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Abstract: In this article we construct parallel solvers analyze the efficiency and accuracy of general
parallel solvers for three dimensional parabolic problems with the fractional power of elliptic
operators. The proposed discrete method are targeted for general non-constant elliptic operators, the
second motivation for the usage of such schemes arises when non-uniform space meshes are essential.
Parallel solvers are required to solve the obtained large size systems of linear equations. The detailed
scalability analysis is done in order to compare the efficiency of prposed parallel algorithms. Results
of computational experiments are presented and analyzed.
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1. Introduction

Currently, fractional differential equations are used to simulate non-standard diffu-
sive processes when the diffusion processes can’t be desribed by classical mathematical
models. We mention applications of chemical and contaminant transport in heteroge-
neous aquifer [1], recent models in physics [2], biomedicine [3], and optics and image
applications [4]. More examples are given in [5,6].

It is well-known that the fractional power of an elliptic operator Aα
h can be defined

in a non-unique way. We restrict to the spectral definition, and detail definitions are
presented in Section 2. It is interesting to stress, that the classical spectral algorithm and
some modifications can be used as computational tools to solve parabolic type problems
with nonlocal operator Aα

h , making the complexity of the nonlocal algorithms the same as
for spectral methods targeted to solve parabolic problems with standard elliptic operators.
However, clearly, this strategy is computationally efficient only if the differential problem
is solved in a rectangular domain, if the complete set of eigenfunctions of operator Ah are
known in advance, and if the FFT technique can be applied.

Another general approach is based on the Lanczos method. The main benefit of this
algorithm is that the required matrix-function-vector products are computed without ever
forming the dense matrix Aα

h . A preconditioned Lanczos method can be used to accelerate
the convergence of this method (see [7] and references given therein).

Thus, alternative approaches should be used in the case of non-uniform space meshes
and/or elliptic operators with non-constant coefficients. The main idea of such techniques
is to transform non-local problems to some local classical differential problems. A very
good review on these methods is given in [8].

At the end of this short review we note one more important approach. There exist
very interesting analytical methods that can solve the same equations in the form of a series
on the root vectors of the right-hand [9,10]. They look very promising for the development
of not only theoretical results on the existence and uniqueness of solutions, but also for
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the numerical solution of real world applied problems. A practical comparison of these
approaches for well-selected benchmark problems is an important task.

The rest of the paper is organized in the following way. In Section 2, the problem
is formulated. The non-stationary parabolic equation with a fractional power elliptic
operator is formulated in the 3D parallelepiped, and the initial and boundary conditions
are specified. As mentioned above, we use the spectral definition of the fractional power of
elliptic operators.

Implicit approximations of parabolic problems with fractional powers of discrete
elliptic operators are defined in Section 3. General stability results are presented in the
case of a linear source term. Two approaches are proposed on how to construct efficient
discrete algorithms. The AAA algorithm and the splitting type scheme are used to define
discrete solvers for the non-local time dependent problem. At the end of this section,
parallel versions of all algorithms are described and the motivation of the selected approach
is discussed.

In Section 4, results of numerical experiments are presented. Some final conclusions
are done in Section 5.

2. Problem Formulation

Let Ω be some open and bounded domain Ω ⊂ Rd, α ∈ (0, 1). Define a self-adjoint
elliptic diffusion operator:

Au = −div(K∇u) in Ω (1)

with K(x) ∈ Rd×d symmetric and uniformly positive definite. Operator A is supple-
mented with either a homogeneous Dirichlet boundary condition on ∂Ω or a homogeneous
Neumann one.

For (1), we define the bilinear form

a(u, v) = (K∇u,∇v),

where (·, ·) denotes the L2-inner product in Ω and the norm is defined as ‖u‖ = (u, u)1/2.
Let Vh ⊂ H1

0(Ω) denote a finite-dimensional space of functions that satisfy the ho-
mogeneous Dirichlet boundary conditions and we assume that this space is spanned by
piecewise linear basis {ϕj, j = 1, . . . , J}. Then, the discrete elliptic operator Ah is defined as

(AhU, V) = a(U, V), ∀ U, V ∈ Vh.

As was mentioned above the spectral definition of fractional power of the operator
Ah is used in our paper [8,11]. Under standard assumptions on the diffusion coefficients
K and the boundary ∂Ω, discrete operator Ah admits a system of eigenfunctions Φj with
corresponding eigenvalues λj > 0 such that

AhΦj = λjΦj, j = 1, . . . , J. (2)

Then, a fractional power of Ah is defined as

Aα
hU =

J

∑
j=1

λα
j (U, Φj)Φj. (3)

It is easy to show that the nonlocal operator Aα
h is also self-adjoint and positive definite:

Aα
h = (Aα

h)
∗, 0 < λα

1 I 6 Aα
h 6 λα

J I. (4)
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We solve a Cauchy problem for the evolutionary first-order equation:

dU
dt

+ Aα
hU = F(X, t, U), 0 < t 6 T, X ∈ Ω (5)

U(0) = U0, U0 ∈ Vh,

where F represents an associated reaction term.

3. Implicit Approximations of Parabolic Problems with Fractional Powers of Discrete
Elliptic Operators

In order to construct a discrete approximation of the differential problem, we define a
non-uniform time grid

ωt = {tn : tn = tn−1 + τn−1, n = 0, . . . , N, t0 = 0, tN = T}.

Let Un be a numerical approximation to the exact solution U(tn) of problem (5). We
define the averaging operator

Un+σ = σUn+1 + (1− σ)Un, 0 6 σ 6 1.

All parallel algorithms are defined for a general case of σ.
Let us consider the implicit scheme

Un+1 −Un

τn
+ Aα

hUn+σ = F(X, tn+σ, Un+σ), n = 0, . . . , N − 1, (6)

U0 = U0, U0 ∈ Vh.

It is clear that for σ = 0.5 the symmetrical scheme has the second order of approxi-
mation. First, in this paper we always assume that the given problem has a sufficiently
smooth solution U(t). Then, applying Taylor series we can compute the approximation
(truncation) error

T(τ) =
τ2

3

∣∣∣ ∂3

∂t3 U(t̄)
∣∣∣+ τ2

2

∣∣∣Aα
h

∂2

∂t2 U(t̄)
∣∣∣, tn < t̄ < tn+1.

Second, the discrete fractional power operator Aα
h is bounded for sufficiently smooth

functions and 0 < α < 1 .
We note that the investigation of the approximation accuracy in space is more com-

plicated and results can depend essentially on the fractional order parameter α. These
questions are investigated in detail in many papers dealing with discrete approximations
of the stationary problems with a fractional power of elliptic operators. We can recom-
mend [12], where hp-adaptive methods are applied (see also references given therein).

For the analysis of time dependent errors we demand a sufficient regularity (in time)
of the right-hand side along with compatibility conditions for the initial condition datum.
The source functions should satisfy the standard regularity (in time) conditions similar
to classical parabolic problem cases. The regularity of F in space is a more complicated
question and the appropriate fractional Sobolev spaces are specified in papers dealing with
non-stationary problems (see [13]).

We also present results on the stability of the difference scheme (6) in the case of a
linear source term F(x, t) (the proof is similar to one presented in [6]).

Lemma 1. If the weight parameter σ > 0.5, then the difference scheme (6) is unconditionally stable

‖Un+1‖ 6 ‖Un‖+ τn‖F(tn+σ)‖, n = 0, . . . , N − 1. (7)



Axioms 2022, 11, 98 4 of 16

We repeat our note that, if the direct application of the spectral formula (3) is possi-
ble and the FFT algorithm is applicable, then the nonlocal parabolic problem (6) can be
solved efficiently at each time layer (see [5,14]). Still, this approach is valid only in very
special cases.

In general case, the implementation of the discrete scheme (6) requires one to use some
approximations of the operators with fractional powers of discrete elliptic operators Aα

h .
Let us write the discrete scheme in the following form

Un+σ −Un

στn
+ Aα

hUn+σ = F(X, tn+σ, Un+σ). (8)

One possibility to linearize the nonlinear problem (8) is to use the following fixed
point iteration method

Un+σ,k −Un

στn
+ Aα

hUn+σ,k = F(X, tn+σ, Un+σ,k−1), k = 1, . . . , K, (9)

where Un+σ,k = σUn+1,k + (1− σ)Un. If the iteration number is restricted to K = 2, then
we get the predictor-corrector method, which is sufficient to guarantee the second order of
convergence for the symmetrical scheme with σ = 0.5.

In this paper we consider 3D elliptic operators. It is well known that for the solution
of parabolic problems with standard multidimensional elliptic operators, the most efficient
approaches are based on splitting algorithms. In the case of fractional powers of elliptic
operators such algorithms are still not constructed and therefore this topic can be formulated
as a new important open problem in numerical mathematics.

Here we restrict to general but less efficient algorithms. At each iteration, the solution
Un+σ,k is obtained by solving a non-local problem(

I + στn Aα
h
)
Un+σ,k = Un + στnF(X, tn+σ, Un+σ,k−1). (10)

The first approach to construct an efficient discrete algorithm is based on the idea to
approximate the non-local operator (I + στn Aα

h)
−1 by some linear local operator Bh(

I + στn Aα
h
)−1 ≈ Bh.

Then, we compute an approximate solution as

Ũn+σ,k = Bh

(
Ũn + στnF

(
X, tn+σ, Ũn+σ,k−1)). (11)

In the next lemma, simple sufficient stability conditions of scheme (11) are formulated
in the case of the linear source function F(X, tn+σ) (the proof is obtained by modifying the
analysis given in [6] for one dimensional operators).

Lemma 2. Let us assume that

B−1
h = I + στnCh, Ch = C∗h > 0.

Then, for σ > 0.5 the difference scheme (11) is unconditionally stable

‖Ũn+1‖ 6 ‖Ũn‖+ τn‖F(tn+σ)‖, n = 0, . . . , N − 1. (12)
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In the second approach, we separately resolve the non-local diffusion and non-linear
source terms:

Un+σ,0 = Un,

Aα
hWn+σ,k = F(X, tn+σ, Un+σ,k−1), k = 1, . . . , K, (13)

Vn,k = Un −Wn+σ,k,

Vn+σ,k −Vn,k

στn
+ Aα

hVn+σ,k = 0,

Un+σ,k = Vn+σ,k + Wn+σ,k, (14)

Un+σ = Un+σ,K.

The main goal of this modification is to approximate more accurately the impact
of the non-linear source function, since efficient and accurate solvers are developed for
approximation of the fractional powers of stationary diffusion operators. One drawback of
this approach is that two subproblems (13) and (14) for different non-local operators should
be solved at each iteration. Therefore, it is interesting to investigate if the improvement in
the accuracy of approximation compensates for the increase of computational costs of this
modified algorithm. It is clear that the standard algorithm of symmetrical splitting with
respect to different physical processes can also be used

dŨ
dt

= F(X, tn+ 1
2 , Ũ), Ũ(tn) = Un, tn < t 6 tn+ 1

2 ,

Un+ 1
3 = Ũ(tn+ 1

2 ),
(15)

Un+ 2
3 −Un+ 1

3

στn
+ Aα

h
Un+ 2

3 + Un+ 1
3

2
= 0, (16)

dŨ
dt

= F(X, tn+ 1
2 , Ũ), Ũ(tn+ 1

2 ) = Un+ 2
3 , tn+ 1

2 < t 6 tn+1,

Un+1 = Ũ(tn+1).
(17)

This algorithm has two important properties. First, only one subproblem with non-
local operators is solved for each time step. Second, the dynamics of the non-linear
interaction can be resolved by using specialized solvers targeted for specific non-linear
functions, in many cases this part of the problem can even be solved exactly. Therefore this
splitting algorithm is a competitive alternative to the other proposed algorithms.

Next we consider an efficient approach for how to construct operators Bh to solve the
implicit non-local systems (10) and (13) and (14).

3.1. The AAA Algorithm

The construction of Bh is based on the so-called AAA algorithm proposed in [15]. We
will apply this general algorithm for implementation of the discrete scheme (10). Let us
consider a function

f (z) =
1

1 + στnzα
, z > 0.

Then, a rational approximation of f (z) is given in partial fraction decomposition
form [15]

rm(z) =
Nm(z)
Dm(z)

= c0 +
m

∑
j=1

cj

z− dj
. (18)

The approximate solution of the scheme (10) is computed as

Ũn+σ,k =
(

c0 I +
m

∑
j=1

cj
(

Ah − dj I
)−1
)(

Ũn + στnF(X, tn+σ, Ũn+σ,k−1)
)
. (19)
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In order to apply the AAA algorithm for the implementation of the discrete scheme (13)
and (14), let us consider a function

f2(z) = z−α, z > 0

and compute a rational approximation of f2(z) given in partial fraction decomposition form

r̃m2(z) =
Nm2(z)
Dm2(z)

= c̃0 +
m2

∑
j=1

c̃j

z− d̃j
. (20)

The approximate solution of the scheme (13) and (14) is computed as

Ũn+σ,0 = Ũn,

W̃n+σ,k =
(

c̃0 I +
m2

∑
j=1

c̃j
(

Ah − d̃j I
)−1
)

F(X, tn+σ, Ũn+σ,k−1), (21)

Ṽn = Ũn − W̃n+σ,k,

Ṽn+σ,k =
(

c0 I +
m

∑
j=1

cj
(

Ah − dj I
)−1
)

Ṽn,

Ũn+σ,k = Ṽn+σ,k + W̃n+σ,k, k = 1, . . . , K, (22)

Ũn+1 = 2 Ũn+σ,K − Ũn.

Stability Analysis

The approximation of the AAA algorithm is based on a rational approximation of
function f (z). Let us consider the solution of Equation (21) for F = 0, and represent it as a
linear combination of the eigenvectors of operator Ah

Ũn =
J

∑
j=1

cn
j Φj.

Substituting this expression into (21) we get the equations for coefficients cj:

σcn+1
j + (1− σ)cn = rm(λj)cj, j = 1, . . . , J.

We assume that zL 6 λj 6 zR. Then the stability of scheme (19) is guaranteed if the
following condition is satisfied

max
zL6z6zR

1
σ

∣∣rm(z)− (1− σ)
∣∣ 6 1. (23)

As in [6], we investigate this condition experimentally. The results of numerical
experiments confirmed that for fractional powers α = 0.25, 0.5, 0.75, m = 4, . . . , 15, time
steps τ = 10−l , l = 1, . . . , 5, σ = 0.5 and zL, zR defined by the minimal and maximal
eigenvalues of the operator Ah, for N = 128, 256, 512, 1024, the stability condition (23) was
satisfied unconditionally. Such stability tests are recommended before starting large scale
computations for simulations of real world applications.

3.2. Symmetrical Splitting Scheme

By using the same AAA algorithm, we get an implementation of the symmetrical
splitting scheme
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dŨ
dt

= F(X, tn+ 1
2 , Ũ), Ũ(tn) = Ũn, tn < t 6 tn+ 1

2 ,

Ũn+ 1
3 = Ũ(tn+ 1

2 ),
(24)

Ũn+ 2
3 = 2

(
c0 I +

m

∑
j=1

cj
(

Ah − dj I
)−1
)

Ũn+ 1
3 − Ũn+ 1

3 , (25)

dŨ
dt

= F(X, tn+ 1
2 , Ũ), Ũ(tn+ 1

2 ) = Ũn+ 2
3 , tn+ 1

2 < t 6 tn+1,

Ũn+1 = Ũ(tn+1).
(26)

The non-linear problems (24) and (26) are solved by applying an ODE solver optimal
for a given type of non-linearities.

3.3. Additive Splitting Scheme

This scheme is constructed using techniques from [16] where BURA type discrete
approximations are constructed for stationary problems with fractional powers of elliptic
operators. We note that similar splitting schemes were used also in [17].

First we rewrite the linearized Equation (9) in the following form

Un+σ,k −Un

στn
+ A−β

h AhUn+σ,k = F(X, tn+σ, Un+σ,k−1), k = 1, . . . , K,

where β = 1− α. Next, the AAA method is used to construct a rational approximation of
fractional power operator A−β

h

A−β
h ≈ Rm(β) = c0 I +

m

∑
j=1

cj
(

Ah − dj I
)−1.

Let us write the obtained discrete scheme as

Un+σ,k −Un

στn
+

m

∑
j=0

cjD−1
h,j AhUn+σ,k = F(X, tn+σ, Un+σ,k−1), k = 1, . . . , K,

where
Dh,0 = I, Dh,j = Ah − dj I, j = 1, . . . , m.

Here we use the same notation Un for a new discrete solution.
Since all discrete operators commute, the solution Un+1,k is computed by using the

classical splitting technique in m + 1 steps:

Ũn−1/m,k = Ũn,

Dh,j
Ũn+j/m,k − Ũn+(j−1)/m,k

τn
+ cj Ah

(
σŨn+j/m,k + (1− σ)Ũn+(j−1)/m,k) (27)

= δ0jDh,jF(X, tn+σ, Ũn+σ,k−1), j = 0, . . . , m.

The splitting technique introduces additional approximation errors and therefore this
algorithm can require to use smaller time steps. This scheme is unconditionally stable but
again the transfer operator is different than in the Crank–Nicolson method.

As was done for the AAA algorithm, we consider a modification of this scheme when
the influence of the non-homogeneous source term is computed separately by solving
Equation (21):
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Ũn+σ,0 = Ũn,

W̃n+σ,k =
(

c̃0 I +
m2

∑
j=1

c̃j
(

Ah − d̃j I
)−1
)

F(X, tn+σ, Ũn+σ,k−1),

Vn−1/m,k = Ũn − W̃n+σ,k,

(28)

Dh,j
Ṽn+j/m,k −Vn+(j−1)/m,k

στn
+ cj AhṼn+j/m,k = 0, j = 0, . . . , m,

Vn+j/m,k = 2Ṽn+j/m,k −Vn+(j−1)/m,k, j = 0, . . . , m,

Ũn+σ,k = Ṽn+1,k + W̃n+σ,k, k = 1, . . . , K,

Ũn+1 = Vn+1,K + W̃n+σ,K.

(29)

3.4. Parallel Algorithms

All parallel solvers are constructed by using the same approach, when parallelization
is done at the level of solvers for solution of the obtained systems of linear equations. Thus
we can use efficient parallel solvers developed for such problems.

Our aim is to investigate how the efficiency of these solvers depend on specific properties of
discrete elliptic operators (A− dj I) and parameters dj. The values of these parameters depend
on the selected non-local operators and on the number m in approximations (19) and (20).

We note one important difference among the developed parallel algorithms. At each
time step, the AAA algorithms (19), (21), and (22), and symmetrical splitting schemes (24)–(26)
define m independent systems of linear equation, and these problems can be solved in
parallel. Thus, an additional parallelization level is obtained and the distribution of tasks
can be optimized by using general parallelization templates (see [18]).

While for the additive splitting scheme (27) all auxiliary problems should be solved
sequentially, one after another. For this method, parallelization can be done only on the
level of a solution of linear systems.

It is important to note that the total number of non-local problems solved at one time
step is also different for specific schemes. Two problems are solved for modified AAA
and additive splitting schemes, while one problem is sufficient for the remaining schemes.
In the case of non-linear source functions, the predictor-corrector iterations are done and
the number of non-local problems solved at one time step is increased twice. The only
exception is the symmetrical splitting scheme, where again it is sufficient to solve only one
non-local problem per time step.

As our tool for development parallel versions of the constructed finite difference
schemes, we use AGMG multigrid solver [19]. The main reason to base the construction
of parallel solvers on some state of the art tool is that general mathematical libraries are
adjusted and optimized to new computer architectures by library developers. At the same
time most tools have a sufficiently large set of parameters to fit these libraries to specific
needs arising when solving new classes of problems. We also note that in [20], an extended
analysis of parallel solvers is done for the solution of stationary fractional power elliptic
problems. The hyper AMG solver BoomerAMG was used in [20] to construct parallel
versions of the finite difference schemes for a 7-point 3D Laplace problem.

For comparison of different approaches we have implemented and investigated the
scalability of symmetrical splitting scheme when the spectral solver based on FFT is used.
The parallelization is done by using the well-known library FFTW [21].

4. Numerical Experiments

In this section we solve three test problems. The first one defines a nonlinear problem
and is used to analyze the accuracy of different schemes. The second problem has a
non-smooth solution and the scalability analysis of the parallel algorithms is done on its
basis. The last system of coupled 3D nonlinear parabolic equations enables to analyze the
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influence of the fractional order parameter on complicated pattern formation. In addition,
this problem is used to investigate the parallel efficiency of the symmetric splitting scheme
when the non-local operators are resolved by using an FFT algorithm.

4.1. Convergence Tests

In order to investigate the convergence accuracy of the proposed discrete schemes and
integration methods, we consider a linear fractional heat equation. Its implementation still
requires to apply the predictor-corrector iterative algorithm.

Example 1. In this example we solve a linear fractional heat equation with a linear source term in
three-dimensional space Ω = [0, 1]× [0, 1]× [0, 1] (for a similar two-dimensional example, see [5]):

∂u
∂t

+ (−∆)αu = F(x, y, z, t, u), (x, y, z) ∈ Ω,

F(x, y, z, t, u) = t2α
8

∑
i=1

βiλ
α
i vi +

(
2αt2α−1 + t2α

)
sin3(πx) sin3(πy) sin3(πz)− u, (30)

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω,

where v1 = sin(πx) sin(πy) sin(πz), λ1 = 3π2, β1 = 27/64, v2 = sin(πx) sin(πy) sin(3πz),
λ2 = 11π2, β2 = −9/64, v3 = sin(πx) sin(3πy) sin(πz), λ3 = 11π2, β3 = −9/64,
v4 = sin(πx) sin(3πy) sin(3πz), λ4 = 19π2, β4 = 3/64, v5 = sin(3πx) sin(πy) sin(πz),
λ5 = 11π2, β5 = −9/64, v6 = sin(3πx) sin(πy) sin(3πz), λ6 = 19π2, β6 = 3/64,
v7 = sin(3πx) sin(3πy) sin(πz), λ7 = 19π2, β7 = 3/64, v8 = sin(3πx) sin(3πy) sin(3πz),
λ8 = 27π2, β8 = −1/64 .

Then this problem has the exact solution

u(x, y, t) = t2α sin3(πx) sin3(πy) sin3(πz).

We define uniform space meshes in each direction Ω̄h = ω̄x × ω̄y × ω̄z:

ω̄x =
{

xi : xi = ihx, i = 0, . . . , Jx, hx = 1/Jx},
ω̄y =

{
yj : yj = jhy, j = 0, . . . , Jy, hy = 1/Jy},

ω̄z =
{

zj : zk = khz, k = 0, . . . , Jz, hz = 1/Jz}

and approximate the differential diffusion operator by using the standard central differences

AhU = −
(Ui+1,j,k − 2Uijk + Ui−1,j,k

h2
x

+
Ui,j+1,k − 2Uijk + Ui,j−1,k

h2
y

+
Ui,j,k+1 − 2Uijk + Ui,j,k−1

h2
z

)
.

(31)

The predictor-corrector method takes into account the dependence of the source term
on the solution. The discrete solution is computed using the spectral method, since only
eight spectral modes should be resolved. The obtained results give reference solutions for
the estimation of the accuracy of more general integration methods.

We have investigated the space and time discretization errors separately. First, we
have fixed α = 0.5, Jx = Jy = Jz = 1024 and solved the discrete problem till T = 1 with
different sizes of time step τ = 0.1, 0.05, 0.025. The computed maximum errors

e = max
(xi ,yj ,zk)∈Ωh

|Uijk − Ũijk|
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confirm the second order accuracy of the approximation:

e(0.1) = 2.1089× 10−4, e(0.05) = 5.8807× 10−5, e(0.025) = 1.4636× 10−5.

Next, we have fixed τ = 0.002 and solved the same problem for different space meshes
Jx = Jy = Jz. The results of computational experiments again confirmed the second order
accuracy of the approximation:

e(16) = 6.659× 10−3, e(32) = 1.658× 10−3, e(64) = 4.141× 10−4, e(128) = 1.0341× 10−4.

Note, that in [5] the accuracy of the 2D solver is tested only for fractional order
parameters α = 1, 0.85, 0.75. It is obvious that the smoothness of the solution changes for
smaller values of the fractional order and for α = 0.25 the time derivative of the solution is
singular at the initial time moment t = 0.

In order to test the accuracy of the finite difference scheme we have fixed α = 0.25,
Jx = Jy = Jz = 1024 and solved the discrete problem till T = 1 with different sizes of time
step τ:

e
(

1
20

)
= 1.4157× 10−3, e

(
1

40

)
= 1.0443× 10−3, e

(
1

160

)
= 5.3554× 10−4,

e
(

1
640

)
= 2.6897× 10−4.

The computed maximum errors show a reduced convergence rate O(τ0.5) of the
discrete solution. Therefore, some adaptive (non-uniform) time step should be used to
resolve this singularity.

It is clear that such asymptotical dynamics of the error depends mainly on the singular-
ity of the exact solution, but not on the fractional power parameter α. In order to illustrate
this statement we solved the parabolic problem (30) when α = 0.25, but the source function
F is selected such that the exact solution is defined as

u(x, y, t) = t sin3(πx) sin3(πy) sin3(πz).

The errors of the discrete solution in the maximum norm are the following

e
(

1
10

)
= 5.7916× 10−4, e

(
1

20

)
= 1.5065× 10−4, e

(
1

40

)
= 3.8083× 10−5,

e
(

1
80

)
= 9.2027× 10−6.

It follows from the computational experiments that the second order convergence rate
is restored for the discrete scheme also for α = 0.25.

Next we present results of computational experiments when different algorithms
are used to approximate non-local fractional power discrete elliptic operators. In all
experiments the space mesh size is fixed to Jx = Jy = Jz = 256 and the test problem is
solved till T = 1 with the time step τ = 1

256 .

The AAA Algorithm

First we consider the AAA algorithm (19). In order to apply the AAA approximation
method. We sample function (1 + 0.5τzα)−1 with M = 50,000 points over the exact interval
of eigenvalues of Ah operator [λhmin, λhmax]. The resulting errors for three values of frac-
tional order parameters α = 0.75, 0.5, 0.25 and various orders m of the rational functions
rm(z) are presented in Table 1. For comparison we also present the error of the discrete
solution of the symmetric Crank–Nicolson finite difference scheme, when at each time step
the non-local problem is solved by using FFT method.
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Table 1. The AAA algorithm: errors of the solution of the discrete scheme (19) for α = 0.75, 0.5, 0.25
and a sequence of parameters m. The column FFT defines errors of the spectral solver.

α m = 5 m = 7 m = 10 m = 12 m = 15 FFT

0.75 6.62× 10−4 1.60× 10−5 4.20× 10−5 4.13× 10−5 4.57× 10−5 4.15× 10−5

0.5 6.92× 10−4 8.85× 10−5 2.58× 10−5 2.39× 10−5 3.10× 10−5 2.55× 10−5

0.25 1.27× 10−3 5.09× 10−4 4.14× 10−4 4.17× 10−4 4.04× 10−4 4.15× 10−4

It follows from the presented results, that a small number m ≈ 10 is sufficient to reach
the optimal error levels. These values of m do not depend on the fractional parameter α.

Next we consider the modified AAA algorithms (21) and (22). The resulting errors for
α = 0.75, 0.5, 0.25 and various m of the rational functions rm(z) are presented in Table 2.

Table 2. The modified AAA algorithm: errors of the solution of the discrete scheme (21) and (22) for
α = 0.75, 0.5, 0.25 and a sequence of parameters m.

α m = 5 m = 7 m = 10 m = 12 m = 15

0.75 9.960× 10−5 4.430× 10−5 4.119× 10−5 4.175× 10−5 4.102× 10−5

0.5 1.982× 10−4 2.536× 10−5 2.543× 10−5 2.582× 10−5 2.421× 10−5

0.25 2.351× 10−4 3.970× 10−4 4.150× 10−4 4.140× 10−4 4.189× 10−4

It follows from the presented results, that a small number m ≈ 10 is again sufficient to
reach the optimal error levels. The accuracy of the modified AAA algorithm is a little better
for most cases of parameters.

Next we consider the modified additive splitting algorithm (28) and (29). The resulting
errors for α = 0.75, 0.5, 0.25 and various orders m of the rational functions rm(z) are
presented in Table 3.

Table 3. The modified additive splitting algorithm: errors of the solution of the discrete scheme (28) and (29)
for α = 0.75, 0.5, 0.25 and a sequence of parameters m.

α m = 5 m = 7 m = 10 m = 12 m = 15

0.75 3.144× 10−5 7.124× 10−6 8.155× 10−6 7.866× 10−6 8.189× 10−6

0.5 1.338× 10−4 2.299× 10−5 1.569× 10−5 1.561× 10−5 1.553× 10−5

0.25 2.930× 10−4 4.153× 10−4 4.163× 10−4 4.163× 10−4 4.164× 10−4

The accuracy of the modified additive splitting scheme (28) and (29) is better than for
the modified AAA algorithm for fractional order parameters α = 0.5 and α = 0.75.

4.2. Scalability of the Parallel Algorithms

Example 2. In this example we solve the following 3D linear problem

∂u
∂t

+ (−∆)αu = F(x, y, z), (x, y, z) ∈ Ω = (0, 1)× (0, 1)× (0, 1),

u(x, y, z, 0) = 0, (x, y, z) ∈ Ω, (32)

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω, t > 0,

where the right-hand-side F is the well-known checkerboard function:

F(x, y, z) =

{
1, if (x− 0.5)(y− 0.5)(z− 0.5) > 0;
0, otherwise.

(33)
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We note that for stationary problems, similar test problems (mostly in 2D domains)
with checkerboard right-hand-side functions are used to demonstrate the convergence
of the selected numerical methods in many papers (see [11,16,20] and references given
therein). This type of source functions, but for a 1D case, was also used in [6] for testing
the accuracy of different integration methods for parabolic problems with fractional power
elliptic operators.

We note that all constructed finite difference algorithms have the same structure,
when at each time step a set of systems of linear equations is solved, where each system
approximates classical diffusion operators perturbed by adding scaled identity operators.

As explained above, the AAA algorithms (19), (21), and (22), and the symmetrical
splitting scheme (24)–(26) define sets of independent systems of linear equations, and these
problems can be solved in parallel. While for the additive splitting scheme (27) all auxiliary
problems should be solved sequentially, one after another.

In this paper we restrict ourselves to the scalability analysis of parallel algorithms
when all processes are used to solve one system of linear equations. This strategy has two
advantages: first, it is possible to solve larger systems of equations (i.e., to get more accurate
approximations); second, data communication costs are reduced essentially.

In all computational experiments we restrict to the strong scalability analysis when
the size of the discrete problem is fixed to the 201× 201× 201 grid.

Parallel numerical tests in this work were performed on the computer cluster “HPC
Vanagas” at the High Performance Computing Laboratory of Vilnius Gediminas technical
university. We have used up to 16 cores of Intel® Xeon® processor E5-2630 with 20 cores
(2.20 GHz) and 32 GB DDR4 of RAM. The parallel algorithms are implemented using the
MPI library.

In order to estimate the scalability of parallel algorithms for the solution of parabolic
problems with fractional order elliptic operators as a benchmark, we use results obtained
for a classical Crank–Nicolson finite difference scheme. The parabolic Poisson problem
with a 7-point 3D discrete Laplace operator on a J × J × J grid is solved and the AGMG
multigrid solver is used to solve systems of linear equations with a banded matrix.

The discrete problem is solved on the Jx = Jy = Jz = 201 grid and the time step is
fixed to τ = 0.5. Five time steps are computed in all the experiments of this example.

The results of the computational experiments are presented in Table 4. Here Sp = T1/Tp
is the speedup of the parallel algorithm, Ep = Sp/p is the efficiency number, and Tp is the
parallel run-time on p cores.

The presented results define the reference estimates of the AGMG solver on this
parallel computer. They will be used to analyze the strong scalability of parallel solvers
constructed to solve problems with fractional power elliptic operators. A small reduction
in the efficiency of the parallel solver for p = 2 processes can be explained as a possible
switching of the system from two processes running on two physical cores to two virtual
processes running on one physical core (so-called multi-threading).

Table 4. The Crank–Nicolson discrete scheme: the values of the speedup Sp and efficiency Ep

numbers for a sequence of cores p.

p = 1 p = 2 p = 4 p = 8 p = 16

Tp 344.9 193.5 91.71 63.68 56.65

Sp 1.0 1.782 3.761 5.416 6.088

Ep 0.891 0.940 0.678 0.381

Strong Scalability Analysis of the Parallel AAA Algorithm

Computational experiments are done for two fractional order parameters α = 0.5, 0.25
and different numbers of cores p = 1, 2, 4, 8, 16. The order of AAA algorithm is fixed to
m = 10. Results of the experiments are presented in Table 5.
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Table 5. The AAA algorithm (19): the values of the speedup Sp and efficiency Ep numbers for
α = 0.5, 0.25 and different numbers of cores. The order of AAA algorithm is fixed to m = 10.

p = 1 p = 2 p = 4 p = 8 p = 16

α = 0.5

Tp 267.9 149.1 72.04 48.49 44.24

Sp 1.0 1.797 3.719 5.525 6.056

Ep 0.899 0.930 0.690 0.378

α = 0.25

Tp 267.6 149.2 71.63 48.65 44.05

Sp 1.0 1.797 3.736 5.501 6.075

Ep 0.899 0.934 0.688 0.380

The obtained results show that the run-time Tp is decreased in comparison with
results in Table 4. The improvement is due to the faster convergence of the AGMG solver
when a positive operator (−dj)I is added to the elliptic operator Ah (all coefficients dj are
negative for the constructed AAA approximation of the function f (z) = (1 + 0.5τzα)−1).
The efficiency numbers Ep of the parallel AAA discrete scheme are slightly improved, this
fact confirms the robustness of the AGMG solver.

Next we estimated the influence of the order of AAA algorithm m, since for differ-
ent values of m we get different sets of diagonalization coefficients dj. In the following
experiments m is fixed to m = 5 and fractional order parameter α = 0.5. The results of the
computational experiments are presented in Table 6.

Table 6. The AAA algorithm (19): the values of the speedup Sp and efficiency Ep numbers for α = 0.5
and different numbers of cores. The order of the AAA algorithm is fixed to m = 5.

p = 1 p = 2 p = 4 p = 8 p = 16

Tp 107.1 61.27 29.76 20.15 18.14

Sp 1.0 1.748 3.599 5.315 5.904

Ep 0.874 0.900 0.652 0.369

As expected, the run-time Tp is reduced and even more than twice, but the efficiency
of the parallel algorithm is changed only slightly.

Next we investigated the influence of the time step τ size. The order of AAA algorithm
is taken m = 10, the fractional parameter α = 0.5, and the time step is increased to τ = 0.025.
Five time steps are computed, as in previous experiments. The results of the computational
experiments are presented in Table 7.

Table 7. The AAA algorithm (19): the values of the speedup Sp and efficiency Ep numbers for
τ = 0.025, α = 0.5 and different numbers of cores. The order of the AAA algorithm is fixed to m = 10.

p = 1 p = 2 p = 4 p = 8 p = 16

Tp 293.9 163.96 79.34 54.2 49.61

Sp 1.0 1.793 3.704 5.422 5.924

Ep 0.896 0.926 0.678 0.370

We see that the run-time is increased when the time step size is increased, since the
AGMG solver converges slower. However, the efficiency of the parallel algorithm changes
only very slightly.
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It follows from the presented results of computational experiments that the efficiency
of the parallel AAA algorithm is robust with respect to fractional power parameter, the
order of AAA algorithm parameter m and discrete time step τ variations.

Example 3. In this example, we consider the 3D space-fractional Gray–Scott model (see [14] for
2D model). It is described by a system of coupled 3D diffusion-reaction equations

∂u
∂t

+ Ku(−∆)αu = (1− u)v2 − Fu, (x, y, z) ∈ Ω = (0, 1)× (0, 1)× (0, 1),

∂v
∂t

+ Kv(−∆)αv = (1− u)v2 − (F + λ)v,
(34)

where the diffusion rates Ku = 2× 10−5, Kv = 1× 10−5, the dimensionless feed rate F = 0.03,
and the dimensionless decay rate constant of the second reaction λ = 0.061.

The homogeneous Direchlet boundary conditions are defined on the boundary ∂Ω,
therefore a new function u = 1− ũ is used in the mathematical model (34) (compare it
with [14]). The initial conditions are given by

u(x, y, z, 0) = 0.5, v(x, y, z, 0) = 0.25, (x, y, z) ∈ Ω1,

u(x, y, z, 0) = 0, v(x, y, z, 0) = 0, (x, y, z) ∈ Ω \Ω1,
(35)

where Ω1 = {(x, y, z) : (x− 0.5)2 + (y− 0.5)2 + (z− 0.5)2 6 0.042}.
It is well-known that the solution of the Gray-Scott model exhibits a complicated set

of patterns and the process of pattern formation is far from trivial. First, we would like to
note that the specific trend of patterns depends essentially on the discrete size of the model
(i.e., the space mesh size), therefore, we here fix the mesh to Jx = Jy = Jz = 256. Our main
goal is to show the dependents of the solution on the fractional power parameter α (i.e., to
evaluate the effects of the super-diffusion). A second aim is to investigate the efficiency of
the parallel symmetrical splitting algorithm for solving this complicated system of three
dimensional non-linear and non-local parabolic equations. Figure 1 presents the evolution
of the numerical solution v for three fractional orders α = 1, 0.85, 0.75. The contours of v
are shown at times t = 2000, 3000 from top to bottom.

(a) (b) (c)

Figure 1. Dynamics of the v wave in the Gray-Scott model at different times t = 2000, 3000. The v
contours are shown from top to bottom for three fractional orders: (a) α = 1, (b) α = 0.85, (c) α = 0.75.
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We see from the presented results that the way of the replication in pattern formation
depends essentially on parameter α.

We also investigated the scalability of the parallel symmetrical splitting algorithm (15)–(15).
The non-local fractional power operator is approximated by using the spectral method.
The FFTW library [21] is used to solve the obtained discrete problems. The results of
the computational experiments are presented in Table 8. The fractional order parameter
α = 0.85 and the four time steps are computed.

Table 8. The spectral symmetrical splitting algorithm: the values of the speedup Sp and efficiency Ep

numbers for α = 0.85 and different numbers of cores.

p = 1 p = 2 p = 4 p = 8 p = 16

Tp 173.1 90.12 46.32 22.15 12.84

Sp 1.0 1.921 3.737 7.815 13.481

Ep 0.960 0.934 0.977 0.843

It follows from the presented results that for the given parallel computer, the efficiency
of the spectral FFTW solver is better than the efficiency of the GAMG solver. Still, the latter
solver can be used to implement the constructed general finite difference schemes, when
the spectral method is not applicable. We note that computations of images presented in
Figure 1 required up to 3 h of run-time on 20 cores system in order to solve one case of
the problem.

5. Conclusions

In this paper, we propose efficient parallel finite difference schemes for computing the
solutions of 3D parabolic problems with a fractional power of elliptic operators and non-
linear source terms. These algorithms are targeted to solve problems with general elliptic
operators in bounded domains. Discrete schemes include approximations of non-local
operators by using the AAA algorithm. Three different approaches are used to construct
efficient implicit in time schemes. The stability of schemes and convergence rates of the
discrete solution are proved.

The main aim is to investigate the scalability of parallel solvers constructed for each
discrete scheme. The general AGMG multigrid solver is selected as a basic solver and it
is shown that the obtained parallel algorithms are robust to changes of parameters of the
differential problem and discrete schemes.

The results of the extended experiments are reported to illustrate the accuracy and
efficiency of the constructed algorithms. In particular, applications to non-stationary
fractional Poisson-like equations and systems of such equations are given. In a forthcoming
paper, we will investigate some realistic applications for the simulation of smart biosensors,
when fractional power diffusion operators describe more accurately the diffusion processes.
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