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1. Introduction

In this research, we establish limit theorems for combinatorial numbers satisfying
a class of triangular arrays, extending, particularly, the investigations of Canfield [1],
Kyriakoussis [2], Kyriakoussis and Vamvakari [3-6], and Belovas [7]. We consider numbers,
which are defined by a bivariate linear recurrence with bivariate linear coefficients.

Definition 1. Let Y be a real non-zero matrix (generating matrix),

P11 Y12 P13 >
SN AR A ERATIN 1
( P21 Y22 Y23 M)
then
1, forn=0andk =0,
0, or min(n,k,n —k) <0,
g = for min( ) ®

Y111+ P1ok 4+ P13)ay_1 -1+

Yo 11+ Yook +P23)an_1k , otherwise.

—~

The numbers defined above involve binomial coefficients, k-permutations of #n without
repetition, Morgan numbers, Stirling numbers of the first kind and the second kind, non-
central Stirling numbers, Eulerian numbers, Lah numbers, as well as some generalizations
of the numbers mentioned above (see [8,9] and the references therein).

The paper is organized as follows. The first part is the introduction. In Section 2, we
receive generating functions and analytic expressions for particular numbers, satisfying a
class of triangular arrays, using general partial differential equations. Section 3 establishes
a connection between numbers satisfying a class of triangular arrays and generalized Lah
numbers. The result is used to obtain generating functions and analytic expressions for
other numbers, satisfying a class of triangular arrays. In Section 4, we prove asymptotic
normality for the said numbers and specify the rates of convergence. In Section 5, we
establish central limit theorems for numbers satisfying a class of triangular arrays associated
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with Laguerre polynomials and determine convergence rates to the limiting distribution.
Section 6 of the study contains concluding remarks.

Throughout this paper, we denote by CX the binomial coefficients, by I'(x) the gamma
function, E; (x) stands for the exponential integral,

Ei(x) = / et dt = / et lay, x>0,
x 1
and ®(x) stands for the cumulative distribution function of the standard normal distribution,

P(x) = x eR.

1 roo1
V2 /—oo
Let Ly, (x) be the generalized Laguerre polynomials,

! IF'n+a+1) xk

Lyn(x) = I;)<_l)kl’(n —k+DI(a+k+1) K

The generating function of the generalized Laguerre polynomials is [10]

a_i)lﬂexp(t—) Zx Lo (t 3)

All limits, unless specified, are taken as n — oo.

2. Generating Functions and Analytic Expressions of the Combinatorial Numbers a,,

We may view the recurrent expression for the numbers a,, ; (2) as a partial difference
equation with linear coefficients. First, let us introduce the semi-exponential generating
function of the numbers,

ZZ "k |y _Zza”k (4)
n=0k= n=0k=

This expression, contrary to ordinary or exponential ones, leads us to a first-order
characteristic differential equation (see Equation (6) in Theorem 1). In contrast, ordinary
and exponential generating functions satisfy second-order partial differential equations.

Definition 2. For the numbers satisfying a class of triangular arrays (2), we define their dual
counterparts dy, j := Ay p—-

Remark 1. In view of Definintion 2, the generating matrix of the dual numbers is

( o1+ oo —U22 Yo3 ) 5)
P11+ Y12 Y13 )

Lemma 1. The double semi-exponential generating function F(x,y) of the dual numbers (5) equals
F(x,y) = Fxy,y™).

Proof. By Definition 2, we have
Zzaﬂﬂk ,]/ _Zzan] Tl' I,

n=0 k=0 ~—~—"" n=0j=0
=k

yielding us the statement of the lemma. [J
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In [7], we have received subsequent theorems (see Theorems 1 and 2) for the generating
functions of the numbers satisfying a class of triangular arrays (2).

Theorem 1 (Belovas). The generating function F(x,y) satisfies the linear first-order partial
differential equation

(1— 1%y — Y2.1%)Fx — (124> + Po2y)Fy = (G1y + &)F,

6
Cl=vP11+Pip+P13, C2=1o1+ 13, ©)

with the initial condition F|y—o = 1.

Remark 2. Solving the linear first-order partial differential Equation (6), we obtain the generating
function F(x,y). The formal Taylor series in two variables for the generating function equals

xnyk
!~
00) nlk!

Hence, the partial differentiation of the double semi-exponential generating function F(x,y) at
(0,0) yields us the analytic expressions of the numbers

an+k

(x,y)

o - 5 5 o

x”By

1 an+k

Apk = k'a "ay ( y) @)

(0,0)

Theorem 2 (Belovas). For ¢12, 21,42, # 0, numbers generated by the matrix

( 0 ¢z 4’1,3)
U1 Y22 Yngj

(1) have the generating function

G2 m T 12
F(x,y) = (1—9212) wﬂ( i;; 1—(1—¢p1x) 7 >> . ®)

(ii) and the analytic expression
T (Y1) +913) & !t
g = = Y ()" [Tk = m) + gaal +423). - )
k! (¢22) =0 =1

Using a substitution F(x, y) = A(x,y)A(y), we can reduce the linear partial differential
Equation (6) into its homogeneous form. First, we formulate an auxiliary lemma [11].

Lemma 2.
(i) Let v = ax + by; then, the principal integral of the first-order partial differential equation
[f (v) + bxg(v)]ws + [1(v) — axg(v)]wy = 0 (10)
s v)Ed
- o v
== / f (0 + bh(0 ()
where

—exp( b/af—{—bh()) (12)
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(ii)

Proof.
@)
(ii)

O

Let fx = gy; then, the principal integral of the first order partial differential equation

f(x,y)wy — g(x,y)wy, =0
is y .
5:/ f(xo,t)dt+/ gt y)dt,
Yo X0

where xo and yg are arbitrary constants.

See 2.9.3.4 in Polyanin et al. [11];
See 2.9.3.10 in Polyanin et al. [11].

(13)

(14)

Theorem 3. Under conditions of Theorem 1, the function A(x,y) = F(x,y)An(y) satisfies a
linear first-order homogeneous partial differential equation

(i)

(ii)

(iii)

for 12, Prp #0,

(1= raxy — o1 %) Ay — (Y124 + P22y) Ay =0,

with the initial condition

b _ b L
Alx—o = (Y12y + o) 112 P22yh22
=A1(y)

The principal integral of Equation (15) is

Li(x,y) = x(P12y + 122)"yF + /(1p1,2y +1P20)* 1Py,

where

_ Y1 P1a Yo

Yoo 1o’ 2o’
for 1o =0, # 0,

51 %)

(1= 1,10y — P21X) Ay — PooyAy =0, Aly—o = ff@y}/w/2 .
—_———

=Az(y)
The principal integral of Equation (18) is

P21 11 P21 P11

Ly(x,y) = xy "22e ¢2,zy+1p2—,21 y P2 giwlydy,

for 1o #0, 190 =0,

31 9

(1= raxy — P210) Ax — P1oy* Ay =0,  Alyg=y"2e N2

=A3(y)
The principal integral of Equation (20) is

Y11 Y21 P11 _, ¥21

La(x,y) = xy_mew +¢izl y_m g'/fl,zydy'

(15)

(16)

(17)

(18)

(19)

(20)

(21)



Mathematics 2022, 10, 865

50f18

Proof. First, substituting F(x,y) = A(x,y)/A1(y) into (6), we obtain
A A A
(1—¢raxy — lﬁz,lx)f — (P120” + P2.2v) (Ay + (1/A1)/A> = (G1y+82) 7
1 1 1

(1= raxy — ¥21%) Ax — (129" + P220) (Ay — (In A1 (y))'A,

Gy + G2

1— xy — X) Ay — 24 (A -
(1= 11xy — ¥21%) Ay — (P12y° + Po2y) | Ay Pr2y% + P22y

A) = (C1y + G2) A

Thus, since F|,—1, we have

(1= 9raxy — Po10) Ay — (Pr2v” + P22y) Ay =0, Alr—g = A1(y),

yielding us the first part of the first statement of the lemma.
Next, substituting

a=0,b=1,f(y) =1, g(y) = 11y — Y21, h(y) = —P12y* — P22y

into (11) and (12) of Lemma 2, we receive the second part of the first statement of the lemma.
The second and the third statements are proved analogically. [

Corollary 1.

(1) Let 12,20 # 0, P01 + o0 = 0and 11 + 2¢p1 o = 0; then, the numbers generated by
the matrix ¥ (1) have the generating function

V13 ¥23 ¥2,3

F(x,y) = (L+yoxy) 2 22 (1 + ¢ oxy + zpz,zx)ﬁfl. (22)
(ii) For ¢11, 22 # O, the numbers generated by the matrix
( P11 0 i3 )
0 922 o3

have the generating function

¥23
_3 _Y V22
F(x,y) =y "2 (%Ell <E1 (i;y) — Papxe wz,zy>>

1 p <1P11 )_ v _ &
XeXp<lP1,lE1 (El le,zy oo xe ¢2,2y .

Proof. First, by (ii) of Lemma 2, we receive the principal integral

L(x,y) =y +x(¢120° + ¥22y).
Next, by (16), we have the norming function

Y13 %23 Y23

A(y) — (1/71,2]/ + 4)2,2) P12 $22 ylﬁz/z

=A(0y)

Hence, the solution to the corresponding Cauchy problem (15) and (16) is

Y13 ¥23 92,3 1

A(x,y) = (12L(xy) +¢22) M2 722 (L(x,y)) ™2
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Recollecting that F(x,y) = A(x,y)/A(y) and simplifying the expression, we obtain
the first statement of the lemma.
Second, by (19) of Theorem 3, the general solution of the corresponding differential

equation is

_h
E1 (lpl’ly> — l/J2’2xe lPZ,Zy — C_
P22

Using the general solution and the condition
b, ¥23
A’x:O =A; (]/) — P22 yle,z

we obtain the solution to the Cauchy problem,

¥23

_ha $22

P11
& 1 911 “y5Y
w1 (El(my>‘/’22“ " )
Xe

7

yielding us the statement of the lemma,

¥23
A(x,y) Yoo 1 (4’11 > _my ¥2,2
F y = — % E E ¥l N 1/12’2
() Az (y) < P11y ! ! 1P) Y Papxe

¥1,1
& p1 ¥1,1 0V 3
y 2,2,

X e

O

In the next section, we will use the following auxiliary result [7].

Theorem 4 (Belovas). Numbers generated by the matrix

(4’1,1 0 913 )
U1 0 W3

(i) have the generating function
_ &1yt
F(x,y) = (1= (109 + ¢20)x) H17¥21, (23)
(ii) and the analytic expression
n
Ay = Y. [ T2 k0f + ¥2x,3)

k1+"'+kn=kr k'E{O,l} ]':]
n
— Y TT0%) G- e)),
ky+...+kn=k, k]-E{O,l} j=1

(24)

where b(O) =1+ Y23, b(l) =11+ P13, C(O) =121, C(l) =111.

3. Numbers Satisfying a Class of Triangular Arrays and Generalized Lah Numbers

Definition 3. Generalized Lah numbers [12] are defined by the recurrent expression

Ln,k = Ln—l,k—l + mn,kLn—l,k/ (25)
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here Log = 1and L,y = 0 for min(n, k,n —k) <O0.

Remark 3. For m,, ;. linear in n and k, we have L, ; = a, , generated by the matrix

< 0 0 1 >
P21 Y2 Po3 )’

Lemma 3. Let a,, x be a class of triangular arrays (2) and L, ;. be generalized Lah numbers (25)
with nonlinear coefficient

My = (P21 + Yook + 23) gZi""
k / (26)
Cuk = Tlpr1(n—j+1)+ 1ok —j+1) + 913,

j=1
where Coo = 1 and &, = 0 for min(n,k,n — k) < 0. Then
Apf = gn,kLn,k- (27)

Proof. We induct on n. By Definition 1, Definition 3, and (26), we have (see Table 1) that
the statement (27) holds forn = 0and n = 1.

Table 1. Numbers a4, ¢, x and L, for n,k =0, 1.

Ay k 0 1 é’n,k 0 1 Ln,k 0 1
0 1 0 0 1 0 0 1 0
1 ) ¢1 1 1 ¢1 1 )

Let (27) is true for n = r — 1, then, by (26),

GrkLrk = CriLlr—1k—1 + mMpxCrxLr—1k
= (Y117 + 912k +913) grfl,kflerl,kfl
=r—1k-1
+ (Y217 + P2k +23) 1 kL1400
——

=ar—_1k

yielding us the statement of the lemma. [J

Remark 4. Note that the coefficient m,. (26) is linear if
(1) 1’[J1/1 = 0, then
My = Po1n + Yook +P2j3;

(ii) P12 =Yoo = 0and ¢11/1P21 = P13/123, then
My = Po1n — Po 1k + 3.

Corollary 2. For 3, 21, P22 # 0, numbers generated by the matrix

< 0 0 1,’)1,3)
U1 Yoo Yngs
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(i) have the generating function

_ Y22
F(x,y) = (1 — 1) ¢21 eXP(ilz (T —p1x) ¥21 — 1)>, (28)

(ii) and the analytic expression

k k n
Ay g = m mgo(—l)mc;f E(wz,z(k —m) + o1l + Po3). (29)

Proof. The first statement of the corollary can be obtained by solving the general differ-
ential Equation (6) by the method of characteristics. However, calculating the limit of the
generating function (8), while 11, — 0,

P12+¥13

Y20\ Y12
( + B T2y(1— (1 - ¢oyx) ))
[1%3)

li 1— 412 1
lPl}zn—l)O( y21x)

1) T hm (1 P2 )
=(1—1¢o1x) "1 lim y((1—¢o1x) " ) ,
P12—0 %)

and applying the formula

Em(1 — af)~f = ¢,
t—0

we receive the first statement of the corollary immediately.
We obtain the analytic expression (29) by differentiating the generating function
(cf. (7)), or substituting ¢ » = 0 into (9) directly. [

Remark 5. Note that Corollary 2 yields us the analytic expression for the ordinary Lah numbers,
which are generated by the matrix
00 1
( 11 -1 ) '

1 k n
tnp = 1 3 Pk —m+1-1).
m=0 =1

Next, we establish the following result.

Corollary 3. For §15, Y21 # 0, numbers generated by the matrix

( 0 Yip 1P1,3>
o1 0 o3

(1) have the generating function
_a
Flx,y) = (1— 0 (14 Y12 11 - v 30
'Y $2,1X) ! n(1—¢1x) , (30)
(ii) and the analytic expression

k
an,k—<1‘[<¢1,zj+¢1,a)> Y H +(—Delk)) [, @D

j=1 ky . tkn =k, j=
k]'E {0,1}
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where b(k;) = (1 — (21 + $23))kj + (Y21 + ¥23) and c(kj) = 2,1 (1 — k;).
Proof. We can prove the first statement of the corollary by applying the limit
_Y22
lim 1-(1—ax)" 5 _ In(l—ax)
Pr,—0 P b

to the general generating function (8). The second statement we get using Lemma 3. By the
relation (27), we have (note that 11 ; = 0)

k k

Cok =1k —j+1) +y1a] = Tl¥12j + 13, Coox/Cup=1. (32

j=1 j=1
Thus, by (26), we get m, = (P11 + P20k + ¢ 3) linear and (see Remark 3) L,, ; are

generated by the matrix
( 0 0 1 )
P21 Yoo Y3 )’

Combining (32) with the result of the Theorem 4 for L, x (see (24)), and substituting
into (27), we receive the second statement of the corollary. [

4. Limit Theorems for Numbers Satisfying a Class of Triangular Arrays

Limit theorems for numbers satisfying a class of triangular arrays can be established
using properties of ordinary or semi-exponential generating functions (cf. [13,14]). Let (),
be an integral random variable with the probability mass function

P(Q, =k) = nai, k=0,..n. (33)
—— ZkzO ank
=Pnk

Definition 4. Numbers a,, . are asymptotically normal with mean p,, and variance o2 if
limsup| Y  pux—P(x)| =0. (34)
noe x k<l9nx+77n

We use a general central limit theorem by Bender [15], based on the nature of the
generating function Y_a,, z"w*, to prove the asymptotic normality of the numbers.

Lemma 4 (Bender). Let f(z, w) have a power series expansion

fzw) =Y an,kz”wk (35)

n,k=>0

with non-negative coefficients. Suppose there exists

(i) An A(s) continuous and non-zero near 0,
(if) An r(s) with bounded third derivative near 0,
(iif) A non-negative integer m, and

(iv) €, 0 > 0 such that
z \" s A(s)
<1_> f(ze )—m (36)

is analytic and bounded for
Is|] <e, |z| < |r(0)] + 4. (37)
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Define

r(0)’ EON
If 0 # 0, then (34) holds with n,, = ny and 9% = nd>.

v’ (0) 92 — 2 r” (0) (38)

Let us formulate the central limit theorem.

Theorem 5. Let the coefficients 11 2,11 be positive and 1, 3 be non-negative, then the numbers

generated by the matrix
< 0 ¢z 0 >
P21 0 Y3
2

are asymptotically normal with mean p, = ny and variance o},
_ B 2 _ Br(1—(1—Br)efr)
R 7= B _1)2 !
e 1 (e 1) (39)
Bi=121/P12, P2 =23/ P21

= no?, where

Proof. Let us transform the numbers a,, j into &, k, &, x := (12) " a, k. For the numbers
&, x we have
An k - Xy k

Z}rgl:() Ay k Zﬂ;o &y k .

By (30) of Corollary 3, the generating function of the numbers is

Pn.k

-1

f(z,68) = (1= prz)~ 1P (1 + B et In(1 — ,Blz)) . (40)

The crucial part of the proof is the selection of functions r(s) and A(s). Let r(s) (cf.
Lemma 3) be the root of the function

h(z,e®) =1+ By le’ In(1 — By2),
ie.,
r(s) = By (1 — exp(—pre™)).
Calculating the derivatives, we receive
r'(s) = —B1 ' exp(—s — p1e ™)),
¥(s) = By (1 — Bre ) exp(—s — pre ).

Hence, by Lemma 4,

PO Bl B
r(0) — Brl(1—eBr)  efr—1
2_ o 10 B B —Boe Pt pi(1— (1-pu)efr)

TR0 TP o2 B e h) (P —1)2

],[:

Note that o # 0, since for ; # 0, we have 1 — (1 — B1)ef1 > 0.
As Bender indicates (see Section 3 in [15]), the easiest way for verifying the (36) and (37)
conditions of Lemma 4 is to show that f(z, ¢°) is continuous for s < € and z in the set

{2l <[r(O) + [} n{lz—r(s)| = 0}
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for some 7. Since this is a compact set, f and hence (36) is bounded here. For |z —r(s)| < 7,
we can expand f(z,e°) in a Laurent series about r(s) and show that the coefficient of the
error term is bounded.

Let us consider the function A(s) from (36) of Lemma 4 as the limit

A@) = lim f(z,¢) (1 - r&)

Calculating A(s), we obtain

A(s) = lim r(s) =z
1) r(s)(1 = B12)! P2 (14 et In(1 - Bi12))
£0
- -1 - e’
Hs)(1 - prr()) B ()= pur(s)P
Bie™®

(1 —exp(=pre=°)) exp(—p1f2e )

The function

A (A=) Biexp(Bifae”)
1—z/r(s)  1+p7le In(1—p1z) 1—Piz—exp(—pie~*)

f(ze)
is analytic and bounded for
sl <e 2l <[rO)+o=p (1—eP)+0

Thus, conditions (i)-(iv) of Lemma 4 are satisfied. This concludes the proof of the
theorem. [

Remark 6. Note that the expression for the mean u in Theorem 5 (see (39)) is the generating
function g(t) of the Bernoulli numbers By,

t t t

Remark 7. For the numbers generated by the matrix

we have

2 _ n d1 1
o5 = e—1) <1+ . +0 n2>)'

wherecy =2 —eandd; = 1.

Theorem 5 allows us to receive a symmetric result for the dual numbers (5). We can
formulate the subsequent corollary.
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Corollary 4. Let the coefficients 1 o, {2 1 be positive and 1 3 be non-negative; then, the numbers

( o1 0 P23 )
P1p —P1p 0

generated by the matrix

are asymptotically normal with mean yp, = njfi and variance 02 = no?, where

1 2 _ Bi(1—(1—By)efr)

ﬁzl—yzl—eﬁl_l, o 1) B1 = 21/ 91,

7

Further, we use Hwang’s result on the convergence rate in the central limit theorem
for combinatorial structures (see Corollary 2 from Section 4 in [16]) to establish central limit

theorems and specify the rate of convergence to the limiting distribution.
The moment generating function of the random variable (), (33) equals

-1
n n n
M, (s) = E(e%) = Y PO, = k)eks = (Z ﬂn,k) ) a, et (41)
k=0 k=0 k=0
Combining the definition of the semi-exponent generating function (4) and (41),
we obtain
s o X" sk o X"
F(x,e’) = Z — Z Ay e = Z WSnMn(s),
n=0 """ k=0 n=0 """
where
n
Sn = 2 Ay k-
k=0

Thus, the partial differentiation of the double semi-exponential generating function

F(x,y) at x = 0 yields us the moment generating function

an
—c—1 s
M,(s) =S, axnl-"(x,e ) . (42)
Since M, (0) = 1, the formula for the sum S, follows,
()
Sy = F(x,e (43)
" ax” (0,0)

Lemma 5 (Hwang). Let P,(z) be a probability generating function of the random variable Q),,,
taking only non-negative integral values, with expectation y, and variance . Suppose that, for

each fixed n > 1, P,(z) is a Hurwitz polynomial. If o, — oo, then, Q) satisfies
P(Q”_“”<x) :A(x)+O<1>, rER. (44)
On On

Theorem 6. Suppose that F,(x) is the cumulative distribution function of the random variable (),
with the probability mass function (33) of the numbers generated by the matrix

0 ¥i2 i3 )
’ =), 45
< P21 Y22 ¥23 ()
Let the coefficients 1 2, P2 1, P22 be positive, and

@) ii? = iiil (i) 22 =21,

then
Fu(onx +pn) = ®(x) +O0(n"?),  xeR (46)
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The expectation E(Q);) = py, and the variance Var(Q)y,) = o2 are equal to
np 2 np
- 7 0’ - 7 - 7
P =1 P "= U+ p) 0 =1912/P21 (47)
respectively.
Proof. Let v v
2,3 1,3
=142 —14 113
U251 P12
By (8) of Theorem 3, the generating function of numbers (45) is
F(x,e) = (1= 421077 (14 pe (1 = (1= g1%) 7)) o
' ' ' (48)

= (1 — 1/]2[19((1 +p€s))_1_v.

Let a,, x=(121)"a, . For the numbers a,, ;, we have the generating function F(u,v) =
F(u/1,v). Note that

Ank Xpk
P(Q, =k) = ="K — k|
E?:o Ay k Z;Z:() K ke

thus, M, (s) = M, (s) (cf.(41)). Taking into account the formula for the nth derivative,

1 (71) r(’}/‘|‘1’l)k”
(U—W) T T() (1= kx)r (49)

we calculate the partial derivative of the double semi-exponential generating function,

n Plx, &) _ ['(v+n) (1+ pe’)"

oxm T, L'(v) (11— 14+pes)x)vtn| _, (50)
_T(v+n) syn
=) (14 pe*)™.

Hence, the moment generating function (cf. (42)) and the probability generating
function are a oy i v
+ pe + pz
My(s) = —————, Py(z) = My(Inz) = ~———,
=g PO MY =y
respectively. The Hurwitz polynomial is a polynomial whose zeros are located in the
left halfplane of the complex plane or on the imaginary axis. Since p > 0, P,(z) is a
Hurwitz polynomial.
Note that the moment generating function M, (s) is the moment generating function
of the binomial distribution Mp, 1 (s) = (q + pe®)" with parameters

(51)

_ P _ 1
P=1+p 17140
Thus,
— oy — P 2 _ _ "
Hn =np = T+p’ o, = npq = 0+ )2 (52)

with 0, — oo, yielding us, by Lemma 5, the statement of the theorem. [

Theorem 6 allows us to receive the symmetric result for the dual numbers. We can
formulate the subsequent corollary.



Mathematics 2022, 10, 865 14 of 18

Corollary 5. Suppose that F,(x) is the cumulative distribution function of the random variable
O, with the probability mass function (33) of the numbers generated by the matrix

2Pn1 Y21 P23 >
' A2, 53
( Yip —Y12 P13 ®3)
Let the coefficients 1 5, P2 1, 2,2 be positive, and Y23/ 121 = P13/ 1 2, then
Fu(0nx + pn) = ®(x) +O(n~1/2), x €R. (54)
The expectation E(Q,) = uy and the variance Var(Qy,) = o2 are equal to
__" 2 hp —
Un = 1 +p/ 0, = (1 +p)2/ o= 1/’1,2/1/J2,1/ (55)

respectively.

5. Limit Theorems for Numbers Satisfying a Class of Triangular Arrays Associated
with Laguerre Polynomials

We will use the following result on asymptotics of ratios of Laguerre polynomials [10].

Lemma 6 (Deario etal.). Let u,v > —1and z € C\ [0, c0); then, the ratio of arbitrary Laguerre
polynomials has an asymptotic expansion

Lonsi®) )ui Un(8,0,1,2) (56)

Lyn(z) nm/2
where the first coefficients are

Up(u,v,j,z) =1,
v —u +22(U—u—2]) (57)
4./ —

Theorem 7. Suppose that F,(x) is the cumulative distribution function of the random variable (),
with the probability mass function (33) of the numbers generated by the matrix

0 0 Y3
(1/]2,1 P22 P23 > (58)

Let the coefficients ; 1, 1 3 be positive, and Pp 2 = Py 1, then

Ui (u,v,j,z) =

Fu(0nx + ptn) = ®(x) + O(n~1/4), x €R. (59)

The expectation E(Q),) = u, and the variance Var(Q,) = o2

Lo, +1:n(—61) >
=0 R A 1 ,
Hn 1( Lg,.n(—61)

are equal to

60
Loy 1m(—01) (©0)

o2 — _g2( Lorr1n(=01)
L92;n (_61 )

_92(
" Lg,.n(—61)

respectively. Here, 01 = 13/1 and 0y = o3/ 1.

) + (63 — 616,) + (6162 + n6y),
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Proof. First, we derive the moment generating function. Let a,, y=(12,1)" &), . For the num-
bers a,, , we have the generating function F(u,v) = F(u/,1,v). Note that My, (s) = My(s)
(cf. (41)). By Corollary 2 (see (28)), the semi-exponential generating function equals

F(x,y) = a e_j;irez exp<191yx). (61)
Thus, by (3), we receive
F(x) = L #' Loyl -00), ©
and
TEy)| = nilg(~0iy), (63)

x=0
Combining (42), (43) and (63), we have that the moment generating function equals

_ Loyu(—61¢°)

M, (s) = . 64
() Lo,n(—61) (©9
Hence, the probability-generating functon is
Lo,.,(—6
Pa(2) = My (Inz) = Loyn(—612) (65)

Lﬂz;n(_gl) .

The Hurwitz polynomial is a polynomial whose zeros are located in the left halfplane
of the complex plane or on the imaginary axis. If a is non-negative, then all roots of
the generalized Laguerre polynomial L,;,(x) are real and positive. Since 6; > 0, the
polynomial (65) is a Hurwitz polynomial.

Next, we calculate the expectation p, and the variance c2. The derivatives of the
generalized Laguerre polynomials satisfy the following expression,

k
Lin(®) = (D Lasni(®), k<. (66)
Hence,
M’ (S) _ —QlesLéz;n(—gles) _ 91€SL62+1;,1,1(—91€S)
" Lo,n(—61) Lo,n(—61)
M;(s) = Q%ezngz;n(_eles) - GlesLéz;n(_Gles) (67)
! Lez;n (_91)
_ 02¢% Lo, 12.u—2(—01€%) + 6165 Lg, 1,01 (—016°)
Lg,n(—61)
Using the properties of the generalized Laguerre polynomials,
Las1;n-1(x) = Lag1;n(x) = Lan(x),
a+1—x a+1—x+n (68)
Lat2in—2(x) = therl;n(x) - szx;n(x)'
We obtain the expectation
Lo, +1;0(—61) )
= M,,(0) =6 (2 -1 69
Hn n( ) ! Lﬂz;n(_el) ©)



Mathematics 2022, 10, 865 16 of 18

and the variance

on = M,/(0) — M;Z(0)
(=610, — 0%) Lo, 1.0 (—01) + (0162 + 67 + 161) Ly, (—61)

Lg,.u(—61)
_ 92<L92+1m<—91> B 1>2 70)
'\ Lgyn(—61)
Lo +1-n(—91)>2 Lo, 4+1,1(—61)
:—92(2' + (6% — 010,) =2 22 1 (0,60, + nby).
"\ Loy (—01) (67 — 0162) Lo (—0) (6162 1)

Using the asymptotic formula for the ratio of Laguerre polynomials (56) and (57),

we obtain
L(X+1‘Yl(_x) \/g U](OC + 1/“/0/ 7x) 1
VL0 A el 1 | of =
th;n(_x) X + \/ﬁ + n

1/2 1 1)
n X—o—
=4/—1+—FF—F+0( =] |.
Vi 5m o)
Substituting (71) into (70), we get
01— 6, —1/2 1\\?
2 1—
=—-bOn|ll+ ————+0| -
=1+ 2505 40 ()
——Gln(1+91921/2+0(1))
Voin n 72)
0, — 6, —1/2 1
61— 0 01({1+ —————+0|( - 616 6
+ (61 2)\/ﬁ1<+ NI + <n>)+12+n1

1’[91

1
)) +9192+7191 = > +O(1)

NG

Thus, 7, — o0, yielding us, by Lemma 5, the statement of the theorem. [J

+ (64 — 62) /by <1+o(

Theorem 7 allows us to receive the symmetric result for the dual numbers. We can
establish the following corollary.

Corollary 6. Suppose that F,(x) is the cumulative distribution function of the random variable
Q) with the probability mass function (33) of the numbers generated by the matrix

2001 —Yo1 Y23
( 0 0 ll)l,s) 73)

Let the coefficients 1, P2 3, Y1 3 be positive, then
Fu(0ux 4+ pn) = ©(x) +0(n" %),  xeR (74)

The expectation E(Qy) = y and the variance Var(Q),) = o2 are equal to

Lo, 1,1(—61) )
#n 1( Lg,.n(—61)

L .(—9))2 Lo, +1:(—61)
2 2 [ “6+1n 1 2 0r4+1;n 1

o5 = 07| ———= | + (0] —010))————-= + (0102 + nbq),
7 1( Lo (—61) (67 — 6162) Lo (—01) (6162 1)

where 01 = P13/ and O, = Po3/ P2 1.

(75)
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6. Conclusions

We have proved limit theorems for three categories of numbers satisfying a class of
triangular arrays (see Theorems 5 and 6), which are defined by a bivariate linear recur-
rence with bivariate linear coefficients, including combinatorial numbers associated with
Laguerre polynomials (see Theorem 7). We have established the asymptotic normality of
these combinatorial numbers and have specified convergence rates to the limiting distri-
bution. Apart from the theoretical value (generating functions are a very important tool
to derive the identities, connections, and interpolation functions for polynomials, or limit
theorems for corresponding combinatorial numbers), these results can be applied to the
construction of efficient algorithms for the calculation of the values of special functions.
We have used similar limit theorems for the combinatorial numbers in calculations of the
Riemann zeta function (see Theorem 3 in [14] and Algorithm 3 in [17]). Moreover, the
presented asymptotic normality results may have also an important utilization in choosing
a suitable cumulative distribution function or a cumulative intensity function for models in
insurance [18].
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