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Abstract. A bacterial self-organization in a rounded container as detected by bioluminescence
imaging is mathematically modeled by applying the the Keller–Segel approach with logistic
growth. The pattern formation in a colony of luminous Escherichia coli is numerically simulated
by the nonlinear reaction-advection-diffusion equations. In this work, the pattern formation is
studied in 3D and the results are compared with previous and new 2D and 1D simulations. The
numerical simulation at transition conditions was carried out using the finite difference technique.
The simulation results showed that the developed 3D model captures fairly well the sophisticated
patterns observed in the experiments. Since the numerical simulation based on the 3D model is very
time-consuming, the reduction of spatial dimension of the model for simulating 1D spatiotemporal
patterns is discussed. Due to the accumulation of luminous cells near the top three-phase contact
line the experimental patterns of the bioluminescence can be qualitatively described by 1D and 2D
models by adjusting values of the diffusion coefficient and/or chemotactic sensitivity.
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1 Introduction

Bacterial growth and movement in confined suspensions often results in the emergence of
millimeter-scale patterns, mainly near the contact lines and surfaces [4, 5, 6, 34, 39]. The
interaction of several active processes in the living suspensions leads to very complex
dynamic systems which are still poorly understood [7, 41].

Chemotaxis, as the direct movement of cells along the gradient of certain chemicals in
their environment, is one of the main phenomenon determining the pattern formation [11].
A vast amount of research, both experimental and theoretical, has been devoted to under-
standing the chemotaxis, and the analysis of pattern formation in chemotactic systems is
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in full swing [7, 14]. Since the pioneering work by Keller and Segel [21] mathematical
modeling plays a crucial role in understanding the mechanism of chemotaxis [13]. Quite
a number of mathematical models based on reaction-advection-diffusion equations has
been developed for modeling the pattern formation in bacterial colonies [7, 9, 20, 23, 27,
28, 29, 33, 36, 44]. However, the system introduced by Keller and Segel remains among
the most widely used [8, 10, 13, 16, 22, 25, 26].

According to the Keller and Segel approach, the dynamics of the bacteria, chemoat-
tractant and nutrient (stimulant) are modeled mathematically and give rise to a system of
nonlinear partial differential equations [6,21]. Assuming that the liquid medium contains
sufficient nutrient for the cells (or organism), two governing equations are mostly used
to describe the dynamics of the cell density and concentration of the chemical signal
(chemoattractant) under quasi-steady-state assumption [14, 26, 35, 37]. The growth and
death of cells is often ignored assuming the short time course of liquid experiments [13,
16, 36].

The process of the bacterial self-organization is usually observed from different point
of view [12]. Colonial patterns of E. coli on semi-solid agar surfaces has been studied
extensively by microbiologists and physicists [44]. A quasi two-dimensional suspension
of the swimming bacteria in a thin chamber of water has been studied experimentally
and numerically [8, 15]. The dynamics of E. coli cultures was investigated by capturing
bioluminescence images observed in circular polystyrene microtiter plate wells and glass
containers [39, 42]. In most cases, the investigations are restricted to one (1D) or two
(2D) dimensions in space, where only stripes and spots are concerned. Recently, three-
dimensional (3D) aggregation patterns based on the volume-filling Keller–Segel model
have been studied numerically, and new patterns called P-surfaces, perforated lamellar,
completely specific to 3D have been obtained [31]. The 3D simulation was also applied
to investigate the activity-induced phase separation in concentrated suspensions of active
particles, and important differences between the 2D and 3D cases were found [32].

Computational modeling was also applied to investigate the bacterial self-organization
in small rounded containers near the three-phase contact line as detected by quasi-one-
dimensional bioluminescence imaging [2, 40]. The spatiotemporal patterns in the fluid
cultures of luminous E. coli were numerically simulated on the basis of a 1D mathe-
matical model of chemotaxis taking into consideration the cell growth and death. Then,
the mathematical model was extended to a 2D model for simulating the bacterial self-
organization on the inner top surface as well as on the inner lateral surface of a circular
glass test-tube [3, 41]. Although the dynamics of the nutrient (succinate) is often ignored
when modeling the bacterial self-organization [10,13,26,35], the simulation of the pattern
formation of the cultures of luminous E. coli near the lateral surface showed that the
dynamics of the nutrient (oxygen) should be considered in addition to the bacteria and
chemoattractant [41].

The aim of this work was to generalize the known mathematical models of the bacte-
rial self-organization to a 3D model to be used for simulating spatiotemporal patterns in
the fluid cultures of luminous E. coli in a rounded container. The numerical simulation
at the transient conditions was carried out using the finite difference technique [30]. The
mathematical model and the numerical solution were validated by experimental data [39,
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42]. The numerical simulation showed that the developed model captures fairly well the
sophisticated patterns observed in the experiments.

Since the simulation based on 3D model is very time-consuming, therefore reducing
spatial dimensionality in a model for simulating 1D and 2D spatiotemporal patterns was
investigated. The patterns simulated by models of different dimensionality were compared
with each other and with the experimental patterns. Due to the accumulation of luminous
cells near the top three-phase contact line the experimental patterns of the biolumines-
cence were qualitatively simulated using 1D and 2D models by adjusting values of the
diffusion coefficient and/or chemotactic sensitivity.

2 Mathematical modeling

We model the spatiotemporal pattern formation in the fluid cultures of luminous E. coli
placed in a rounded glass container. Assuming the direct proportionality between the
bioluminescence and the number of active cells the bacterial self-organization can be
modeled by the dynamics of the density of bioluminescent cells [40].

The container is modeled by a right circular cylinder. Figure 1 shows the principal
structure of the rounded container, where r and h are the base radius and the height of the
cylinder, respectively. For simplicity, it was assumed that the fluid fills the container.

ρ

z

φ

h

r

Fig. 1. Principal structure of the rounded container.

2.1 Governing equations

Translating the main biological processes into a mathematical model leads to a system of
three conservation equations [6, 35, 37]

∂n

∂t
= Dn∆n−∇

(
fs(n, c)n∇c

)
+ fg(n, s),

∂c

∂t
= Dc∆c+ gp(n, c)n− gd(n, c)c,

∂s

∂t
= Ds∆s− h(n, s), x ∈ Ω ⊂ Rn, t > 0,

(1)
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where ∆ is the Laplace operator, x and t stand for space and time, n(x, t) denotes the cell
density, c(x, t) is the chemoattractant concentration, s(x, t) is the concentration of a nutri-
ent (succinate, stimulant), Dn, Dc and Ds are the diffusion coefficients usually assumed
to be constant, fg(n, s) stands for cell growth and death, fs(n, c) denotes the chemotactic
sensitivity, gp and gd stand for the production and degradation of the chemoattractant,
respectively, and h(n, s) stands for the nutrient consumption.

Recently, it was shown that the sensitivity of cells to attractant can be successfully
assumed to be independent of the chemoattractant concentration when modeling the bac-
terial self-organization in a rounded container along the contact line as detected by biolu-
minescence imaging [2], i.e. fs(n, c) can be constant, fs(n, c) = k1.

The cell growth is usually assumed to be logistic, i.e. fg(n, c) = k2n(1−n/k), where
k2 is the growth rate of the cell population, and k is the cell density under steady-state
conditions or the carrying capacity [10, 13, 14, 26, 27]. Although k2 and k are often
assumed to be constant, in this work we assume a more general case by modeling k
as a linear function of the nutrient concentration, i.e. k = k3s. The linear dependence
between carrying capacity and limited resources was also explored, for example, in certain
population growth models [17, 19].

A number of chemoattractant production functions have been used in chemotactic
models [13]. Usually, a saturating function of the cell density is used indicating that,
as the cell density increases, the chemoattractant production decreases. The Michaelis–
Menten function is widely used to express the chemoattractant production, gp(n, c) = k4/
(k5 + n) [21,23,25]. The degradation or consumption of the chemoattractant is typically
linear, gd(n, c) = k6, where k6 is a constant [13].

Consumption h(n, s) of the nutrient was assumed to be directly proportional to the
population density, h(n, s) = k7n. Similar approach was used in investigating the rate of
dissolved oxygen consumption by different viable cells in a bioreactor [18], as well as in
certain population growth models [17, 19].

Inserting the concrete expressions of fs, fg , gp, gd and h to system (1) leads to the
following governing equations of the population kinetics model:

∂n

∂t
= Dn∆n−∇(k1n∇c) + k2n

(
1− n

k3s

)
,

∂c

∂t
= Dc∆c+

k4n

k5 + n
− k6c,

∂s

∂t
= Ds∆s− k7n, x ∈ Ω, t > 0,

(2)

where k1 is the chemotactic sensitivity, k2 is the growth rate of the cell population, k3
stands for the cell density under steady-state conditions, k4 and k5 stand for saturating
chemoattractant production, k6 and k7 are the consumption rates of the chemoattractant
and the nutrient, respectively, the other notations are the same as in model (1). All the
parameters are assumed to be constant and positive.

Assuming the rounded container as a right circular cylinder, the mathematical model
of the bacterial self-organization in the container (domainΩ) can be defined in cylindrical
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coordinates,
x = (ρ, ϕ, z),

Ω = (0, r)× (0, 2π)× (0, h),

∆F =
1

ρ

∂

∂ρ

(
ρ
∂F

∂ρ

)
+

1

ρ2
∂2F

∂ϕ2
+
∂2F

∂z2
,

(3)

where r and h are the base radius and the height of the cylinder Ω as shown in Fig. 1.

2.2 Initial and boundary conditions

We assume a possibly non-uniform initial (at t = 0) distribution of cells, chemoattractant
and nutrient,

n(ρ, ϕ, z, 0) = n0x(ρ, ϕ, z), c(ρ, ϕ, z, 0) = c0x(ρ, ϕ, z),

s(ρ, ϕ, z, 0) = s0x(ρ, ϕ, z), (ρ, ϕ, z) ∈ [0, r]× [0, 2π)× [0, h],
(4)

where n0x(ρ, ϕ, z), c0x(ρ, ϕ, z) and s0x(ρ, ϕ, z) stand for the initial (t = 0) cell density,
chemoattractant and nutrient concentrations, respectively.

The no-leak boundary conditions (t > 0) are applied on the base of the glass vessel,

Dn
∂n

∂z

∣∣∣∣
z=0

= 0, Dc
∂c

∂z

∣∣∣∣
z=0

= 0, Ds
∂s

∂z

∣∣∣∣
z=0

= 0, (ρ, ϕ) ∈ [0, r]× [0, 2π). (5)

At the top surface the fluid contacts with the atmosphere containing a nutrient, e.g.
oxygen. We assume a constant concentration of nutrient at that surface, while no-leak
conditions for the cells as well as for the chemoattractant,

Dn
∂n

∂z

∣∣∣∣
z=h

= 0, Dc
∂c

∂z

∣∣∣∣
z=h

= 0, s(ρ, ϕ, h, t) = s0, (ρ, ϕ) ∈ [0, r]× [0, 2π).

(6)
Due to the continuity in the azimuth direction of the vessel, the periodicity conditions

are used in ϕ direction (t > 0),

n(ρ, 0, z, t) = n(ρ, 2π, z, t), c(ρ, 0, z, t) = c(ρ, 2π, z, t),

s(ρ, 0, z, t) = s(ρ, 2π, z, t),

Dn
∂n

∂ϕ

∣∣∣∣
ϕ=0

= Dn
∂n

∂ϕ

∣∣∣∣
ϕ=2π

, Dc
∂c

∂ϕ

∣∣∣∣
ϕ=0

= Dc
∂c

∂ϕ

∣∣∣∣
ϕ=2π

,

Ds
∂s

∂ϕ

∣∣∣∣
ϕ=0

= Ds
∂s

∂ϕ

∣∣∣∣
ϕ=2π

, (ρ, z) ∈ [0, r]× [0, h].

(7)

The non-permeability of the lateral surface of the tube leads to the following boundary
conditions:

Dn
∂n

∂ρ

∣∣∣∣
ρ=0

= Dn
∂n

∂ρ

∣∣∣∣
ρ=r

= 0, Dc
∂c

∂ρ

∣∣∣∣
ρ=0

= Dc
∂c

∂ρ

∣∣∣∣
ρ=r

= 0,

Ds
∂s

∂ρ

∣∣∣∣
ρ=0

= Ds
∂s

∂ρ

∣∣∣∣
ρ=r

= 0, (ϕ, z) ∈ [0, 2π)× [0, h].

(8)
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2.3 Dimensionless model

In order to define the main governing parameters of the mathematical model (2), (4)–(8),
a dimensionless mathematical model has to be derived [13, 24, 25].

A dimensionless model can be derived by setting

u =
n

n0
, v =

k5k6c

k4n0
, w =

k3s

n0
,

t∗ = k6t, ρ∗ =

√
k6
Dc

ρ, ϕ∗ = ϕ, z∗ =

√
k6
Dc

z,

Du =
Dn

Dc
, Dw =

Ds

Dc
, χ =

k1k4n0
k5k6Dc

, α =
k2
k6
, β =

n0
k5
, γ =

k7k3
k6

,

(9)

where n0 is the cell density under steady state conditions. When modeling the carrying
capacity by a linear function of the nutrient concentration (k3s), the cell density under
steady state conditions is directly proportional to the concentration s0 of the nutrient near
the top surface, n0 = k3s0.

Dropping the asterisks, the dimensionless governing equations then become

∂u

∂t
= Du∆u− χ∇(u∇v) + αu

(
1− u

w

)
,

∂v

∂t
= ∆v +

u

1 + βu
− v,

∂w

∂t
= Dw∆w − γu, (ρ, ϕ, z) ∈ (0, R)× (0, 2π)× (0, H), t > 0.

(10)

where u is the dimensionless cell density, v is the dimensionless chemoattractant con-
centration, w is the dimensionless concentration of the nutrient, α is the dimensionless
growth rate of the cell population, β stands for saturating of the signal production, γ is
dimensionless consumption rate of the nutrient,R andH are the relative radius and height
of the cylinder, R = r

√
k6/Dc, H = h

√
k6/Dc.

The initial conditions (4) take the following dimensionless form:

u(ρ, ϕ, z, 0) = u0x(ρ, ϕ, z), v(ρ, ϕ, z, 0) = v0x(ρ, ϕ, z),

w(ρ, ϕ, z, 0) = w0x(ρ, ϕ, z), (ρ, ϕ, z) ∈ [0, R]× [0, 2π)× [0, H],
(11)

where u0x(ρ, ϕ, z) = n0x(ρ, ϕ, z)/n0, v0x(ρ, ϕ, z) = k5k6c0x(ρ, ϕ, z)/(k4n0) and
w0x(ρ, ϕ, z) = k3s0x(ρ, ϕ, z)/n0.

The boundary conditions (5)–(8) transform to the following dimensionless equations
(t > 0):

Du
∂u

∂z

∣∣∣∣
z=0

= 0,
∂v

∂z

∣∣∣∣
z=0

= 0, Dw
∂w

∂z

∣∣∣∣
z=0

= 0,

(ρ, ϕ) ∈ [0, R]× [0, 2π),

(12)

Du
∂u

∂z

∣∣∣∣
z=H

= 0,
∂v

∂z

∣∣∣∣
z=H

= 0, w(ρ, ϕ,H, t) = w0,

(ρ, ϕ) ∈ [0, R]× [0, 2π),

(13)
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u(ρ, 0, z, t) = u(ρ, 2π, z, t), v(ρ, 0, z, t) = v(ρ, 2π, z, t),

w(ρ, 0, z, t) = w(ρ, 2π, z, t),

Du
∂u

∂ϕ

∣∣∣∣
ϕ=0

= Du
∂u

∂ϕ

∣∣∣∣
ϕ=2π

,
∂v

∂ϕ

∣∣∣∣
ϕ=0

=
∂v

∂ϕ

∣∣∣∣
ϕ=2π

,

Dw
∂w

∂ϕ

∣∣∣∣
ϕ=0

= Dw
∂w

∂ϕ

∣∣∣∣
ϕ=2π

, (ρ, z) ∈ [0, R]× [0, H],

(14)

Du
∂u

∂ρ

∣∣∣∣
ρ=0

= Du
∂u

∂ρ

∣∣∣∣
ρ=R

= 0,
∂v

∂ρ

∣∣∣∣
ρ=0

=
∂v

∂ρ

∣∣∣∣
ρ=R

= 0,

Dw
∂w

∂ρ

∣∣∣∣
ρ=0

= Dw
∂w

∂ρ

∣∣∣∣
ρ=R

= 0, (ϕ, z) ∈ [0, 2π)× [0, H].

(15)

2.4 Population dynamics near the top surface

The bacterial self-organization near the inner top surface of a rounded container can be
modeled by applying the common 3D mathematical model (2), (4)–(8) as well as the
corresponding dimensionless model (10)–(15). However, transient computational simula-
tions based on 3D mathematical models are extremely time and resource consuming. The
dimension reduction is a widely used approach for increasing efficiency of the numerical
simulation [33].

When modeling the bacterial self-organization near the top surface of a right circular
container, the mathematical model can be defined in the polar coordinates on a 2D do-
main - a circle [3]. Due to a constant concentration of the nutrient near the top surface
(s(ρ, ϕ, h, t) = s0 and w(ρ, ϕ,H, t) = w0), the dynamics of the nutrient concentration
can be ignored.

Due to modeling the carrying capacity by a linear function of the nutrient concen-
tration (k3s in (2)) and the assumption n0 = k3s0, the term k2n(1 − n/(k3s)) of the
logistic cell growth reduces to k2n(1 − n/n0), while the corresponding dimensionless
term αu(1− u/w) approaches αu(1− u). The dynamics of the bacterial population near
the top surface of a right circular container can be described by the following governing
equations formulated in polar coordinates:

∂u

∂t
= Du∆u− χ∇(u∇v) + αu(1− u),

∂v

∂t
= ∆v +

u

1 + βu
− v, (ρ, ϕ) ∈ (0, R)× (0, 2π), t > 0,

(16)

where ∆ is the Laplace operator in the polar coordinates ρ and ϕ, u and v are functions
of two parameters ρ and ϕ.

The initial conditions (11) take the following form:

u(ρ, ϕ, 0) = u0x(ρ, ϕ), v(ρ, ϕ, 0) = v0x(ρ, ϕ), (ρ, ϕ) ∈ [0, R]× [0, 2π). (17)
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The boundary conditions (12)–(15) reduce to the following equations (t > 0):

u(ρ, 0, t) = u(ρ, 2π, t), v(ρ, 0, t) = v(ρ, 2π, t),

Du
∂u

∂ϕ

∣∣∣∣
ϕ=0

= Du
∂u

∂ϕ

∣∣∣∣
ϕ=2π

,
∂v

∂ϕ

∣∣∣∣
ϕ=0

=
∂v

∂ϕ

∣∣∣∣
ϕ=2π

, ρ ∈ [0, R],
(18)

Du
∂u

∂ρ

∣∣∣∣
ρ=0

= Du
∂u

∂ρ

∣∣∣∣
ρ=R

= 0,
∂v

∂ρ

∣∣∣∣
ρ=0

=
∂v

∂ρ

∣∣∣∣
ρ=R

= 0, ϕ ∈ [0, 2π). (19)

2.5 Population dynamics near the three phase contact line

When observing patterns of inhomogeneous bioluminescence in small cylindrical con-
tainers made of glass and polystyrene, the bioluminescence images of bacterial cultures
showed an accumulation of luminous bacteria near the three-phase contact line [39, 42].
The bacterial self-organization in a circular container along the contact line was mathe-
matically described on a 1D domain – the circumference of the top surface and numeri-
cally investigated [2, 40].

The dynamics of the bacterial population near the three phase contact line can be
modeled also by applying the common 3D mathematical model (10)–(15) (accepting ρ =
R, z = H) as well as 2D mathematical model (16)–(19) (accepting ρ = R). However,
the dimension of these model could be reduce to one.

When investigating the population dynamics near the three phase contact line, the
radial transport of cells and chemoattractant can be ignored because of the zero flux
conditions at the three phase contact line (ρ = R in model (10)–(15)).

The dynamics of the bacterial population near the circumference of the top surface
of right circular cylinder can be approximated by the following governing equations
formulated in one polar coordinate ϕ,

∂u

∂t
= Du

1

R2

∂2u

∂ϕ2
− χ 1

R2

∂

∂ϕ

(
u
∂v

∂ϕ

)
+ αu (1− u) ,

∂v

∂t
=

1

R2

∂2v

∂ϕ2
+

u

1 + βu
− v, ϕ ∈ (0, 2π), t > 0,

(20)

where u and v are functions of one parameter ϕ.
The initial conditions (17) reduce to the following equations:

u(ϕ, 0) = u0x(ϕ), v(ϕ, 0) = v0x(ϕ), ϕ ∈ [0, 2π). (21)

The boundary conditions take the following form (t > 0):

u(0, t) = u(2π, t), v(0, t) = v(2π, t),

Du
∂u

∂ϕ

∣∣∣∣
ϕ=0

= Du
∂u

∂ϕ

∣∣∣∣
ϕ=2π

,
∂v

∂ϕ

∣∣∣∣
ϕ=0

=
∂v

∂ϕ

∣∣∣∣
ϕ=2π

.
(22)
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When modeling the bacterial self-organization in a quasi-one dimensional ring, using
the longitudinal analysis is often more reasonable than the azimuth one [2,40,42]. The 1D
mathematical model (20)–(22) can be reformulated by replacing the azimuth parameter ϕ
with the longitudinal parameter x by applying x = ϕR,

∂u

∂t
= Du

∂2u

∂x2
− χ ∂

∂x

(
u
∂v

∂x

)
+ αu(1− u),

∂v

∂t
=
∂2v

∂x2
+

u

1 + βu
− v, x ∈ (0, L), t > 0,

(23)

where u and v are functions of one parameter x. L is the dimensionless length of the
contact line, i.e. the circumference of the vessel (a circle), L = 2πR = 2πr

√
k6/Dc,

where r is dimensional radius of the base of the cylinder as shown in Fig. 1.
The initial (21) and the boundary (22) conditions take the following form:

u(x, 0) = u0x(x), v(x, 0) = v0x(x), x ∈ [0, L), (24)

u(0, t) = u(L, t), v(0, t) = v(L, t),

Du
∂u

∂x

∣∣∣∣
x=0

= Du
∂u

∂x

∣∣∣∣
x=L

,
∂v

∂x

∣∣∣∣
x=0

=
∂v

∂x

∣∣∣∣
x=L

, t > 0.
(25)

The mathematical model (23)–(25) has been successfully used to study the bacterial
self-organization of luminous E. coli along the contact line of the circular container as
detected by bioluminescence imaging [2, 38, 40]. Here this model was derived as a very
special case of the common 3D mathematical model (10)–(15).

2.6 Population dynamics near the lateral surface

Recently, the bacterial self-organization in a circular glass test-tube near the inner lateral
surface of the vessel was mathematically described in a 2D domain and numerically
investigated [41]. Simulated populations of luminous E. coli formed bamboo foam-like
structures similar to the experimentally observed structures near the inner lateral surface
of the vessel [41].

The dynamics of the bacterial population near the lateral surface can be modeled also
by applying the common 3D mathematical model (10)–(15) (accepting ρ = R). The
radial transport of cells u, chemoattractant v and nutrient w can be ignored because of the
zero flux condition for u, v and w at the lateral surface (ρ = R in model (10)–(15)).

The dynamics of the bacterial population near the lateral surface of a right circular
cylinder can be approximately described by equations (10)–(14) by replacing parameter
ρ with a constant R and assuming functions u, v and w as of only two parameters ϕ
and z. Since the lateral surface of a right circular cylinder is a rectangle, the corresponding
mathematical model could be defined in the Cartesian coordinates system.

The mathematical model (10)–(14) defined in a 2D domain [0, 2π) × [0, H] can be
transformed into a model defined in Cartesian system in a domain [0, L] × [0, H] by
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replacing the azimuth parameter ϕ with the longitudinal parameter x, x = Rϕ and
keeping the height parameter h unchanged.

The bacterial self-organization near the lateral surface can be defined in Cartesian
system in the same manner as (10) only adjusting the domain and the Laplace operator,

∂u

∂t
= Du

(
∂2u

∂x2
+
∂2u

∂z2

)
− χ

(
∂

∂x

(
u
∂v

∂x

)
+

∂

∂z

(
u
∂v

∂z

))
+ αu

(
1− u

w

)
,

∂v

∂t
=
∂2v

∂x2
+
∂2v

∂z2
+

(
u

1 + βu
− v
)
,

∂w

∂t
= Dw

(
∂2w

∂x2
+
∂2w

∂z2

)
− γu, (x, z) ∈ (0, L)× (0, H), t > 0.

(26)

where u, v and w are functions of two parameters x and z, L is the dimensionless
circumference of the cylinder base, and H is dimensionless height of the cylinder, L =
2πR = 2πr

√
k6/Dc, H = h

√
k6/Dc.

The initial conditions (11) take the following form (t = 0):

u(x, z, 0) = u0x(x, z), v(x, z, 0) = v0x(x, z),

w(x, z, 0) = w0x(x, z), (x, z) ∈ [0, L]× [0, H].
(27)

The boundary conditions (12)–(14) transform to the following conditions (t > 0):

Du
∂u

∂z

∣∣∣∣
z=0

= 0,
∂v

∂z

∣∣∣∣
z=0

= 0, Dw
∂w

∂z

∣∣∣∣
z=0

= 0, x ∈ [0, L], (28)

Du
∂u

∂z

∣∣∣∣
z=H

= 0,
∂v

∂z

∣∣∣∣
z=H

= 0, w(x,H, t) = w0, x ∈ [0, L], (29)

u(0, z, t) = u(L, z, t), v(0, z, t) = v(L, z, t),

w(0, z, t) = w(L, z, t),

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

,
∂v

∂x

∣∣∣∣
x=0

=
∂v

∂x

∣∣∣∣
x=L

,

∂w

∂x

∣∣∣∣
x=0

=
∂w

∂x

∣∣∣∣
x=L

, z ∈ [0, H].

(30)

The 2D mathematical model (26)–(30) has been already applied to investigate the
bacterial self-organization of luminous E. coli near the lateral surface of the circular
test-tube as detected by bioluminescence imaging [41]. Here it was showed that the 2D
model (26)–(30) is a special case of the common 3D mathematical model (10)–(15).

3 Numerical simulation

The above described mathematical model as well as corresponding dimensionless models
were defined as the initial boundary value problems based on a system of nonlinear partial
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differential equations. Because of the nonlinearity of the problem, no exact analytical
solutions could be derived in the general case [24,29,37]. Hence the numerical simulation
of the bacterial self-organization was used.

There were four special cases analysed: the 3D model (10)–(15); the two-dimensional-
in-space of the top surface (2D polar) model (16)–(19); the one-dimensional-in-space of
the top contact line (1D) model (23)–(25); and the two-dimensional-in-space of the lateral
surface (2D Cartesian) model (26)–(30).

The functions used for the 3D model initial conditions were:

u0x(ρ, ϕ, z) = 1 + 0.2 sin

(
ϕ ∗ 11

2

)
ρ

R
, v0x(ρ, ϕ, z) = 0,

w0x(ρ, ϕ, z) = 1, (ρ, ϕ, z) ∈ [0, R]× [0, 2π)× [0, H],

(31)

and same were adapted for the 2D and 1D models as well.
The numerical simulations were carried out using the finite difference technique [30].

To find a numerical solution of the problem a uniform discrete grid 40 × 224 × 80 was
introduced in space directions and the constant dimensionless step size 0.00005 was also
used in the time direction. These values were used for all four cases analysed accordingly
for the existing dimensions. The simulations have been checked with a variety of space
and time discretizations, and verified that the obtained patterns shown below are almost
independent of the space and time steps. An explicit finite difference scheme has been
built as a result of the difference approximation [30]. The digital simulator has been
programmed by the authors in Free Pascal language.

To simulate spatiotemporal patterns of the quasi-one-dimensional cell density
u1D−2D,ϕ in a vessel near the three-phase contact line by applying the 2D polar model
(16)–(19), the density u of cells was integrated over the thin ring close to the outer
boundary of the thickness δ and then averaged,

u1D−2D,ρ(ϕ, t) =
2

1− (1− δ)2

1∫
1−δ

u(ρ, ϕ, t)ρ dρ, ϕ ∈ [0, 2π], t ∈ [0, T ]. (32)

Similarly, when applying 2D Cartesian model (26)–(30), the density u of cells was
integrated over the whole depth and then averaged,

u1D−2D,z(x, t) =
1

H

H∫
0

u(x, z, t) dz, x ∈ [0, L], t ∈ [0, T ]. (33)

When applying 3D model (10)–(15), the density u of cells was integrated over the
whole depth over the thin ring close to the lateral surface and then averaged,

u1D−3D(ϕ, t) =
1

H

H∫
0

(
2

1− (1− δ)2

1∫
1−δ

u(ρ, ϕ, z, t)ρdρ

)
dz,

ϕ ∈ [0, 2π], t ∈ [0, T ].

(34)
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4 Results and discussion

Figure 2 shows the spatiotemporal patterns of the quasi-one-dimensional cell density
simulated by four versions of the model, while Fig. 3 – a visualization of arbitrary frames
of cell density when simulating in 3D at the following values of the model parameters:

Du = 0.1, Dw = 0.2, χ = 8.3, α = 1, β = 0.73,

γ = 0.025, R = 5, H = 10, δ = 0.075, T = 400.
(35)

One can see in Fig. 3 that the cell density u inside the rounded container forms foam-
like structures similar to the experimentally observed structures [41,42]. In the initial stage
of the population evolution, the cells are non-uniformly distributed in entire container,
while later the population concentrates near the top surface were the oxygen concentrates.
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Fig. 2. Spatiotemporal plots of the dimensionless cell density u for four analysed cases: 1D model (a), 2D
Cartesian model (b), 2D polar model (c) and 3D model (d). Values of the parameters are as defined in (35).

Fig. 3. Visualization of arbitrary frames at u concentrations obtained by 3D simulation at two time moments:
65 and 329. The snapshot of the experimental culture is shown for comparison.
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The simulation results also shows (Fig. 2) that the basic spatiotemporal patterns are
preserved when reducing the model dimension: merging and emerging dynamics are
present in all four simulations of the pattern formation near the three-phase contact line.
On the other hand, the simulated spatiotemporal patterns are not very similar among
themselves, though values of the model parameters were the same. The patterns obtained
by using 2D (Figs. 2b and 2c) and 3D (Fig. 2d) look more similar to those observed
experimentally [40,41,42] than that obtained by 1D simulation (Fig. 2a). When reducing
the dimension (Fig. 2d to 2bc to 2a) the average number of formations (peaks in density)
along the contact line tends to increase.

From Fig. 2c and 2d it can be seen that in the initial stage of the population evolution
while oxygen (w) is available in the entire container and is not consumed yet, the popu-
lation simulated by 3D model behaves similarly to that simulated by 2D polar model yet
this similarity depends on initial conditions [2, 38].

The difference in the simulated spatiotemporal patterns (Fig. 2) could be explained
by assumptions used for reduction of the dimensionality, a relatively large domain size
and the sensitivity to the initial conditions. Distinct initial conditions lead not only to
distinct pattern types, but certain initial conditions may evolve even to a steady state, while
others lead to periodic patterns of varying period [14]. As the domain size is increased,
more and more modes become unstable [26], and this corresponds to an increase in
the dimension of the attractor, and supports higher levels of complexity [1]. In three
dimensions for small growth rate α and constant w, the governing equations (10) may
actually generate even unbounded solutions [43]. Using 3D model also permits producing
very specific patterns, such as P-surface, which never exist in lower dimensions [31].
Important differences between the physics of the 2D and 3D systems were also found
when investigating the activity-induced phase separation in concentrated suspensions of
active particles, for instance, the shape of the phase diagram and the region within which
phase separation was observed were significantly different [32].

The 2D Cartesian model (26) generalizes the 1D model (23) in the same way as 3D
model (10) generalizes the 2D polar model (16), as both these more common models
can be produced by introducing the depth dimension and the additional equation for
the oxygen concentration w. On the other hand, when reducing the mathematical model
dimensionality the radial mass transport was assumed to be negligible due to the zero flux
boundary conditions at the lateral surface (ρ = R). Since the dimensionless diffusion
coefficient Du and the chemotactic sensitivity χ are the main parameters controlling the
mass transport in 1D model (23), the sensitivity of the spatiotemporal pattern formation
to model parameters Du and χ has to be investigated.

To investigate the influence of Du and χ-parameters on the pattern formation the
spatiotemporal patterns were simulated at different values of these parameters keeping
values of the other parameters unchanged. Patterns simulated by using 1D model (23) are
presented if Figs. 4–6. The patterns are compared between themselves as well as with
the the corresponding patterns depicted in Fig. 2 obtained at Du = 0.1 and χ = 8.3 as
defined in (35).

Figure 4 shows patterns for two values of the diffusion coefficient Du: 0.2 and 0.3.
The corresponding pattern obtained for a lower diffusivity (Du = 0.1) of cells is depicted
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Fig. 4. Spatiotemporal plots of the dimensionless cell density u simulated by 1D model at two values of the
dimensionless diffusion coefficient Du: 0.2 (a) and 0.3 (b). Values of the other parameters are as defined
in (35).
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Fig. 5. Spatiotemporal plots of the dimensionless cell density u simulated by 1D model at two values of the
chemotactic sensitivity χ: 5.8 (a) and 6.3 (b). Values of the other parameters are as defined in (35).

in Fig. 2a. It is noticeable that when increasing Du-value, the spatiotemporal patterns
seem to become thicker and a bit less prone to merge which makes them more similar to
Fig. 2b and to those observed experimentally [40, 41, 42].

Similarly, when decreasing χ parameter value, patterns (Fig. 5) also tend to become
thicker and a bit less prone to merge and in a similar way become more familiar to Fig. 2b.
Spatiotemporal patters similar to that shown in Fig. 2b were also obtained at some other
values of the parameters: (Du, χ) = (0.15, 6.8) and (Du, χ) = (0.09, 5.8) as shown in
Fig. 6.

http://www.mii.lt/NA



Modeling of the bacterial self-organization 617

a) L

t

0 5 10
0

50

100

150

200

250

300

350

400

0.0

≥2.5

b) L

t
0 5 10

0

50

100

150

200

250

300

350

400

0.0

≥2.5

Fig. 6. Spatiotemporal plots of the dimensionless cell density u simulated by 1D model at different values of
the model parameters: Du = 0.15, χ = 6.8 (a) and Du = 0.09, χ = 5.8 (b). Values of the other parameters
are as defined in (35).

Figures 4–6 shows that the modelling error raised when reducing the model dimen-
sionality can be at least partially compensated by adjusting values of Du and/or χ-param-
eters. The compensation mechanism for 1D chemotaxis model, when an increase in one
parameter can be compensated by decreasing or increasing another one, has been already
investigated in detail [2, 10, 26]. Particularly, cell growth could compensate any loss of
cells from one aggregate to a neighbour [26]. For three dimensional case the influence
of the model parameters to the pattern formation and developing a model containing a
minimal number of parameters and ensuring a qualitative analysis of bacterial pattern
formation in a liquid medium is in progress.

5 Conclusions

We have shown that the Keller–Segel approach can be successfully used to describe the
formation of bioluminescence patterns representing the self-organization of the bacteria
in a rounded container (Figs. 1 and 3).

The 3D mathematical model (2)–(8) and the corresponding dimensionless model (10)–
(15) of the bacterial self-organization in a rounded container as detected by biolumines-
cence imaging can be successfully used to simulate structures (Fig. 3) similar to the
experimentally observed structures [41, 42] as well as to study the pattern formation in
a colony of luminous E. coli.

Although the rounded container is best represented by the 3D model, due to the
accumulation of luminous cells near the three phase contact line, the experimental spa-
tiotemporal patterns of the bioluminescence can be qualitatively simulated also by using
1D and 2D models. Nevertheless, important differences in the shape of the patterns are
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observed between the 1D, 2D and 3D cases when the same values of the model parameters
are applied in the simulations (Fig. 2).

Very similar spatiotemporal patterns of the bioluminescence can be simulated using
mathematical models of different dimensionality by adjusting values of the model param-
eters, particularly of the dimensionless diffusion coefficient and/or chemotactic sensitivity
(Figs. 4-6).
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