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The aim of this study is to present an approach to the introduction into pipeline and parallel computing, using a model of the
multiphase queueing system. Pipeline computing, including software pipelines, is among the key concepts in modern computing
and electronics engineering. The modern computer science and engineering education requires a comprehensive curriculum, so
the introduction to pipeline and parallel computing is the essential topic to be included in the curriculum. At the same time, the
topic is among the most motivating tasks due to the comprehensive multidisciplinary and technical requirements. To enhance
the educational process, the paper proposes a novel model-centered framework and develops the relevant learning objects. It
allows implementing an educational platform of constructivist learning process, thus enabling learners’ experimentation with the
provided programming models, obtaining learners’ competences of the modern scientific research and computational thinking,
and capturing the relevant technical knowledge. It also provides an integral platform that allows a simultaneous and comparative
introduction to pipelining and parallel computing. The programming language C for developing programming models and message

passing interface (MPI) and OpenMP parallelization tools have been chosen for implementation.

1. Background and Introduction

Teaching of scientific and parallel computing, and advanced
programming are under permanent attention of scientists
and educators. Different approaches, models, and solutions
for teaching, assessments, and evaluation are proposed. The
constructivist model for advanced programming education
is one out of the presented approaches [1, 2]. In the model,
a learner constructs the relevant knowledge, experiments
with the provided environment, observes the results, and
draws conclusions. The constructivist approach incorpo-
rates the model-centered learning as well as comparative
programming teaching methods. Experimenting with the

provided model, “turning” the model and observing it from
different sides, comparing different solutions, and analysing
and drawing conclusions, the learner improves the relevant
knowledge and competences.

Modern technologies widely involve parallel computing,
and plenty of scientific and industrial applications use parallel
programming techniques. Teaching of parallel computing is
one of the most important and challenging topics in the sci-
entific computing and advanced programming education. In
this research, we present a methodology for the introduction
to scientific and parallel computing. This methodology is
based on the constructivist technology and uses a model-
centered approach and learning by comparison.
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F1GURE 1: Model-centered approach.

The paper proposes a set of programming models, based
on stochastic simulations of the provided model of a multi-
phase queueing system. The multiphase queueing system is
selected due to the simplicity of the primary definitions and
wide possibilities for parallelization. We implement different
parallelization techniques for programming the model. That
allows us to carry out a series of experiments with different
programming models, compare the results, and investigate
the effectiveness of parallelization and different paralleliza-
tion methods. Such parallelization methods include shared
memory, distributed memory, and hybrid parallelization
and are implemented by MPI and OpenMP APIs. Figure 1
presents the model-centered approach to the introduction
into scientific computing and parallel programming.

The paper continues the earlier authors’ research, pre-
sented in [3]. A possible application scope of this research
could be the second level course in scientific computing
and programming with an emphasis on pipeline and parallel
computing programming and modelling.

Scientific Computing in Science and Engineering Education.
Scientific computing plays an important role in science
and engineering education. World leading universities and
organizations pay an increasing attention to the curriculum
and educational methods. Allen et al. report on a new
graduate course in scientific computing that was taught at
the Louisiana State University [4]. “The course was designed
to provide students with a broad and practical introduction
to scientific computing which would provide them with the
basic skills and experience to very quickly get involved in
research projects involving modern cyber infrastructure and
complex real world scientific problems.” Shadwick stresses
the importance of more comprehensive teaching of scientific
computing [5]: “...computational methods should ideally be
viewed as a mathematical tool as important as calculus, and
receive similar weight in curriculum.”
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The Scope of Scientific Computing Education. One of the
tasks in the scientific computing education is to provide a
general understanding of solving scientific problems. Heath
writes, “.. .try to convey a general understanding of the tech-
niques available for solving problems in each major category,
including proper problem formulation and interpretation of
results...” [6]. He offers a wide curriculum to be studied
including a system of linear equations, eigenvalue problems,
nonlinear equation, optimization, interpolation, numerical
integration and differentiation, partial differential equations,
fast Fourier transform, random numbers, and stochastic
simulation. All these topics require a large amount of
computations and could require parallelization solutions
to be solved. Karniadakis and Kirby II define, “scientific
computing is the heart of simulation science” [7]. “With the
rapid and simultaneous advances in software and computer
technology, especially commodity computing, the so-called
supercomputing, every scientist and engineer will have on her
desk an advanced simulation kit of tools consisting of a soft-
ware library and multi-processor computers that will make
analysis, product development, and design more optimal and
cost-effective” The authors suggest the integration of teaching
of MPI tools to the educational process. A large number of
MPI implementations are currently available, each of which
emphasizes different aspects of high-performance computing
or is intended to solve a specific research problem. Other
implementations deal with a grid, distributed, or cluster
computing, solving more general research problems, but such
applications are beyond the scope of this paper. Heroux et
al. describe the scientific computing as “...a broad discipline
focused on using computers as tools for scientific discovery”
[8]. The authors claim, “The impact of parallel processing on
scientific computing varies greatly across disciplines, but we
can strongly argue that it plays a vital role in most problem
domains and has become essential in many”

Teaching of Parallel Computing. NSF/IEEE-TCPP Curriculum
Initiative on parallel and distributed computing (PDC),
Core Topics for Undergraduates, contains a comprehensive
research on the curriculum for parallel computing education
[9]. The authors suggest including teaching of PDC: “In addi-
tion to enabling undergraduates to understand the funda-
mentals of ‘von Neumann computing, we must now prepare
them for the very dynamic world of parallel and distributed
computing”” Zarza et al. report, “high-performance comput-
ing (HPC) has turned into an important tool for modern soci-
eties, becoming the engine of an increasing number of appli-
cations and services. Along these years, the use of powerful
computers has become widespread throughout many engi-
neering disciplines. As a result, the study of parallel computer
architectures is now one of the essential aspects of the aca-
demic formation of students in Computational Science, par-
ticularly in postgraduate programs” [10]. The authors notice
significant gaps between theoretical concepts and practical
experience: “In particular, postgraduate HPC courses often
present significant gaps between theoretical concepts and
practical experience” Wilkinson et al. offer, “... an approach
for teaching parallel and distributed computing (PDC)
at the undergraduate level using computational patterns.
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The goal is to promote higher-level structured design for
parallel programming and make parallel programming easier
and more scalable” [11]. Iparraguirre et al. share their experi-
ence in a practical course of PDC for Argentina engineering
students [12]. One of the suggestions is that “Shared memory
practices are easier to understand and should be taught first”

Constructivist and Model-Centered Learning. R. N. Caine
and G. Caine in their research [13] propose the main prin-
ciples of constructivist learning. One of the most impor-
tant principles is as follows: “The brain processes parts
and wholes simultaneously” Under this approach, a well-
organized learning process should provide details as well
as underlying ideas. In his research [1], Ben-Ari develops a
constructivist methodology for computer-science education.
Wulf [2] reviews “the application of constructivist peda-
gogical approaches to teaching computer programming in
high school and undergraduate courses.” The model-centered
approach could enhance constructivist learning proposing
the tool for studying and experimentation. Using model-
centered learning, we first present the goal of the research
after providing a model for simulation experiments. That
allows us to analyze the results and to draw the relevant
conclusions. Gibbons introduced model-centered instruction
in 2001 [14]. The main principles are as follows:

(i) learner’s experience is obtained by interacting with
models;

(ii) learner solves scientific and engineering problems,
using the simulation on models;

(iii) problems are presented in a constructed sequence;
(iv) specific instructional goals are specified;

(v) all the necessary information within a solution envi-
ronment is provided.

Xue et al. [15] introduce “teaching reform ideas in the
‘scientific computing’ education by means of modeling and
simulation” They suggest, “...the use of the modeling and
simulation to deal with the actual problem of programming,
simulating, data analyzing...”

2. Parallel Computing for Multiphase
Queueing Systems

2.1. Multiphase Queueing Systems and Stochastic Simulations.
A general multiphase queueing system consists of a number
of servicing phases that provide service for arriving cus-
tomers. The arriving customers move through the phases
step-by-step from entrance to exit. If the servicing phase
is busy with servicing the previous customer, the current
customer waits in the queue in front of the servicing phase.
The extended Kendall classification of queueing systems uses
6 symbols: A/B/s/q/c/p, where A is the distribution of
intervals between arrivals, B is the distribution of service
duration, s is the number of servers, g is the queueing
discipline (omitted for FIFO, first in first out), ¢ is the system
capacity (omitted for unlimited queues), and p is the number
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FIGURE 2: Multiphase queueing system.

of possible customers (omitted for open systems) [16, 17].
For example, M/M/1 queue represents the model having a
single server, where arrivals are determined by a Poisson
process, service times have an exponential distribution, and
population of customers is unlimited. The interarrival and
servicing times both are independent random variables.
We are interested in the sojourn time of the customer in
the system and its distribution. The general schema of the
multiphase queueing system is presented in Figure 2.

We consider both interarrival and servicing times as
exponentially distributed random variables. Depending on
the parameters of the exponential distributions, we distin-
guish different traffic conditions for the observed queue-
ing system. Those include ordinary traffic, critical traffic, or
heavy traffic conditions. We are interested to investigate a
distribution of the sojourn time for these different cases [18-
20] and we will use Monte-Carlo simulations for collecting
the relevant data.

2.2. Recurrent Equation for Calculating the Sojourn Time.
In order to design a modelling algorithm of the previously
described queueing system, some additional mathematical
constructions should be introduced. Our aim is to calculate
and investigate the distribution of the sojourn time of the
number 7 customer in the multiphase queueing system of k
phases. We can prove the next recurrent equation [19]: let us
denote by ¢, the time of arrival of the nth customer; let us
denote by ¥ the service time of the nth customer at the jth
phase; o, = t, —t,_;3j = 1,2,....,kn = 1,2,...,N. The
following recurrence equation for calculation of the sojourn
time T}, of the nth customer at the jth phase is valid:

() .
Tipw=Tj1n+ S,/ + max (Tj’,k1 — T 10— % 0) ;

ji=1,2,...,ks n=12,...,N; (1

Tio=0, Vjs

i Ty, =0, Vn.

Proposition 1. The recurrence equation to calculate the
sojourn time of a customer in a multiphase queuing system.

Proof. Itis true thatif the time o, +T;_, , > T},,_,, the waiting
time in the jth phase of the nth customer is 0. In the case

0+ Ti 1 <Tjpss the waiting time in the jth phase of the nth
customerisw’ = T;, 1T ,~a,andT;, = Tj_l’n+w;7+Sfl]).
Taking into account the above two cases, we finally have the
proposition results. O
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FIGURE 3: Statistical sampling for modelling the sojourn time distribution.

2.3. Theoretical Background: Parallel Computing. In this rese-
arch, we emphasize a multiple instruction, multiple data
(MIMD) parallel architecture and presume the high per-
formance computer cluster (HPC) as a target platform for
calculations. Such a platform allows us to study different
parallelization techniques and implement shared memory,
distributed memory, and hybrid memory solutions. The main
goal of parallelization is to reduce the program execution
time by using the multiprocessor cluster architecture. It also
enables us to increase the number of Monte-Carlo simulation
trials during the statistical simulation of the queueing system
and to achieve more accurate results in the experimental
construction of the sojourn time distribution. To implement
parallelization, we use OpenMP tools for the shared memory
model, MPI tools for the distributed memory model, and the
hybrid technique for the hybrid memory model.

For the shared memory decomposition, we use tasks and
the dynamic decomposition technique in the case of the
pipeline (transversal) decomposition and we use the loop
decomposition technique in the case of threads (longitudinal)
decomposition. For the distributed memory decomposition,
we use the standard message parsing MPI tools. For the

hybrid decomposition, we use the shared memory (loop
decomposition) for the longitudinal decomposition and MPI
for the pipeline decomposition.

2.4. Parallelization for Multiphase Queueing Systems. Statis-
tical sampling for modelling the sojourn time distribution
(Figure 3) presents the general schema of the imitational
experiment on the queueing system.

The programming model of the multiphase queueing
system is based on the recurrent equation, presented in one
of the upper sections. The Monte-Carlo simulation method
is used to obtain the statistical sampling for modelling the
sojourn time distribution on the exit of the system.

To introduce the topics as decomposition and granularity
we present a space model of the simulation process of the
queueing system. First, we start from a one-dimensional
model. The one-dimensional model allows introducing a
sequential programming model with no parallelism and
could serve as a basic model for further improvements.
Afterwards, we proceed with a two-dimensional model. Such
a model allows introducing the programming models for the
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#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#define OUT_FILE “out_seq.txt” //results
#define MC 20 //number of Monte-Carlo simulations
#define N 1000 //number of clients

#define M 5 //number of servicing phases
//parameters of the exponential distributions
int lambda[M + 1] = {0};

double tau = 0; //interarrival time

double st = 0; //sojourn time

/Isojourn time for the previous client

double st_prev[M] = {0};

//sojourn time for each MC trial

double results|MC] = {0};

int main(int argc, char *argv(]) {

gsl_rng * ran; //random generator
gsl_rng_env_setup();

ran = gsl_rng_alloc(gsl_rng_ranlxs2);

//init lambda (heavy traffic case)

lambda[0] = 30000;

for (inti = 1;i < M; i++)lambdal[i] = lambdali — 1] — 25000/M;
lambda[M] = 5000;

for (unsigned j = 0;j < MC; j++) {

tau = gsl_ran_exponential(ran, 1.0/lambda[0]);
st = 0;

for (unsigned i = 0;i < M; i++) st_prev[i] = 0.;
for (unsigned i = 0;1 < N; i++) {

for (unsigned t = 0;t < M; t++) {

/Irecurrent equation

st += gsl_ran_exponential(ran, 1.0/lambda[t + 1]) + fmax(0.0, st_prev[t] — st — tau);
st_prev[t] = st;

1

results [j] = st;

}

//printing results to file
FILE *fp;

const char DATA_FILE[] = OUT_FILE;

fp = fopen(DATA_FILE, “w”);

fprintf(fp, “%d%s%d%s%d\n”, N, <, lambda[0], 7, lambda[M]);
for (inti = 0; i < MC — L; i++) fprintf(fp, “%f%s”, results[i], <);

fprintf(fp, “%f\n’, results[MC — 1]);
fclose(fp);

gsl_rng_free(ran);

return(0);

}

LisTING 1

longitudinal decomposition. As the last step, we introduce
a three-dimensional space model. Such a model allows
constructing the programming models for the transversal
and hybrid decompositions.

2.5. Stochastic Simulations and Longitudinal Decomposition.
One of the solutions is to use the longitudinal decomposition
(trials) and to parallelize the Monte-Carlo trials. Thus we can
map each or a group of trials depending on the preferred

granularity and the total number of desired trials. The schema
of the longitudinal decomposition is presented in Figure 4. A
three-dimensional model of the longitudinal decomposition
is presented in Figure 5.

2.6. Pipelining and Transversal Decomposition. In another
dimension (customers) the parallelization technique is not as
straightforward as it was in the previous case of parallelization
of the statistical trials dimension. There arises a difficulty
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#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include “mpi.h”
#define OUT_FILE “out_mpi.txt”
//number of Monte-Carlo (MC) simulations in each process
#define MC 100
#define N 10000 //number of clients
#define M 5 //number of phases
#define NP 10 //number of MPI processes
void print_results(double *results, double time, int “lambda) {
FILE *fp;
const char DATA_FILE[] = OUT_FILE;
fp = fopen(DATA_FILE, “w”);
fprintf(fp, “%d%s%d%s%d%s%d\n’, N
time = MPI_Wtime() — time;
fprintf(fp, “%f\n’, time);
for (inti = 0;i < MC * NP — I; i++) fprintf(fp, “%f%s”, results[i]
fprintf(fp, “%f\n”, resultsMC * NP — 1]);
fclose(fp);
}
void process(int numprocs, int myid, gsl_rng * ran, int “lambda) {
double time = MPI_Wtime(); //start time
double tau[MC] = {0}; //interarrival time
double st[MC] = {0}; //sojourn time
/Isojourn time of the previous customer in each phase
double st_prev[M][MC] = {{0}};
double results[MC = NP] = {0}; //overall results
for (intj = 0;j < MG; j++) {
//init each MC trial
tau[j] = gsl_-ran_exponential(ran, 1.0/lambda[0]);
stfjl = 0;
for (inti = 0;i < M; i++)
for (intj = 0;j < MGC; j++) st_prev[i][j] = 0;
for (inti = 0;i < Nji++) {
for (intt = 0; t < M; t++) {
/Irecurrent equation
st[j] += gsl_ran_exponential(ran, 1.0/lambda[t + 1]) + fmax(0.0, st_prev[t][j] — st[j] — tau[j]);
st_prev[t][j] = st[j];
H

«»
PR}

M, <, lambda[0], 7, lambda[M]);

>
>

>

)

MPI_Gather(&st, MC, MPI_DOUBLE, &results, MC, MPI_DOUBLE, 0, MPI_.COMM_WORLD);

if (myid == 0) {

print_results(&results[0], time, &lambda[0]);

H

int main(int argc, char *argv(]) {

int namelen;

char processor_-name[MPI_.MAX_PROCESSOR_NAME];
int numprocs;

int myid;

gsl_rng * ran; //random generator

/Iparameter of the exponential distribution

int lambda[M + 1] = {0};

//init mpi

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_.COMM_WORLD, &(numprocs));
MPI_Comm_rank(MPI_COMM_WORLD, &(myid));
MPI_Get_processor_name(processor_name, &namelen);

LisTING 2: Continued.



Scientific Programming

lambda[0] = 30000;
lambda[M] = 5000;

fllush(stdout);

//init random generator
gsl_rng_env_setup();

ran = gsl_rng_alloc(gsl-rng_ranlxs2);
gsl_rng_set(ran, (long) (myid) * 22);
/Iprocess

process(numprocs, myid, ran, lambda);
//finish

gsl_rng_free(ran);

MPI _Finalize();

//init parameter for the exponential distribution
for (inti = 1;i < M; i++)lambda(i] = lambdali — 1] — 25000/M;

fprintf(stdout, “Process %d of %d is on %s\n”, myid, numprocs, processor_name);

return (0);
}
LisTING 2
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number of customers in each stage depends on the preferred
granularity and the total number of customers. Figure 6
presents the decomposition in the case of the customer’s
dimension.

2.7. Shared Memory Implementation. The shared memory
implementation is based on the OpenMP tools. The loop

FIGURE 6: Transversal decomposition.

parallelization technique is used for the longitudinal decom-
position. For the transversal decomposition, the OpenMP
tasking model and dynamic scheduling are used.
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2.8. Distributed Memory Implementation. The distributed
memory implementation is based on MPI tools. In both cases,
that is, longitudinal and transversal decompositions, the
message parsing interface provides synchronization tools and
there is no need for additional programming constructions.

2.9. Hybrid Models and HPC. Hybrid models provide a
natural solution to computational platforms, based on high-
performance computer clusters. It uses MPI tools to perform
a decomposition and OpenMP tools for multithreading.

2.10. Dynamic and Static Scheduling. Pipelining requires
dynamic scheduling, since there is a connection between
various nodes in the pipeline. In the shared memory case we
must take care of scheduling. If we use the OpenMP tasking
model, the relevant approach could be twofold. First, it is
possible to obtain a dynamic scheduling by monitoring a
critical shared memory resource and using a task yielding
construction. The other one is to use the dynamic task
creation technique. In the case of MPI, synchronization is
performed by the interface system, and then there is no need
for additional programming constructions.

3. Sequential Programming Model

The flowchart of the sequential program model is presented
in Figure 7. The algorithm uses the recurrent equation and
cycles for modelling the queueing system phases, customers,
and statistical trials.

The program model of the sequential approach uses the
programming language C and GSL (GNU scientific library)
and it is presented in Appendix A of this paper including the
comments.

4. Programming Model for Distributed
Memory Parallelization

4.1. Longitudinal Decomposition. The programming model
for the distributed memory parallelization is based on MPI

Scientific Programming
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N

tools and it is optimal for the multicore/multimode computer
architecture. All the processes receive a full copy of the
programming code and the rooting is made by using the
number of the process. The flowchart of the longitudinal
decomposition is presented in Figure 8. The programming
language C model with the comments is presented in
Appendix B.

4.2. Transversal Decomposition. The flowchart for the
transversal decomposition is presented in Figure 9. Processes
are attached to the customer’s axis which is divided into
chunks. We use a mutual message parsing technique and MPI
is responsible for scheduling. Statistical trials are divided
into the relevant chunks and provide the desired granularity.
The programming language C model with the comments is
presented in Appendix C.

5. Programming Model for Shared Memory
Parallelization

5.1. Longitudinal Decomposition. In the case of the shared
memory model, the OpenMP loop parallelization is the
natural solution to the longitudinal decomposition. The scope
of MC trials is divided into chunks and each of such chunks
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#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <unistd.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#include “mpi.h”

#define OUT_FILE “out_mpi_pipe.txt”

#define PIPE_MSG 0 //next pipe node

#define END_MSG 1 //finish

//number of Monte-Carlo (MC) simulations in each chunk
#define MC 10

#define NP 10 //number of processes (client axis)

#define CMC 100 //number of MC chunks

#define N 1000 //number of clients

#define M 5 //number of phases

void print_results(double “results, double time, int “lambda) {
FILE *fp;

const char DATA _FILE[] = OUT_FILE;

fp = fopen(DATA_FILE, “w”);

fprintf(fp, “%d%s%d%s%d%s%d\n”, N, <7, M, 7, lambda[0], ), lambda[M]);
time = MPI_Wtime() — time;

fprintf(fp, “%f\n’, time);

for (inti = 0;1 < MC * CMC — L i++) fprintf(fp, “%f%s”, results[i], 7);
fprintf(fp, “%f\n’, results[MC * CMC —1]);

fclose(fp);

void node(int numprocs, int myid, gsl_rng * ran, int “lambda) {
int nmcb = 0;
int nmcb_id = 0;
inti,j, k t,u,v;
double time = MPI_Wtime(); //start time
MPI _Status Status;
double tau[MC] = {0}; //interarrival time
double st{MC] = {0}; //sojourn time
//sojourn time of the previous customer in each phase
double st_prev[M][MC] = {{0}};
double resultsfMC x CMC] = {0}; //overall results
while (1) {
nmcb_id = CMC; //aux var. to omit the cycle
if (myid != 0) { //receive data from the previous node
MPI_Recv(&tau, MC, MPI_.DOUBLE, myid — 1, MPI_ANY_TAG, MPI_.COMM_WORLD, &Status);
if (Status. MPI_TAG == END_MSG) break;
MPI_Recv(&st, MC, MPI_DOUBLE, myid — 1, MPI_ANY_TAG, MPI_COMM_WORLD, &Status);
MPI_Recv(&st_prev, MC * M, MPI_.DOUBLE, myid — 1, MPI_ANY_TAG, MPI_.COMM_WORLD, &Status);
//eliminate the below line for the other than the main thread
nmcb_id = 1;
}
//nmbc- Number of MC batches (for the main process)
for (k = 0; k < nmcb_id; k++) {
for (j = 0;j < MGC; j++) {
if (myid == 0) { //init each MC trial (main process)
tau[j] = gsl_-ran_exponential(ran, 1.0/lambda[0]);
stfj] = 0;
for (u = 0; u < M; u++)
for (v = 0; v < MC; v++) st_prev[u][v] = 0;
}
for (i = 0;i < N/NP; i++) {
for (t = 0; t < M; t++) {

LisTING 3: Continued.
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//recurrent equation

st[j] += gsl_ran_exponential(ran, 1.0/lambda[t + 1]) + fmax(0.0, st_prev[t][j] — st[j] — taulj]);
st_prev[t][j] = st[j];

1

results[j + MC % nmcb] = st[jl;

}

nmcb++;

if (myid != numprocs — 1) {

//if not the last process - send the data to the next process

MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1, PIPE_ZMSG, MPI_.COMM_WORLD);
MPI_Send(&st, MC, MPI_.DOUBLE, myid + 1, PIPE_.MSG, MPI_.COMM_WORLD);
MPI_Send(&st_prev, MC * M, MPI_.DOUBLE, myid + 1, PIPE_MSG, MPI_.COMM_WORLD);
I

//if the main process - go out of while cycle

if (myid == 0) break;

}

//if finished - send the end msg. to the next pipe node

if (myid != numprocs — 1)

MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1, END_MSG, MPI.COMM_WORLD);

//if last process - send results

if (myid == numprocs - 1)

MPI_Send(&results, MC * CMC, MPI_.DOUBLE, 0, PIPE_.MSG, MPI.COMM_WORLD);
//print results

if (myid == 0) {

MPI_Recv(&results, MC * CMC, MPI_DOUBLE, numprocs — 1, MPI_ANY_TAG, MPI_.COMM_WORLD, &Status);

print_results(&results[0], time, &lambda[0]);

3

int main(int argc, char “argv[]) {

int namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];
int numprocs;

int myid;

gsl.rng * ran; //random generator

//parameter of the exponential distribution

int lambda[M + 1] = {0};

//init MPI

MPI_ Init(&argc, &argv);
MPI_Comm_size(MPI_.COMM_WORLD, &(numprocs));
MPI_Comm_rank(MPI_.COMM_WORLD, &(myid));
MPI_Get_processor_name(processor_name, &namelen);
//init parameter for the exponential distribution
lambda[0] = 30000;

for (inti = 1; i < M; i++)lambda[i] = lambdali — 1] — 25000/M;
lambda[M] = 5000;

fprintf(stdout, “Process %d of %d is on %s\n”, myid, numprocs, processor_name);
fllush(stdout);

//init random generator

gsl_rng_env_setup();

ran = gsl_rng_alloc(gsl_rng_ranlxs2);

gsl_rng_set(ran, (long) (myid) * 22);

/Iprocess

node(numprocs, myid, ran, lambda);

//finish

gsl_rng_free(ran);

MPI _Finalize();

return (0);

}

LisTING 3
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#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#include <omp.h>

#define OPENMP 12

#define OUT_FILE “out_openmp.txt”

//number of Monte-Carlo simulations in one thread
#define MC 200

#define N 10000 //number of clients

#define M 5 //number of phases

//parameters of the exponential distribution

int lambda[M + 1] = {0};

double tau = 0; //interarrival time

double st = 0; //sojourn time

//sojourn time for the previous client

double st_prev[M] = {0};

/[results- sojourn time for all threads trials
double results| MC « OPENMP] = {0};
/[results- sojourn time for each thread trial
double th_results{f MC] = {0};

gsl.rng * ran; //random generator

int main(int argc, char *argv([]) {

lambda[0] = 30000;

for (inti = 1;i < M; i++)lambdali] = lambdali — 1] — 25000/M;
lambda[M] = 5000;

unsigned long int i, t, j;

int th_id; //thread number

#pragma omp parallel num_threads(OPENMP)\
private(th_id, ran, j, i, t, tau, st, st_prev)\
firstprivate(th_results) shared(results,Jambda)

{

th-id = omp_get_thread_num();

//printf(“Hello World from the thread %d\n’, th_id);
gsl_rng_env_setup();

ran = gsl_rng_alloc(gsl_rng_ranlxs2);
gsl.rng_set(ran, (long) th_id * 22); //seed

for (j = 0;j < MC; j++) {

tau = gsl_ran_exponential(ran, 1.0/lambda[0]);
st =10,

for (i = 0;i < M; i++) st_prevl[i] = 0;

for (i = 0;i < N;i++) {

for (t = 0;t < M; t++) {

//recurrent equation

st += gsl_ran_exponential(ran, 1.0/lambdal[t + 1]) + fmax(0.0, st_prev[t] — st — tau);
st_prev([t] = st;

H

th_results [j] = st;

t

for (i = 0; i < MC; i++) results[i + th_id * MC] = th_results [i];
gsl_rng_free(ran);

/Iprinting results

FILE *fp;

const char DATA _FILE[] = OUT_FILE;

fp = fopen(DATA_FILE, “W”);

fprintf(fp, “%d%s%d%s%d\n”, N, 7, lambda[0], ), lambda[M]);

for (i = 0;i < MC % OPENMP — 1; i++) fprintf(fp, “%f%s’, results[i], 7);
fprintf(fp, “%f\n’, resultsf]MC * OPENMP — 1]);

fclose(fp);

LisTING 4: Continued.
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return EXIT_SUCCESS;
t

LIsTING 4
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FIGURE 10: Shared memory longitudinal decomposition.

is attached to the relevant thread. The flowchart of the shared
memory model is presented in Figure 10.

The programming model for the shared memory longitu-
dinal decomposition uses the programming language C, GSL
(GNU scientific library), and OpenMP libraries. The model
and comments are presented in Appendix D of this paper.

5.2. Transversal Decomposition. One of the most compre-
hensive programming models is the model of the shared
memory pipelining. We use the transversal decomposition to
construct such a model. The model uses the OpenMP tasking
technique and dynamic scheduling of tasks. The scheduler
plays the central role in the model and it is responsible for
creating new tasks and finishing the program, after complet-
ing all the tasks. Each task uses its own random generator
which allows avoiding time-consuming critical sections. The
flowchart is presented in Figure1l. Programming model
for the shared memory transversal decomposition uses C
programming language, GSL (GNU scientific library), and
OpenMP libraries. The model and comments are presented
in Appendix E of this paper.

6. Programming Model of Hybrid
Parallelization

The MPI transversal decomposition model could be trans-
formed into a hybrid model by adding the OpenMP threads
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f the next
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Put the task
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Assign a thread
to the task
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chunk of Yes
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FIGURE 11: Shared memory transversal decomposition.

_________________

1

| o I
| o I
! MC chunk | Subg:lsltmk :
! last o 1
| o I
! U |
| e L Subchunk :
i \I/ i i last !

I

! MC chunk | ! 1 1
i first i L____C_)[:e_n_l\/{li_____‘,
1 |

1 |

1

1

1

1

1

I
Process Process i

Start > - End
first last |

FI1GURE 12: Hybrid decomposition.

to the MC trials axis. The flowchart of the hybrid model
is presented in Figure12. The programming model with
comments is presented in Appendix F.

7. Conclusions

71. Theoretical and Programming Models: The Basis of the
Model-Centered Approach. The paper provides a number of
programming models for the introduction to scientific and
parallel computing. All these programming models, sequen-
tial, distributed memory, distributed memory pipelining,
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#include <stdio.h>

#include <math.h>

#include <time.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#include <omp.h>

#define OUT_FILE “out_omp_pipe.txt”
//total number of Monte-Carlo (MC) simulations
#define MC 10000

#define CMC 100 //chunks per MC axis
#define N 10000 //total number of clients
#define M 5 //total number of phases
#define CN 100 //chunks per clients axis
#define OPENMP 12 //OMP threads
/Iparameters of exponential distributions
int lambda[M + 1] = {0};

//interarrival time for each MC trial
double tau[MC] = {0};

double st{MC] = {0}; //sojourn time
//sojourn time of the previous client
/leach MC trial and each phase

double st_prev[MC][M] = {{0}};

//aux variable - each MC chunk flag

int flag[CMC] = {0};

//aux variable - each MC chunk counter
int task_counter[CMC] = {0};

int main(int argc, char *argv[]) {

time_t tl, t2;

tl = time(NULL);

//init exponential distribution parameters
lambda[0] = 30000;

for (inti = 1;i < M; i++)lambdal[i] = lambdali — 1] — 25000/M;
lambda[M] = 5000;

gsl_rng * ran; //random generator
gsl_rng_env_setup();

ran = gsl_rng_alloc(gsl_rng_ranlxs2);
gsl_rng_set(ran, (long) (CN * CMC +10) * 22.); //seed
//set interarrival time for each MC trial
for (inti = 0; i < MC; i++)

tau[i] = gsl-ran_exponential(ran, 1.0/lambda[0]);
gsl_rng_free(ran);
omp_set_num_threads(OPENMP);
#pragma omp parallel //start threads

#pragma omp single //one thread to create tasks

int1i, j, t, ¢; //aux variables

int v = 0; //local variable - MC chunk number
int sum = 0; //local variable - number of tasks
int while_flag = 1; //var. to stop external while
//dynamic task creation in each of MC chunks
while (while_flag) {

if (flag[v]) {

flag[v] = §;

//create a new task if previous task had finished
#pragma omp task default(none)\private(i, j, t, ¢, ran)\
firstprivate(tau, lambda, v, gsl_rng_ranlxs2)\
shared(st, st_prev, flag, task_counter)

L1sTING 5: Continued.

13



14

Scientific Programming

gsl_rng * ran; //random generator for this task
gsl_rng_env_setup();

ran = gsl_rng_alloc(gsl_rng_ranlxs2);

//seed with the task number

for (j = 0;j < MC/CMG; j++) {

¢ =j+v* (MC/CMC); //MC trial number
for (i = 0;1 < N/CNj; i++) {

for (t = 0;t < M; t++) {

//recurrent equation

st_prev[c][t] = st[c];

1

//end of the current task
gsl.rng_free(ran);

task_counter[v]++;

flag[v] = 0;

1

//if all tasks of this chunk of Monte-Carlo trials
//had finished -then stop this chunk

//v numbered MC chunk is over

if (task_counter[v] == CN) flag[v] = I;
Vit

if (v == CMC) v = 0; //again a new loop
sum = 0; //variable to test all chunks

//if all task had finished - exit while cycle
if (sum == CN * CMC) while_flag = 0;
it

//print results

FILE *fp;

const char DATA _FILE[] = OUT_FILE;
fp = fopen(DATA_FILE, “w”);

t2 = time(NULL);
fprintf(fp, “%f\n’, difttime(t2, t1));

fprintf(fp, “%f\n’, stfMC — 1]);
fclose(fp);
return (0);

}

gsl_rng_set(ran, (long)(task_counter[v] + v * CN) * 22.);

st[c] += gsl_ran_exponential(ran, 1.0 /lambda[t + 1]) + fmax(0.0, st_prev[c][t] — st[c] — tau[c]);

for (i = 0;i < CMC; i++) sum += task_counter|[i];

fprintf(fp, “%d%s%d%s%d%s%d\n’, N, <, M, 7, lambda[0], ), lambda[M]);

for (intj = 0;j < MC — 1; j++) fprintf(fp, “%f%s”, st[j], );

LISTING 5

shared memory, shared memory pipelining, and the hybrid
model, are based on statistical simulations of the theoretical
model of the multiphase queueing system. After providing
a theoretical background to the learner and explaining the
main features of the theoretical model, we start experiments
with programming models. The relevant problems could be
provided to the learners. These could include the comparative
investigation of the effectiveness of programming models,
taking into account different computational platforms as
well as different input parameters of the queueing system.
For the advanced learner, the emphasis could be put on
variation of the parameters of interarrival and servicing
time exponential distributions, moving from the heavy traffic
to the nonheavy traffic case, since that could fundamen-
tally change the distribution of the sojourn time of the
customer.

7.2. Introduction to Scientific Computing: Research Tasks and
Research Methods. While investigating the theoretical model,
studying the recurrent equation, and experimenting with
the input parameters of the queueing system, we provide
an introduction to the scientific research tasks and meth-
ods. It includes studying the distribution of the sojourn
time of the customer, varying the parameters of interarrival
and servicing time exponential distributions, comparing the
results, analyzing the provided theoretical constructions, and
studying the Monte-Carlo method for statistical simulations,
which is one of the basic methods in studying the topics
related with probability.

7.3. Introduction to Parallel Computing: Terminology and
Methodology. Studying and experimenting with the pro-
gramming models, the introduction to parallel computing



Scientific Programming

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <unistd.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

#include <omp.h>

#include “mpi.h”

#define OUT_FILE “out_hybrid.txt”

#define PIPE_MSG 0 //next pipe node

#define END_MSG 1 //finish

#define OPENMP 12 //number of OMP threads

//number of Monte-Carlo (MC) simulations in each chunk
#define MC 100

#define NP 10 //number of processes (client axis)

#define CMC 100 //number of MC chunks

#define N 1000 //number of clients

#define M 5 //number of phases

void print_results(double *results, double time, int “lambda) {
FILE *fp;

const char DATA _FILE[] = OUT_FILE;

fp = fopen(DATA_FILE, “w”);

fprintf(fp, “%d%s%d%s%d%s%d\n’, N, <, M,  ”, lambda[0], , ”, lambda[M]);
time = MPI_Wtime() — time;

fprintf(fp, “%f\n’, time);

for (inti = 0;i < MC * CMC — L; i++) fprintf(fp, “%f%s”, results[i], , );
fprintf(fp, “%f\n’, resultsMC * CMC —1]);

fclose(fp);

}

void node(int numprocs, int myid, gsl_rng * ran, int *lambda) {

int nmcb = 0; //nmbc- Number of MC batches

int nmcb_id = 0;

inti,j, k t,u,v;

double time = MPI_Wtime(); //program start time

MPI_Status Status;

double tau[MC] = {0}; //interarrival time

double st{MC] = {0}; //sojourn time

//sojourn time of the previous customer in each phase

double st_prev[M][MC] = {{0}};

double results|MC x CMC] = {0}; //overall results

double temp; //aux variable

while (1) {

nmcb_id = CMC; //aux var. to omit the cycle

if (myid != 0) { //receive data from the previous node

MPI_Recv(&tau, MC, MPI_.DOUBLE, myid — 1, MPI_ANY_TAG, MPI_.COMM_WORLD, &Status);
if (Status.MPI_TAG == END_MSG) break;

MPI_Recv(&st, MC, MPI_DOUBLE, myid — 1, MPI_ANY_TAG, MPI_.COMM_WORLD, &Status);
MPI_Recv(&st_prev, MC * M, MPI_.DOUBLE, myid — 1, MPI_ANY_TAG, MPI_.COMM_WORLD, &Status);
//eliminate below for in case of not the main thread

nmcb_id = 1;

}

for (k = 0; k < nmcb_id; k++) {

omp_set_num_threads(OPENMP);

{

#pragma omp parallel for default(shared)

\private(j, i, t, u, v)

for (j = 0;j < MC; j++) {

if (myid == 0) { //init each MC trial (main process)

#pragma omp critical

LisTING 6: Continued.
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tau[j] = gsl-ran_exponential(ran, 1.0/lambda[0]);
}
st[j] = 0;
for (u = 0; u < M; u++)
for (v = 0; v < MC; v++) st_prev[u][v] = 0;
}
for (i = 0;i < N/NP; i++) {
for (t = 0;t < M; t++) {
/Irecurrent equation
temp = gsl_ran_exponential(ran, 1.0/lambda[t + 1]);
#pragma omp critical

temp = gsl_ran_exponential(ran, 1.0/lambda[t + 1]);

st[j] += temp + fmax(0.0, st_prev[t][j] — st[j] — taulj]);

;;prev[t] i = stljl;

results[j + MC * nmcb] = st[j];

1

nmcb++;

if (myid != numprocs — 1) {

//if not the last process send data to the next process

MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1, PIPE_MSG, MPI_.COMM_WORLD);
MPI_Send(&st, MC, MPI_DOUBLE, myid + 1, PIPE_ZMSG, MPI_.COMM_WORLD);
MPI_Send(&st_prev, MC * M, MPI_DOUBLE, myid + 1, PIPE_.MSG, MPI_.COMM_WORLD);
}

}

//if the main process - go out of while cycle
if (myid == 0) break;

//if finished - send the end msg. to the next pipe node

if (myid != numprocs — 1)MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1, END_MSG, MPI_.COMM_WORLD);
//if last process - send results

if (myid == numprocs — 1)

MPI_Send(&results, MC * CMC, MPI_DOUBLE, 0, PIPE_MSG, MPI_.COMM_WORLD);
/Iprint results

if (myid == 0) {

MPI_Recv(&results, MC * CMC, MPI_.DOUBLE, numprocs — 1, MPI_ANY_TAG, MPI.COMM_WORLD, &Status);
print_results(&results[0], time, &lambda[0]);

1

}

int main(int argc, char * argv(]) {

int namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];

int numprocs;

int myid;

gsl.rng * ran; //random generator

//parameter for the exponential distribution

int lambda[M + 1] = {0};

//init mpi

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_.COMM_WORLD, &(numprocs));
MPI_Comm_rank(MPI_.COMM_WORLD, &(myid));
MPI_Get_processor_name(processor_name, &namelen);

//init parameter for the exponential distribution

lambda[0] = 30000;

for (inti = 1;i < M; i++)lambda[i] = lambda[i — 1] — 25000 / M;

lambda[M] = 5000;

fprintf(stdout, “Process %d of %d is on %s\n”, myid, numprocs, processor_name);
fllush(stdout);

LisTING 6: Continued.
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//init random generator
gsl_rng_env_setup();

ran = gsl_rng_alloc(gsl_rng_ranlxs2);
gsl_rng_set(ran, (long) (myid) * 22);
//process

node(numprocs, myid, ran, lambda);
//finish

gsl_rng_free(ran);

MPI _Finalize();

return (0);

}

L1sTING 6

terminology and methodology is provided. It includes the
basic concepts such as shared and distributed memory paral-
lelization techniques, homogenous and heterogeneous com-
putational platforms, and HPC and multicore programming
and it explains scheduling, mapping, and granularity. Using
MPI and OpenMP tools, we provide the introduction to
OpenMP tasking, MPI programming methods, synchroniza-
tion, load balancing, decomposition techniques, and other
important topics of parallel computing.

7.4. Problems: Studying Effectiveness, Debugging, and Bench-
marking. We could enhance the learner’s understanding by
providing a set of problems such as debugging, bench-
marking, and comparative studying of the effectiveness of
programming models. That includes variation of different
computing platforms for one of the models as well as testing
different models for a definite platform. It could be done by
applying a single processor, multicore, and multiprocessor
machines and computer clusters. As an example, the model
with efficient results achieved by a single-processor machine
could be inefficient on the other platforms. When modifying
the model, the relevant debugging tools and methods must
be implemented. So the learner could proceed by modifying
the model, that is, changing the distribution parameters and
tuning the granularity.

75. Further Studies: Queueing Networks for Constructing
Learning Objects. The theory of queueing systems renders
wide possibilities for relevant theoretical constructions. The
next obvious step could be studies of queueing networks of
various types including open, closed, or mixed networks,
constructing the relevant learning objects, and investigating
the respective theoretical and programming models.

Appendices
A. Sequential Programming Model

See Listing 1.

B. Distributed Memory Programming Model

See Listing 2.

C. Distributed Memory Pipeline Model

See Listing 3.

D. Shared Memory Programming Model

See Listing 4.

E. Shared Memory Pipeline Programming
Model

See Listing 5.

F. Hybrid Programming Model

See Listing 6.
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