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Abstract: In the present work, the effects of various organic solvents (solvent nature and fraction
within the solution) and solvothermal conditions on the formation of calcium-deficient hydroxyapatite
(CDHA) via hydrolysis of α-tricalcium phosphate (α-TCP) are investigated. The wet precipitation
method is applied for α-TCP synthesis, and the hydrolysis reaction is performed in solutions with
different water-to-organic solvent ratios under solvothermal conditions at 120 ◦C for 3 h and at 200 ◦C
for 5 h. Ethyl alcohol, isopropyl alcohol, and butyl alcohol did not inhibit the hydrolysis of α-TCP,
while methyl alcohol and ethylene glycol have a more prominent inhibitory effect on the hydrolysis,
hence the formation of single-phased CDHA. From all the solvents analysed, ethylene glycol has
the highest impact on the sample morphology. Under certain water to ethylene glycol ratios and
solvothermal conditions, samples containing a significant fraction of rods are obtained. However,
samples prepared with ethylene glycol are characterised by a particularly low BET surface area.

Keywords: calcium hydroxyapatite; α-tricalcium phosphate; water-organic solvent system;
solvothermal synthesis

1. Introduction

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) is a major inorganic component in human
hard tissue and is one of the most investigated calcium phosphates (CaPs) [1–3]. Due to its
bone-like chemical composition and crystalline structure, HAp is extensively applied as
bioceramic material for bone grafting [4,5]. In addition to that, HAp has found applications
in drug delivery [6], chromatography [7], and is a very promising material for the treatment
of air, water, and soil pollution [8–11]. Since HAp is considered to be an environmentally
benign functional material, and due to its remarkable adsorption capacity, HAp could
be extremely useful in the field of environmental management [8]. Calcium-deficient
hydroxyapatite (CDHA, Ca10−x(HPO4)x(PO4)6−x(OH)2−x) is HAp with a Ca/P ratio from
1.50–1.67 [12]. Previous studies have reported a larger specific surface area and superior
incorporating efficacy of CDHA when compared to other CaPs [13,14]. The chemical
composition of HAp can be modified from the stoichiometric form to the Ca-deficient form
by selecting an appropriate Ca/P molar ratio [15].

Solubility, specific surface area, surface wettability, and hence the adsorption char-
acteristics of HAp crystals, depend greatly on their morphology and crystallinity [5,11].
Moreover, HAp contains the following two types of crystal planes: a (b)-plane, rich in
positively charged Ca2+ ions, and a c-plane, exposing negatively charged phosphate and hy-
droxyl groups [10]. Hence, if the crystal growth along a specific direction is induced, HAp
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could gain new desirable properties and be applied, for instance, as a selective adsorbent
of negatively or positively charged compounds [9].

HAp could be obtained via different synthesis methods, including solid-state reactions,
sol-gel technology, chemical precipitation, hydrolysis, hydrothermal, or solvothermal meth-
ods [2,16–18]. Among them, solvothermal synthesis is probably the most popular method,
providing the possibility to obtain well-crystallized, single-phase HAp [1,19,20]. In addition
to that, many groups have already reported the solvothermal synthesis of specifically
shaped (plate-like and rod-like) HAp crystals using various additives in the reaction so-
lution [1,20–22]. Several groups suggested that various alcohols could be successfully
applied as HAp morphology-controlling agents during the solvothermal process. For
instance, Goto et al. [16] has reported the synthesis of needle-like HAp crystals using ethyl
alcohol-water solutions. Guo et al. [23] has observed that isopropyl alcohol has affected
the crystallite size and crystallinity degree of the HAp crystals but had little effect on
the sample morphology. However, as far as we know, no comprehensive study has ever
been performed to compare the effects of different organic solvents on the hydrolysis of α-
tricalcium phosphate (α-TCP) under solvothermal conditions. In this study, we aim to fill in
this gap. To this end, solvothermal reactions were performed with different proportions of
water-organic solvent. The organic solvents used were as follows: ethylene glycol, methyl
alcohol, ethyl alcohol, isopropyl alcohol, and butyl alcohol. The effects of the solvothermal
conditions, nature of the solvent, and organic solvent fraction in the solution on the phase
purity and morphological features of HA were investigated.

2. Materials and Methods
2.1. Synthesis

First, metastable α-TCP was synthesized by wet precipitation method as a precursor
for the further conversion to CDHA. An appropriate amount (3.42 g) of calcium nitrate
tetrahydrate (Ca(NO3)2·4H2O, ≥99%, Roth, Karlsruhe, Germany) was dissolved in 20 ml
of deionized water. A portion (1.27 g) of diammonium hydrogen phosphate ((NH4)2HPO4,
≥98%, Roth, Karlsruhe, Germany) was dissolved in 15 ml of deionized water in a sepa-
rate beaker. After dissolution, concentrated ammonium hydroxide (NH4OH, 25%, Roth,
Karlsruhe, Germany) was added to the latter solution until pH of the solution reached 10.
After stirring for one minute, an aqueous solution of Ca(NO3)2·4H2O was added rapidly.
A white precipitate formed, which was stirred for 10 minutes at 400 rpm. The obtained
precipitate was subsequently vacuum filtered and washed with an appropriate volume of
deionized water and isopropyl alcohol [24]. The synthesis product was dried overnight
in an oven at 50 ◦C. The dried powders were ground in agate mortar and annealed in a
furnace at 700 ◦C for 5 h at a heating rate of 5 ◦C/min.

Solvothermal reactions were performed with different proportions of water and ethy-
lene glycol (EG, >99%, Roth, Karlsruhe, Germany), water-methyl alcohol (MeOH, >99.9%,
Roth, Karlsruhe, Germany), water-ethyl alcohol (EtOH, >96%, Roth, Karlsruhe, Germany),
water-isopropyl alcohol (PrOH, >99.5%, Roth, Karlsruhe, Germany), and water-butyl alco-
hol (BuOH, >99.5%, Roth, Karlsruhe, Germany). The water to alcohol v/v ratios of 0:100,
20:80, 40:60, 60:40, and 80:20 were applied. For the synthesis, 0.3 g of α-TCP powder was
placed into 90 ml polytetrafluoroethylene-lined stainless-steel pressure vessels and diluted
with 20 ml of water-organic solvent mixture. Solvothermal treatment was performed at
120 ◦C for 3 h and at 200 ◦C for 5 h. Finally, the resulting powders were filtered, washed
with EtOH, and dried at 50 ◦C overnight.

The sample notations and treatment conditions are given in Table 1. Water to alcohol
v/v ratios of 0:100, 20:80, 40:60, 60:40, and 80:20; 100:0 were applied to all the solvents
under both conditions of solvothermal treatment.
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Table 1. Sample codes, solvents applied, and solvothermal treatment conditions.

Notation Solvothermal
Conditions

Organic Solvent
Applied

Water-to-Organic
Solvent (W:O)

120-W-EG 120 ◦C, 3 h ethylene glycol

0:100
20:80
40:60
60:40
80:20
0:100

120-W-MeOH 120 ◦C, 3 h methyl alcohol
120-W-EtOH 120 ◦C, 3 h ethyl alcohol
120-W-PrOH 120 ◦C, 3 h isopropyl alcohol
120-W-BuOH 120 ◦C, 3 h butyl alcohol

200-W-EG 200 ◦C, 5 h ethylene glycol
200-W-MeOH 200 ◦C, 5 h methyl alcohol
200-W-EtOH 200 ◦C, 5 h ethyl alcohol
200-W-PrOH 200 ◦C, 5 h isopropyl alcohol
200-W-BuOH 200 ◦C, 5 h butyl alcohol

2.2. Characterization

Powder X-ray diffraction data were collected on a Rigaku MiniFlex II diffractometer
(Rigaku, The Woodlands, TX, USA) operating in Bragg–Brentano (θ/2θ) geometry, using
Ni-filtered Cu Kα radiation. The data were collected within a 2θ angle range from 10 to 60◦

at a step width of 0.01◦ and speed of 5◦/min. Infrared (FTIR) spectra were recorded in the
range of 4000−400 cm−1 employing Bruker ALPHA ATR spectrometer (Bruker, Billerica,
Ma, USA). In order to study the morphology of the samples, a field-emission scanning
electron microscope (FE-SEM) Hitachi SU-70 (FE-SEM, Hitachi, Tokyo, Japan) was used.

Textural properties of the prepared samples were estimated from N2 adsorption/desorption
isotherms at −196 ◦C using a Micromeritics TriStar 3020 analyser (Micromeritics, Norcross,
GA, USA). Before the measurements, all the samples were outgassed in the N2 atmosphere
at 100 ◦C. The total surface area (SBET) was estimated using the Brunauer–Emmet–Teller
(BET) equation, while Barrett–Joyner–Halenda (BJH) equation was used to calculate pore
size distribution of the samples [25].

3. Results and Discussion

The characteristics of the α-TCP precursor are presented in Figure 1. As it could
be seen from the XRD diffraction pattern (Figure 1a), all the peaks match the standard
XRD data of monoclinic Ca3(PO4)2 (ICDD #00-070-0364) very well. The starting powders
consisted of agglomerates of nanodimensional, mostly uniform elongated particles of
irregular shape (Figure 1c). The sample exhibited type IV isotherms and displayed an
H3 hysteresis loop (Figure 1b). Based on the pore size distribution results, illustrated in
the inset image of Figure 1b, the sample was mainly characterised by pores smaller than
10 nm, albeit larger pores up to 55 nm were also present. The BET surface area (SBET) of the
precursor was 10.22 m2 g−1.

Under the reaction with water, α-TCP hydrolyses and converts to CDHA as described
by the following equation [16]:

3α-Ca3(PO4)2 + H2O→ Ca9(HPO4)(PO4)5(OH) (1)

A sufficient amount of water is required for the first stage to occur. The phase crys-
tallinity and purity of synthesized CDHA powders were investigated by XRD analysis,
which revealed some differences among the obtained products. The samples treated with
organic solvent only (0:100) showed no evidence of CDHA formation. Due to the ab-
sence of water, no hydrolysis reaction occurred, and the phase of such samples remained
α-TCP (ICDD 00-070-0364). This was true for all the organic solvents used under different
solvothermal treatments.
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Figure 1. Characteristics of the obtained α-TCP precursor: XRD pattern (a), nitrogen adsorption-
desorption isotherms and the corresponding BJH pore-size distribution (b), and SEM image (c). 
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using a W:O ratio of 40:60 are given in Figure 2 as representative.  

Figure 1. Characteristics of the obtained α-TCP precursor: XRD pattern (a), nitrogen adsorption-
desorption isotherms and the corresponding BJH pore-size distribution (b), and SEM image (c).

In the case of EtOH, PrOH, and BuOH, the introduction of even a small fraction (20:80)
of water resulted in the formation of single-phased CDHA (ICDD 00-76-0694), while an
increasing water content provided the same results. This was observed under various
applied solvothermal conditions. Under harsher solvothermal conditions (200 ◦C for 5 h),
the formation of monetite was observed in the presence of EtOH, PrOH, and BuOH. This
was especially notable in the case of BuOH. For comparison between the solvents, XRD
patterns of the samples prepared under different solvothermal conditions using a W:O
ratio of 40:60 are given in Figure 2 as representative.
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Figure 2. XRD patterns of the samples prepared using water-to-organic solvent ratio of 40:60 after a
solvothermal treatment at 120 ◦C for 3 h (a) and at 200 ◦C for 5 h (b).

In contrast, MeOH and EG had a stronger inhibitory effect on α-TCP hydrolysis. These
effects were especially notable for EG under the milder solvothermal conditions. Figure 3
shows the powder XRD patterns of the samples prepared under different solvothermal
treatments (120 ◦C for 3 h and 200 ◦C for 5 h) using varying water to MeOH and water
to EG ratios. After a treatment at 120 ◦C for 3 h, the sample with a water to EG ratio of
20:80 remained a single phase α-TCP (ICDD 00-070-0364, Figure 3b). Increasing water
content induced the formation of CDHA, but a strong peak attributed to β-tricalcium
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phosphate (β-TCP, ICDD 00-070-2065) was visible in the sample 120-W-EG-40:60, while
only a trace of β-TCP could be observed in the XRD pattern of 120-W-EG-60:40 (Figure 3b).
MeOH has also inhibited the formation of CDHA, albeit to a lesser extent. The sample
120-W-MeOH-20:80 contained large fractions of CDHA, β-TCP and α-TCP. Traces of β-TCP
were detected in the sample 120-W-MeOH-40:60, while the samples with a larger amount
of water consisted of single-phase CDHA (Figure 3a).
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Figure 3. XRD patterns of the samples prepared using different water to MeOH (a,c) and water to EG
(b,d) ratios under the following different solvothermal conditions: 120 ◦C for 3 h (a,b) and 200 ◦C for
5 h (c,d).

The increased temperature and prolonged time of the solvothermal synthesis caused
the following shift in the inhibitory effect: single-phase CDHA was observed for the sample
200-W-EG-60:40, only a trace of β-TCP was detected in the XRD pattern of 200-W-EG-40:60,
whereas the formation of CDHA was also obvious in 200-W-EG-20:80, even though a
significant fraction of β-TCP was still present in the latter sample (Figure 3d). A higher
temperature and longer reaction time have also resulted in a decreased β-TCP fraction in
the sample 200-W-MeOH-20:80 (Figure 3c).

The FTIR spectra of the products prepared by the solvothermal treatment are presented
in Figure 4. The FTIR range of 1500–400 cm−1 was chosen as representative since the
main bands attributed to HAp and TCP polymorphs could be observed in this region,
and the differences between the samples were hardly distinguishable in the full range
spectra. The stretching modes of the hydroxyl group usually observed at 3572 cm−1
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were hardly visible in our case, and their intensity was similar in all the samples [26].
Several absorption bands at around 1095–960 and 636–550 cm−1 were observed in all
the samples. The bands centred at 561–556 and 603–599 cm−1 are assigned to ν4 O–P–O
bending mode of CDHA [3]. Bands centred at 1020–1017 and 1090–1084 cm−1 correspond
to ν3 asymmetric P–O stretching vibrations, while the peak centred at 961–960 cm−1

corresponds to symmetric P–O stretching vibrations (ν1) of CDHA [3]. The peak centred
at 633–625 cm−1 corresponds to the bending vibrational mode of the hydroxyl (–OH)
group [3,16]. An absorption band centred at 871–868 cm−1 is assigned to the P–O(H)
stretching mode of the HPO4

2− group, which is present in the structure of calcium-deficient
CDHA [12]. The aforementioned bands were visible in the FTIR spectra of all the samples.
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solvothermal treatment at 120 ◦C for 3 h (a) and at 200 ◦C for 5 h (b).

The additional bands attributed to β-TCP phase were only visible in the FTIR spectra
of the samples prepared using larger fractions of EG (120-W-EG-20:80; 120-W-EG-40:60;
200-W-EG-20:80). As it could be seen from Figure 4a, bands at 544 and 1083 cm−1 of the
sample 120-W-EG-40:60 could be attributed to β-TCP phase (ν4 and ν3, respectively) [27].
Such results are in agreement with the XRD data.

The morphology of the obtained samples varied from plate-shaped to rod-shaped. Sam-
ples fabricated without organic solvents consisted of plate-shaped crystals arranged into
flower-like structures. In this study, only slight effects on morphology were observed due to
the introduction of EtOH and PrOH. Under the milder solvothermal conditions (120 ◦C for
3 h), large proportion of EtOH and PrOH (120-W-EtOH-20:80; 120-W-PrOH-20:80) caused the
formation of large plates with no prominent self-assembly (Figures S2 and S3). With an
increasing proportion of water (W:O 40:60; 60:40; and 80:20), the formation of narrower
plates and some rods was observed; moreover, the crystals were arranged in flower-like
structures. When the reaction time and temperature were increased, higher proportions
of EtOH, PrOH, and BuOH resulted in the formation of rods. Moreover, more rods have
formed at the same W:O ratio under harsher conditions. However, plate-like crystals were
still prevalent in all of the samples. SEM images of the samples prepared under different
solvothermal conditions using a W:O ratio of 40:60 are presented in Figure 5.
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Figure 5. SEM images of the samples after solvothermal treatment with W:O ratio 40:60: (a) 120-
W-EG-40:60; (b) 200-W-EG-40:60; (c) 120-W-MeOH-40:60; (d) 200-W-MeOH-40:60; (e) 120-W-EtOH-
40:60; (f) 200-W-EtOH-40:60; (g) 120-W-PrOH-40:60; (h) 200-W-PrOH-40:60; (i) 120-W-BuOH-40:60;
(j) 200-W-BuOH-40:60.

The use of MeOH (Figures 5c,d and S1) and BuOH (Figure 5i,j) had a more prominent
effect on the sample morphology than the previously described solvents (Figures S3 and S4).
In this case, the samples were also dominated by plate-like crystals, but a trend of long and
narrow plate formation was observed. Moreover, more rods were present in the MeOH
and BuOH treated samples when compared to the samples prepared in W-EtOH and
W-PrOH solutions.

From all the solvents analysed, EG had the highest impact on the sample morphology.
Under the milder solvothermal conditions (120 ◦C for 3 h), the formation of HAp was
completely suspended in the sample 120-W-EG-20:80 (Figure 6c). Sample 120-W-EG-
40:60 consisted of large plates, some rods, and some particles of different shapes, which
could probably be attributed to β-TCP phase (Figure 6e). Sample 120-W-EG-60:40 was
characterised by a large number of rods in addition to the plates (Figure 6g). In contrast, no
rods were observed in a sample prepared with a minimal amount of EG (120-W-EG-80:20;
Figure 6i). Prolonged reaction time and increased temperature resulted in a rod-dominated
morphology of the CDHA samples. The sample 200-W-EG-20:80 was characterised by
larger and smaller rods, as well as some minor particles of different shapes, which should
be attributed to β-TCP phase (Figure 6d). A slightly lower proportion of EG (samples
200-W-EG-40:60 and 200-W-EG-60:40; Figure 6f,h) resulted in the formation of both plate-
shaped and a large number of rod-shaped crystals. No rods were observed in a sample
prepared with a minimal amount of EG (200-W-EG-80:20; Figure 6j).

It is assumed that the solvothermally assisted formation of rod-like crystals comprises
the following two main stages: the nucleation step (reaction of ions), when small crystalline
nuclei are formed in a supersaturated matrix, and the growth step, during which nuclei
grow into their final shape and size [28]. In our case, the changes in crystal morphology
might be related to the decreased supply of water when more organic solvents are intro-
duced to the system. This would limit the hydrolysis reaction of α-TCP [16]. Previous
studies stated that the increasing amount of alcohol in the aqueous reaction solution re-
duces the solubility of α-TCP and hence limits the supply of Ca2+ and PO4

3− ions [16,29,30].
Such an effect is related to the changes in dielectric constant (εr(ω)) of the solution: with
a decreasing dielectric constant of the solvent, solubility decreases due to the decreased
solvation energy [31,32]. Dielectric constant of pure water is 78.5 at 25 ◦C, whereas the
dielectric constants of alcohols are significantly lower. The dielectric constants at 25 ◦C of
the organic solvents used in this study are as follows: εr(ω)EG = 38.5; εr(ω)MeOH = 32.70;
εr(ω)EtOH = 24.3; εr(ω)PrOH = 19.92; εr(ω)BuOH = 17.5 [32]. Variations in εr(ω) of water-
organic solvent mixtures depend on the composition of the solution, but in general, εr(ω)
values decrease with the increasing fraction of organic solvent [33]. Solvents with different
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physicochemical properties influence solubility, crystal nucleation, and growth rate, which
in turn has an effect on the crystallinity and morphology of the final products [32]. When
the hydrolysis reaction is not suspended and the solution is supersaturated with Ca2+ and
PO4

3− ions, nucleation takes dominance over the crystal growth and smaller crystals are
formed. On the contrary, when the supply of Ca2+ and PO4

3− ions is limited, fewer nuclei
form and larger crystals tend to grow [28,32]. Other properties of different solvents might
have also affected the processes of α-TCP hydrolysis and HAp crystallisation. For instance,
the presence of EG in the reaction mixture would significantly change the viscosity of
the suspension [34,35]. Subsequently, ion mobility and diffusion rates would be reduced,
which would in turn inhibit the hydrolysis reaction and retard the nucleation process [35].
The viscosity of the reaction media decreases with the increasing temperature, and thus the
inhibitory effects of EG are less significant when the solvothermal synthesis is performed
at higher temperatures (Figure 3b,d).
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It is worth noting that the results obtained in this study differ from those reported by
Goto et al. [16], who managed to prepare needle-like CDHA crystals arranged into flower-
like structures by using water-ethyl alcohol solutions. We assume such discrepancies could
originate due to the different starting materials used and slightly different solvothermal
conditions applied. In their study, Goto et al. applied commercial α-TCP (Taihei Chemical
Industrial Co., Ltd., Osaka, Japan) synthesized at a high temperature and consisting of
large particles, while in our study we used low-temperature synthesized metastable α-TCP.

Figure 7 shows the nitrogen adsorption-desorption isotherms and the corresponding
BJH pore-size distribution for CDHA particles. According to the new classification by
the IUPAC, all the samples exhibited type IV isotherms and displayed H3 hysteresis
loops. This type of isotherm indicates the existence of mesopores in the structure of all
the samples. The hysteresis loop type H3 is associated with the existence of aggregated
plate-like particles [36]. Such results are in agreement with SEM data (Figures 5 and 6).
Based on the pore size distribution results illustrated in the inset image of Figure 7a,b, there
were no significant differences between the samples. All the samples were characterised
by a wide pore size distribution. Multi-scale pores ranged from 2.6 to 128 nm, suggesting
that both mesopores and macropores were present in the CDHA structure. All the samples
except those prepared with EG contained both mesopores of smaller sizes (from 2.6 nm up
to 9.0 nm) and a small number of larger mesopores (from 9.0 nm up to 128 nm). On the
contrary, in the sample 120-W-EG-40:60, mainly mesopores of larger width (from 23.0 nm
up to 50.2 nm) were found. We assume the pores of smaller sizes presented in the structure
of this sample were probably partially blocked by the viscous ethylene glycol. As it can be
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seen from Figure 7c, the mesoporous 120-W-PrOH-40:60 had the highest BET surface area
(SBET) of 24.3 m2g−1. An extremely low surface area was observed for the samples prepared
using EG: SBET of 2.1 m2g−1 and 11.3 m2g−1 were obtained for the samples 120-W-EG-40:60
and 200-W-EG-40:60, respectively. One reasonable explanation for this decrease is that
residues of EG may have increased blockage of the nitrogen gas penetration. Moreover, this
decrease in SBET could be the result of the structural changes occurring during the synthesis
of CDHA. The remaining samples were characterised by similar SBET values ranging from
9.9 to 22.4 m2g−1.
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4. Conclusions

A comprehensive study was performed to compare the effects of different organic sol-
vents on the hydrolysis of α-TCP and its conversion to CDHA under different solvothermal
conditions. Methyl alcohol and ethylene glycol had a stronger inhibitory effect on α-TCP
hydrolysis than ethyl alcohol, isopropyl alcohol, and butyl alcohol. This was especially
notable under milder solvothermal conditions. The morphology of the obtained samples
varied from plate-shaped to rod-shaped. Samples containing some rods were obtained by
applying certain ethyl alcohol and isopropyl alcohol proportions, albeit plate-like structures
were still prevailing. The use of water-methyl alcohol and water-butyl alcohol mixtures
leads to the formation of more rods in addition to the long and narrow plates. From all the
solvents analysed, ethylene glycol had the highest impact on the sample morphology. Un-
der certain water to ethylene glycol ratios and solvothermal conditions, samples containing
a significant fraction of rods were obtained.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst12020253/s1, Figure S1: images of the samples after solvother-
mal treatment with W-MeOH; Figure S2: SEM images of the samples after solvothermal treatment
with W-EtOH; Figure S3: SEM images of the samples after solvothermal treatment with W-PrOH;
Figure S4: SEM images of the samples after solvothermal treatment with W-BuOH.
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