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Abstract

We derive a systematic high-frequency expansion for the effective Hamiltonian and the micromotion
operator of periodically driven quantum systems. Our approach is based on the block diagonalization
of the quasienergy operator in the extended Floquet Hilbert space by means of degenerate
perturbation theory. The final results are equivalent to those obtained within a different approach
(Rahav et al 2003 Phys. Rev. A 68 013820), (Goldman and Dalibard 2014 Phys. Rev. X4 031027) and
can also be related to the Floquet—-Magnus expansion (Casas et al 2001 J. Phys. A 34 3379). We discuss
that the dependence on the driving phase, which plagues the latter, can lead to artifactual symmetry
breaking. The high-frequency approach is illustrated using the example of a periodically driven
Hubbard model. Moreover, we discuss the nature of the approximation and its limitations for systems
of many interacting particles.

1. Introduction

In the last several years, the concept of Floquet engineering has gained more and more interest. This form of
quantum engineering is based on the fact that the time evolution of a periodically driven quantum system is,
apart from a micromotion described by a time-periodic unitary operator, governed by a time-independent
effective Hamiltonian [1, 2]. The aim is to engineer the properties of the effective Hamiltonian by designing a
suitable time-periodic driving protocol. This concept has been employed very successfully in various
experiments with ultracold atoms in driven optical lattices. This includes dynamic localization [3—10], ‘photon’-
assisted tunneling [ 11-18], the control of the bosonic superfluid-to-Mott-insulator transition [19, 20], resonant
coupling of Bloch bands [21-24], the dynamic creation of kinetic frustration [25, 26], as well as the realization of
artificial magnetic fields and topological band structures [26—38] (see also [39] for the creation of a topological
band structure in an array of optical wave guides). In a quantum gas without a lattice, periodic driving has
recently also been employed to tune [40] or induce [41] spin—orbit coupling.

A prerequisite for Floquet engineering is a theoretical method to compute the effective Hamiltonian (as well
as the micromotion operator), at least within a suitable approximation. In the high-frequency limit a rotating-
wave-type approximation can be employed for this purpose. This approximation coincides with the leading
order of a systematic high-frequency expansion that also provides higher-order corrections to the effective
Hamiltonian and the micromotion operator [42—45]. In this paper we show that this high-frequency expansion
can be obtained by employing degenerate perturbation theory in the extended Floquet Hilbert space. Our
approach provides an intuitive picture of the nature of the approximation and the conditions under which it can
be expected to provide a suitable description of a driven quantum system. We point out that the time scale on
which the approximation is valid can be increased by increasing the order of the approximation for the effective
Hamiltonian, while keeping a lower-order approximation for the time-periodic micromotion operator. We also
address the relation between the high-frequency expansion derived here and the Floquet—-Magnus expansion
[46] (see also [47—49]). The origin of a spurious dependence of the quasienergy spectrum in Floquet-Magnus
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approximation on the driving phase is discussed (see also references [42, 43, 45]). Using the example of a
circularly driven tight-binding lattice, this artifact is, moreover, shown to produce a non-physical breaking of
the rotational symmetry in the approximate quasienergy band structure. Finally, we discuss the validity of the
high-frequency approximation for systems of many interacting particles.

This paper is organized as follows. Section 2 gives a brief introduction to the theory of periodically driven
quantum systems (Floquet theory) and serves to define our notation. In section 3 we formulate the problem that
is then attacked in section 4 by means of the degenerate perturbation theory developed in appendix C. The
relation to the Floquet—-Magnus expansion is discussed in section 5, and section 6 illustrates the approximation
scheme using the example of a circularly driven hexagonal lattice [27, 38, 39]. Finally section 7 discusses effects of
interactions within and beyond the high-frequency approximation, before we close with a brief summary in
section 8.

2. Quantum Floquet theory and notation

2.1. Floquet states
A quantum system described by a time-periodic Hamiltonian

AHtH=Ht+T) (1

possesses generalized stationary states |1, () ) called Floquet states [1]. These states are solutions to the time-
dependent Schrodinger equation

ihd v (1)) = H(®)| (1) 2)

of the form
[Vn (1)) = lun(t))eiont/R, 3)

with real quasienergy <, and time-periodic Floquet mode

lun (1)) = lun(t + T)). 4)

Here d, denotes the derivative with respect to the time . The existence of Floquet states in time-periodically

driven systems follows from Floquet’s theorem in a similar way to the existence of Bloch states in spatially

periodic systems. For completeness, we give a simple proof for the existence of Floquet states in appendix A.
The Floquet states are eigenstates of the time-evolution operator over one driving period,

Uto + T, t0)|9u(te)) = e 7T/ 4y (1)) )

Here U (t,, #;) denotes the time evolution operator from time t; to time t,. The eigenvalue e ~:7/% does not
depend on the time f, from which the evolution over one driving period starts. Therefore, one can obtain the
quasienergy spectrum by computing and diagonalizing U (t, + T, t,) for an arbitrary t,. The time-dependent
Floquet states |, () ) can subsequently be computed by applying the time-evolution operator,
[Un(0)) = U, to) ¢ (to))-

The Floquet states can be chosen to form a complete orthonormal basis at any fixed time . As a consequence,
the time evolution operator can be written as

Ulty, 1) = Y e @0/ |y, (1)) (u, (1) . (6)

Moreover, one can express the time evolution of a state |1 (¢) ) as

[ (6)) =D cne =0 Py, (1)), 7

with time-independent coefficients ¢, = (u,,(¢,) | (t9) ). That s, if the system is prepared in a single Floquet
state, |c,| = &, its time evolution will be periodic and (apart from the irrelevant overall phase factor e ~in!/ )
described by the Floquet mode |u,,, (¢) ). If the system is prepared in a coherent superposition of several Floquet
states, the time evolution will no longer be periodic and will instead be determined by two contributions. The
first contribution stems from the periodic time dependence of the Floquet modes |u,, (¢) ) and is called
micromotion. The second contribution, which leads to deviations from a periodic evolution, originates from the
relative dephasing of the factors e /%, Thus, beyond the periodic micromotion, the time evolution of a
Floquet system is governed by the quasienergies ¢, of the Floquet states in much the same way as the time
evolution of an autonomous system (with time-independent Hamiltonian) is governed by the energies of the

stationary states.
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2.2. Floquet Hamiltonian and micromotion operator

In order to study the dynamics over time spans that are long compared to a single driving period, one can ignore
the micromotion by studying the time evolution in a stroboscopic fashion in steps of the driving period T. Such a
stroboscopic time evolution is described by the time-independent Floquet Hamiltonian I:Itf. Itis defined such
that it generates the time evolution over one period,

eXp(—%TI:Itf) =U@+ T, ty). ®)
and can be expressed as
AL = S e lua(to)) (1 (t0). ©

The parametric dependence on the initial time #, is periodic, ﬁtf o= ﬁtf, and related to the micromotion. It
indicates when, during the driving period, the dynamics sets in or is looked at and should not be confused with a
time dependence of the Floquet Hamiltonian. From a Floquet Hamiltonian I—AltiD obtained for the initial time t,
one can construct a Floquet Hamiltonian for a different initial time ¢, by applying a unitary transformation,
I:Itf; = UT (to, t(;)I:Itf U (to» t(;)

Itis convenient to introduce a unitary operator that describes the periodic time dependence of the Floquet
modes, i.e. the micromotion. Such a two-point micromotion operator can be defined by

Ur(ta 1) = D |ua(t2)) (un ()] (10)

so that, by construction, it evolves the Floquet modes in time,

[t (t2)) = Ur(ta, 0)|un(t)). (11)

Itis periodic in both arguments, Ur(t + T, 1) = Up(ty, 1 + T) = Up(ty, 1).

If the Floquet states and their quasienergies are known, e.g. from computing and diagonalizing the time
evolution operator over one period, one can immediately write down the Floquet Hamiltonian and the
micromotion operator by making use of equations (9) and (10). However, both the Floquet Hamiltonian I—AI,OF
and the micromotion operator Uy (¢, t') might also be computed directly, without computing the Floquet states
and the quasienergies beforehand. This will be the aim of the approximation scheme described in the main part
of this paper. From the Floquet Hamiltonian and the micromotion operator one can then immediately write
down the time evolution operator as

A . ~F A A . AN F
Ulty, ) = e 1/ M0 (1, 1) = Ur(ty, ) e (- H /R (12)

Moreover, the Floquet modes |1, (#) ) and their quasienergies €, can, in a subsequent step, be obtained from the
diagonalization of H,f,

Al u,(t)) = ealun(to)). (13)

The periodic time-dependence of the Floquet modes can subsequently be computed by employing the
micromotion operator, |u, (1)) = Ur(t, to)|u,(t))-

2.3. Quasienergy eigenvalue problem and extended Floquet Hilbert space
The phase factors e '7/% and the Floquet states |1, (t) ), solving the eigenvalue problem of the time-evolution
operator over one period, are uniquely defined (apart from the freedom to multiply each Floquet state by a time
independent phase factor). In turn, the quasienergies ¢,,, and with them also the Floquet modes
lu, (t)) = e'=/"|1,(t)) and the Floquet Hamiltonian (9), are not defined uniquely. Namely, adding an integer
multiple of /iw to the quasienergy &, does not alter the phase factor e /", Fixing each quasienergy ¢, within
this freedom fixes also the Floquet modes and the Floquet Hamiltonian. For example, one can choose all
quasienergies to lie within the same interval of width fw, often called a Brillouin zone. This term reflects aloose
analogy to the theory of spatially periodic Hamiltonians, where the quasimomentum can be chosen to lie within
asingle reciprocal lattice cell such as the first Brillouin zone.

Starting from the known solution given by |u,, (¢) ) and €,,, one can label all possible choices for the
quasienergy by introducing the integer index m,

Enm = En + mhw. (14)
The corresponding Floquet mode reads

[t (1)) = |1, (£)) €, (15)
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such that
|wn (t)> = |un (t)> etant/h = |unm () > e temt/h, (16)

When entering the right-hand side of equation (16) into the time-dependent Schrédinger equation (2), we
arrive at

[A () — ihd]|tym (1)) = S| thm (1)) (17)

This equation constitutes an eigenvalue problem in an extended Hilbert space 7 = ‘H ® Lr [1, 2]. This spaceis
given by the product space of the state space H of a quantum system and the space of square-integrable T-
periodically time-dependent functions Lr. Time is treated as a coordinate under periodic boundary conditions.
In the extended Floquet Hilbert space F, the scalar product combines the scalar product of H with time
averaging and is defined by

1 T
(v = = Jar wowm). (18)

We will use a double ket notation |u)) for elements of JF; the corresponding state at time ¢t in H will be denoted
by |u(t)). Conversely, astate |v(¢t)) = |v(¢t + T)),includingits full periodic time dependence, is denoted by
|v)) when considered as element of F. In the following sections, we will stick to this convention and conveniently
switch between both representations. Likewise, an operator acting in F will be indicated by an overbar to
distinguish it from operators acting in H, which are marked by a hat. For example, Q denotes the F -space
operator that in H is represented by

Q) = H(®) — ikd,. (19)

The operator Q is called quasienergy operator. It is hermitian in F and, as can be inferred from equation (17), its
eigenstates and eigenvalues are the Floquet modes and their quasienergies,

Q_lunm>> = Enmlunm»- (20)

The complete set of solutions of the quasienergy eigenvalue problem (20) contains a lot of redundant
information. In the extended space |u,,,)) and |u,, ) constitute independent orthogonal solutions if

m' = m. These solutions are, however, related to each other by equations (14) and (15), and give rise to
the same Floquet state |1, (¢)). All Floquet states |1, (¢)) of the system can, thus, be constructed, for
example, from those Floquet modes whose quasienergies lie in a single Brillouin zone of the fw-periodic
quasienergy spectrum.

The quasienergy eigenvalue problem (20) provides a second approach for computing the Floquet
states or the Floquet Hamiltonian, alternative to the computation and diagonalization of the time
evolution operator over one driving period. It provides the Floquet modes not only at a time #,, but
including their full periodic time dependence. Despite the drastically increased Hilbert space, treating the
quasienergy eigenvalue problem (20) has also advantages. In order to diagonalize the hermitian
quasienergy operator Q, one can employ methods, concepts, and intuition from the physics of systems
with time-independent Hamiltonians. When describing parameter variations, such as a smooth switching
on of the driving amplitude, one can even derive a Schrodinger-type evolution equation acting in
Floquet space and apply the adiabatic principle [50].*

A complete set of orthonormal basis states |amn)) of F can be constructed by combining a complete set of
orthonormal basis states | ) of H with the complete set of time-periodic functions e* labeled by the integer m,

lam(t)) = |a)el™, (1)

From this restricted class of basis states all possible sets of basis states can now be constructed by applying unitary
operators U, |am))y = U |am)). With respect to the basis |am)) the quasienergy operator possesses the matrix
elements

T A .
(a'm'|Qlam) = - f dt e ™' (oA (1) — ifid;|a)eime
T Jo

= <O/|Hm’7m|a> + 6m'mbaramhuw, (22)
where
N T A \ ¢
Ap=— [ dteimifio = A, 23)
T Jo

4 . . . . . . . -
A discussion of smooth parameter variations in a driven many-body lattice system can be found in reference [51].
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Figure 1. Block structure of the quasienergy operator Q with respect to the ‘photon’ index m. Each block corresponds to an operator
O = Hy—m + Sprmmbiw acting in the full state space H. The diagonal blocks Hy + mhw canbe interpreted to act in the subspace
of relative ‘photon” number 1 and the off-diagonal blocks H,,/_,,,, which obey H,,,i_,,, = Ijl,i, > describe (m’ — m)-‘photon’
processes.

is the Fourier transform of the Hamiltonian H (¢), such that H () = Z::ﬂc eim< [, With respect to the
Fourier indices m the quasienergy operator possesses the transparent block structure depicted in figure 1. Each
block represents an operator Quim = Hy—my + Sprmhw actingin H.

The structure of the quasienergy operator Q resembles that of the Hamiltonian describing a quantum
system with Hilbert space H coupled to a photon-like mode in the classical limit of large photon numbers,
where the spectrum becomes periodic in energy. In this picture m plays the role of a relative photon number. The
quasienergy eigenvalue problem (20) is, thus, closely related to the dressed-atom picture [52, 53] for a quantum
system driven by coherent radiation [54]. Based on this analogy, one often uses the jargon to call # the ‘photon’
number. Moreover, the matrix elements of H,, are said to describe m-‘photon’ processes. This terminology
suggests a very intuitive picture for the physics of time-periodically driven quantum systems and is also
employed when the system is actually not driven by a photon mode.

In order to diagonalize or block diagonalize the quasienergy operator, it is natural and sufficient to consider
unitary operators U that are translationally invariant with respect to the photon index m,

{a'm'|T|am) = (a’|U,y_ ). They correspond to time-periodic unitary operators
U@) = Zoo elmt U, actingin H (see also appendix B). From equation (19) we can infer that a unitary

m=—0oQ
transformation with such an operator U,

|u')) = U'|u)), (24)

is equivalent to a gauge transformation
An— A'@ =0 0a000 — ikl ()d, U @)
%) = ') = 0" 01¢®) (25)

with a time-periodic unitary operator U (¢). Accordingly, the matrix elements of the transformed quasienergy
operator

(a'm!|Q Jam) = (/| 1) + Srmara mhw, (26)

T
. . ol it g
are determined by the Fourier components H,, = % f dt e " H'(t) of the gauge-transformed Hamiltonian.
0

5
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Figure 2. By block diagonalization of the quasienergy operator with respect to the photon index m, one obtains the effective
Hamiltonian H.

The unitary operator Up, that diagonalizes the quasienergy operator with respect to a certain basis |wm)),
(a'm'| U QUp|am)) = Smmbara (0] HAp |a) + mhw) (27)
is constructed such that it leads to a time-independent gauge-transformed Hamiltonian
Ap = Uy () HA 0 Tp (1) — ih0 (1)d, Up (1) (28)
that is diagonal with respect to the basis states | ),
(| Hpla) = 8arata- (29)
The Floquet Hamiltonian I:Itf is related to Hp, via the unitary transformation
Htf = Up(to)Hp Ug (to)- (30)

The Floquet mode |u4,,,)) = Up|aum)) with quasienergy cq,m = o + mhw reads |uq,, (t)) = Up(t) |ar) et s0
that the micromotion operator can be expressed as

O (¢, ) = Op(6) U (t"). 31)

3. Block diagonalization of the quasienergy operator and effective Hamiltonian

The quasienergy eigenvalue problem (20) is a convenient starting point for computing the Floquet Hamiltonian
and the micromotion operator directly, without the need to compute the Floquet modes and their quasienergies.
For this purpose one does not need to fully diagonalize the quasienergy operator. Instead, one must find a
unitary operator Ur that block diagonalizes the quasienergy operator with respect to the ‘photon” index m,

(o'm'| UL QU |am)) = (/| Hr |at) + aramhiw), (32)

asillustrated in figure 2. Here we have introduced the gauge-transformed Hamiltonian
A = Uy 0H 0 Uk (1) — ih0; (d, Vg (1), (33)

which by construction is time independent. In fact, choosing an operator U that block diagonalizes the
quasienergy operator is equivalent to choosing Uk (t) such that the gauge transformation (33) leads to a time-
independent Hamiltonian Hy. This time-independent Hamiltonian Hy is called an effective Hamiltonian. Note
that the unitary operator Uy is not determined uniquely. For example, multiplying Uy (t) with any time-
independent unitary operator from the right leads to a mixing of states within the diagonal blocks of U} QU, but

6
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does not destroy the block diagonal form. Unlike the operator Up that diagonalizes the quasienergy operator, Up
does not depend on the basis states | ).

Now, each of the diagonal blocks of U} QUy represents a possible choice for the Floquet Hamiltonian. This
can be seen by writing the quasienergy operator as Q = Z:jzfoo an Upm)) (Ea + mhw) (U, and comparing
it to the representation (9) of the Floquet Hamiltonian. From the m = m’ = 0 block one obtains

A = S1a'0t))r £{(@’01Qla0)r £(a0)]

= SOk (tp) ) (00T} QUr|a0)) (| Uy (to)

da
. .
= Ur (to) Hr Ug (to), (34)
where we have defined the rotated basis states
lam))r = Up|am)) (35)

and used equation (32). We can see that the Floquet Hamiltonian ﬁtf is equivalent to the effective Hamiltonian
Hp in the sense that both are related to each other by a unitary transformation. Moreover, we can use the unitary
operator Uy to construct the micromotion operator:

Op (¢, ) = Up () O (1), (36)
From ﬁtF and U (t, t') one can then directly obtain the time evolution operator using equation (12).

However, the time evolution operator U(t,, #;) can also be expressed directly in terms of Hr and Up (¢)
without introducing ﬁtf and U (/, 1). Namely [42],

Uty 1) = Up(t)e 1@ V0 (). (37)

Compared to the representation (12) of the time-evolution operator in terms of the Floquet Hamiltonian I:Itf
and the micromotion operator Uk (1, 1), this expression has the disadvantage that it is a product of three
operators and not just of two. However, using the representation (37) has also advantages. The micromotion has
been expressed by the one-point micromotion operator Uz (t), instead of by the two-point operator Uy (¢, '),
and the phase evolution is described by an effective Hamiltonian Hy without the parametric dependence on the
switching time #, of I:Itf. The micromotion operator U (¢) can also be expressed as

U (t) = exp (G(t)) (38)

in terms of an anti-hermitian operator G = —G'. The hermitian operator K(t) = iG (¢) has recently been given
the intuitive name kick operator [43].
The diagonalization of the effective Hamiltonian Hf,

Hy|iy) = eyliiy), (39)
provides the Floquet modes and their quasienergies:
|t (1)) = Op()| ) €, (40)
Emm = En + mhw. (41)
Thus, the Floquet modes |, (£)) = |u,0(¢) ), which describe the micromotion, are superpositions
lun (1)) = 2 ol (®O)r- (42)
of the time-dependent basis states
la®)r = Up(1)]a0) = Ur()]a), (43)
with time-independent coefficients
Yan = {|iln). (44)

The strategy of computing the effective Hamiltonian directly, without computing the Floquet states
beforehand, separates the Floquet problem into two distinct subproblems related to the short-time and the long-
time dynamics, respectively. The first problem, computing the effective Hamiltonian (as well as the
micromotion operator), concerns the short-time dynamics within one driving period only. The second problem
consists of the integration of the time evolution generated by the effective Hamiltonian for a given initial state or
even in the complete diagonalization of the effective Hamiltonian. This separation allows us to address the long-
time dynamics over several driving periods in a very efficient way, without the need to follow the details of the
dynamics within every driving period.
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The advantage of splitting the Floquet problem into two parts becomes apparent especially when one of the
two problems is more difficult than the other. A simple example for a case where computing the effective
Hamiltonian is more difficult than diagonalizing it is a periodically driven two-level system corresponding to a
spin-1/2 degree of freedom. While the block diagonalization of the quasienergy operator can generally not be
accomplished analytically, the effective Hamiltonian describes (like every time-independent 2 x 2
Hamiltonian) a spin-1/2 in a constant magnetic field leading to a simple precession dynamics on the Bloch
sphere. Thus, once the effective Hamiltonian and the micromotion operator are computed, the time evolution is
known. An example for the opposite case, where the effective Hamiltonian can be computed at least
approximately while its diagonalization is much harder, is a time-periodically driven Hubbard-type model [19].
It describes interacting particles on a tight-binding lattice. This driven model allows for a quantitative
description of experiments with ultracold atoms in optical lattices. In the limit of high-frequency forcing a
suitable analytical approximation to the effective Hamiltonian can be well justified on the time scale of a typical
optical lattice experiment. However, the effective Hamiltonian will constitute a many-body problem that is
difficult to solve.

The possibility to compute the effective Hamiltonian for a many-body lattice system, at least within a
suitable approximation, is also the basis for a novel and powerful type of quantum engineering. Here the
properties of the effective Hamiltonian Hy are tailored by engineering the periodic time dependence of the
Hamiltonian H (¢). This Floquet engineering has recently been successfully applied to ultracold atomic quantum
gases (see references in the introduction). The fact that the effective Hamiltonian can possess properties that are
hard to achieve otherwise, like the coupling of the kinetics of charge-neutral atoms to a vector potential
describing an (artificial) magnetic field [27, 28, 30-32, 34-39, 55-60], makes Floquet engineering interesting for
quantum simulation as well. Here, a quantum mechanical many-body model is realized accurately in the
laboratory in order to investigate its properties by doing experiments. An essential prerequiste for Floquet
engineering is an accurate approximation to the effective Hamiltonian. In the next section we will systematically
derive a high-frequency approximation to both the effective Hamiltonian and the micromotion operator by
block diagonalizing the quasienergy operator by means of degenerate perturbation theory.

4. High-frequency expansion from degenerate perturbation theory

Degenerate perturbation theory is a standard approximation scheme for the systematic block diagonalization of
ahermitian operator into two subspaces—a subspace of special interest on the one hand and the rest of state
space on the other—that are divided by a large spectral gap. Here we adapt the method such that it allows for a
systematic block diagonalization of the quasienergy operator with respect to the ‘photon’ index m (appendix C).
Moreover, we will identify the system-independent ‘photonic’ part —ifd, of the quasienergy operator (19), with
{o'm'|—ihd,|am)) = 8,11 6a'amhiw, as the unperturbed problem. As a consequence the system-specific
Hamiltonian H (¢) constitutes the perturbation. This will allow us to systematically derive simple and universal
expansions for both the effective Hamiltonian Hy and the micromotion operator U (¢) in the high-frequency
limit, where 7w constitutes a large spectral gap between the unperturbed subspaces (see figure 1). We would like
to point out that the application of degenerate perturbation theory in the extended Floquet Hilbert spaceisa
well-established method. For example, it has recently been employed to estimate the matrix element for the
resonant creation of collective excitations in a driven Bose-Hubbard model [51] and to treat a dissipative driven
two-level system [61].

The basic strategy of our perturbative approach can be summarized as follows. The quasienergy operator is
divided into an unperturbed part Q, and a perturbation V,

Q=Q+ V. (45)

The unperturbed operator can be diagonalized and separates the extended Floquet Hilbert space F into
uncoupled subspaces F of sharp ‘photon’ numbers 1 with projectors B, = Zu |am)) {{am|. These subspaces
shall be separated by unperturbed spectral gaps of the order of fiw, which are assumed to be large compared to
the strength p of the perturbation coupling states of different subspaces. When smoothly switching on the
perturbation, such that the spectral gaps do not close, the unperturbed subspaces F? will be transformed
adiabatically to the perturbed subspaces F, corresponding to a diagonal block of the perturbed problem. Since
the perturbation is weak compared to the gap, 7, will differ from F @ by small admixtures of states £ 7 only.
This admixture will be calculated perturbatively by expanding a unitary operator Uy that relates the basis states
|am)) spanning the unperturbed subpsaces F? to the basis states |am )y = Ur|am)) spanning the perturbed
subspaces F,. In contrast, if the spectral gap separating different subspaces were to close, arbitrary weak
coupling could hybridize degenerate states of different subspaces, contrary to the assumption of a weak
perturbative admixture. The general formalism is developed in appendix C and will be applied to a specific
choice of the unperturbed problem in the following.

8
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Figure 3. Structure of the quasienergy operator Q = Qg + Vp + Vi = Qp + Vp + Vx. The unperturbed problem is given by Q,
and the perturbation V) can be separated into a block diagonal part V) that conserves the ‘photon’ number 7 and a part V¢
comprising m = 0-photon processes. (a) Generic choice of the unperturbed operator Q. (b) Simple system-independent choice of
the unperturbed problem Qg (t) = —ifid, to be used here; all unperturbed states of identical ‘photon’ number  are degenerate.

For the procedure described above, a general and legitimate choice of the unperturbed problem would consist
of the diagonal terms of the quasienergy operator with respect to a conveniently chosen set of basis states | ),

Qy = Y- lam)) {{am|Qlam) (am|
=3 > lam) (e + mhw)(am|, (46)

m «

with €@ = (| Hy| ). The operator Qg is diagonal with respect to the basis states | azn)) by construction and the
corresponding perturbation V' = Q — Q, consists of a block-diagonal part V}, that couples states | ) and
|a/m)) of the same ‘photon’ number m and a block-off-diagonal part V that couples states | ) and |o/m”)) of
different ‘photon’ numbers #’ and m. The problem to be solved by perturbation theory is visualized in figure 3(a).
The unperturbed problem and the perturbation expansion depend on the choice of the basis states | ).

However, for the sake of simplicity we will not use equation (46). Instead we will simplify the unperturbed
problem further, reducing it to the ‘photonic’ part of the quasienergy operator,

Qo(t) = —ihd,, (47)

or

Qo = )Y |lam)) mhw ((aml|, (48)

which does not depend on the system’s Hamiltonian. For this choice the unperturbed quasienergies are degenerate
within each subspace and read €%, = m#w. So Q, is diagonal not only with respect to a specific set of basis states,
but with respect to any set of basis states of the type | am)). The perturbation is given by the Hamiltonian,

V(t) = H(t) (49)
or
V=H-= ZZM’m’» (| Hyyr_la) {am]. (50)
It can be decomposed as
V="V+ WKk (51)

Here the block-diagonal part Vj comprises the m’ = m terms describing zero-‘photon’ processes determined
by the time-averaged Hamiltonian,

Vb = H,, (52)
Vb = >3 la’'m) (o/|Hola) (am]. (53)

m o'«
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The block-off-diagonal part Vy describes Am-‘photon’ processes determined by the Fourier components Hy,,
of the Hamiltonian,

V() = . eldmtfy, (54)
Am=0
Vi =3 > dla/m + Am) (a'|Hamla) (am]. (55)

m Am=0 o’
The problem is visualized in figure 3(b). Its simple structure will allow us to write down universal analytical
expressions for the leading terms of a perturbative high-frequency expansion of the effective Hamiltonian and
the micromotion operator in powers of p/Aw, with p symbolizing the perturbation strength.

Before moving on, we note in passing that it can be useful to shift the ‘photon’ number of an unperturbed
state |am)) by some integer Am, before applying the high-frequency approximation. Such a procedure can be
useful, if two states | ;) and | a,) have time-averaged energies ¥ = (a|Hy| ) that are separated by Am
‘photon’ energies of 7w, so that Effz) — 62)1) = Amhw + 6 with § < hw. In this case the two unperturbed basis
states |ay m)) and |, m)), which are degenerate with respect to the unperturbed quasienergy operator, have
average quasienergies ((am|Q|am)) = ¥ 4 mhw that are also separated by the large distance Amhw + 6.
Obviously, this violates the requirement that the perturbation should be weak. In turn the states | a; 7)) and
|y m — Am))) have average quasienergies that are nearly degenerate. Thus it is useful to redefine the ‘photon’
number of states with quantum number ay, so that |a;m))’ = |, (m — Am))). This redefinition is equivalent to a
gauge transformation (25) in H, where the unitary operator e '2"!| a,) (v, | is employed to shift the time-averaged
energy of |a,) by — AmFuw. After this transformation the high-frequency approximation can be applied and used to
describe the resonant coupling between both states | ;) and | ). Such a procedure can be employed, for example to
describe resonant ‘photon’-assisted (or AC-induced) tunneling against a strong potential gradient [12, 45].

4.1. Micromotion

We wish to compute the unitary operator Uy that relates the unperturbed basis states | m)) to the perturbed
basis states | o))y that block diagonalize the quasienergy operator in a perturbative fashion. In the canonical van
Vleck degenerate perturbation theory, it is written as

Ur = exp(G), (56)
with anti-hermitian operator
G=-G" (57)

In order to minimize the mixing of unperturbed states belonging to the same unperturbed subspace, it is,
moreover, required that G is block-off-diagonal. One can now systematically expand G as

—_ i —_
G=>Gw (58)
v=1

in powers of the perturbation. The general formalism for the perturbative expansion of G in a situation where the
state space is partitioned into more than just two subspaces is described in appendix C. Differences with respect to the
standard procedure, where the state space is only bipartitioned, arise as a consequence of the fact that for
multipartitioning it is generally no longer true that the product of two block-off-diagonal operators is block diagonal.
The general form of the leading terms of the expansion (58) is given by equations (C.40) and (C.41) of
appendix C. Let us evaluate them for the particular choice of the unperturbed problem (47). Apart from

{a/m|G¥am) = 0, (59)
for all diagonal matrix elements, following directly from G being block-off-diagonal, for m’ = m we obtain
('m!| GV am)) = _ {1 - mlo) (60)
(m' — myhw

and

(ol |G|y = L Ho Fut_ullo)

[(m' — m)hw]?
n l Z <Oél| Hm’:m”ﬁm”—m IO{>
2 (m' — m)hw

1 1
X +
I:(m” _ m’)ﬁw (m' —

. @

10
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We can now also expand the unitary operator Ur in powers of the perturbation,

U= >0 (62)
v=1
One finds

oY =1, (63)
U® = GO, (64)

- - | N )

@ _— 5@ —_| G

U =G —|—2[G I (65)

where the second term of the last equation possesses matrix elements

_ /I:I r_ //I:I "_
falm L G0P) am) = Y3 S Bu o) (66)
2 iz (M — m"Y(m"" — m)(hw)?
which are finite also for m’ = m.
The corresponding operators in H can be constructed by employing the relation
A@t) = Se o) ((o/m'|A|a0)) (o (67)

that is valid for operators A that are translationally invariant with respect to the ‘photon’ number,
{(a'm + Am|Alam)) = {(aAm|A|a0)). Indoingso, Ur and G translate into time periodic operators U (t)
and G (¢) and equation (56) into

O (1) = exp(G (1)) (68)
(see also appendix B). The leading terms of the perturbation expansion take the form
A1) eimwt N
G (t)=— H,, 69
) Eomﬁw m (69)
ROEDY e LR B W L (70)
o (mhw)? 2 o m(m — m'y(hw)?
and
0p' @0 =1, o)
00 = 6V, (72)
~(2) AQ2) 1 elmtmetfp [
U (1) =G~ () + = = (73)
R ( 2 ,EOMZI:O m'm (hw)?
One can express these terms also as time integrals. For the leading order we obtain
N N to+T ~ S M s
G(l)(t) _ U;D(t) _ lf ' At 2isin(mw (t — t'))
T Jy el mhw
i +T _ ¢
__ir1 dt’H(t’)(l L ) (74)
hw T Ji T

In the final result we have separated a factor of % representing the inverse integration time. It was obtained by
setting the free parameter #, to ty = t allowing us to use

oo

sin(kx)  m™—x
,; k2

for 0<x<2m, (75)

which is formula 1.441-1 of reference [62].
One can now approximate U () up to a finite order & by simply truncating the perturbative expansion of

Ur (t) like Ug (1) ~ ZZ: OU;/) (t). However, this approximation has the disadvantage that it does not preserve

unitarity at any finite order 7. In turn, truncating the expansion of G (¢) leads to an approximation

Op () ~ exp (ZG()) = 0" (76)

v=1

that gives rise to a unitary operator (7;;”] (t) for every finite D.

11
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The unitary two-point micromotion operator can be written as

Ok (t, ) = Op (0 U3 (t)) = exp (Ft, 1)) (77)
with anti-hermitian operator E (¢, t') = —F ' (t, t"). Expanding E (¢, t') in powers of the perturbation,
B, t) =Y F", 1), (78)
v=1

and comparing the epxansion of exp (F (¢, t) ) in powers of the perturbation with that of
exp (G (1)) exp(—G (t))), one can identify

1) = 6V - 6, (79)
B, 1) = 690 - 6) - [ 600, 6V (80)
and so on. This gives the explicit expressions for the leading orders

F(l)(t, t = — Z

miomﬁ’w

imwt __ G imwt’ I:I,I:Im
#,0- 40 ;ﬁwzz[ LD

(s ) ]

m(m — m'y(hw)?

(ei’"“’t - eimwl)lflm, (81)

m=0

+

>

m'=0,m

1
2

1mwt7im’wt’ & 2
[H—m’a H,,

(82)
X i
An approximation preserving the unitarity of the micromotion operator reads
4 -
Ur(t, t'y = exp ( SEY, t’)] =07, v, (83)
v=1

4.2. Effective Hamiltonian
In order to obtain the effective Floquet Hamiltonian from equation (34), we need to compute the matrix
elements (32) form = m’ = 0,

HE. = (o/|Hpla) = (0| U QU |a0) = Qoua- (84)

Expanding these matrix elements in powers of the perturbation, the leading terms Qé’g,a are given by

equations (C.50)—(C.53) of appendix C. Evaluating these expressions for the unperturbed problem (47), we
obtain the perturbative expansion for the effective Hamiltonian

A A )
Hp = ZHF , (85)
v=0

with HIEV) Z| ) Qg (”), (a|. The leading terms are given by

Hy =0, (86)
~ (1) A
H; ' = H,, (87)
~(2) A,A-
H; = ZM, (88)
m=0 mhw
H_,, | Ho, H, H s | Hyr—m» H
A (3) [ m» [ 0> m]] [ [ m'—m> m]]
H =20 2 > / 2 (89)
=0 2(mhw) i Oum 3mm’ (hw)
One can express these terms also in terms of time integrals. The leading order is given by the time-averaged
Hamiltonian,
A T A
A -1 f dt H (D). (90)
T Jo

12
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The first correction takes the form

N (2) imw(h—t;) ~
——f@fwz-———ﬂmmm
m=0 CU

:—f dtlf dr, L:}tz)[ﬁ(fl),ﬁ(tz)]

1ﬁw2T2f dtlf dt2(1—2

where the sum over m has been evaluated using equation (75) and where we have separated a factor of 1/(2T?)
representing the inverse integration area. In th order the effective Hamiltonian is approximated by

)[f?(n),ﬁ?(@)], (91)

A (V) 7]
He ~ j{: =H; . (92)
v=0
The results obtained here via degenerate perturbation theory in the extended Floquet Hilbert space are
equivalent to the high-frequency expansion derived in references [42—44] by different means.

4.3. Role of the driving phase
Animportant property of the approximation (92) to the effective Hamiltonian is that it is independent of the
driving phase. Namely, a shift in time

H(t) — H'(t) = H( — t'), (93)
which leads to
A, — I—AL:7 = e MR (94)

does not alter the perturbation expansion of H,

) ! (V) )

A — Hy =Hp . (95)

This is ensured by the structure of the perturbation theory, which restricts the products I—AImlI-AIm2 oo I—AI,,,” that
contribute to H;y) to those with m; + m, + ---m,, = 0. Additionally, as an immediate consequence, the
approximate quasienergy spectrum, obtained from the diagonalization of Hy, does not acquire a spurious
dependence on the driving phase. In this respect, the high-frequency approximation obtained by truncating the
high-frequency expansion of Hp at finite order, equations (76) and (92), is consistent with Floquet theory.

A time shift does, however, modify the terms of the unitary operator Uy (¢) in the expected way,

0 1) — 01 = 0Pt — vy, (96)

since

GV - V0 = 6" - 1. (97)

4.4. Quasienergy spectrum and Floquet modes
From the approximate Floquet Hamiltonian one can now compute the quasienergy spectrum and the Floquet
modes by solving the eigenvalue problem

A ) = ), . (98)
One obtains
S sEj’J (99)
and
Jun(0)) = O ) = [l (0)). (100)

Here we have allowed that the order v’ of the approximate unitary operator UIEV : (t) describing the micromotion

can be different from the order v of the approximate Floquet Hamiltonian H }Ey], which determines the Floquet
spectrum and the dynamics on longer times. This corresponds to the approximation

[ [v] [V]T(t)
0 =

Af ~ 0 (e0) A O nre

(101)
to the Floquet Hamiltonian I—AI,0 .

The reason why it is generally useful to choose 1’ independent of v/is the following. In high-frequency
approximation the time evolution from #, to tis described by

13
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| t)) ~ C[V',Vllu[l/,l/](t) —15,,](t to)/h (102)
n n
n

with c[” V= <u,5"/’”] (to) % (f9) ). The accuracy with which the expression C,EV/’V] [ u,E”/"’] (t)) captures the true

micromotion of the system does not depend on the time span (¢ — #,) of the integration, simply because this

expression is time periodic. In turn, with increasing integration time (¢ — f;), the approximate phase factors
e~ie(t=1)/h ]l deviate more and more from their actual value e~i('~%)/% Thus, the longer the time span

t — to the better should be the approximation ¢, & 5[”]—that is, the larger v should be. In contrast, the order 1/

can be chosen independently of (t — #).

—ie,

5. Relation to the Floquet—-Magnus expansion

In this section we relate the high-frequency expansion of Hy and G (¢) to the Floquet-Magnus expansion [46]
(seealso[47, 48, 63]). A discussion of this issue can also be found in references [42, 43, 45]. Recently, the
Floquet—-Magnus expansion has been employed frequently for the treatment of quantum Floquet systems. The
starting point of the Floquet—-Magnus expansion is the form (12) of the time evolution operator,

U(I, 1,’0) = UF(l’, to) CXP(—%(t - to)ﬁtf)

i AF
= exp( (t to)) exp(—g(t — tO)HtO)' (103)
Thenboth E (¢, t,) and I—AltiD are expanded in powers of the Fourier transform of the Hamiltonian. Note that in
references [46, 47] the notation P () = Uk (t, 0), A(f) = F(¢, 0),and F = — ;—lI-AIOF is used, implicitly assuming
to = 0.

The Floquet—Magnus expansion of F (t, t,) is reproduced by our expressions (81) and (82). The Floquet—
Magnus expansion of I:Itf can also be obtained within our formalism. Namely, expanding I—AItloD in powers of the
perturbation

oo
ay =y n," (104)
gives
FQ) _ M
Afv =fy, (105)
A9 = 87 + 0B + B0 (1), (106)
(3) (2 (6] @O AT
A9 = A7 + O o) B + B OF ' (1)
(O] (OFSCN
+ Up (t))Hp "Up " (t0), (107)
and so on. From these expressions one obtains
Aalv = A, (108)
A 1 A A . A A
Hy @ = 3 —— (A + e o, 1] ) (109)
ms=0 M
and, in a subsequent step, also
N 1 to+T o
H:(l) =~ [ anA @), (110)
T Jt
Q) _ to+ T totty
Y= s j; dn [ dn [Aw), A (111)

where we have again employed equation (75). For t; = 0 these expressions correspond to those of [46, 47].
Truncating the Floquet—Magnus expansion after the finite order 7, the Floquet Hamiltonian is
approximated as

Al ~ iHF(V) =" (112)

to to
v=1

However, even though it is derived from a systematic expansion, this approximation is plagued by the following
problem. For any finite order & > 2, the spectrum of the approximate Floquet Hamiltonian I:Ith 7] possesses
an artifactual dependence on #;, or equivalently on the driving phase. This is not consistent with the spectrum of
the exact Floquet Hamiltonian I:Itf, which is independent of the driving phase. In second order, the t,
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dependence enters with the second term of equation (109). Let us consider, for example, a periodic Hamiltonian
with even time dependence, H (t) = H (—t), so that H, = H_,,. Inthis case I:Itf(z) vanishes for ty, being an
integer multiple of 7/w, while it is generally finite for other values of #,. Therefore, generally the Floquet
Hamiltonians I—AI:M " and I:Ith ") obtained from the Floquet-Magnus approximation for times ¢, = f; are not
related to each other by a unitary transformation, as is the case for the exact Floquet Hamiltonian.

The origin of this spurious ¢, dependence lies in the fact that the expansion (104) of the Floquet Hamiltonian
also implies an expansion Ur(t) =1+ LA];D + Uéz) (t) --- ofthe unitary operator Uk (1). At any finite order,
such an expansion does not preserve unitarity and, thus, the spectrum of the approximate Floquet Hamiltonian

I:Ith 7] deviates from the & th-order spectrum obtained by diagonalizing the approximate effective

Hamiltonian H, }[;’7] given by equation (92).

This observation can be traced back further to the ansatz (103) for the time evolution operator.
Bipartitioning the time-evolution operator into two exponentials like in equation (103) does not allow for
disentangling the phase evolution from the micromotion. This is different for the tri-partitioning ansatz

U(t, to) = Us(t) eXp(—%(t - to)HF) Uy (t)

= exp (G(t)) exp( —%(t — to)I:IF) exp(—é(to)), (113)

which underlies the perturbative approach presented in the previous section. In the tripartitioning ansatz (113),
first UII (to) transforms the state into a ‘reference frame’ where by construction no micromotion is present. Then
the phase evolution is generated by the effective Hamiltonian before, at time #, the state is finally rotated back to
the original frame by Uk (). In contrast, PAIti, asitappears in the ansatz (103), also carries information about the
micromotion. This fact is somewhat hidden, when the ¢, dependence of the Floquet Hamiltonian is not written
out explicitly like in [47], where t; = 0 is assumed.

However, since we know that the effective Hamiltonian Hy and the Floquet Hamiltonian I:Itf possess the
same spectrum, we also know that, when expanding both Hy and I:I,f in powers of the inverse frequency, the
spectra will also coincide up to this order. This means that the #,-dependent second term of equation (109) will
not cause changes of the spectrum within the second order (occw™?). Instead, this second term can contribute to
the third-order correction of the quasienergy spectrum, together with the terms of I—AI,ES). This argument
generalizes to higher orders.

Let us illustrate our reasoning using a simple example. A spin-1/2 system shall be described by the time-
periodic Hamiltonian

H(t) = aS, + b cos(wt)$,, (114)

with spin operators S; and Fourier components

Hy, = aS,, I%:H_lzgﬁy, A, =0 for |m|>2. (115)
According to equations (87) and (88), in second order the effective Hamiltonian is approximated by
A ~A07 =" + A2, (116)
with
A =a, AP =o. (117)

A . Ao . .
Here the second-order term H, F( ’ vanishes since [H,, H_,,] = 0.Insecond order the quasienergy spectrum is,
thus, approximated by

£r N 552:] = :t%ha. (118)

In contrast, the second-order approximation of the Floquet Hamiltonian based on the Floquet-Magnus
expansion,

A

~ FM[2] ~ F(1) ~ F(2)

Af~f""=A"+0, " (119)
does contain a second-order term. Namely, from equations (108) and (109) one obtains
N A N b . a
A,V =a8, A% = -Zsin)S.. (120)
w
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This leads to the approximation of the quasienergy spectrum

er o efMP= 4 %fm\/l + [(b/w)sin(wty) ]

=4 %ﬁa(l + %[(b/w)sin(wto)]2 + ) (121)

We can now make several observations that illustrate the reasoning of the previous paragraphs. First, we can see
that e coincides with £!2! within the order of the approximation. Deviations that occur are proportional to
w2, while our second-order approximation should provide the correct terms up to the power w~!. Second,

1 €iM [2]

. . ~F(2 . .
despite the presence of a finite second-order term H, @ proportional to w1, does not contain a

correction o< w™ L. This is consistent with the fact that PAII[:Z] and, as a consequence, also E[i] donot containa
second-order term. Third, we can see that, unlike the exact quasienergy spectrum, the approximate spectrum
EiM 2] depends on the time #; and, thus, also on the driving phase. However, this dependence on t, (or the driving
phase) occurs only in terms o< w2 that are not reproduced correctly within the second-order approximation. In
athird-order approximation, the spectrum will be captured correctly and be independent of the driving phase
up to the power w2 and so on.

As a further example, we will discuss the circularly driven hexagonal lattice in the next section. There, we will
see that the spurious driving-phase dependence of the Floquet—Magnus expansion will, additionally, also induce
aspurious breaking of the rotational symmetry of the quasienergy dispersion relation (section 6.3). Thus, even a
weak t, dependence can seemingly change the properties of the system in a fundamental way. Therefore, the
Floquet—-Magnus approximation should be used with care. The high-frequency approximation derived in the
previous section (section 4) does not suffer from this problem.

6. Example: circularly driven hexagonal lattice

In this section, we will discuss an instructive example of the physics of particles hopping on a hexagonal lattice
(see figure 4(a)) subjected to a circular time-periodic force

F(t) = —F[cos(wt)ex + sin(wt)ey]. (122)

For a system of charged electrons such a force can be realized by applying circularly polarized light, whereas for a
system of neutral particles (atoms in an optical lattice or photons in a wave guide) it can be achieved as an inertial
force via circular lattice shaking [25, 26, 38, 39]. The driven hexagonal lattice is particularly interesting, as it is the
prototype of a Floquet topological insulator [27, 57-60]. It was pointed out by Oka and Aoki [27] that a non-
vanishing forcing strength F opens a topological gap in the band structure of the effective Hamiltonian. Asa
consequence, the system possesses a quantized Hall conductivity, when the lowest band is filled completely with
fermions. While the original proposal [27] is considering graphene irradiated by circularly polarized light (see
also [64]), the topologically non-trivial band structure described by the effective Hamiltonian has been probed
experimentally in other systems: with classical light in a hexagonal lattice of wave guides [39] and with ultracold
fermionic atoms in a circularly shaken optical lattice [38].

We have decided to discuss the circularly driven hexagonal lattice here, even though its single-particle
physics has already been described in detail elsewhere [27, 38, 58, 65], for several reasons. First, itisa
paradigmatic example of a system where the second-order high-frequency correction to the effective
Hamiltonian gives rise to qualitatively new physics. Second, since both directions, x and y, are driven with a
phase lag of 7/2, the model is suitable to illustrate the difference between the high-frequency expansion
advertised here and the Floquet—Magnus expansion. And third, it allows us to set the stage for the ensuing
discussion (see section 7) of the role of interactions, which have been discussed controversially recently [66, 67].
This issue includes two aspects: the impact of interactions on the validity of the high-frequency expansion as well
as how interactions appear in the high-frequency expansion.

Let us consider the driven tight-binding Hamiltonian

Hye(t) = — > Jaja, + > ve(t)hp. (123)
(£'¢) ¢

The first term describes the tunneling kinetics, with the sum running over all directed links (¢#’£) connecting a
site £ to its nearest neighbor #’ on the hexagonal lattice depicted in figure 4(a). Here d, is the annihilation
operator for a particle (boson or fermion) at the lattice site £ located at r,, and the tunneling parameter J is real
and positive. The second sum runs over the lattice sites and describes the effect of the driving force in terms of the
time-periodic on-site potential v, (t) = —r, - F(t) and the number operator 7i, = ﬁ; d,. The direction of the
vector pointing from site £ to a neighbor ¢’ defines an angle ¢, ,,

16



10P Publishing NewJ. Phys. 17 (2015) 093039 A Eckardtand E Anisimovas

Figure 4. Hexagonal lattice with sublattice A (blue) and B (red). (a) The Hamiltonian H, of the undriven model possesses real
tunneling matrix elements —J between neighboring sites. (b) The effective Hamiltonian Hy ~ I—AI;” + I—AIIEZ) of the driven system
features modified real tunneling matrix elements —J () between nearest neighbors, contained in H, ,f-l), and complex tunneling matrix
elements —|J® e (or —|J®|e~?), contained in IQ'F(Z), for tunneling in an anticlockwise (or clockwise) direction around the
hexagonal plaquette.

ty — rp = a[cos(cpf/f)ex + sin(cpf/f)e},], (124)

with ¢, = @1, + 7. This angle determines the temporal driving phase of the relative potential modulation
between both sites,

ver(t) — e (t) = Fa cos(wt — @pip). (125)

6.1. Change of gauge
Aswill be seen shortly, we are interested in the regime of strong forcing, where the amplitude K = Fa of the
relative potential modulation between two neighboring sites is comparable to or larger than Aw. Therefore, the
Hamiltonian Hy, (¢) is not a suitable starting point for the high-frequency approximation.

A remedy is provided by a gauge transformation with the time-periodic unitary operator [25]

U(t) = exp (iZXf(t)ﬁf), (126)
14

where

t Vf(t/) 1 T ¢ Vf(t/)
H=— | dt/ —= + — | dt""| dt/ ——=
Xe® j; no T»/; J; 1

_Fn

o . [—sin(wt)ex + cos(wt)ey]. (127)

This gauge transformation induces a time-dependent shift in quasimomentum, and the second integral has been
included to eliminate an overall quasimomentum drift. It provides a constant that subtracts the zero-frequency
component of the first integral, thus making the time average of x, () over one driving period vanish. One
arrives at the translationally invariant time-periodic Hamiltonian

A = U 0OH: U @) —ih U ) U@) = — S Jelc®ala,. (128)
(')

Here the scalar potential v, () is absent while the driving force is captured by the time-periodic Peierls phases
K .
Opre(t) = x, (1) — xp(8) = " sin(wt — @up). (129)

Now we are in the position to apply the high-frequency approximation, even for K > Aw. The actual
requirement is that fuw must be large compared to the tunneling matrix element J, which determines both the
spectral width of Hy and the strength of the coupling terms H,,, with m = 0.

6.2. Effective Hamiltonian
Theleading term in the expansion of the effective Hamiltonian is, according to equation (87), given by the time-
average of the driven Hamiltonian
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Figure 5. Effective tunneling matrix elements J)/J (solid black line) and J® /(J2/#w) (dashed blue line), as well as the leading term
—/3 J3(K / hw) contributing to J@ /(J2/ hw) (dotted red line).

A (1) A
= Hy = Z](l)af/af (130)

It corresponds to the undriven Hamiltonian with a modified effective tunneling matrix element

Jo :IJO(E), (131)
fw
where 7, denotes a Bessel function of integer order . This result was obtained by employing the relation
exp (ir sin(s)) = Z T (r)exp (iks). (132)
k=—o00

This Bessel-function-type renormalization of the tunnel matrix element (see figure 5 for a plot) allows us to
effectively reduce or even completely ‘switch off’ the nearest-neighbor tunneling matrix element. This effect is
known as dynamic localization [3], coherent destruction of tunneling [4, 6], or band collapse [5]. It has been
observed in the coherent expansion of a localized Bose condensate in a shaken optical lattice [7]. The effect has
also been used to induce the transition between a bosonic superfluid to a Mott insulator (and back) by shaking an
optical lattice [19, 20]. The possibility to make the tunneling matrix element negative has moreover been
exploited to achieve kinetic frustration in a circularly forced triangular lattice and to mimic antiferromagnetism
with spinless bosons [25, 26].

The second-order contribution to the effective Hamiltonian is given by equation (88) and can be written as

A0 o
i = Zlmhw [Hm, a ] (133)
with the Fourier components of the Hamiltonian reading
- j’”(ﬁ)e*im%’f ajidy. (134)
£'¢) hw

By using the relation [ak a, ,L ] = O,d ak — Ok ﬁ,; 4, , which holds both for bosonic and fermionic
operators d,,aswellas J_,,,(x) = (—)"J,(x), onearrives at
~2) PN
Hy = Z ]((<2f)’f>) “;’af’ (135)
{e'en

where the sum runs over next-nearest neighbors ¢"and ¢ . The effective tunneling matrix element is given by

(2) = Z jz( )21 sin (m[gof,k — wfk]), (136)

where k denotes the intermediate lattice site between #” and ¢, via which the second-order tunneling process
occurs’. One can immediately see that the tunneling matrix elements J, ézf), ¢y are purely imaginary and that they
depend, as an odd function, on the relative angle ¢/, — ¢, only. This relative angle is given by

Oy — o = — Opre 2?ﬂ,with sign ogry = +1 (07 = —1) for tunneling in anticlockwise (clockwise) direction
around a hexagonal lattice plaquette. Therefore, one finds

5 . . . .
In other lattice geometries, several two-step paths between ¢/ and ¢ can exist. In this case one must sum over all of them.
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1Z sy = @0y = el (137)

forming the pattern of effective tunneling matrix elements depicted in figure 4(b). Here

@ = __Z jz( )251n(m27r/3)~ \/gj—zjf(ﬁ) (138)
hw hw

hw ,,—im

and
0 = sign(J@®)=. 139
S1g (] )2 (139)

Since | J;,(x) | decays like |x | with respect to the order m, for sufficiently small K /fiw the sum is to good
approximation exhausted by its first term, as is demonstrated also in figure 5.
The approximate effective Hamiltonian [58]

Ay ~ B+ A, (140)
asitis depicted in figure 4(b), directly corresponds to the famous Haldane model [68] (see also reference [69]),
being the prototype of a topological Chern insulator [70, 71]. The next-nearest neighbor tunneling matrix elements
open a gap between the two low-energy Bloch bands of the hexagonal lattice, such that the bands acquire
topologically non-trivial properties of a Landau level characterized by a non-zero integer Chern number [72]. Asa
consequence, the system features chiral edge states, which have been observed experimentally with optical wave
guides [39], and a finite Hall conductivity, as has been observed with ultracold fermionic atoms [38], which is
quantized for a completely filled lower band. The fact that circular forcing can induce such non-trivial properties to
ahexagonal lattice has been pointed out in [27]. This is the first proposal for a Floquet-topological insulator [60]
(later proposals include [57, 59]). These systems can be defined as driven lattice systems with the effective
Hamiltonian featuring new matrix elements that open topologically non-trivial gaps in the Floquet-Bloch band
structure. Such new matrix elements appear in the second (or higher) order of the high-frequency approximation
that capture processes where a particle tunnels twice (or several times) during one driving period and that are of the
order of ~J?/hw. Therefore, Floquet topological insulators require the driving frequency to be at most moderately
larger than the tunneling matrix element J. This is different for another class of schemes for the creation of artificial
gauge fields and topological insulators recently pushed forward mainly in the context of ultracold quantum gases
[28-32,34-37]. In these schemes non-trivial effects enter already in the leading first-order of the high-frequency
expansion, so that they also work in the high-frequency limit fiw > J.

The non-interacting driven hexagonal lattice considered in this section can easily be solved numerically,
without further approximation. The driven Hamiltonian (128) obeys the discrete translational symmetry of the
lattice, with two sublattice states per lattice cell. As a consequence, the single-particle state space is divided into
uncoupled sectors of sharp quasimomentum, each containing two states. The problem is reduced to that of a
family of driven two-level systems labeled by the quasimomentum wave vector k. The high-frequency
approximation (140) is nevertheless useful. First, it gives rise to an analytical approximation to the Floquet
Hamiltonian, directly corresponding to the paradigmatic Haldane model [38, 58]. Second, as we will argue in the
next paragraph, the second-order approximation captures already the essential physics of the non-interacting
system in the regime of large frequencies. And third, it also allows us to take into account some of the effects
related to interactions (see section 7.1).

Let us briefly argue why the approximate effective Hamiltonian (140) captures the essential properties of the
full one for the translationally invariant non-interacting system in the limit of large driving frequencies. The
two-level Hamiltonian acting in the single-particle space of states with quasimomentum k is represented by a
2 X 2 matrix of the general form h (k, t) = hq(k, t) + h(k, t) - o, with o denoting the vector of Pauli
matrices and vector h = (h, hy, h,).Ifthe elements h; (k, t) ~ ] are small compared to fiw, the perturbation
expansion can be expected to converge. It is then left to argue that corrections beyond the second-order
approximation (140) do notlead to qualitatively new behavior. This can be done by employing the arguments by
Haldane [68] (see also reference [69]). In the subspace of quasimomentum k, the effective Hamiltonian Hris
represented by a time-independent matrix

e (k) = hyo (k) + hp (k) - 0. (141)

Its components determine the single-particle quasienergy dispersion relation

el (k) = hrote) + ||| B ()|,

(142)

with the two bands labeled by — and +. The leading approximation of the effective Hamiltonian, I—AI;D, describes
a hexagonal lattice with real nearest-neighbor tunneling matrix element —J( ~ J (see figure 4(b)). It gives rise
to a contribution h}l) (k) to the vector hg (k). Due to the fact that ﬁél) obeys space-inversion and time-reversal
symmetry, two inequivalent quasimomenta k.. (the corners K and K’ of the first Brillouin zone) exist, where

KDY (kL) = 0[69]. These are the Dirac points where the bands described by bV (k) touch in a cone-like fashion.
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Moreover, also h{" (k) = 0 for all k, since nearest-neighbor tunneling contributes only to the sublattice-mixing

off-diagonal matrix elements. Now, the second-order correction to the effective Hamiltonian q, ;2) contains
complex next-nearest-neighbor tunneling matrix elements —|J | (see figure 4(b)) of the order of J2/(hw)
[keeping K /(hw) fixed]. This gives rise to a correction h}z) (k), where only the z-component hl(;ﬁ) (k) isnon-zero,
since next-nearest-neighbor tunneling is sublattice preserving. Moreover, the time-reversal symmetry breaking
associated with the phase 9 makes this z-component non-zero at the Dirac points, such that

W2 (k) = —h$(k_) = 0.Inthis way the second-order correction removes the band touching and opens a gap
between both bands. The opposite sign of K2 (k ;) and h?) (k_) implies a finite Chern number of £1 of the
lowest band [68]. Now it is important to note that in second order the bands are separated by a gap of order
J?/(hw) (excluding situations, where the forcing strength is fine-tuned close to values giving J) = 0 or

J@ = 0). Even higher-order corrections, which in real space describe tunneling at even longer distances
associated with a particle tunneling three or more times during one driving period, will be of the order of
J3/(iw)?. They will no longer be able to close this gap and change the topological properties of the bands. Thus,
the essential physics of the driven system is captured by the approximation (140).

Qualitatively new behavior beyond the high-frequency approximation occurs, however, when fiw becomes
small enough that ei (k) — ef (k) = mhwwithm = 1, 2, 3, ...for some quasimomenta k. In this case both
bands are coupled resonantly in an m-‘photon’ process and hybridize. Such a hybridization is not captured by
the perturbative approach underlying the high-frequency approximation. It occurs, roughly, when the gap
between subspaces of different ‘photon’ number closes. The new band gaps resulting from the avoided
quasienergy level crossing between the states of quasienergy * (k) and e (k) — mhw have been shown to give
rise to intriguing topological properties without analog in non-driven systems [57, 73].

6.3. Comparison with Floquet—-Magnus expansion
The circularly driven hexagonal lattice is also an instructive example that illustrates the difference between the
high-frequency expansion of the effective Hamiltonian Hy on the one hand and of the Floquet Hamiltonian ﬁtf,
as it appears in the Floquet—-Magnus expansion, on the other.

According to equations (108) and (109), the leading terms of the expansion of ﬁtf read

A~ (1D

A% = A (143)
and
A% = a7 + Z W’w’fo[ﬁlo, Hm] (144)
szm LU

Evaluating the difference between the Floquet Hamiltonian and the effective Hamiltonian in second order, one
obtains

A "(2) AT A
Htf(Z) == Z] (e'ey Gprde- (145)

Here

2
() J K K im(wty—p,,) im(wto— @,y
]to (7 > 0(%)*7'“(%)(6 el e Wk)

mromﬁw

o K
~— %jo( ﬁw)j( ﬁw)[COS(WtO — Pre) — cos(wto — ‘Pf’k)] (146)

denotes the #o-dependent part of the next-nearest-neighbor tunneling matrix element
(2) @)
Jieey T Tugere (147)

of ﬁtf(z), with k defined as the intermediate site between # and #”. It is easy to check that the tunneling matrix
element (147) depends on the direction of tunneling and not only on whether a particle tunnels in clockwise or
anticlockwise direction around a hexagonal plaquette. This directional dependence is determined by ¢, and
concerns not only the phase but also the amplitude of the next-nearest-neighbor tunneling matrix element
(147). The consequence is a spurious t,-dependent breaking of the discrete rotational symmetry of the band
structure of the approximate Floquet Hamiltonian ﬁf(l) + I:I,f @ This can be seen as follows.

The driven Hamiltonian H (¢) obeys the discrete translational symmetry of the hexagonal lattice so that
quasimomentum is a conserved quantity. Therefore, H,f and Hy possess not only the same spectrum but also
the same single-particle dispersion relation £, (k). The symmetry of the hexagonal lattice with respect to discrete
spatial rotations by 27 /3 is broken by the periodic force. However, the force leaves the Hamiltonian H (1)
unaltered with respect to the joint operation of a rotation by 27/3 combined with a time shift by — T /3. This
spatio-temporal symmetry ensures that the effective Hamiltonian Hy again possesses the full discrete rotational
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Figure 6. Quasienergy dispersion relation (k) of the circularly driven hexagonal lattice, for w/J = 4 and K /(hw) = 1.2. We
compare the second-order high-frequency appr0x1mat10n of the effective Hamiltonian, €'f 121(k), [(a) and blue line in (c)] with the
second-order Floquet Magnus approximation, etu M12] k), evaluated for wty = 27/3 [(b) and red line in (¢)]. The Floquet-Magnus
approximation 6t0 M12] (k) not only acquires a spurious f, dependence but also breaks the discrete rotational symmetry of the exact
dispersion relation e (k). In first order both approximations coincide, sm " M (k) = 8[1] (k) [dashed line in (¢)].

symmetry of the hexagonal lattice. This is reflected in the leading terms (130) and (135) of the high-frequency
expansion. As a consequence, the quasienergy band structure, given by the single-particle dispersion relation
e4(k), is also symmetric with respect to a spatial rotation by 27 /3. The Floquet Hamiltonian I:I,f, whose
parametric dependence on the time ¢, indicates that it also depends on the micromotion, does not obey the
discrete rotational symmetry of the hexagonal lattice when evaluated for a fixed time t,. However, the single-
particle spectrum of I:Itf is still given by e, (k) and, thus, is rotationally symmetric. This latter property of the
exact Floquet Hamiltonian I:Itf is not preserved by the Floquet-Magnus approximation

ﬁth 2 — PAI,S(D + I:I,f @ Here the second-order term not onlyleads to a spurious #, dependence of the
spectrum, but also breaks the rotational symmetry of the quasienergy band structure. This is illustrated in
figure 6, where we compare the approximate dispersion relation 5[2] (k) resulting from the high-frequency

approximation of the effective Hamiltonian with the spectrum ¢; © P 21(k) obtained using the Floquet-Magnus

approximation. In this respect, the approximate Floquet Hamiltonian H FMET i< inconsistent with Floquet

theory. The origin of this inconsistency is that the dispersion relation in the Floquet—Magnus approximation
depends on the driving phase, which, in turn, depends on the direction. Even though the spurious symmetry
breaking should be small and of the order of J (J /fiw)? [for (K /fw) fixed], corresponding to the neglected third
order, it still changes the property of the system in a fundamental way. Therefore, the Floquet—-Magnus
expansion must be employed with care.

6.4. Micromotion

The micromotion operator Uy (t) = exp(G (¢)) resulting from the periodic Hamiltonian H (¢) is
approximated by G(t) ~ @(0)(t) + G(l)(t). Here é(o)(t) = 0 and, employing equation (69), we find
R 00 eimthfIm _ eiimwﬁ,m e
GV = -3 = S, (haja, (148)

m=1 mhw )

with
[ (l’) [ L i 1 ( )[eim(wtfgpf,f) _ ( _ )mefim(wtftpf/f)]
£'¢ Fw =
~— aﬁ(%) cos(Wt — @up). (149)

Since ¢y = @, + m,itfollows that g, (t) = —g7,, (t), such that G (¢) is anti-hermitian as required. With
respect to the original frame of reference, where the system is described by the driven Hamiltonian Hy, (1), the
micromotion operator is given by

Udr ® =000 @) ~ exp ng/f (t)af,af exp [1 th, (1) ﬂf] (150)
('e)
The dynamics that is described by U (¢) does not happen in real space, but corresponds to a global time-
periodic oscillation in quasimomentum by K [sm (wt)ey — cos(wt)e, ]. This momentum oscillation is
significant when K ~ fw and itis taken i 1nto account via the initial gauge transformation in a non-perturbative
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fashion, as can be seen from the Bessel-function-type dependence of the effective tunneling matrix elements on
K /hw. Inturn, Up (t) conserves quasimomentum and describes a micromotion in real space. This real-space
micromotion becomes significant when the tunneling time 27//] is not too large compared to the driving
period T, i.e. for J /hw not too small. A significant second-order correction I:Iém is a direct consequence of this
real-space micromotion. In the high-frequency expansion, the real-space micromotion is taken into account
perturbatively.

By expanding the tunneling matrix elements also in powers of the driving strength K, one finds that

J JK?

JO T

(151)

The quadratic dependence on K indicates that large driving amplitudes K /hw ~ 1are important in order to
achieve a topological band gap ~|J® | that is significant with respect to the band width ~|J(V|. At the same time,
the linear dependence on the tunneling matrix element ] reveals that moderate values of J /hw, for which the
high-frequency expansion is still justified, can be sufficient (see also figure 5).

The time-dependent basis states capturing the micromotion can be constructed from the basis of Fock states
| {n,}) characterized by sharp on-site occupation numbers #,. They read

[{ne} () = Up(0)|{ns}) ~ exp [ ng’f(t)a;/af]|{nf}>

('e)

S [1 — Zﬂﬂ(%) cos(wt — gof,f)ﬁ;,ﬁf]an}). (152)

(£'¢) hw

For the second approximation we have expanded the exponential, such that the state is normalized only up to
terms of order | /hw [*,and replaced g, , (t) by theleading term of the sum (149). The micromotion is
dominated by the oscillatory dynamics of particles from one lattice site to a neighboring one and back. The

2
probability of a particle participating in such an oscillation is of the order of % ‘71(%) , with the

coordination number z = 3 counting the nearest neighbors of a lattice site.

7.Role of interactions

If we consider a periodically driven quantum system of many particles, then the presence of interactions will
influence the high-frequency expansion in two different ways. First, the interaction terms in the Hamiltonian
will simply generate new terms in the high-frequency expansion. This effect will be discussed in the following
section 7.1 for the example of the driven tight-binding lattice discussed in the previous section. Second, the
presence of interactions will severely challenge the validity of the high-frequency expansion, since even if the
single-particle spectrum is bounded with a width lower than fiw, this will no longer be the case for collective
excitations. This issue will be addressed in section 7.2.

7.1. Interaction corrections within the high-frequency expansion
Ignoring for the moment concerns that the high-frequency expansion should be employed with care in the
presence of interactions, let us have a look at the new terms that will be generated by finite interaction terms in
the Hamiltonian. We will focus on the example of the driven tight-binding lattice that was discussed on the
single-particle level in the previous section.

Starting from the interacting problem Hg. (t) + Hi, with a time-independent interaction term H,, of the
typical density—density type, the interactions are not altered by the gauge transformation (128). Thus, after the
gauge transformation the interacting lattice system is described by the driven Hubbard Hamiltonian

H(t) + Hine (153)

with the time-periodic single-particle Hamiltonian H (¢) given by equation (128). The presence of the time-
independent term Hjy, with trivial Fourier components

I:Iint m = 6m,OI:Iinta (154)
will lead to additional terms in the high-frequency expansion of the effective Hamiltonian that we will denote by

I:Iéﬁ)t The leading contribution appears in the first order (equation (87)) and is given by the time-independent
operator H,, itself,
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A (1) N
HFmt — int. (155)
The second-order correction (88) vanishes,

~(2)
HFmt =0, (156)

because all Fourier components Flim mWith [m| > 0 vanish. Therefore, the leading correction involving the
interactions appears in third order (equation (89)) and reads

HO — Z( LA [Finy Hinl] h.c.]. (157

2 (mhw)?

Here H,, denotes a Fourier component of the kinetic part A (t) of the Hamiltonian given by equation (134) of
the previous section and ‘h.c.” stands for ‘hermitian conjugate’. The presence of interaction corrections beyond
the leading order H, ;llr)‘t = Hi,, as they result from real-space micromotion, was overlooked in a recent work
investigating the possibility of stabilizing a fractional-Chern-insulator-type many-body Floquet state with
interacting fermions in the circularly driven hexagonal lattice [66]. A recent study, which is based on the results
presented here, investigates the impact of the correction (157) on the stability of both fermionic and bosonic
Floquet fractional Chern insulators [74]. It is found that the correction tends to destabilize such a topologically
ordered phase.

Note that the high-frequency expansion of the Floquet Hamiltonian I:Itf, asitappears in the Floquet—
Magnus expansion, also produces a second-order correction (109) that involves the interactions. It is given by
[48,49,67]

o0
iy = 1

mm)t
D o[ s A |- (158)

However, as we have discussed in section 5, if we approximate the Floquet Hamiltonian in second order, this
term will not influence the many-body spectrum within the order of the approximation, while it introduces an
unphysical dependence of the spectrum on the driving phase.

In order to get an idea of what types of terms appear in the high-frequency expansion, let us write down the
third-order interaction correction for the simple case of spinless bosons in the circularly forced hexagonal lattice
with on-site interactions

Hin = %Zﬁf(ﬁf ~ 1), (159)
4

This model system provides a quantitative description of ultracold bosonic atoms in an optical lattice and is
interesting also because (in addition to the fermionic system [66]) it might be a possible candidate for a system
stabilizing a Floquet fractional Chern insulator state. Using equation (157), we find those third-order correction
terms that involve the interactions to be given by

T R ()
4

+ S {awPhpie + 2wPajafa,4, )

0)
+ 3 {w§3>a;,(4ﬁk — i — i),

('kt)
+ w;“(a,ja,jaf,af +ajajaa)), (160)

with coordination number z= 3 and coupling strengths

= S L) )

e ) )
weh = (ﬁw)z mzlm_ (m—m) (ﬁi) 2(hw)2‘72(%)’ (169
N N

The third sum runs over all directed three-site strings (¢’kZ), defined such that # and kas well as kand #” are
nearest neighbors, while # = #’. The first sum produces a correction that reduces the on-site interactions of the

. ~ (1 - . . . _ L
leading term H, }Eif,t = Hjy. The second sum introduces both nearest-neighbor density—density interactions like

23



I0P Publishing

NewJ. Phys. 17 (2015) 093039 A Eckardtand E Anisimovas

in the extended Hubbard model and a pair-tunneling term. And the third sum, finally describes density-assisted
tunneling between next-nearest neighbors, as well as the joint tunneling of two particles into or away from a
given site.

7.2. On the validity of the high-frequency approximation for many-body systems
The high-frequency expansion of the effective Hamiltonian Hy and the micromotion operator Uy (£) can
generally not be expected to converge for a system of many interacting particles. Namely, the time average H, of
the full many-body Hamiltonian H (), which determines the spectrum of the diagonal blocks of the
quasienergy operator Q depicted in figure 1, will possess collective excitations also at very large energies.
Therefore the energy gaps of hw, which separate the subspaces of different ‘photon’ numbers m in the
unperturbed problem Qy, will close when the perturbation is switched on (unless iw was a macroscopic energy).
Nevertheless, the fact that the unperturbed problem Qy is given by the ‘photonic’ part of the quasienergy
operator, with exactly degenerate eigenvalues m/w in each subspace of photon number 1, allows one to
formally write down the perturbation expansion. The energy denominators will not diverge. This is illustrated in
figure 7. And, even if the perturbation expansion can generally not be expected to converge, these terms can still
provide an approximate description of the driven many-body system on a finite time scale. This can be the case if

the vth-order approximate effective Hamiltonian H, IEV] is governed by energy scales that are small compared to
hw. Then the creation of a collective excitation of energy fuw corresponds to a significant change in the structure
of the many-body wave function and is a process associated with a very small matrix element only. As a
consequence, on time scales that are small compared to the inverse of such residual matrix elements, the
approximate effective Hamiltonian can be employed to compute the dynamics and approximate Floquet states
of the system. This is the basis for Floquet engineering in interacting systems.

Let us illustrate this rather abstract reasoning by a concrete example. Consider again spinless bosons in the
circularly forced hexagonal lattice, described by the driven Bose-Hubbard Hamiltonian (153). The first-order
approximation to the effective Hamiltonian is given by

Ay = —]J( w) Saja, + — an(n,,» . (165)

('¢)

In the thermodynamic limit (where the number of lattice sites M is taken to infinity, while keeping the filling of n
particles per lattice site fixed), the system possesses excited states at arbitrarily large energies. Therefore, the
width of the spectrum is obviously larger than fiw. As a consequence, the first-order quasienergy spectrum that
describes the subspace of ‘photon’ number m is much wider than /iw. Itis no longer separated by a spectral gap
from subspaces of different ‘photon number’, but overlaps with quasienergies from these spectra. Therefore, the
perturbation expansion, which is based on the assumption that the unperturbed spectral gaps do not close in
response to the perturbation, can generally not be expected to converge’. Namely, if we would consider the full
diagonal blocks of the quasienergy matrix (figure 1) as an unperturbed problem (that is if we would add the
block-diagonal part of the supposedly small perturbation to the unperturbed quasienergy operator considered
before), the unperturbed quasienergy spectra of different subspaces m would already overlap. As a consequence,
the energy denominators appearing in the perturbation expansion would diverge, whenever a degeneracy
between unperturbed states of different ‘photon’ number m occurs.

We can now identify processes that spoil the high-frequency expansion for the driven Bose-Hubbard model
(153) and estimate the time scale on which they occur. For simplicity, we focus on the limit of strong interactions
U > ] and assume a filling of n = 1. In the spirit of the argument presented at the end of the preceding
paragraph, we can now add part of the perturbation to the unperturbed problem. We include the interactions in
the definition of the unperturbed quasienergy operator,

Qo - 1nt - ihdt: (166)
so that the perturbation is given by the kinetic part (128) of the Hamiltonian,

V() =H(@t) = > _Hyem, (167)

with Fourier components H,, given by equation (134). The unperturbed Floquet states | {11, } m)) are
characterized by sharp site occupation numbers #, as well as sharp ‘photon’ numbers m and read

6 Note that there are exceptions to this expectation. For example, the non-interacting system with U = 0 is described by a quadratic
Hamiltonian. In this case the problem can be reduced to a single-particle problem. As a consequence, convergence is already expected for hw
that is sufficiently large compared to the width of the single-particle spectrum ~J . Thisis true even if /aw is small compared to the width of the
N-particle spectrum ~NJ of the Hamiltonian (165) with U= 0. Namely, the matrix elements for the joint creation of several single-particle
excitations at once vanish. However, if the particles are coupled by a finite interaction strength U, the single-particle picture no longer
applies.

24



I0P Publishing

NewJ. Phys. 17 (2015) 093039 A Eckardtand E Anisimovas

€ (a) (b)
A I —
8(20) + hy —mmm
— hw ——
ﬁo ﬁAm
O _ hg b —Mhw
Q Vi Vx Qo Vo Ty

Figure 7. Like figure 3, but with the spectral width defined by £ larger than the energetic separation Aiw of sectors with different
‘photon’ number m. The perturbation expansion is not justified and cannot be expected to converge. However, defining the
unperturbed problem as in subfigure (b), the perturbation expansion can still be written down formally and, under certain conditions,
still provide a useful approximation.

[{neym(1)) = e |{ne}). (168)
They diagonalize the unperturbed problem,

Al
<< {n; } m/lQO [{ne} m>> = 5m’,m5{n,’»},{nf}5/%?1)f}m: (169)
where the unperturbed quasienergies read

8/%?;}"1 = %an(nf — 1) + mhw. (170)
¢

The high-frequency approximation is spoiled whenever two unperturbed states | {11, } m)) and | {n, } m’)) with
different photon numbers m = m’ are nearly degenerate and coupled to each other (either directly or in a
higher-order process). In such a situation a strong hybridization between these states of different ‘photon’
number occurs, rather than a perturbative admixture of one state to the other as required by the high-frequency
approximation.

Let us investigate how far the unperturbed ‘ground state’ of the m = 0 manifold, |ty)), suffers from such a
detrimental coupling. This state corresponds to a Mott-insulator with one particle per site,

lho)) = [{ns = 1}0)). (171)

Itis the only unperturbed m = 0 state without any doubly occupied site, so that the interaction energy vanishes.
Its quasienergy reads €'’ = 0. It is the approximate ground state of the approximate effective Hamiltonian
(165) in the regime U >> J [75]. We can now systematically study the most relevant processes that couple | ) to
states of ‘photon’ number m = 0. For that purpose, we will follow the procedure applied to a one-dimensional
chaininreference [51].
The state |1),)) is coupled directly (in first-order”) to unperturbed states
1
[{&d)m) = NG

with one particle-hole excitation on neighboring sites 4 and &, m photons, and unperturbed quasienergy

() e © 0 .
Ebam = U + mhw. The resonance condition Ebam = €0 18 fulfilled for frequencies

bobs [{ne = 1ym)), (172)

ho=-2 with  m=—1,-2 -3, ... (173)
m

They are labeled by the negative change of the ‘photon’ number, m, associated with the transition
[o)) — |{&)m)). The corresponding coupling matrix elements is of the order of J and reads

This order does not refer to the high-frequency approximation discussed so far, but to a perturbative approach treating |t/)) and collective
excitations with m < 0 photons as nearly degenerate.
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CLP = (A mIV' o) = == ({ne = 1)1 b b 1 (e = 1))

=— \/E]jm( £)eim"pfzf’l. (174)
hw

The time scale for the resonant creation of particle-hole excitations in the effective ground state can thus be
estimated to be given by 2772/ C{V. If hw is larger than U, the direct excitation of particle-hole pairs is not
resonant, so that this type of heating process cannot spoil the high-frequency approximation.

The next-strongest type of process is the creation of a collective excitation consiting of two coupled (i.e.
overlapping) particle-hole pairs, with two extra particles on a site #; and no particles on two neighboring sites 4
and 4. Such a state is given by

1 pinfa a
((&4) (G6))m) = ﬁb% be by by |{ns = 1}m)) (175)
and possesses the unperturbed quasienergy 5?& aeeym = U+ mhw. The resonance condition
sg?}% aetym = 'O is fulfilled for frequencies
hw = — ﬁ with m=—1, -2, —4, =5, —=7.... (176)
m

Here we have omitted those m, for which already a dominating first-order resonance (173) occurs. The state
(175) is coupled to |¢)y)) only indirectly, in a second-order process via intermediate states | (/34 ,) m'))
characterized by a single particle-hole pair and photon number 7. The coupling matrix element can be
evalutated using degenerate perturbation theory and reads

CO= 3 (B Ea)m| 7| S [aom) (A ] |7

m'=—o00 =06,
1 1 N 1
Y IRD) RO) © _ (0
2| cqaayitmym ~ Eaaym €0~ Enam
2 T )T E) . , y . , .
— ‘/ﬁgu{ Z m(/h;)ﬁ m//(fu) (el(mfm)apﬁfzﬂm Peser A @ilm—m") iy +im 99/3f2)' (177)
ml

In order to arrive at a simple result, we have focused on the vicinity of the resonance and employed

U = —mhw/3 in the energy denominators. The time scale for the resonant creation of such an overlapping pair
of particle-hole excitations is given by 27r//C'?). It is increased by a factor of the order of fiw/J with respect to
the creation of a single particle-hole pair, since it appears one order higher in perturbation theory. In an
experiment one can avoid heating processes associated with the creation of two coupled particle-hole excitations
by choosing fiw well above 3U . In this case, the most detrimental process will be the creation of a collective
excitation given by three overlapping particle-hole pairs in a third-order process, with matrix element

C® ~ J3/(hw)®. These third-order heating processes can, in turn, be avoided for uw well above 12U, and so on.
Thus, by increasing the driving frequency, the time scale for detrimental heating due to the creation of collective
excitations increases.

The order of perturbation theory in which detrimental heating processes beyond the high-frequency
approximation occur increases like a power law with the frequency fw, at least for the model and the parameters
considered. This suggests that the time scale for heating due to the creation of collective excitations increases
exponentially with the driving frequency (i.e. the higher the energy of a collective excitation the more complex it
is, and the smaller will be the matrix element for its creation). Such a scaling is favorable for quantum
engineering based on the high-frequency approximation. However, one must note that the driving frequency
cannot simply be increased to arbitrarily large values, because with increasing driving frequency another type of
heating process will become more relevant. Namely, the resonant creation of high-energy single-particle states
neglected in a low-energy model will become more and more relevant. In the driven lattice system these states
belong to excited Bloch bands above a large energy gap A that are not taken into account in the tight binding
description. If the resonance condition A ~ mhw is fulfilled, these states can be populated in m-photon
processes [76—78], the time scale of which tends to increase with m. Thus, Floquet engineering requires a
window of suitable driving frequencies that are both large enough to suppress heating due to the creation of
collective excitations and small enough to suppress heating due to interband transitions. In optical lattice

The coupling matrix element for the creation of two or more independent (i.e. non-overlapping) particle-hole pairs, corresponding to an
unconnected diagram, can be shown to vanish. Otherwise the overall rate for the creation of isolated particle-hole pairs would grow in a
superlinear (i.e.superextensive) fashion with the system size.
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systems, the existence of a window of suitable driving frequencies has been demonstrated in a number of
experiments (see first paragraph of section 1).

In the preceding paragraph the requirement ‘to suppress heating’ should be read as ‘to suppress heating on
the time scale of the experimental protocol’. Thus, the window of suitable frequencies depends also on the
duration of the experiments, which in turn is determined by the effects to be studied. This dependence on the
duration of the experiment is also reflected, in the response of a system to parameter variations. An important
experimental protocol in the context of Floquet engineering is, for example, the smooth switching-on of the
driving amplitude. Here the aim is to start from the ground state of the undriven model and to adiabatically
prepare the ground state of the effective Hamiltonian obtained using the high-frequency approximation. In
order to understand such parameter variations, one can employ the adiabatic principle for Floquet states [50]. In
order to achieve the desired dynamics in a driven many-body system, two things are required: first, that the
parameter variation is slow enough to ensure adiabatic following with respect to the high-frequency
approximate effective Hamiltonian; and second, that the parameter variation is sufficiently fast. The second
requirement can be understood as follows. The matrix elements for the resonant creation of collective
excitations discussed above will lead to tiny avoided crossings in the quasienergy spectrum between states of
different ‘photon’ number. These avoided crossings are not captured by the high-frequency approximation and,
in order to avoid heating, must be passed diabatically [51].

The window of suitable driving frequencies is not necessarily determined by heating processes alone.
Another limitation comes in, if the second-order term of the high-frequency approximation, H, 15-2), is relevant for
the model system to be realized via Floquet engineering. The opening of a topological band gap in the circularly
driven hexagonal lattice, discussed in section 6.2, is a prime example. This band gap appears in second order and
depends inversely on the driving frequency w™! [if K /(fiw) is held constant]. Thus, if the band gap is required to
be larger than some minimum value (determined, for example, by interactions, temperature, or the rate of a
parameter variation), this sets an upper limit for the driving frequency. The existence (and the identification) of
system parameters for which a window of suitable driving frequencies exists is an important issue of Floquet
engineering.

The reasoning of this subsection suggests that, when dealing with a large system of interacting
particles, on long time scales the high-frequency approximation can be expected to break down due to
heating. In fact, the expected generic behavior of a driven many-body system in the thermodynamic limit
is that it eventually approaches an infinite-temperature-like state in the long-time limit [79, 80].” In the
sense of eigenstate thermalization [88, 89], the conjectured infinite-temperature behavior is attributed to
the resonant (m-‘photon’-type) coupling, and the resulting hybridization, of states with very different
mean energies. However, irrespective of the long-time behavior, the high-frequency approximation might
still provide an accurate description of a driven many-body system on a finite time scale.

8. Summary

We have used degenerate perturbation theory in the exended Floquet space to derive a high-frequency
expansion of the effective Hamiltonian and the micromotion operator of periodically driven quantum systems.
This approach provides an intuitive picture of the nature of the high-frequency approximation and its
limitations. We have, moreover, related our approach to the Floquet-Magnus expansion. We have discussed the
fact that the latter is not only plagued by a spurious t, dependence of the quasienergy spectrum, but that it can
also violate further symmetries of the exact result, like the rotational symmetry of a Floquet band structure.
Finally, we have addressed the possibly detrimental impact of interactions on the validity of the high-frequency
approximation beyond a certain time scale.
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Appendix A. Existence of Floquet states

One can show that the eigenstates of the time-evolution operator over one period have the properties of Floquet
states. The eigenstates |1, (¢) ) of the time evolution operator from time ¢ to time ¢+ T fulfill

Ut + T, H|¢a () = a,(®)|¥u(D)). (A.1)

Since U (¢ + T, t) is unitary, the eigenvalues a,, (¢) are phase factors, |a, ()| = 1, and the eigenstates |1, (¢))
can be chosen to form a complete orthogonal basis. It remains to show that the time-evolved states

[, (t")) = U (¢, t)|1p(t)) are eigenstates of U (T + ', t') with the same eigenvalue, i.e. that

a,(t") = a,(t) = a, = e/ For that purpose one introduces 1 = U (¢, t')U (¢/, t) on both sides of the
eigenvalue equation (A.1) and multiplies the equation by U (#/, ) from the left. Furthermore, the periodic time-
dependence of the Hamiltonian must be employed by using U (¢, t) = U (¢’ + T, t + T).One arrives at

U + T, )y (t)) = an®ln(t)), (A2)
such that, indeed, a,, (') = a, (¢). Thus, one has
Ut + T, D)u(1)) = e =T/, (1)), (A.3)
with real quasienergy €, not depending on the time ¢. The Floquet states |1}, (¢) ) fulfill
[ (t 4+ 1)) = 714 (1) (A4)
and can be written as
[¥n(8)) = e M u, (1), (A.5)

where the time-periodic Floquet mode,
lun (D)) = e/ Mapy, (1)) = |un(t + T)), (A.6)

has been introduced.

Appendix B. Relations between operators in 7{ and F

An important class of operators A actingin F are those corresponding to operators A (t) = A (¢t + T) thatact
in 'H and possess a periodic and local time dependence. Here ‘local in time’ means that the operator involves
neither a time derivative nor an integral over a finite time span. Let us briefly summarize some properties of such
operators.

(i) The operator A corresponding to A (r) possesses matrix elements

(a'm'|Alam)) = (/|A ) (B.1)

that are determined by the Fourier components
~ 1 T . N
A, = — f dr e M1 (1) (B.2)
T Jo

of A (t). The fact that the matrix elements (B.1) depend on the difference m’ — m shows that time-periodic
time-local (TPTL) operators A (t) correspond to operators A that are translation invariant with respect to the
‘photon’ number m. Conversely, for every operator A being translationally invariant with respect to 71, we can
construct a corresponding time periodic operator

A(t) =Y A, eimet (B.3)

actingin H via

A, = Z la/) {(/m|A|a0)) (). (B.4)

An example for such a TPTL operator is the Hamiltonian H (¢), giving rise to matrix elements

(o/m'|H|aum)) = (a'|Hypr— ] ). An example for an operator that is not time local is the ‘photonic’ part

(jp (t) = — ihd,1 of the quasienergy operator. Here we have explicitly written out the unity operator 1 in 7,

which we usually suppress. The corresponding operator Q, in F possesses matrix elements

(o/'m'|Qplam)) = Gy Oa’q mhw that are not translationally invariant with respect to the ‘photon’ number.
(ii) A TPTL operator such as the Hamiltonian H (¢) that for all times ¢ is hermitian in 7 corresponds to an

operator H in F that is translationally invariant with respect to the ‘photon’ number 7 and hermitian, and

vice versa,
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Ao =00 s A=A (B.5)
For example, one direction (‘=") can be shown as follows: {{o/m'|H|am)) = {(am|H |a'm')* =
(| Hyy |V = (a |I:I,:,,mr la) = (/| By _ | ) = (o/m'| H |am)). Here we have employed
A = —H, _,which follows from H (t) = Zm el — A ().
(iii) A multiplication of two TPTL operators in H directly corresponds to a multiplication in F,

m—m

Aty =B Cw) & A = BC. (B.6)

The proofis straightforward. This implies also that
An=fBw) & A=fO), (B.7)

where the function fis defined via its Taylor expansion.
(iv) When viewed as a constant function in time, the unity operator 1 in 7, with (o’ |T|a) = 8,/ 4, directly
corresponds to the unity operator 1 in F, with ({a/m/|1|am)) = 6,7, 6a/a- Thatis,

A =1 o A=1. (B.8)

(v) ATPTL operator U(t) that for all times ¢ is unitary in  corresponds to an operator U in F that s
translationally invariant with respect to the ‘photon’ number m and unitary, and vice versa,

U'n0@) = 00 @) = 1 & U0 =00 = 1. (B.9)

This is a direct consequence of (iii) and (iv).

Appendix C. Degenerate perturbation theory in the extended Floquet Hilbert space

Degenerate perturbation theory is an approximation scheme that allows for the systematic block diagonalization
of a hermitian operator into two subspaces separated by a spectral gap. Here we apply the canonical van Vleck
degenerate perturbation theory [90] to the quasienergy operator Q in the extended Floquet Hilbert space F and
generalize it into an approximation scheme for the systematic block diagonalization of Q into multiple (more
than two) subspaces separated by spectral gaps. The generalized formalism is found to contain additional terms
that do not appear in the standard scheme for bipartitioning. The procedure is closely related to the dressed-
atom approach described in reference [53] and has previously also been developed for the concrete example of a
driven two-level system [61].

Consider a Floquet system with quasienergy operator

Q=Q+ \V, A=1, (C.1)

splitinto an uperturbed part Qg and a perturbation A\V. The dimensionless parameter A shall eventually be set to
one, and has been introduced to keep track of the order in which the perturbation appears. The eigenstates of the
unperturbed quasienergy operator |am)), the unperturbed Floquet modes, and their eigenvalues £'°),, the
unperturbed quasienergies, are known and fulfill

Qolam)) = e{) lam). (C2)

The index m separates the eigenstates into multiple subsets. The states within each subset 11 are labeled by the
index o and span the unperturbed subspace ¥ related to m. The quasienergies of two subsets 1 and 1’ shall be
separated by a quasienergy gap that is large compared to the matrix elements of the perturbation V. When the
perturbation is switched on smoothly, without closing the spectral gaps, the unperturbed subspaces F will be
transformed adiabatically to the perturbed subspaces F,,,, corresponding to a diagonal block of the perturbed
problem. These subspaces F,,, will be spanned by new basis states | am))p that deviate from the unperturbed
states |am)) by small perturbative admixtures of states from other unperturbed subspaces. The states |m))p are
decoupled from states that are notin F,,

s{{a/m'|Qlam)y =0 for m' = m, (C.3)

but generally they are not eigenstates of the perturbed quasienergy operator Q, so that z({a/m|Q|am))p canalso
be finite for o = . The task to be accomplished by degenerate perturbation theory is to find systematic
expansions for both the perturbed basis states |am))p, i.e. for the unitary operator U that relates them to the
unperturbed basis states via

lam))y = Ulam)), (C4)

and the matrix elements g((a’m|Q|am))p describing the physics within the subspace .
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The projectors B, into the unperturbed subspaces 72 are defined by

By = Ylam) (am] C3)
and obey
>b, =1, (C.6)
with the unity operator 1. They can be used to decompose any operator A such as
A =Ap + Ax (C.7)
into a block-diagonal part
Ap => B,AD, (C.8)
m
and a block-off-diagonal part
Ax => > BsAB,. (C9
m
The product of two block-diagonal operators is again block-diagonal,
ADBD = (A_DBD)D i.e. (ADBD)X = 0, (CIO)
and the product of a block-diagonal and a block-off-diagonal operator is block-off-diagonal,
ADBX = (ADEX)X i.e. (ADBX)D =0, (Cll)
AXBD = (AXBD)X i.e. (AXBD)D = 0. (C12)

If, as in the standard form of degenerate perturbation theory, the state space is bipartitioned only, one also finds
Ax By = (Ax Bx)p, but this relation does not hold if the state space is partioned into more than two subspaces.
Instead, for multipartitioning one generally has

AyBy = (AXBX)D + (AXBX)X. (C.13)

The fact that the second term on the right-hand side is finite will give rise to additional terms in the perturbation
expansion that do not appear in the standard formalism.

We wish to block diagonalize the full unperturbed quasienergy operator Q by means of a unitary operator U,
such that

UTQU = Qo + W, (C.14)
with block-diagonal operator
It is convenient to split equation (C.14) into its block-diagonal part
[07(Q+ o+ )0 =G+ W, (C.16)
and its block-off-diagonal part
[U*(Qo T+ VX)U] = 0. (C.17)
X

The unitary operator U defines the new basis states via equation (C.4). It can be expressed in terms of an anti-
hermitian operator G,

U = exp(G), G=-G" (C.18)
However, U is not determined uniquely, unless one requires as the additional condition
G=0Gx e Gp=0 (C.19)

that keeps the mixing of states within each subpace F% small. This ansatz defines the canonical van Vleck form
of degenerate perturbation theory.
We can expand W and U in powers n of the perturbation V,

W= W, (C.20)

n=0
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with
WO — W de WP —o0
and
o0
U= Z)\”U(”).
n=0

The terms U"” can be related to the terms in the perturbative expansion of G,

o0
G= Zx\”(_}(”)

n=1

with
G = G_)((”) i. e. G_l()") =0
and
GO — — [GOT
Onehas
00 =1,
oo = GO,

00 = ¢o 1 Ligop,
2

00 = 6o + Ligngo + gogoy + Ligop,
2 6

A Eckardt and E Anisimovas

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)
(C.27)

(C.28)

(C.29)

etc. Plugging these expressions into equations (C.16) and (C.17), we can iteratively determine W and G order by

order.
In zeroth order we find from equation (C.16) that

wo — 0,
while equation (C.17) reduces to 0 = 0. For the next orders we obtain
[GD, Qo] = Wk

[GP, Q] = [V, GV + %[Vx, GOy
(6, Qul = [V, G) + ([, G, GVl
v %[Vm GO — i[[Vx) GO, GOy

etc from equation (C.16). And with that, equation (C.17) gives
wo = VD,

— 1 - _
W(Z) = _[VX) Ga)]D)

[\S}

WO = (7 6y + [V, GV, GV,

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

where, in order to obtain the expression for W®, we have used [[Vx, GV 1y, GP]p = [[Vx, GP], GV ]p,
since [[Vy, GV]p, GP]p = 0. For the terms [G™, Q] the first deviation from the standard bipartitioning
perturbation theory appears in second order and is given by the second term on the right-hand side of
(equation C.32). In addition, the terms in the second line of equation (C.33) are new. In the expansion of W the
first deviation occurs in the third order W® and is given by the last term of equation (C.36).

From the commutator [G™, Q,]we can construct all matrix elements of G order by order. Since Gp = 0,

we know that

{(a’'m|G™|am)) = 0.

(C.37)

The non-vanishing matrix elements of G™ couple states |m)) and |a/m')) with m’ = m and obey

(&/m'|GPam)) = — ((am|GP|a/m')*,

(C.38)
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following from G being anti-hermitian. Using that

{a/m'|[G™, Qollam)) = (553,),, -9 )((a’m’IG(”)Iam», (C.39)

(l m
one can compute the matrix elements with m’ = m of the leading terms:

{(a'm'| Vx| am)
0 o

/
am’

(a/m'|GVam)) = — (C.40)

13 — &4
<<a m!|Vp |/ m")) (" m! | Vi | o))
( ©) (107)11)( RO Efff)n )
Z<< mIVxla "m)) (' m| V| aum))
a” ( g)’)m’ - Eg)r)n)( E?)m Ei?/);m)
{(o/m'| Vx| m") (/" m""| Vx| com))

+ Z Z c© (©

Ea/m' — Eam

{a'm'|G®am) =

1 1 1
X — + (C.41)
2|9, -9 €9 -0 ]

In equation (C.41) one can explicitly see that the last term would not appear for a bipartition of the state space,
since m"” must be different both from m and m'.
When approximating the unitary operator U up to a finite order nn we have two possibilities, either

U ~ exp ((;(1) + G4 . 4 (;(n)) = glnl (C.42)
or
UO~14+004+ 04 ... £ 0w, (C.43)

Both approximations coincide up to order n in the perturbation. However, the first approximation has the
advantage that it preserves the unitarity: U"!is also a unitary matrix for finite 7. In turn, the second
approximation does not preserve unitarity for finite order. However, sometimes unitarity is not relevant and it is
convenient to employ the second approximation to compute corrections to the perturbed basis states (C.4) of
the form

|lam))p = i)\”lam»gﬁ, lam)® = U®™|am)). (C.44)
n=0
Therefore, let us also evaluate the matrix elements of the leading terms U,
(a'm'|UOam)) = ((a'm'|am)) = 8araOmm (C.45)
{('m!| Vx| am))
Dy = B
z(<o¢’rrz’|\7D|04”m W {(d"m! | Vx |am))
(2 ~ (e — 1)
{(o/m"|Vx|d"m)) (/' m | Vi |com))
7 (O~ )~ <)
s {a’m'|Vx|a"m")) ("m""| Vy |am))
7 (e = ) (e — )

It remains to determine the matrix elements of the diagonal blocks of the quasienergy operator that describe
the physics within the subspace F,,,, namely
Qm,a’a = B <<O/m | Q_ |am>> = <<0/m | UTQ_U | Oéﬂ’l>>
={a'm|(Qy + W)|am)). (C.48)

{a'm'|OW]am)) = — (C.46)

{a'm' | am)) =

M

(C.47)

Expanding them in powers of the perturbation,
Qm,a’a = ZZO:() )\nQ,(:)L/a) (C.49)
we find the leading orders to be given by

Qr(f?,)ﬂ’a = <(a’m|Q0|a>> = bo agg)r)n’ (C.50)

32



I0P Publishing

NewJ. Phys. 17 (2015) 093039 A Eckardtand E Anisimovas

Qi = ((a'm| Vplam), (C.51)
Qe = 20 {{a/m|Vxlam")) (o m"| Vx |am})
ol m
1 1 1
X — + > (C.52)
2[ e = € Eam —
(3) _ l Z Z O/m | Vxla//m/>> <<a//m/|VD|a/llml>> <<al//m/|VX|am>>
Qo 2 © 0 \( O ©)
a 04 (E(‘(”ﬂ’l/ ga'm)(g(y”’m’ - 6(}"’1)
(! lexla "m")) (o' m! | Vp | "' m"Y) (o' m! | Vx | aom))
(558)/"1/ - E(O) )(Eg)/)// 1 5(0) )
~ (@/m|Vx|a'm") (o'm'| Vx| a""m)) (o' m| Vb |am))
(Eﬁf?,m, — €9, )(653?,,“, - 5(0))
 (amVpla"m) (o m| Vi lam") (o m'| Vx lam))
(2, — €2 (29 — €,
+ _ Z Z Z (<a’m|VX|a”m’>> <<oz”m’|\7X|oz”’m”>> <<a”’m”|\7X|am>>
(!”(l/” ;ﬂm :ém m
3 3
(O — )~ e0) (20— ) (0 — )
_ 3 L 3
(55)?/)’” - 5(0/)// //)(aorm/ - E /)// //) ( E)?)m — 1! )( (0) — 6(0/)/ ,)
+ 1 + 1
0 0 0 0 0 0 )
( E‘/)Iml - 6( ) )( (/)// o 51271) (Efy/)m - 65!')/171/)(6! /m/ - 6( " //)
2
- . (C.53)
( E)?)m - E(U(z)/)/m')(gi‘?/)”m“ - Eg)r)n)
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