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Abstract

This chapter compiles and assesses information on recent and current change within the
terrestrial cryosphere of the Baltic Sea drainage basin. Findings are based on long-term
observations. Snow cover extent (SCE), duration and amount have shown a widespread
decrease although there is large interannual and regional variation. Few data are available on
changes in snow structural properties. There is no evidence for a recent change in the
frequency or severity of snow-related extreme events. There has been a decrease in glacier
coverage in Sweden and glacier ice thickness in inland Scandinavia. The European permafrost
is warming, and there has been a northward retreat of the southern boundary of near-surface
permafrost in European Russia.
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6.1 Introduction

The terrestrial cryosphere of the Baltic Sea drainage basin
includes widespread seasonal snow cover and frozen ground
as well as small glaciers in Sweden and in a few cases,
Norway. In addition to long-term changes in climate, various
components of the terrestrial cryosphere are affected by the
seasonal changes in weather, especially winter air tempera-
ture and the form of the precipitation (liquid or solid).

This chapter updates information presented in the first
Baltic Sea assessment (BACC Author Team 2008) on recent
and current change in snow cover, and other components of
the terrestrial cryosphere, based on the recent literature.
Findings are based on long-term observations mostly from
the European part of Russia, Estonia, Latvia, Lithuania,
Poland, Finland and Sweden. Some information is available
from Denmark, Norway and Germany, which all cover rel-
atively small areas of the Baltic Sea drainage basin. Only
small parts of Ukraine, Czech Republic and Slovakia are
within the drainage basin, and no information on changes
within the terrestrial cryosphere in these countries was
available. The same is true for Belarus, although a significant
proportion of the country is within the drainage basin. Some
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findings are valid for the whole Baltic Sea drainage basin,
while for others the perspective is restricted to limited areas
only—glaciers contributing run-off to the Baltic Sea drain-
age basin found only in Sweden and a few remote regions of
Norway—and permafrost is a marginal phenomenon.

Box 6.1 Summary of findings from the first
assessment of climate change in the Baltic Sea
basin

The first Baltic Sea assessment (BACC Author Team
2008) reported several climate-related changes in the
snow cover of the Baltic Sea drainage basin. Study
periods ranged from the period 1961-1990 to the
whole of the twentieth century. Although winter air
temperatures were observed to rise across all of
northern Eurasia, impacts on snow cover varied across
the Baltic Sea basin. A decrease in snow cover was
observed in the south-western regions of the drainage
basin, due to an increase in the proportion of precip-
itation in liquid form during winter, while an increase
in snow storage and snow cover duration (SCD) was
observed in the north-eastern regions. Most of the
drainage basin has experienced earlier snow melt and a
decrease in spring snow cover due to the rise in tem-
perature. A recent decrease in SCD and snow water
equivalent (SWE) was observed in the southern parts
of all Fennoscandian countries. Despite this, total
snow storage increased in the east and north. In the
Scandinavian mountains, an increase in winter pre-
cipitation related to thicker snow cover was observed.
In Estonia, a recent negative trend was observed in
SCD, snow depthand SWE. A decrease in snow cover
days was observed in Latvia, Lithuania and Poland. In
the north-west of the East European Plain, snow
storage increased in line with winter temperature and
precipitation.

Since the first BACC assessment (BACC Author Team
2008), there have been three other significant assessments
with at least some emphasis on northern European cryo-
spheric conditions. The Global Outlook for Snow and Ice
(UNEP 2007) reported that the Northern Hemisphere mean
monthly SCE had declined at a rate of 1.3 % per decade
during the past 40 years. It also reported a long-term increase
in snow depth and SCD across most of northern Eurasia. A
decreasing trend in SCE during winter in the Northern
Hemisphere was also reported by Lemke and Ren (2007) in
the Fourth Assessment report of the Intergovernmental Panel
on Climate Change. The authors also concluded that low-
lands in central Europe had seen recent reductions in annual
SCD, whereas greater snow depth but a shorter snow season
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had been observed in Finland and the former Soviet Union.
An assessment by Voigt et al. (2010), mostly concerning
alpine and central European conditions, concluded that
higher winter temperatures are the main reason for the
decrease observed in snowfall and snow depth in most of the
Europe.

Snow cover affects the winter and spring climate in many
ways. For example, snow has a high albedo and so absorbs
much less solar radiation than bare soil or vegetated sur-
faces; it also acts as a heat sink during the melt, keeping
ground temperature near zero despite the high radiative
fluxes (BACC Author Team 2008). When the snow cover is
formed on tundra vegetation, snow depth determines whe-
ther the vegetation is still visible (Heino et al. 2006;
Euskirchen et al. 2007). One example is from northern
Scandinavia, where satellite data have been used to map the
snowmelt date, and to evaluate the effect of low vegetation
on snowmelt and through this, on surface albedo. During the
study period of 1995-2011, more abundant low vegetation
in northern Norway caused snowmelt to occur earlier than in
northern Finland—causing the Finnish side of the border to
have a greater surface albedo during the melt period. Rein-
deer grazing is one reason for differences in vegetation
amount (Cohen 2011). A modelling study that eliminated
snow cover from the climate system found that this resulted
in higher mean annual surface air temperature; decreased soil
temperature and increased permafrost extent; drying of
upper-layer soils and changes in the annual cycle of run-off;
and the disappearance of extreme cold air outbreaks (Vavrus
2007). Variability in SCE in Europe affects low-level
atmospheric temperature, soil temperature, soil moisture,
stream discharge and energy flow in the warming and
melting of the snowpack (Henderson and Leathers 2010).

At a larger scale, Eurasian SCE affects the Northern
Hemisphere winter circulation (Orsolini and Kvamstg 2009).
The extent of autumn snow cover in Eurasia has been shown
to influence the atmospheric circulation over the Northern
Hemisphere during the following winter, and even the North
American winter temperatures (see Chap. 4, Sect. 4.2.4).
During winters 1967/1968-2007/2008, autumn snow cover
from northern Scandinavia to the West Siberian Plain was
associated with winter temperatures over the interior of
North America (Mote and Kutney 2011). A relationship has
also been observed between winter and spring Eurasian
snow cover and spring and summer East Asian rainfall (Wu
and Kirtman 2007).

Changes in seasonal snow cover (amount, extent and
duration), glacier mass balance and frozen ground have
various ecological and socio-economic consequences (see
Chaps. 15-22). The terrestrial cryosphere has close con-
nections to the hydrological regime (i.e. river run-off)
described in Chap. 5.
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Box 6.2 Observing the cryosphere

Observations of snow cover comprise (1) in situ
measurements of snow fall, snow depth, SWE and/or
snow structure; (2) airborne remote sensing observa-
tions; or (3) space-borne satellite observations. In situ
observations are normally operated by hydrological
and/or meteorological services. They are local in nat-
ure and not uniformly distributed. Data quality is
affected by, for example, changes in station location
and observation methodology. Snow observations
have been made operationally in many countries for
several decades.

The use of satellite observations for studying the
cryosphere has been discussed by Sharkov (2003),
Nosenko et al. (2005) and Sutyrina (2011). Satellites
provide the opportunity to observe large-scale SCE by
optical satellite imagery or by radar remote sensing.
Snow depth and SWE are derived from data obtained
from passive microwave sensors.

Cloud cover and highly variable illumination con-
ditions (including the polar night) impede the use of
monitoring methods reliant on reflected solar radia-
tion. Dense forest cover and deep snow hinder the use
of passive microwave sensors. Studies also reveal
significant differences between remotely sensed and
in situ observations of snow cover, for example owing
to the algorithms that convert brightness temperatures
observed from satellites to SWE. These problems were
discussed by Boyarskii et al. (1994), Boyarskii and
Tikhonov (2000), Luojus et al. (2009), Kitaev (2010),
Metsamaki et al. (2010) and Kitaev and Titkova
(2011). There are sometimes large discrepancies
between the satellite data and the ground-based
instrumental observations of the snow cover boundary
during periods of snow formation and snowmelt.
Radar-based remote sensing is problematic during the
snowmelt season, and it is difficult to find a single
method that functions well in mountainous, open and
forested areas. The use of wide-swath synthetic aper-
ture radar (SAR) was promising especially in the
boreal zone (Khan et al. 2007; Lemke and Ren 2007;
Luojus et al. 2007, 2009). Kéarnd et al. (2007) and
Takala et al. (2011) recently presented a snow map-
ping procedure that combines weather station mea-
surements and microwave radiometer data.

Observations of structural snow parameters (stra-
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An overall understanding of typical snow structures
within the various parts of the Baltic Sea drainage
basin is not available, although some fragmentary
information on phenomena such as rain-on-snow and
ice crusts is occasionally published.

The Swedish glaciers have been investigated since
the early expeditions at the start of the twentieth
century (e.g., Williams and Ferrigno 1993; Klingbjer
and Neidhart 2006), and since 1946, there has been a
systematic monitoring programme in northern Sweden
(Holmlund et al. 1996; Jansson and Pettersson 2007).
Within the scientific monitoring programme of the
Tarfala Research Station, the yearly mass balance is
calculated for five different glaciers in the region and
the frontal positions of 20 glaciers are monitored.

Current understanding of the spatial patterns of
frequency, intensity and duration of freeze/thaw cycles
of the ground in the Baltic Sea region remains poor
and has not been subject to systematic study. Obser-
vations include measurements of frozen ground depth
and permafrost (e.g., active layer thickness). Perma-
frost temperatures are monitored either relatively close
to the ground surface or in boreholes of 100 m or more
deep (Lemke and Ren 2007).

Reanalysis products such as ERA40 (reanalysis for
1957-2002 made by the European Centre for Med-
ium-Range Weather Forecasts) and NCEP/NCAR
(continually updated data set from 1948, produced by
the National Centers for Environmental Prediction and
the National Center for Atmospheric Research) offer
new possibilities for understanding the present state
and recent change in the terrestrial cryosphere.
According to studies by Khan et al. (2007, 2008) on
reanalysed snow data from major Russian river basins
for 1979-2000, the method reproduces the observed
seasonal and interannual snow cover variability well,
even though the absolute values may differ.

6.2 Recent and Present Change

in Seasonal Show Cover

6.2.1 Snow Cover Formation, Duration

and Melt

tigraphy, density, hardness, grain size and form,
impurities) are far less frequent and regular than
observations of the occurrence and amount of snow.

According to Brown and Mote (2009), SCD has the highest
sensitivity to climatic change of all snow cover parameters.
Observations by NOAA polar orbiting satellites show a
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decrease in Northern Hemisphere terrestrial SCD during the
period 1966-2007. The greatest decreases occurred in areas
where the seasonal mean air temperature was between —5
and +5 °C (i.e., the mid-latitudinal coastal regions of the
continents). Choi et al. (2010) found that the average
Northern Hemisphere SCD decreased by 5.3 days per decade
between the winters of 1972/1973 and 2007/2008. The most
significant change occurred in the late 1980s. Takala et al.
(2009) showed that the European regions of Eurasia expe-
rienced an increasing early melt onset between 1979 and
2007. At Sodankyli, northern Finland, melt onset advanced
by 3.4 days per decade.

These findings are supported by an analysis in snow
survey observations in northern Eurasia by Bulygina et al.
(2011). They found a decrease in SCD since 1966. Also the
spring snowmelt has become shorter and more intense in
northern Eurasia, even though the maximum snow depth has
increased across most of Russia.

SCD between 1976 and 2008 was shorter than the 1938—
2008 average in the eastern part of the Baltic Sea region. This
followed the sharp rise in air temperature and the increase in
precipitation that began in 1976 (Fig. 6.1; Table 6.1). Fur-
thermore, the INTAS-SCCONE project (International Asso-
ciation for the Promotion of Cooperation with Scientists from
the New Independent States of the former Soviet Union—
Snow Cover Changes Over Northern Eurasia) showed that
SCD decreased within the Baltic Sea basin in western
Scandinavia and in the south-west of the East European Plain
over the past century. This corresponds to climatic conditions
over the northern part of the East European Plain (ROSHY-
DROMET 2008; adapted from Kitaev et al. 2007, 2010).
Conversely, an increasing trend in the number of snow cover
days is seen in most of northern Eurasia (Heino et al. 2006).

Since the mid-twentieth century, SCD in Latvia has
decreased by 3-27 days (Draveniece et al. 2007; Klavins
2007; Klavins et al. 2009). Mean SCD decreased by 17 days
in Lithuania during 1961-2010. Only in the most eastern
part of Lithuania was a positive tendency seen (Gecaité and
Rimkus 2010).

SCD in Poland increases from west to north-east and is
greatest at high altitude in the mountains. A long time series
(80 winters) showed no significant trends in SCD. However,
in the latter half of the twentieth century, a slight negative
trend occurred across most of the Poland, excluding the
highest parts of the Sudety Mountains (Falarz 2010). In
southern Poland, the foehn effect has a strong influence on
snow cover (Falarz 2013). Northern Germany has very
variable snow cover with the mean number of days with
snow cover varying from less than 15 in the west to almost
40 in the east. The latter half of the twentieth century saw a
decline in the number of days with snow cover in northern
Germany (Bednorz 2007).
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Fig. 6.1 Snow cover anomalies in the Russian part of Baltic Sea basin.
a Snow cover days. b Snow depth in March. ¢ Snow water equivalent
in March. Dots show anomalies relative to the long-term average for
1938-2008. Dotted lines show linear trends (ROSHYDROMET 2008;
Kitaev et al. 2007, 2010)

During the period 1905-2003, SCD did not change sig-
nificantly in Sweden (northern part of the Baltic Sea basin).
For the period 1961-2003, the number of days with snow
cover decreased in southern Sweden by 20—40 %. In southern
Sweden, seven of the ten years with the shortest SCD have
occurred after 1974, and in mid-Sweden, five of the ten years
with the shortest SCD have occurred since 1989 (Larsson
2004). In Norway, there has been a decrease in SCD at the
majority of monitoring stations since 1914. This negative
trend is more pronounced in the past few decades (Dyrrdal
and Vikhamar-Schuler 2009; Dyrrdal et al. 2013).

The monthly key climatic reports from the period 1970—
2009 collected by Cappelen (2000, 2003a, b, 2010) showed
that Denmark (western part of the Baltic Sea drainage basin)
has an ephemeral snow cover and that SCD varies greatly
between years and between decades. Both the minimum
(8.3) and maximum (54.2) number of snow cover days per
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Table 6.1 Long-term (1936-2008) and recent (1979-2006) trends in monthly observations on anomalies of air temperature (7), precipitation (Pr),
snow depth (H) and snow water equivalent (S) for the Russian part of the Baltic Sea drainage basin (ROSHYDROMET 2008; adopted from Kitaev

et al. 2007, 2010)

Month Period T Pr
b R b
Nov 1936-2008 0.10 1.9 3.87
1979-2006 0.12 32 2.05
Dec 1936-2008 0.10 14 7.52
1979-2006 0.11 24 5.8
Jan 1936-2008 0.09 0.9 10.7
1979-2006 0.11 0.9 3.0
Feb 1936-2008 0.13 1.3 14.6
1979-2006 0.19 1.8 6.2
Mar 1936-2008 0.15 2.0 14.3
1979-2006 0.18 2.2 6.2

H S
R’ b R? b R’
30.0 1.3 20.9 24 0.0
3.5 8.4 1.9 3.1 5.1
30.5 1.3 20.1 12 0.0
6.4 4.6 0.0 2.7 1.1
31.5 2.8 30.9 -1.6 0.0
3.3 -29 6.2 0.9 0.4
332 42 36.3 -0.8 0.0
5.6 -15 13 0.0 1.1
31.8 1.1 93 1.6 3.7
1.8 -17 6.8 12 13

b coefficients of liner trend: T °C/10 years; Pr mm/10 years; H cm/10 years; S mm/10 years; R? coefficient of determination (explained variance),

expressed as percentages (%)

year was observed during the period 2000-2009. Never-
theless, a weak but statistically significant trend towards
shorter SCD is seen.

Snow is the origin of a significant fraction of run-off in
the Baltic Sea basin. The water volume held by the snow
cover and the spring melt rate are significant factors affecting
the volume and timing of the spring floods (BACC Author
Team 2008), and changes in SCD can be detected indirectly
using hydrological observations. Germany has been divided
into three regions, each with a different seasonality of
flooding. A slight extension to the region situated in western
and central Germany towards the southeast has been detec-
ted, indicating a spatial increase in winter flooding due to
changes in snow conditions (Beurton and Thieken 2009).

Analysis of 19 river basins in Latvia during 1951-2006
has shown a tendency towards a decrease in spring floods and
an increase in winter flow, due to changes in SCD and snow
amount (Apsite et al. 2009). Trends in spring flood volume,
peak and timing observed in Lithuanian rivers during 1922—
2003 indicate warmer winters and changes in snow cover
(Meilutyte-Barauskiene and Kovalenkoviene 2007).

Snow is a significant recreational attraction in the Baltic
Sea area. In Estonia, various forms of winter recreation have
become increasingly popular, and this has led to an increase
in snow observations, made not only by scientists. A com-
bination of questionnaire-based analysis and scientific
observations shows that variability in snow conditions has
increased recently: with more significant variation experi-
enced in lowlands than uplands and forest edges which
retain more stable conditions (Vassiljev et al. 2010).

6.2.2 Snow Depth and Snow Water
Equivalent

Large interannual variation is seen in the snow depth and
SWE time series of the Baltic Sea drainage basin. Snow
amounts do not show any significant trends over the
period 1936-2008 in the Russian part of the Baltic Sea
drainage basin (30-40°N; 60-65°E) (Fig. 6.1; Table 6.2)
(ROSHYDROMET 2008; adapted from Kitaev et al. 2007,
2010). Using interpolation of measurements on a network of
snow transects, the changes in SWE during 1966-2005 were
studied for the northern part of the East European Plain
(Baltic Sea watershed is included) and no significant trends
were seen (Kitaev et al. 2007, 2010; Khan et al. 2008; Holko
et al. 2009).

Nevertheless, some long-term trends have recently been
reported, with some regional variation. According to IN-
TAS-SCCONE, snow depth is still increasing despite the
recent rise in global temperature, for the majority of northern
Eurasia (Heino et al. 2006; Kitaev et al. 2010). Drozdov
et al. (2010) reported a slight positive trend in snow accu-
mulation in European Russia (eastern part of the Baltic Sea
drainage basin), and Bulygina et al. (2011) reported an
increase in mean winter and maximum snow depth across
most of the Russian land area over the past four decades. In
most areas, the number of days when snow depth is greater
than 20 cm also increased. However, maximum winter Snow
depth decreased in western European Russia. An increase in
SWE was seen in many areas, but decreased in western
European Russia (Bulygina et al. 2011).
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Table 6.2 Recent trends (1976-2006) in surface air temperature (7), precipitation (Pr), snow cover duration (D), snow depth (H), snow water
equivalent (S) for the Russian part of the Baltic Sea drainage basin and East European Plain. (ROSHYDROMET 2008; adapted from Kitaev et al.

2007, 2010. See also Chap. 4, Sects. 4.4.2 and 4.5.2)

T Pr
b R b R
Baltic Sea drainage 0.38 2 6.2 1.8
basin
East European Plain 0.68 7 0.61 4.2

D H N

b R? b R? b R?
-2.6° 24.2 -1.7 6.8 1.2 1.3
4.7 14 0.88 49 -1.5 2.7

b coefficients of liner trend: T °C/10 years; Pr mm/10 years; D days/10 years; H cm/10 years; S mm/10 years; R’ coefficient of determination

(explained variance), expressed as percentages (%)
%0.89 during the period 1936-2008 (R* = 12.6 %)

In Sweden (northern part of the Baltic Sea drainage
basin), maximum snow depth did not change significantly
during 1905-2003 (Larsson 2004). A slight increase was
observed in the most southern and northern parts of the
country. During the period 1961-2003, mid-Sweden expe-
rienced an approximate 30 % decrease in maximum snow
depth (Larsson 2004). A snow depth record from the
Swedish sub-Arctic (1913-2004; see also Fig. 6.2) shows an
increase in winter mean snow depth of 2 cm (5 %) per
decade since 1913, and 10 % per decade since the 1930-
1940s (Kohler et al. 2006). Relatively shallow snow cover
has been seen since the late 1990s, however (Akerman and
Johansson 2008; Callaghan et al. 2010).

There has been a general decrease in snow depth at the
majority of monitoring stations since 1914 in Norway.
A negative trend is more pronounced for the past few dec-
ades. In mountain regions, the variation in snow depth is
driven by changes in precipitation and a temperature increase
can even increase snow depth (Dyrrdal and Vikhamar-
Schuler 2009; Dyrrdal et al. 2013).

Maximum SWEs decreased in southern and western parts
of Finland during 1946-2001, but increased in the eastern
and northern parts of the country (Venildinen et al. 2009).
Large decadal variability was seen (Venéldinen et al. 2009).
This was also the case in southern parts of the Baltic Sea
region in Poland; the 1960s were characterised by heavy
snow loads, while the first half of the 1970s and the end of
1980s had thin snow cover (Bartoszek 2007). Nevertheless,
maximum snow depth was observed to decrease in Poland
and Estonia (Bednorz 2007). Maximum snow depth
decreased by 3.5 cm in Lithuania during 1961-2010
(Gecaité and Rimkus 2010).

6.2.3 Snow Cover Extent

The Fourth Assessment report of the Intergovernmental Panel
on Climate Change reported that the Northern Hemisphere
snow cover area had decreased in most regions, especially
during spring and autumn in the period 1966-2005, due to the

rise in air temperature. In areas with an increase in SCE,
the reason was an increase in solid precipitation (Lemke and
Ren 2007).

Brown (2000) reconstructed a long time series (1922—
1997) of western Eurasian SCE anomalies for October,
March and April (by producing areal snow cover indexes
using station data from Canada, the United States, the former
Soviet Union, and the People’s Republic of China as well as
continental SCE from NOAA satellite snow cover data) and
reported a small long-term change in autumn SCE, but a
rapid reduction in spring SCE, particularly in April. More
recently, a fast decrease in spring SCE (1972-2013) has
been observed in Europe, especially in Scandinavia, in spite
of large decadal fluctuations (van Oldenborgh et al. 2009,
see Fig. 6.3). Henderson and Leathers (2010) also reported a
decrease in European SCE.

In Fennoscandia, there has been a decreasing trend in
SCE especially since the 1970s, but with some regional
exceptions (Venéldinen et al. 2009). SCE decreased in the
Russian part of the Baltic Sea basin during the 1970-1990s;
this decrease has since ceased (Bulygina et al. 2011).

6.2.4 Snow Structure and Properties

In the western half of the Eurasian continent, days with thaw
have become more frequent since 1881. For example, in
Fennoscandia, in the latter half of the twentieth century, the
number of days with winter thaw increased by 6 in 50 years.
The duration and maximum thickness of the basal ice layer
in the European part of Russia have also decreased since
1966. Changes in open areas are more marked than in for-
ested areas (Bulygina et al. 2010). Reindeer herders in
northern Finland report slightly different experiences, how-
ever (ACIA 2004). Their experiential knowledge is that
ground ice formation at the lichen layer has become more
common.

The formation of ice crusts after rain-on-snow events, or
surface thawing with subsequent refreezing, has been
observed by satellite monitoring (Bartsch et al. 2010).
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Fig. 6.3 Trend in observed March—-May snow cover extent during the
period 1972-2013 (°C per decade). Linear regression was calculated
between the spring snow cover area and the globally averaged
temperature anomalies—negative values mean decreasing snow cover
extent with the rise in temperature. Only grid boxes with p < 0.2 are
shown. (updated from van Oldenborgh et al. 2009)

Winter rain-on-snow events are associated with changes in
air temperature in northern Eurasia. Such events are there-
fore sensitive to small changes in winter climate. The
occurrence of winter month rain-on-snow events has been

observed to increase with increased air temperature; the rate
of increase ranged from 0.5 to 2.5 events per winter per °C
and was greater at locations with low air temperature (Ye
et al. 2008).

6.2.5 Extreme Events

Europe experienced several exceptional winters during the
period 2000-2010. Winter 2005/2006 was notable because
of the great snow accumulation at the end of the winter
season, long SCD and heavy snowfall events in the low-
lying areas. Climatologically, this winter was not particu-
larly cold or wet, but it did have exceptionally few thawing
episodes (Pinto et al. 2007). Winter 2006/2007 was excep-
tionally warm and was extremely likely to have been the
warmest for more than 500 years (Luterbacher et al. 2007).
The winter of 2009/2010 had large snowfall, which was
associated with a negative North Atlantic Oscillation (NAO,
see Chap. 4) and El Nifio event (Seager et al. 2010).

The occurrence of a positive NAO phase has been shown
to contribute to rapid snowmelt events in Polish-German
lowlands (southern part of the Baltic Sea drainage basin)
(Bednorz 2009), and the location of low-pressure systems
over Europe has been shown to be responsible for heavy
snowfalls in this region (Bednorz 2008). Extreme SCDs and
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Fig. 6.4 Trend in the 90th
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maximum seasonal snow depth values in Poland during the
latter half of the twentieth century were analysed by Falarz
(2008) (Fig. 6.4). Abundant snow cover has become rarer,
and since the 1970s, a sparse snow cover has been observed
more frequently than before. The changes are not statistically
significant, however. Lupikasza et al. (2009) found no sig-
nificant trends in extreme snow cover in Poland during the
latter part of the twentieth century, but reported that since
winter 1987/1988 the area of extremely thin snow cover has
remained relatively large.

Extreme snow conditions are connected to, for example,
snow-induced forest damage. In Finland, this damage is
assumed when snow accumulation exceeds 20 kg m™2 during
a 3-hour period or precipitation exceeds 20 mm during a 5-day
period. According these criteria, snow-induced forest damage
was expected in Finland on average 65 times a year during the
period 1961-2000, but as often as 150 times a year during the
mild 1990s. During 1961-2000, the maximum number of
heavy snow-load events occurred in 1994 in northern Finland
(Gregow et al. 2008; Kilpeldinen et al. 2010).

6.3  Recent and Present Change

in Glacier Extent and Mass Balance

Perennial snow and ice extent in Scandinavia during 2000—
2008 was studied by Fontana et al. (2010) using a Moderate
Resolution Imaging Spectroradiometer (MODIS) data set
with a 250 m spatial resolution. Large interannual variation
was seen, and a strong negative relationship was found
between snow and ice extent and positive degree-days dur-
ing summer months. Snow and ice extent was significantly
correlated with annual net glacier mass balances.

The mass balance record for Storglacidren in the
Kebnekaise massif of northern Sweden is the longest con-
tinuous glacier mass balance record in the world. The
Storglacidren record shows a fluctuating pattern in net mass
balance; since 1992, the net mass balance trend has been
largely negative (Jansson and Pettersson 2007; Fig. 6.5). In a
study by Evans et al. (2008), the net mass balance of
Storglacidren was shown to be related to the changing

snowpack volume and the resulting winter mass balance
during the years 1990-2006. A negative trend in the winter
mass balance combined with the increasing trend in mass
lost due to ablation has resulted in a decrease in glacier net
mass balance and a rise in the snowline.

Other glaciers in the Tarfala Research Station mass bal-
ance programme exhibit similar trends. In inland Scandina-
via, a cumulative loss in glacier ice thickness has been
reported by the World Glacier Monitoring Service for 1967—
2008 (WGMS 2008; Voigt et al. 2010). Recent thinning of
1 meter year ' has been observed at the equilibrium line of a
Norwegian ice cap, partly draining into the Baltic Sea
drainage basin (Brown 2012).

The frontal positions of glaciers measured in Tarfala
show retreat rates of —1 to —14 meters year ' between 1915
and 1994 (Holmlund et al. 1996). More recently, the status
of Swedish glaciers has been monitored using remote sens-
ing and classification of satellite images for areal estimation
of the glaciated areas (e.g., Klingbjer et al. 2005). In 1973,
Ostrem et al. (1973) compiled a glacier atlas over northern
Scandinavia using aerial photographs and map data. In this
report, the glaciers covered 321.8 km>. In 2001, a new
inventory was conducted using high-resolution satellite
imagery as part of the Global Land Ice Measurements from
Space (GLIMS) project (Armstrong et al. 2011) and the
Swedish glaciers were reported to cover 264.5 km?. How-
ever, the error margins associated with the satellite data
limits the accuracy of these results. Nevertheless, the glacier
data show a decrease in glacier coverage in Sweden with
many glaciers retreating into protected niches. Fealy and
Sweeney (2005) attributed the behaviour of Scandinavian
glaciers since the 1970s to large-scale changes in atmo-
spheric circulation. The strong correlation between the
Arctic Oscillation(AO, see Chap. 4) and the winter mass
balance of Swedish glaciers (Jansson and Linderholm 2005)
suggests that Swedish glaciers are particularly sensitive to
change in winter surface temperature. Regional downscaling
of general circulation models(GCMs) using ERA-40
reanalysis data has suggested that Storglacidren exhibits
a mass balance sensitivity to temperature change of
—0.48 meters year ' per °C (Radic and Hock 2006).
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Fig. 6.5 Cumulative 2
glaciological and volumetric mass
balance series of Storglacidren,
northern Sweden. Different lines
represent different methods and
corrections that have been used to
estimate the net mass balance
(Zemp et al. 2010)

cumulative specific mass balance (m w.e.)

6.4 Recent and Present Change
in Frozen Ground
6.4.1 Seasonally Frozen Ground

In the northern part of the Baltic Sea basin in Fennoscandia,
surface soil freezes and thaws during winter with large
variability in frozen ground depth. Mellberg (2008) descri-
bed the recent (1991-2007) seasonally frozen ground char-
acteristics observed in Sweden. Maximum and minimum
temperatures per winter season, the number of freeze days
and the temperature trend per winter were studied at several
sites around the country. A small warming trend during
winter was observed in ground temperature at 10 cm depth.

Recent warming trends at Abisko (Sweden) are known to
be consistent with those observed for the Scandinavian sub-
Arctic and the rest of the Sweden. Schmidt (2011) studied
the annual and seasonal warming trends at soil depths of 20—
100 cm in Abisko (1985-2010) and found a decrease in the
length of time that the ground remained frozen seasonally,
with later freeze-up and earlier spring thaw. In contrast,
short-term freeze/thaw cycles of the ground in the upper
20 cm appeared to be more frequent. Despite earlier studies
indicating snow cover as the most important parameter
influencing ground temperature, Johansson et al. (2008) and
Schmidt (2011) failed to find such a correlation. In contrast,
mean monthly air temperature is highly correlated with
ground temperature in all seasons to 100 cm depth. The
increase in regional mean annual air temperature over the
period 1979-2002 (see Chap. 4) is positively correlated with
slow soil surface movements due to freezing and thawing,
but this is subject to large local and regional variability
(Ridefelt et al. 2009).
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Over the final decades of the twentieth century, the length
of time over which the ground remained frozen reduced by
two weeks in Lithuania (south-eastern part of the Baltic Sea
drainage basin). In the period 1960-1979, the ground
remained frozen throughout the entire winter season and the
probability of thaw/freeze was only 35 %. In 1980-2000, the
probability that thaw/freeze would occur during the winter
was 100 %. In some regions, seven thaw/freeze events were
recorded in one season (Taminskas et al. 2005). The depth of
seasonally frozen ground has decreased in Lithuania since
1923. The greatest reduction occurred at the end of the
twentieth and the start of the twenty-first centuries (Ta-
minskas et al. 2006).

It has been suggested that atmospheric warming can lead
to more frequent and stronger freeze/thaw events due to
reduced snow insulation (Isard and Schaetzl 1998). In the
southern Baltic Sea region, the increase in freeze/thaw event
frequency was not observed with reduced snow cover.
Kreyling and Henry (2011) reported a 50-year trend analysis
of snow cover and frozen ground characteristics at 177
stations in Germany. SCD decreased by 0.5 d year™ ' with an
increase in minimum soil temperature and a uniform
decrease in freeze/thaw cycles at 5 cm depth. Henry (2008)
suggested that changes in air temperature may have a greater
impact on frozen ground characteristics than precipitation,
but this has not yet been investigated for the Baltic Sea area.

6.4.2 Permafrost

Data collected from permafrost boreholes over the past
decade indicate recent warming in the European permafrost,
with the greatest warming at higher latitudes. Shorter-term
extreme climatic events are also reflected in changes in
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Fig. 6.6 Active-layer thickness
from 1978 to 2012 at nine sites in
sub-Arctic Sweden. The active
layer has become deeper over the
monitoring period, especially
over the past decade (updated
from Akerman and Johansson
2008)
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active layer thickness (Harris et al. 2009). A rise in ground
temperature of 0.1-0.7 °C at the depth of zero annual
amplitude in European Russia was observed during the
monitoring period. The southern limit of patchy near-surface
permafrost retreated northward by 20-50 km in European
Russia between 1974 and 2008 (Drozdov et al. 2010).

Thawing permafrost and thicker active layers are also
reported for sub-Arctic Sweden over the period 1978-2012
(Akerman and Johansson 2008; Callaghan et al. 2010;
Fig. 6.6). Permafrost degradation is correlated with increases
in air temperature and is sensitive to changes in snow depth.
The relationship between snow and permafrost is not
straightforward, however, and snow structure also has an
effect (Johansson 2009). New borehole data in the lowland
peat mires of the Abisko area show ground temperature
increased by 0.4—1 °C between 1980 and 2002 with mean
annual ground temperatures close to 0 °C. Thus, permafrost
in this region appears very vulnerable to the projected cli-
mate warming (Johansson et al. 2011).

6.5 Conclusion

There has been a 0.1 °C per decade increase in winter
temperature for the period 1871-2011 in the northern part of
the Baltic Sea area (Chap. 4, Sect. 4.4). In relation to this
warming, the recent literature reinforces the findings of the
first Baltic Sea assessment on changes observed in the ter-
restrial cryosphere.

Years

S&S
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SCE has shown mostly decreasing trends within the
Baltic Sea basin. SCD has also decreased in several regions,
especially owing to earlier snowmelt. Large interannual
variation is seen in snow depth and SWE time series for the
area. Nevertheless, a decreasing trend is seen in snow depth
and SWE in several regions, especially in lowlands and
coastal regions, where snow cover variability is dominated
by air temperature (winter temperatures relatively close to
0 °C). In northern and eastern parts of the drainage basin,
and in mountain regions where both precipitation and tem-
perature control snow amount, colder average winters have
led to an increase in annual snow depth and SWE. Few data
are available on changes in snow structural properties. There
is no evidence for a recent change in the frequency or
severity of snow-related extreme events. The past decade
saw an exceptionally warm winter in 2006/2007 and two
winters with high snow accumulation (2005/2006 and 2009/
2010).

A decrease in glacier coverage in Sweden has been
observed, although variability is seen in the long-term mass
balance record of an actively monitored glacier. A cumula-
tive decline in glacier ice thickness has been reported by the
World Glacier Monitoring Service in inland Scandinavia.

Current understanding of the spatial patterns of fre-
quency—intensity—duration characteristics of freeze/thaw
cycles of the ground in the Baltic Sea region remains poor
and has not been subject to systematic study. Some warming
trends, and some decreases in the duration and depth of
seasonally frozen ground have been seen. Warming trends
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have been observed in the European permafrost, as well as a
northward shift in the southern boundary of near-surface
permafrost in European Russia.

Open Access This chapter is distributed under the terms of the Creative
Commons Attribution Noncommercial License, which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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