σD = 0, 20 and 50 cm−1) are presented. The initial intensive
oscillations with the ωMD frequency decay rapidly when the disorder is increased
and the only dynamics observed at longer delay times correspond to the vibra-
tional ω0 beats. The value of the amplitude maximum of the oscillation map can
be used to evaluate the strength of the corresponding oscillation.

As it is shown in Fig. 3.15, the amplitude of electronic oscillations decays
sharply with the disorder (Fig. 3.15a), while the dependence of the amplitude of
vibrational coherences is much more flat (Fig. 3.15b). When the disorder is absent,
signatures of electronic coherences mostly reflecting the SE contribution are at
least 5 times stronger than those of vibrational character, while for σD > 200 cm−1
the amplitude of electronic coherences is negligible. Separation of coherences of
electronic and vibrational character signify that besides the vibrational beats the
electronic beats could be in principle observed and distinguished for the weakly
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disordered systems. However, the electronic beats rapidly decay in time in a
Gaussian fashion (for uncorrelated Gaussian disorder) as σ−1D . Whereas vibrational
beats will prevail for longer times.

We show the separation of beats of electronic and vibrational character for arbi-
trary system parameters, the resonant condition of the mixed character coherences
(for example, when excitonic energy gap is equal to the vibrational frequency) is
just a special case of our model. In FMO, where such resonant conditions are
met, the electronic coherences at initial times could be of the similar amplitude
as those of the vibronic origin, but due to disorder of approximately 25 cm−1;
electronic beats will decay in a short time (∼ 200 fs) while vibrational beats
would persist over the long time. For highly disordered and uncorrelated systems
electronic coherences are not likely to be significant at all unless the decoherence-
limited regime for electronic quantum beats, introduced in Sec. 2.3.3, is active
and the observed coherent dynamics are due to the ground and the excited state
vibrations.

Results presented here are related to the assumption that the vibrational fre-
quencies are not affected by inhomogeneities, which induce the disorder of elec-
tronic transition energy. This is often the case as vibrational resonances are less
sensitive to the electrostatic configuration of the environment than the delocalized
electronic wavefunctions. From the analysis of coherent dynamics of vibrational
dimer, experiencing static disorder, it follows that the effect of inhomogeneous
disorder on the coherences depends on the character of the involved states. We
can conclude, that

1. The amplitude of the electronic character beatings, caused by the coherences
in the excited states, is dramatically reduced by the disorder and consequently
electronic coherences are quickly dephased.

2. Vibrational character beatings stem from the ground and excited state contri-
butions and depend weakly on the disorder, assuring their long-time survival.

It is also important to consider transition dipole moment orientations ϕp listed
in Table 3.1. From that, additional conclusions arise regarding the orientations
of the transitions to the “mixed” states – they are different for each state and
are also different from the transition dipole moments of monomers. This implies
that coherences involving arbitrary states (of electronic or vibrational character)
could survive the measurements with polarization schemes, briefly described in
Section 2.2.1, devised to suppress all but electronic coherence signals.39,149,207

On the other hand, these polarization schemes can then be used to distinguish
between the coherences of purely vibrational (localized on one molecule) and
mixed origin.



Chapter 4

Vibronic excitons in a porphyrin
nanoring

In this chapter, we applied the theory of vibronic and Frenkel excitons and spectral
analysis tools, developed in this thesis, for studying the exciton dynamics of the
synthetic molecular nanoring, consisting of six zinc-porphyrin molecules and an
inner template (Fig. 4.1), and compared the results with the experimental data∗.
By using the Frenkel exciton model (Sec. 2.2), we were able to decide on the
origin of different electronic states and how it is influenced by the ring defor-
mations. Vibrational dimer model (Sec. 3.3) was used to simulate the quantum
beats of vibrational, electronic and mixed origin. The coherence maps, introduced
in Sec. 2.3.2, aided in analysis of the experimental spectra and its comparison
with the results of the simulations. Here we show, that the effects of the life-
time borrowing (introduced in Sec. 3.3.2) and static energy disorder (discussed in
Sec. 2.3.3 and Sec. 3.3.3) are significant for the coherent beatings in the spec-
trum. By putting all the results of simulations and spectral analysis together, we
are able to explain the whole complexity of the nanoring absorption and the two-
dimensional spectrum by the non-trivially combined effects of cyclic symmetry,
small geometrical deformations, energetic disorder and vibronic coupling.

We have chosen to study this system not only because it requires us to utilize all
our developed theoretical tools and, thus, is a perfect illustration for this thesis.
There are many factors, which make the six-porphyrin nanoring with an inner
template really exceptional:

• The full π-conjugation of the porphyrin ring is ensured. Such nanorings
constitute a separate class of small oligomers with remarkably rigid and well-
∗2D ES experiments, the results of which are included in this thesis, were

performed in Lund University by Jan Alster, Donatas Zigmantas, Ramūnas Augulis
and Eglė Bašinskaitė. Details on materials and methods used in the experiment
can be found elsewhere.48

117
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Fig. 4.1. Chemical struc-
ture of the nanoring, con-
sisting of six zinc(II) por-
phyrin molecules forming a
belt (the outer macrocycle)
around an inner hexapyridyl
template. Porphyrins at meso-
positions and are intercon-
nected by acetylenes. Chemi-
cal structure of the aryl group of
3,5-di(tri-hexylsilane)benzene is
shown in the upper right corner.
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defined structures. Also, it is a masterpiece of chemical synthesis.208,209

The fine structure of the peaks in its absorption spectrum at 77K (Fig. 4.2)
suggests that the quantum beatings in 2D ES might be clearly resolvable for
this system.

• Symmetric ring-shaped molecular oligomers are abundant in nature. The
ring-like arrangement of pigment molecules is a characteristic feature of some
photosynthetic light-harvesting complexes, such as the widely studied LH1
and LH2 complexes from the purple bacteria.210,211 However, properties
of large biomolecular compounds are mostly determined by the surround-
ing protein environment, which makes their spectra obscured by the spectral
overlaps and, therefore, somewhat inconvenient for an unambiguous inter-
pretation of the spectroscopic signals. Obviously, more knowledge about
the specificity of the excitation origin and its evolution in these complexes
would be gained from the analysis of structurally similar synthetic ring-shaped
molecular complexes in solution, maintaining sharp resonances in the absorp-
tion spectrum. Therefore, in this context the porphyrin nanoring stands as
a very unique model system for better understanding of the fundamentals
of exciton dynamics in the ring-shaped molecular systems. So far, different
types of light-harvesting complexes from the purple bacteria, not maintaining
the full π-conjugation, were the only ring-shaped molecular systems studied
using the 2D ES.64,167,212

• The role of electronic–vibrational mixing in molecular systems is now of a par-
ticular interest, since it was recently shown that diabatic coupling to coherent
vibrational modes might enhance the rate of EET28,29,193 and of the charge
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transfer.30,31 However, this implies existence of both electronic and vibra-
tional coherences in the same system at the same time, what has never been
unambiguously observed experimentally. The porphyrin nanoring system is a
solid candidate for this quest.

• The complex optical spectrum of the nanoring with sharp bands in the visible
region and the giant Stokes shift indicates its potential to be utilized as the
building block for organic optoelectronics.208,213

Previous quantum chemistry calculations using the time-dependent density func-
tional theory estimated the lowest-energy S0 − S1 transition of the nanoring to
be around 10566 cm−1. The sequence of almost equally-spaced strong peaks (for
the nanoring studied here found at 11655 cm−1, 12295 cm−1 and 12862 cm−1)
were discussed to stem from the Franck–Condon progression of the vibrational
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∼ 605 cm−1 mode.214 Indeed, the linear absorption spectrum resembles slightly
anharmonic vibrational progression with a large Huang–Rhys factor. Moreover,
at the first sight, these peaks should not witness electronic transitions as the ab-
sorption spectrum is not typical for a perfectly symmetric ring-shaped molecular
complex: assuming the head-to-tail or sandwich-type dipole orientations between
the monomers, only one doubly degenerate excitonic transition is optically al-
lowed in similar aggregates.212 However, it is known that the inner hexapyridyl
template is too small for the outer macrocycle causing its deformation.214 Hence,
such breaking of the ring symmetry could influence the electronic spectra and
redistribute the strength of the excitonic transitions.

Two separate 2D ES measurements of the fully conjugated porphyrin hexamer
nanoring were performed using laser pulses, the spectrum of which was centered
either at 800 nm or at 880 nm, thus covering different parts of the absorption
spectrum (refer to the upper panels in Fig. 4.3a-b for the corresponding laser
spectra).

The 2D spectrum obtained using laser pulses at 880 nm covers the lowest
electronic transition (Fig. 4.3a). It is dominated by a strong diagonal peak at
∼ 11655 cm−1. Other features on the diagonal, related to the absorption peaks
at 10941 cm−1 (S1) and 11373 cm−1 (S2), are much weaker. However, the peaks
above the diagonal (“A12”, “A13” and “A23”) connecting the three diagonal peaks
can be clearly resolved in Fig. 4.3a. Excited state absorption shows up as strong
negative features below the diagonal overlapping with positive peaks.

Laser pulses with the spectrum centered at 800 nm were used to investigate the
spectral range of the other three most prominent transitions. The corresponding
2D spectrum is shown in Fig. 4.3b. The spectrum is very rich in features and
at least 17 peaks can be clearly resolved. Interestingly, a peak on the diagonal
at around 11655 cm−1 consists of two previously not resolved214,215 contribu-
tions separated by ∼ 80 cm−1. It could be estimated from the position of the
off-diagonal peaks, indicated as A34 and A43 in Fig. 4.3c that the energies corre-
sponding to these states are around 11600 cm−1 (S3) and 11680 cm−1 (S4).

To determine the energy dynamics via the manifold of the excited states, the 2D
ES data were taken as a function of the waiting time t2. Feature-rich oscillatory
evolution has been observed throughout the whole (ω1,ω3) 2D area as a function
of t2. Decaying dynamics was extracted using three-exponential-decay fitting with
one variable time constant of 156–250 fs and remaining lifetimes of 235 ps and
�1 ns. The shortest time scale is related to the downward energy relaxation
in the exciton manifold. This process is observed as the decay of the peaks on
the diagonal of the spectrum and simultaneous increase of the peaks away from
the diagonal if no other competing channel exists.62,216 The longer time scales
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represent the relaxation from the lowest state of the exciton manifold to the
ground or the other (for example, triplet) state.

Coherent beatings in the 2D spectra were analyzed using the coherence maps,
constructed using both real and imaginary parts of spectrum. Notice that the
evolution of Hermitian conjugate coherences |a〉〈b| and |b〉〈a| then appears at
positive and negative ω2 frequencies, respectively.217

Experimental coherence maps at a few selected ω2 frequencies are shown in
Fig. 4.4 and Fig. 4.5. Judging by their pattern, three types of peak configurations
can be distinguished. (i) The maps at ω2 = ±80, ±307, ±570, ±615, and
±1150 cm−1 (Fig. 4.4 and Fig. 4.5a) are diagonally symmetric, i. e. positive and
negative ω2 features are mirror images of each other with respect to the diagonal
as specifically showed in Fig. 4.4 for ω2 = ±80 cm−1. (ii) Oscillation maps
at ω2 = +380 cm−1 and −380 cm−1, shown in Fig. 4.5b, are highly diagonally
asymmetric with the features below the diagonal in the ω2 = −380 cm−1 map
significantly stronger than in the ω2 = +380 cm−1 map. (iii) Features in the ω2 =
−235 cm−1 and ω2 = +235 cm−1 maps (Fig. 4.5c) are diagonally asymmetric, but
their amplitudes are of the similar magnitude for positive and negative frequency
maps.
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We have shown in the previous chapters, that electronic, vibrational, and mixed
coherences are manifested by their characteristic patterns and symmetries in the
coherence maps. The symmetry of the experimental maps at ω2 = ±80, ±307,
±570, ±615 cm−1, and ±1150 cm−1 indicate that the underlying coherences are
of the electronic origin. Dephasing times of these coherences are shorter than
300 fs (Table 4.1), oscillations are present only in the off-diagonal regions in the
rephasing 2D spectrum, and the peaks at positive and negative ω2 frequencies are
of the same amplitude.

The electronic coherence with ω2 = +80 cm−1 (and ω2 = −80 cm−1) can
be assigned to the coherent superposition |S4〉〈S3| (and |S3〉〈S4|) of the closely-
positioned electronic states in the vicinity of 11655 cm−1. The electronic coher-
ence at ω2 = ±307 cm−1 shows up only in the measurement using laser pulses at
880 nm, signifying electronic quantum beats between states |S2〉 and |S4〉, that
could not be excited by laser pulses at 800 nm.

Beatings with the ±570, ±615, ±695 cm−1 and ±1150 cm−1 frequencies rep-
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mixed coherence at ω2 = ±235 cm−1. Presentation is analogous to Fig. 4.4.

resent quantum coherences |S5〉〈S6|, |S4〉〈S5|, |S3〉〈S5| and |S4〉〈S6| (and their
Hermitian conjugates). Thus, our findings imply that states |S1〉 through |S6〉
are of electronic origin in contrast to the previous assignment214,215 (it should
be noted that the previously suggested vibrational progression does not follow a
displaced harmonic oscillator model).

We assign beatings with the ω2 = ±380 cm−1 frequency to the vibrational
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Table 4.1. Classification of the observed coherences (<700 cm−1). Average
of four separate measurements are considered and the extracted dephasing times
and standard deviations στ are pointed out. The dephasing times of a few coher-
ences could not be extracted with a reliable experimental error due to the limited
resolution. Dephasing times were obtained by fitting complex oscillatory signals
in the time domain.48

ω2 (cm−1) Dephasing time (fs) στ (fs) Origin of coherence
±80 & 500 – Electronic |S3〉〈S4|
±180 – – Vibrational
±235 360 160 Mixed |S∗4〉〈S5|
±307 280 130 Electronic |S2〉〈S4|
±380 > 600 – Vibrational
±450 – – Vibrational
±570 80 20 Electronic |S5〉〈S6|
±615 200 30 Electronic |S4〉〈S5|
±695 190 40 Electronic |S3〉〈S5|

coherence. This follows from the oscillation maps (Fig. 4.5b), which have the
pattern of oscillating peaks typical for the vibrational coherence:46 the ω2 =
−380 cm−1 map contains many features below the diagonal, while the ω2 =
+380 cm−1 map is similar to the electronic coherence maps presented in Fig. 4.4
and Fig. 4.5a. In contrast to the electronic coherences, the amplitude of the
ω2 = −380 cm−1 map is significantly stronger that that of ω2 = +380 cm−1.
Detailed analysis of the map implies that the vibrational ground state coherences
|g〉〈g∗| (|g∗〉 denotes some vibrationally hot ground state) appear exclusively at
ω2 < 0. Their strong amplitudes are therefore related to the long lifetimes of
the ground state vibrations compared with the ones at electronic excited states
and mapped onto ω2 = +380 cm−1. Similar maps at ω2 = 180 cm−1, 450 cm−1,
and 835 cm−1 (not shown) imply their vibrational origin as well. Assignment
of coherent beatings at 380 cm−1 frequency to intramolecular vibrations of a
porphyrin molecule was also recently confirmed by Camargo et al.127

However, beatings at ω2 = ±235 cm−1 point out to the mixed coherence,
signifying the superposition state of the |S5〉 electronic state and vibronically hot
state |S∗4〉 (380 cm−1 vibrational mode). The corresponding oscillation map is not
typical of neither vibrational nor electronic coherences (see Fig. 4.5c) and the
beating frequency 235 cm−1 is equal to the difference between the corresponding
states.

To support the assignment of the excited states and the natures of the corre-
sponding quantum coherences, two different theoretical models were considered:
the electronic-only model of six excitonically coupled porphyrin molecules and the
vibrational dimer model. The electronic-only model is used to capture the con-
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α
∆zt
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∆zb
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Fig. 4.6. Possible deformations of bending and twisting of the nanoring. Tan-
gential of the nanoring backbone is shown by a red line and angle between the
transition dipole moment (arrow) is indicated by α.

nection between the cyclic symmetry of the system and its optical response. The
vibrational model supports assignment of the vibrational, electronic, and mixed
features.

4.1 Electronic model

It is well known that energies and dipole moments of electronic transitions in the
Q band region of a single zinc porphyrin molecule depend significantly on many
factors and especially on the moieties substituted in the opposite meso-positions of
the molecule. Asymmetry and triple carbon–carbon bonds in the bridges between
porphyrins induce the red-shift and enhancement of the Qy transition.218 The
presence of aryl side groups in our compounds ensures such type of symmetry
breaking, making the oscillator strength of the Qy transition much larger than that
of the Qx. Therefore, only one transition dipole (Qy) per porphyrin rotated by an
angle α with respect to the tangent of the nanoring backbone was considered.

In the electronic-only model of porphyrin nanoring Frenkel excitonic Hamilto-
nian (Eq. (2.86)) was considered. The resonant coupling constants Jmn between
the m-th and n-th chromophores were calculated using the dipole–dipole approx-
imation (Eq. (2.87)).

Two types of deformations—twisting and bending of the ring backbone—were
taken into consideration (see Fig. 4.6). The vector function of the ring backbone
was defined through polar coordinate ϕ:

f(ϕ) = nx cosϕ+ ny sinϕ+ nz (∆zb sin 2ϕ+ ∆zt sin 3ϕ) , (4.1)

where the parameters ∆zb and ∆zt control the extent of both types of defor-
mations. The dipole vectors of each porphyrin were expressed through derivative
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Table 4.2. Transition dipole vectors for the Qy transitions of each porphyrin
molecule.

m µx µy µz
1 0.000 0.499 0.866
2 -0.656 0.318 0.687
3 -0.616 -0.296 0.732
4 0.000 -0.553 0.833
5 0.616 -0.296 0.732
6 0.656 0.318 0.687

of the backbone function at points ϕm = 2π
6 (m − 1), where index m = 1 ... 6

enumerates the chromophores:

µm = R̂mf ′(ϕ)∣∣∣R̂mf ′(ϕ)
∣∣∣ . (4.2)

Here R̂m is the rotation operator, representing rotation of the transition dipole
vector by angle α with respect to its middle point and keeping the angle with the
ring radius vector constant. Refer to Table 4.2 for the obtained vectors.

Due to the full π-conjugation of the nanoring, the interaction between any
two porphyrins cannot be described by the dipole–dipole approximation (see the
discussion about more sophisticated methods in Sec. 2.2.4). Therefore, appro-
priate scaling factors of the coupling constants calculated in the dipole–dipole
approximation for the nearest, next-nearest, and next-next-nearest neighbors were
obtained by fitting the electronic-only model to the experimental absorption spec-
trum using the unconstrained nonlinear optimization algorithm. Free parameters
used in fitting were: amplitude of porphyrin nanoring twisting ∆zt, amplitude of
bending of the backbone ∆zb, transition dipole rotation α, nearest, next-nearest
and next-next-nearest neighbor dimensionless coupling scaling constants ι12, ι13
and ι14, respectively. The obtained values were ∆zz = 0.076, ∆zb = 0.011,
α = 49◦, ι12 = −2011, ι13 = −6958 and ι14 = −1457 (see Table 4.3 for the
Hamiltonian).

The simulated absorption spectrum of this model is presented in Fig. 4.2 by
the red dashed line. The agreement with the experimental absorption spectrum
is quite good except of the intensity of the S5 transition. The absence of vibronic
coupling in the electronic-only model may be responsible for this discrepancy.
Particularly, the electronic model provides the basis of the observed electronic
coherences described above. However, additional vibrational/vibronic ingredients
are necessary to explain the remaining coherences.
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Table 4.3. Hamiltonian matrix used in the electronic-only simulations of the
porphyrin nanoring. All values are given in wavenumbers (cm−1)

m 1 2 3 4 5 6
1 11775 389.9 -339.7 -81.2 -339.7 389.9
2 389.9 11775 103.2 -154.7 -2.3 353.6
3 -339.7 103.2 11775 407.0 166.6 -2.3
4 -81.2 -154.7 407.0 11775 407.0 -154.7
5 -339.7 -2.3 166.6 407.0 11775 103.2
6 389.9 353.6 -2.3 -154.7 103.2 11775

4.2 Vibrational model

For qualitative simulations of the vibronic coupling in the porphyrin nanoring we
used the theoretical approach developed for a vibrational dimer,34,179 extended
by including two vibrational modes. We assume that two electronic states with
the highest oscillator strengths, S4 and S5, are coupled to two vibrational modes
of 380 cm−1 and 450 cm−1 with the Huang–Rhys factors of 0.03 and 0.01, re-
spectively. This allows to significantly improve the description of the absorption
spectrum in the range of S4 and S5 peaks (Fig. 4.2).

Diagonal uncorrelated disorder of monomers’ site energies ε1 = 11940 cm−1
and ε2 = 12000 cm−1 with standard deviation of 100 cm−1 was simulated by
averaging over 500 realizations of the 2D spectra, calculated at waiting times up to
2 ps at 10 fs intervals. For coherence maps, Fourier transform of time dependence
of each point was performed after subtraction of a three-exponential fit of the
signal and multiplication with the Gaussian window, resulting in suppression of
the signal at waiting time 2 ps by a factor of 10.

Simulated coherence maps, corresponding to electronic, vibrational and mixed
coherences are shown in Fig. 4.4b-d. Although we included only two electronic
states in the vibrational model, calculated and experimental maps of the vibra-
tional coherences at ±380 cm−1, the electronic coherences at ±615 cm−1, and
the mixed coherences at ±235 cm−1 are in a very good agreement with the ex-
perimental ones, confirming our assignments.





Summary of the results

In this thesis, we have addressed the questions regarding exciton dynamics in
molecular systems. We have started with the basic perturbative description of
the third-order polarization in material and signal detection, i. e. the third-order
system response function formalism, and demonstrated the typical spectral sig-
natures of a few simple model systems in a textbook style.159 Starting with the
description of the Frenkel excitons, we have virtually separated two phenomena of
dephasing (arising from the static energetic disorder) and decoherence (from the
quantum state’s entanglement with the environment), both destructively influenc-
ing the phase relationship of the established coherent exciton. We have demon-
strated, that the interplay between these two mechanisms can lead to drastically
different outcomes regarding the observed quantum beatings in the 2D spectrum:
in some cases coherence is destroyed almost instantaneously, while sometimes it
can survive for picoseconds. Such behavior is determined by the parameters of
the system, the system–bath coupling and the amount of the environment-related
static energy disorder.

We have expanded the Frenkel exciton formalism to account for the explicit in-
tramolecular and intermolecular vibrations and its signatures in the two-dimensio-
nal electronic spectrum, using the Holstein-type vibronic exciton Hamiltonian.179

In order to conveniently and systematically assess the huge amount of informa-
tion, provided by the oscillations of multiple experimental or simulated 2D spectra,
we have introduced the so-called coherence maps, constructed from a set of the
time-resolved 2D spectra.38,178 Consideration of such maps immediately gave a
very distinct picture of coherent evolution of electronic, vibrational and quantum-
mechanically mixed molecular eigenstates. We have shown, how these signatures
can be classified in order to unravel the origin of the quantum beatings.34,46,47

By the analysis of vibronic exciton dynamics in the porphyrin nanoring we
resolved electronic, vibrational and mixed coherences, supported by theoretical
simulations. That is, we have found an experimental evidence of coherences of
different physical origins existing in the same system at the same time.48 This
was a missing piece in a general discussion of electronic–vibrational interference
in molecular systems.
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We have also shown, how analysis of coherent beatings in 2D ES can aid in
disentangling the energy level structure of the excited states and their cooperativ-
ity. This turns out to manifest even in the absorption spectrum, where we identify
electronic transitions, the intensity and positions of which are non-trivially defined
by vibronic coupling (together with small ring deformations). In the analysis of
the coherence maps, the whole “zoo” of vibronic excitons gets raised and they
inter-operate to maintain long coherence lifetimes and coherent excitation evolu-
tion. Such coherent quantum properties of a supermolecular system are reported
for the first time, but should be general for molecular aggregates.

We have reported a similar study of quantum beats in the experimental data of
the fucoxanthin–chlorophyll protein.49 In contrast to the porphyrin nanoring, no
beatings of electronic origin were obtained, most probably due to fast dephasing.
However, analysis of the coherence dynamics allowed us to identify chlorophyll a
and fucoxanthin intramolecular vibrations dominating over the first few picosec-
onds of the 2D spectrum. The results, presented in this thesis, has been already
applied in analysis of quantum beatings in the photosynthetic reaction center
and subsequently aided in proposing the effect, how electronic–vibrational inter-
ference can speed-up the charge transfer in the earliest stages of the oxygenic
photosynthesis.30
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Appendix A

Amplitudes of peaks in 2D spectrum
of electronic dimer

Asuming the XXXX experimental direction (all four electric fields are polarized
along the same axis) and the spatial configuration of dipole moments in a two-
chromophore system described in Sec. 2.3, analytical expressions of intensities of
each pathway, contributing to the rephasing and nonrephasing spectrum can be
obtained

The orientationally-averaged products (Eq. (2.55)) of transition dipole mo-
ments can be written for the full set of double-sided Feynman diagrams (the
ESA, SE and GSB contributions), shown in Fig. 2.8. Here we adopt notation AX

cd
denoting the X ∈ {ESA, SE} contribution, maintaining coherence or population
|c〉〈d | during the waiting time t2, or X = GSB contribution, maintaining popula-
tion in the ground state during t2 and coherences |g〉〈ec | and |ed〉〈g| during time
intervals t1 and t3, respectively.

AESA
e1e2 = AESA

e2e1 = 〈µge2µge1µe2fµe1f〉 = − 1
15 sin2 φ, (A.1)

AESA
e1e1 = ASE

e1e1 = 〈µ2
ge1µ

2
e1f〉 = 1

5 (1 + cosφ)2 , (A.2)

AESA
e2e2 = 〈µ2

ge2µ
2
e2f〉 = 1

5 (1− cosφ)2 , (A.3)

ASE
e1e2 = ASE

e2e1 = 〈µ2
ge2µ

2
ge1〉 = 1

15 sin2 φ, (A.4)

ASE
e1e1 = 〈µ2

ge1µ
2
e1f〉 = 1

5 (1 + cosφ)2 , (A.5)

ASE
e2e2 = 〈µ2

ge2µ
2
e2f〉 = 1

5 (1− cosφ)2 , (A.6)

AGSB
e1e2 = AGSB

e2e1 = 〈µ2
ge2µ

2
ge1〉 = 1

15 sin2 φ, (A.7)
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AGSB
e1e1 = 〈µ2

ge1µ
2
e1f〉 = 1

5 (1 + cosφ)2 , (A.8)

AGSB
e2e2 = 〈µ2

ge2µ
2
e2f〉 = 1

5 (1− cosφ)2 . (A.9)

Here we adopt notation Ap
nm and Ac

nm for intensities of a peak, emerging at
ω1 = εen , ω3 = εem and maintaining a population (non-oscillating contribution,
superscript “p”) or a coherence (oscillating contribution, superscipt “c”) during
waiting time t2, respectively. The amplitudes in the nonrephasing spectrum are
indicated with tilde (“∼”) symbols:

Ap
11 =

∼
A
p
11 = ASE

e1e1 +AGSB
e1e1 = 2

5 (1 + cosφ)2 , (A.10)

Ap
22 =

∼
A
p
22 = ASE

e2e2 +AGSB
e2e2 = 2

5 (1− cosφ)2 , (A.11)

Ap
21 =

∼
A
p
21 = −AESA

e2e2 +AGSB
e2e1 = −1

5 (1− cosφ)2 + 1
15 sin2 φ, (A.12)

Ap
12 =

∼
A
p
12 = −AESA

e1e1 +AGSB
e1e2 = −1

5 (1 + cosφ)2 + 1
15 sin2 φ. (A.13)

Ac
11 = Ac

22 =
∼
A
c
12 =

∼
A
c
21 = 0, (A.14)

Ac
21 =

∼
A
c
22 = −AESA

e2e1 +ASE
e2e1 = 2

15 sin2 φ, (A.15)

Ac
12 =

∼
A
c
11 = −AESA

e1e2 +ASE
e1e2 = 2

15 sin2 φ. (A.16)



Appendix B

Amplitudes of peaks in 2D spectrum
of displaced oscillator

The Franck–Condon factor for transition from one ground state level to some
excited state level of the displaced oscillator is given by Eq. (3.4). By assuming
all the relevant Feynman diagrams to the 2D spectrum (Fig. B.1), we can get the
analytical expressions for all peaks, positioned at ω1 = ε+mω0 and ω3 = ε+nω0,
where m = 0, 1, ... and n = 0,±1, ... . The third parameter k = 0, 1, ... describes
various contributions is the oscillation frequency during the waiting time t2, ω2 =
kω0. Thus, the amplitude in the rephasing signal will be:

A(m, n, k) = F0m

(
FkmF0,n+kFk,n+k + F0,m+kFm+k−n,mFm+k−n,m+k (B.1)

+ F0,m−kFm−k−n,mFm−k−n,m−k

)

|em±k〉

|g0〉
|em±k〉

〈em|
〈em|
〈gm±k−n|

|gm±k−n〉〈gm±k−n|

|g0〉〈g0|

|en+k〉

|g0〉
|g0〉

〈em|
〈gk |
〈gk |

|g0〉〈g0|

|gk〉〈gk |
(a) Rephasing

|em〉

|em〉
|em〉

〈g0|
〈em±k |
〈gm−n|

|gm−n〉〈gm−n|

|g0〉〈g0|

|en〉

|em〉
|gk〉

〈g0|
〈g0|
〈g0|

|g0〉〈g0|

|g0〉〈g0|

(b) Nonrephasing

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

Fig. B.1. Diagrams for peaks positioned at ω1 = ε + mω0, ω3 = ε + nω0
and oscillating with frequency ω2 = kω0 and corresponding FC factors for each
interaction. Note that all indices cannot be negative. The corresponding diagram
is zero otherwise.
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and the amplitude of the nonrephasing signal:
∼
A(m, n, k) = F0m

(
FkmFknF0,n + F0,m+kFm−n,m+kFm−n,m (B.2)

+ F0,m−kFm−n,m−kFm−n,m

)
.

These amplitudes are related to those, given in Fig. 3.4, as Ap
mn ≡ A(m−1, n−1, 0)

and
∼
A
c
mn ≡

∼
A(m− 1, n− 1, 0). The amplitudes of the four most prominent peaks

are then:

Ap
11 =

∼
A
p
11 = 2e−2s , (B.3)

Ap
22 =

∼
A
p
22 = 2s2e−2s , (B.4)

Ap
21 =

∼
A
p
21 = s

(
s2 − 2s + 2

)
e−2s , (B.5)

Ap
21 =

∼
A
p
21 = se−2s . (B.6)

Amplitudes of the oscillatory contributions in the rephasing spectrum:

Ac
11 = 2s (s − 1) e−2s , (B.7)

Ac
22 = s2√

2
(1− s) (2− s) e−2s , (B.8)

Ac
21 = s

4
√

2
(
8
√

2−
(
8
√

2 + 4
)

s +
(
4
√

2 + 10
)

s2 − 6s3 + s4
)

e−2s , (B.9)

Ac
12 = s

2
√

2
(
s2 − 2s + 2

√
2
)

e−2s , (B.10)

Ac
10 = 1

2s(s2 − 2s + 2)e−2s , (B.11)

Ac
20 = s

(
2s − 2 + 6√

2
s3(s − 3)

)
e−2s . (B.12)

In the nonrephasing spectrum:
∼
A
c
11 = 2se−2s , (B.13)
∼
A
c
22 = s

(3
2s2 − 2s + 2

)
e−2s , (B.14)

∼
A
c
21 = s(s − 1)(1

2s2 − s + 2)e−2s , (B.15)
∼
A
c
12 = s (s − 1) e−2s , (B.16)
∼
A
c
10 = s3/2e−2s , (B.17)
∼
A
c
20 = s3/2(1− s)e−2s . (B.18)



Appendix C

Correlation functions of vibrational
aggregate

In this appendix, expressions of correlation functions characterizing fluctuations in
manifolds of singly- and doubly-excited states are derived, using the system–bath
coupling Hamiltonian definitions given by eqs. (3.30) and (3.31).

Singly-excited eigenstates are obtained by the unitary transformation, and we
get similar symmetry properties as for correlation function in the ground-state
manifold (Eq. (3.35)). We assume, that correlations due to electronic and vibra-
tional diagonal fluctuations are just scaled by some arbitrary constants κe and κv,
respectively,

C0(t) =
∑
mα

z2mα
2ωm
〈x̂α(t)x̂α(0)〉, (C.1)

κeC0(t) = 2
∑
α

wαd2
α〈x̂α(t)x̂α(0)〉, (C.2)

κvC0(t) =
∑
mα

zmαdα
√wα

ωm
〈x̂α(t)x̂α(0)〉. (C.3)

Since coupling to the surroundings is identical for each molecule, dmm,α was set
to dα here. The correlation function for the eigenstates can be written as

C (ee)
p1p2,p3p4(t) = C0(t)

N∑
m,n

∑
i,j

∑
k,l

N∑
a
ψm∗

p1,iψ
m
p2,jψ

n∗
p3,kψ

n
p4,l

×
{
〈ia, ja〉〈ka, la〉

∏
s

s 6=a

δis jsδks ls + κv 〈ia, ja〉
∏

s
s 6=a

δis jsδkl

+ κv 〈ka, la〉
∏

s
s 6=a

δks lsδij + κeδijδkl

}
. (C.4)

Here the first sum is over different chromophores, the second and third sum is
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over the vibrational levels of the whole aggregate and finally the sum over a is
over the different vibrational modes (which is identical to the number of sites
since each site has one vibrational coordinate). We then get the following result:

C (ee)
p1p2,p3p4(t) = C0(t)

∑
i,k

N∑
s

{√
isksξ

p1p2
i−s

ξp3p4
k−s

+
√

(is + 1)ksξ
p1p2
i+s

ξp3p4
k−s

(C.5)

+
√

is(ks + 1)ξp1p2
i−s

ξp3p4
k+

s
+
√

(is + 1)(ks + 1)ξp1p2
i+s

ξp3p4
k+

s

+ κeξ
p1p2
i ξp3p4

k + κvξ
p3p4
k

[√
isξp1p2

i−s
+
√

is + 1ξp1p2
i+s

]
+ κvξ

p1p2
i

[√
ksξ

p3p4
k−s

+
√

ks + 1ξp3p4
k+

s

] }

Here
ξpapb

i±s
=

N∑
n
ψn∗

pa,iψ
n
pb ,i±s (C.6)

and

ξpapb
i =

N∑
n
ψn∗

pa,iψ
n
pb ,i. (C.7)

For the functions involving the double excitations we can write similarly:

C (ef)
p1p2,r1r2(t) = C0(t)

N∑
s

{√
isksξ

p1p2
i−s

Ξ r1r2
k−s

+
√

(is + 1)ksξ
p1p2
i+s

Ξ r1r2
k−s

(C.8)

+
√

is(ks + 1)ξp1p2
i−s

Ξ r1r2
k+

s
+
√

(is + 1)(ks + 1)ξp1p2
i+s

Ξ r1r2
k+

s

+ 2κeξp1p2
i Ξ r1r2

k + 2κvΞ r1r2
k

[√
isξp1p2

i−s
+
√

is + 1ξp1p2
i+s

]
+ κvξ

p1p2
i

[√
ksΞ

r1r2
k−s

+
√

ks + 1Ξ r1r2
k+

s

] }

and

C (ff)
r1r2,r3r4(t) = C0(t)

N∑
s

{√
isksΞ

r1r2
i−s

Ξ r3r4
k−s

+
√

(is + 1)ksΞ
r1r2
i+s

Ξ r3r4
k−s

(C.9)

+
√

is(ks + 1)Ξ r1r2
i−s

Ξ r3r4
k+

s
+
√

(is + 1)(ks + 1)Ξ r1r2
i+s

Ξ r3r4
k+

s

+ 4κeΞ r1r2
i Ξ r3r4

k + 2κvΞ r1r2
i

[√
ksΞ

r3r4
k−s

+
√

ks + 1Ξ r3r4
i+s

]
+ 2κvΞ r3r4

i

[√
isΞ r1r2

i−s
+
√

is + 1Ξ r1r2
i+s

] }

where
Ξ r1r2

i±s
=

N∑
m,n

m>n

Ψ
(mn)∗
r1,i Ψ

(mn)
r2,i±s

(C.10)

and
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Ξ r1r2
i =

N∑
m,n

m>n

Ψ
(mn)∗
r1,i Ψ

(mn)
r2,i . (C.11)

The lineshape broadening coefficients hep1ep2 ,ep3ep4
, hep1ep2 ,fr1 fr2 and hfr1 fr2 ,fr3 fr4 ,

according to the definition in Sec. 3.2.1, are then just the time-independent parts
(sums) on the right hand-sides of eqs. (C.5),(C.8) and (C.9), respectively. They
are used in calculations of transfer rates within the singly-excited state manifold
(Eq. (3.2.1)) and lineshape functions for the response functions (see Appendix D).
Values of κe = κv = 0 were used in calculations.



Appendix D

Response functions of vibrational
aggregate

We consider the photon echo signals of the 2D electronic spectroscopy in the
impulsive limit. The expressions of the system response function here are pre-
sented by following the notation used in Fig. 3.6. The expressions for the re-
sponse involve the spectral lineshape functions gab(t) ≡ haa,bbg0(t). These
are given by the linear integral transformation of the bath correlation functions,
g0(t) =

´ t
0 dt ′

´ t ′
0 dt ′′ 〈C0(t ′′)C0(0)〉.69,70 The response functions of the photon

echo (rephasing) signal when transport is ignored are then

SGSB(t1, t2, t3) = i3θ(t1)θ(t2)θ(t3)
∑
ij

∑
p1p2

pgi(δi,jGgigi(t2) + ζi,j) (D.1)

×
〈
µgiep1

µep1gjµgjep2
µep2gi

〉
eiξep1 git1−iξgigjt2−iξep2 gjt3

× eφep1 gjep2 gi(0,t1,t1+t2+t3,t1+t2),

SSE(t1, t2, t3) = i3θ(t1)θ(t2)θ(t3)
∑
ij

∑
p1p2

pgi(δp1p2Gep1ep2
(t2) + ζp1p2) (D.2)

×
〈
µgiep1

µgiep2
µep2gjµep2gj

〉
eiξep1 git1−iξep2 ep1 t2−iξep1 gjt3

× eφep1 gjep2 gi(0,t1+t2,t1+t2+t3,t1)

and

SESA(t1, t2, t3) = −i3θ(t1)θ(t2)θ(t3)
∑

i

∑
p1p2

∑
r

pgi(δp1p2Gep1ep1
(t2) + ζp1p2) (D.3)

×
〈
µgiep1

µgiep2
µep2 fr µfrep1

〉
eiξep1 git1−iξep2 ep1 t2−iξfr ep1 t3

× eφep1 fr ep2 gi(0,t1+t2+t3,t1+t2,t1).
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Here, the complex variable ξab = ωab − i12(γa + γb) is used to take into account
the state dephasing due to finite lifetime, γa = 1

2
∑

a′ 6=a kaa′. pgi is the Boltzmann
probability for the system to be in the i-th vibrational state prior the excitation.
Angular brackets 〈...〉 denote orientationally averaged transition dipole moment
products; the random orientation of the whole complex with respect to the incident
field is assumed. The auxiliary function is

φep1cep2gi(τ4, τ3, τ2, τ1) = −gep1ep1
(τ43)− gcc(τ32)− gep2ep2(τ21) (D.4)

+ gep1c(τ32) + gep1c(τ43)− gep1c(τ42)− gep1ep2
(τ32) + gep1ep2

(τ31) + gep1ep2
(τ42)

− gep1ep2
(τ41) + gcep2

(τ21) + gcep2
(τ32)− gcep2

(τ31)
− gcgi(τ21) + gcgi(τ24) + gcgi(τ31)− gcgi(τ34),

where c stands for either doubly-excited state fr , or ground state gj. Response
function components with transport are

SGSB′(t1, t2, t3) = i3θ(t1)θ(t2)θ(t3)
∑
ij

∑
p1p2

pgiζijGgjgi(t2) (D.5)

×
〈
µgiµep1giµgjep2

µep2gj

〉
eiξep1 git1−iξep2 gjt3+ϕ∗ep2 gjep2 ep1 (t),

SSE′(t1, t2, t3) = i3θ(t1)θ(t2)θ(t3)
∑
ij

∑
p1p2

pgiζp1p2Gep2ep1
(t2) (D.6)

×
〈
µgiep1

µgiep1
µep2gjµep2gj

〉
eiξep1 git1−iξep2 gjt3+ϕ∗ep2 gjep2 ep1 (t),

and

SESA′(t1, t2, t3) = −i3θ(t1)θ(t2)θ(t3)
∑

i

∑
p1p2

∑
r

pgiζp1p2Gep2ep1
(t2) (D.7)

×
〈
µgiep1

µgiep1
µep2 fr µfrep2

〉
eiξep1 git1−iξfr ep2 t3+ϕ∗fr ep2 ep2 ep1

(t).

Here

ϕcbep2ep1
(t1, t2, t3) = −gep1ep1

(t1)− gbb(t3)− g∗cc(t3) (D.8)
− gbep1

(t1 + t2 + t3) + gbep1
(t1 + t2) + gbep1

(t2 + t3)
− gbep1

(t2) + gcep1
(t1 + t2 + t3)− gcep1

(t1 + t2)
− gcep1

(t2 + t3) + gcep1
(t2) + gcb(t3) + g∗bc(t3)

+ 2iIm[gcep2
(t2 + t3)− gcep2

(t2)− gcep2
(t3)

+ gbep2
(t2)− gbep2

(t2 + t3) + gbep2
(t3).
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