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Abstract: Virtually all optical materials degrade over time when they are used in high average
power or intensity optical systems. Extrapolation of optical components lifetime is crucial in such
applications in order to avoid downtime or project failure. Measurements of the laser-induced
damage threshold (LIDT) fatigue are usually done using the so-called S-on-1 test described in
the ISO 21254-2 standard. The standard, however, suggests only rudimentary techniques for
extrapolating LIDT, which are rarely used in practice, therefore, the goal of this work was to
provide a framework for analyzing LIDT fatigue data using well established methods of Bayesian
statistics. Numerical S-on-1 experiments (assuming constant fatigue) were performed for cases
of online detection, interval detection and offline detection. Appropriate lifetime distributions
were determined and used to fit simulated data taking into consideration data censoring. Credible
intervals of lifetime predictions were determined using Markov chain Monte Carlo (MCMC)
technique and compared with results from multiple experiments. The Bayesian lifetime analysis
method was compared with technique described in the ISO 21254-2 standard for cases of low
and high defect densities. Finally, the outlined extrapolation technique was applied to extrapolate
lifetime of HR dielectric mirror.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Virtually all optical materials degrade over time when they are used in high average or peak
power optical systems [1–3]. The decrease of laser-induced damage threshold (LIDT) at longer
irradiations as compared to single pulse irradiation is commonly known as the optical fatigue
effect. The magnitude of this effect is usually quantified by performing standardized [4,5] S-on-1
tests (S – number of pulses) which measure probabilistic time to failure data at multiple fluence
values. Raw data of S-on-1 experiments is usually processed to yield LIDT as a function of
number of pulses – the characteristic damage curve (CDC) [4]. The CDC is better known as the
stress-life curve [6] outside of laser-induced damage community. Due to budgetary limitations,
S-on-1 tests are usually performed up to a relatively small number of pulses (as compared to
the design lifetime) therefore extrapolation of measured LIDT is needed in order to predict the
lifetime of optical components at application fluences [7].

Experimental and theoretical studies have shown the existence of several fatigue mechanisms
in optical components [8], mainly weak statistical fatigue which might arise due to presence
of fabrications defects and unstable laser irradiation [9,10] and material modification fatigue
due to native and laser-induced states of the material [11–13]. Material modification fatigue
usually dominates at longer irradiations [7,8,14], therefore it is the interest of long-term fatigue
studies. It was shown that material modification mode can be separated from statistical fatigue
mode by performing morphological analysis of every test site either manually or computationally
[15]. Unfortunately, further studies determined that the extrapolation model provided in the ISO
21254-2 standard [5] applies only to statistical fatigue, but not material modification fatigue [7].

The ISO 21254 standard also ignores an important topic of censored data [6] in S-on-1
experiments. Data censoring can occur due to failure mode separation, limited irradiation time,
sensitivity and speed of online damage detection, use of offline damage detection as well as
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the choice of S-on-1 protocol – all of which contribute to the final uncertainty of extrapolated
lifetime prediction.

In this paper, inspired by the advantages Bayesian statistics offers in the analysis of 1-on-1
damage probability data [16], we aim to develop and investigate extrapolation method based on
Bayesian inference in order to improve prediction of material modification fatigue observed in
S-on-1 experiments.

2. Methods

S-on-1 tests produce probabilistic time to failure (t) data at multiple fluence (F) values. Current
analysis techniques [5] expect only exact time to failure data obtained with ideal in situ damage
detection. However, experimental data is usually censored due to limitations of in situ detection
or use of ex situ detection. Fortunately, both exact and censored data can be analyzed using
Bayesian inference by constructing a model that combines a stress-life relationship t(F) (fatigue
model) together with lifetime distribution ϕ(t) at a single stress (fluence) level (Fig. 1).

Fig. 1. Schematic representation of how stress-life relationship and lifetime distribution are
combined into a single model. This model allows retrieval of characteristic damage curve.

2.1. Stress-life relationship

The stress-life relationship t(F) of material is determined by the physical mechanism of laser-
induced damage fatigue. The exact mechanism is rarely known and thus physical models for
t(F) are often not available, but the relationship is directly observed in S-on-1 experiments and
can hence be approximated based on this data. Throughout this paper we will use the so-called
inverse power relationship t(F) ∝ 1/Fγ1 (straight line in log-log stress-life plots) due to its general
nature: such relationship was observed above LIDT fatigue limit in both continuous wave [17]
and pulsed regimes (ranging from nanosecond [7,9,18] to femtosecond [2,15] pulse durations).
The nominal log-life µ = log(t) can thus be expressed as a linear function of logarithmic stress
log(F) with parameters γ0 and γ1:

µ(F) = γ0 − γ1 log(F). (1)

2.2. Incubation law and simulation of S-on-1 experiments

One of the easiest ways to simulate the incubation process that would result in inverse power
relationship (1) is to assume that incubation per laser pulse is constant for every consecutive laser
pulse until damage becomes apparent. Assuming non-linear absorption, dose D deposited by a
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single laser pulse at fluence F can be expressed as:

D(F) =
(︃

F
F1

)︃β
, (2)

where β – non-linear absorption factor and F1 – scaling parameter. Dose Dn deposited by n laser
pulses is thus:

Dn =

n∑︂
i=1

D(Fi). (3)

If damage occurs at some critical threshold dose DT , number of pulses at which damage will
occur can be found by solving the inequality Dn ≥ DT :

Dn =

n∑︂
i=1

D(Fi) =

n∑︂
i=1

(︃
Fi

F1

)︃β
≥ DT . (4)

Since DT and F1 are not independent, we can choose DT = 1 to correspond to single pulse
damage at fluence F1.

A numerical model based on the described incubation mechanism was developed for simulating
S-on-1 experiments. A virtual sample was simulated with randomly distributed defects defined
by total density d and dose threshold distribution function g(DT ):

d =
∫ ∞

0
g(DT )dDT . (5)

It is important to note, that in the context of material modification fatigue, the word defects
is used to describe optically active material inhomogeneities and lattice defects [19] instead of
fabrication defects. Sample was split into individual non-overlapping test sites and numerically
irradiated with a determined number of laser pulses that had Gaussian beam profile:

F(x, y; F0, w0, x0, y0) ∝ F0 exp

(︄
−2

(x − x0)
2 + (y − y0)

2

ω2
0

)︄
, (6)

where F0 – peak fluence, w0 = d0/2 – beam radius at 1/e2 intensity level, x0, y0 – coordinates
of beam center. Local fluence for every defect after every laser pulse was evaluated from the
beam profile function (6) and the resulting dose was calculated using (3). Site was considered
damaged if any of the defects within that site satisfied damage condition (4) after n pulses.

2.3. Lifetime distributions for degenerate and power-law defects

Even though it was shown that lifetime distributions obtained from S-on-1 experiments can be
used to qualitatively distinguish between material modification fatigue and statistical fatigue [8],
little work was done to quantitatively describe them. Fortunately, lifetime distributions can be
derived for any given defect ensemble and incubation model. Cumulative density function (CDF)
of probability that test site will be damaged after pulse (or time) t is equal to probability that at
least one defect will be damaged:

Φdefects(t; g, F0) = 1 − ϕPoisson (k = 0; N(t; g, F0)) = 1 − exp (−N(t; g, F0)) , (7)

where ϕPoisson is probability mass function (PMF) of Poisson distribution, N – average number
of defects with dose threshold distribution g(DT ) that can be damaged after t pulses with peak
fluence F0.
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Expression of N for multiple pulses can be derived from a well-known expression of N for
a single pulse by substituting threshold fluence with the appropriate incubation model. Given
threshold fluence distribution g(T), average number of defects N damaged after a single pulse
with peak fluence F0 is:

N(F0; g) =
∫ F0

0
g(T)S(T; F0)dT , (8)

where S(T; F0) is beam area at fluence T , given peak fluence F0. For a Gaussian beam:

S(T; F0) =
⎧⎪⎨⎪⎩

πω2
0

2 ln
(︂

F0
T

)︂
, T ≤ F0

0, T>F0
. (9)

For the simplest case of degenerate defects (all defects have the same threshold) that are
damaged at fluence T0, the ensemble function g(T) is expressed as:

g(T) =

{︄
d, T = T0

0, T ≠ T0
. (10)

Assuming incubation model (3) and that all laser pulses are equal, we can rewrite N for
multiple pulses with substitution T = F1t−1/β obtained from (4) with DT = 1:

N(t; d, F0) =
πω2

0d
2

ln
(︃

F0

F1t−1/β

)︃
= N0 ln

(︃
F0
F1

t
1
β

)︃
, (11)

where N0 =
πω2

0d
2 . The CDF and probability density function (PDF) of the lifetime distribution

for degenerate defects are then respectively:

Φdeg(t; F0, F1, N0, β) =
⎧⎪⎪⎨⎪⎪⎩1 −

(︂
F1
F0

)︂N0
t−

N0
β , t ≥ t0

0, t<t0
, (12)

ϕdeg(t; F0, F1, N0, β) =
⎧⎪⎪⎨⎪⎪⎩

N0
β

(︂
F1
F0

)︂N0
t−

N0
β −1, t ≥ t0

0, t<t0
, (13)

where t0 =
(︂

F1
F0

)︂β
is the threshold lifetime at F0. For large N0 (high density defects and/or large

beams) we get deterministic case:

lim
N0→∞

ϕdeg(t) = δ

(︄
t −

(︃
F1
F0

)︃β)︄
. (14)

In practice, the observed defect ensembles are rarely degenerate and usually resemble power-law
behaviour [20]. A good alternative for practical applications is a log-normal lifetime distribution,
which is observed for many types of fatigue data [6]. The CDF of a log-normal distribution
expressed using log-location and log-scale parameters (µ and σ respectively) [21] is:

Φlog−norm(t; µ,σ) = Φnorm

(︃
log(t) − µ
σ

)︃
=

1
2

⎛⎜⎜⎝1 + erf
⎛⎜⎜⎝
(︂

log(t)−µ
σ

)︂
√

2

⎞⎟⎟⎠
⎞⎟⎟⎠ , (15)
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while the PDF is:

ϕlog−norm(t; µ,σ) =
1
σt
ϕnorm

(︃
log(t) − µ
σ

)︃
=

1
σt

1
√

2π
exp

⎛⎜⎜⎝−
(︂

log(t)−µ
σ

)︂2

2
⎞⎟⎟⎠ , (16)

where Φnorm and ϕnorm are respectively CDF and PDF of the standard normal distribution, erf –
the error function. The log-location parameter µ is retrieved from the stress-life relationship,
e.g. the inverse power relationship (1). The log-scale parameter σ can either be assumed to be
constant, or it can also be modeled as a function of stress F if needed. Since the log-normal
distribution is a continuous function, the threshold lifetime is evaluated as some percentile of
the distribution, with 1st and 5th percentiles (corresponding to 1% and 5% damage probability)
being the most common [6]. In the context of this paper, 1st percentile was used as the threshold
lifetime.

In order to compare lifetime distributions of samples with degenerate and power-law defects,
irradiation of 1000 test sites at single fluence value was simulated (Fig. 2). It can be seen that the
derived lifetime distribution for degenerate defects (13) correctly reproduces the experimental
results (Fig. 2(b)), while the log-normal distribution (16) is a good approximation for lifetime
distribution of power-law defects (Fig. 2(d)).

2.4. Maximum a posteriori probability for S-on-1 experiments

Bayesian statistics gives a framework for evaluating posterior probability of the model Φ(θ) given
observed time to failure data ∆ [22]:

P(Φ|∆) =
P(∆|Φ)P(Φ)

P(∆)
, (17)

where P(∆|Φ) – likelihood of the data ∆ given the model Φ, P(Φ) – prior probability of the model
Φ (beliefs about the model Φ before data is taken into account), P(∆) – probability of data ∆.
Since P(∆) depends only on data and is difficult to evaluate in practice, usually only the product
of likelihood function and prior probability is considered:

P(Φ|∆) ∝ P(∆|Φ)P(Φ). (18)

Log-posterior is more often used in practical applications to maintain numerical accuracy [22]:

log P(Φ|∆) ∝ log P(∆|Φ) + log P(Φ). (19)

The best fit of model’s parameters θfit is evaluated by performing maximum a posteriori proba-
bility (MAP) estimation: analytically or numerically maximizing the log-posterior log P(Φ|∆) in
respect to model’s parameters.

As mentioned in the introduction, data reduction techniques to obtain damage probability
from S-on-1 experiments ignore data censoring. In contrast, constructing likelihood function for
the lifetime observations allows accurate interpretation of both censored and complete data [6].
Likelihood Li of a single test site i is evaluated from the lifetime distribution (Fig. 3):

Li =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕ(ti), exact: damage occurred at ti
Φ(ti), left-censored: damage occurred in interval (0, ti)
Φ(ti) − Φ(ti−1), interval-censored: damage occurred in interval (ti−1, ti)
1 − Φ(ti), right-censored: damage will occur in interval (ti,∞)

. (20)



Research Article Vol. 29, No. 2 / 18 January 2021 / Optics Express 908

Fig. 2. Comparison of dose threshold distributions for degenerate (a) and power-law (c)
defects and their corresponding lifetime distributions (b, d) (all vertical scales are linear).
Irradiation of 1000 test sites was simulated with peak fluence of 3 J/cm2 and beam diameter
of 200 µm. Incubation model was simulated with F1 = 8 J/cm2, β = 5. Degenerate defect
ensemble (a) was simulated with parameters DT = 1, d = 105 cm−2 while the linear power
law distribution (c) with parameters DT ,min = 1, DT ,max = 10, d = 5 · 105 cm−2. Red line
in (b) corresponds to derived theoretical lifetime distribution of degenerate defects (13),
while red line in (d) corresponds to approximation of lifetime distribution with log-normal
function (16).

Fig. 3. Comparison of exact and censored observations given PDF of log-normal lifetime
distribution. Exact measurement, as well as left-censored and interval-censored measure-
ments correspond to damaged test sites, while right-censored measurements correspond
to non-damaged sites. Markers at the top of the graph represent how censored data is
represented in stress-life plots.
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Exact observations are usually obtained with online damage detection methods (such as back-
scattered light detection with photodiodes) in pulsed regime, where it is possible to determine
the exact pulse after which damage has occurred:

L
(exact)
i = ϕ(ti). (21)

Interval-censored observations are obtained for all continuous wave (CW) lasers and for pulsed
lasers when damage detection rate is slower than pulse repetition rate. In this case the damage
has occurred between pulses (or times) ti and ti−1, therefore the corresponding likelihood is:

L
(interval)
i =

∫ ti

ti−1

ϕ(t)dt = Φ(ti) − Φ(ti−1). (22)

Left-censoring occurs when damage is detected at the first observation, i.e. all that is known is
that damage has occurred at time interval (0, ti). This type of censored data is common in practice,
because more sensitive offline damage detection (e.g. Nomarski or atomic force microscopy) is
often performed after the experiment. The likelihood for left-censored data is thus:

L
(left)
i =

∫ ti

0
ϕ(t)dt = Φ(ti) − Φ(0) = Φ(ti). (23)

Right-censoring occurs when irradiation is stopped before damage is reached or when damaged
sites are determined to belong to the failure mode other than the one analysed. Failure will occur
in the interval (ti,∞) therefore the likelihood for right-censored data can be expressed as:

L
(right)
i =

∫ ∞

ti
ϕ(t)dt = Φ(∞) − Φ(ti) = 1 − Φ(ti). (24)

Single LIDT test can contain any combination of exact and left-, right- or interval-censored
observations. The total likelihood of the S-on-1 test with N test sites is obtained by multiplying
likelihoods of individual test sites [6]:

L =

N∏︂
i=1

Li. (25)

The total log-likelihood for all test sites, assuming inverse power relationship (1) and log-normal
lifetime distribution (16), is thus a three parameter (γ0, γ1,σ) function:

log P(∆|Φ) ≡ logL =
N∑︂

i=1
logLi(ti; µ(Fi; γ0, γ1),σ). (26)

The log-prior probability distribution log P(Φ) in (19) is constructed by including any additional
information known about the model’s parameters (e.g. upper limit of LIDT from previous
experiments). Constructing informative and non-informative priors [22] is outside the scope
of this paper, therefore only simple flat priors were used within the allowed values of models’
parameters: σ ∈ (0,∞), γ0 ∈ (−∞,∞), γ1 ∈ (0,∞). Using full posterior probability (19) instead
of just likelihood function (26) (as in maximum likelihood estimation – MLE) allows use of
probability distribution sampling algorithms for uncertainty estimation.

2.5. Optimization and uncertainty evaluation

In this work, MAP estimation of the log-posterior function (19) was performed with open-source
implementation of the sequential least squares programming (SLSQP) optimization method [23].
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The uncertainty of estimated parameters was evaluated with Markov chain Monte Carlo (MCMC)
technique which draws samples from the continuous posterior probability distribution (19) with
probability density of those samples proportional to the analytical distribution. Once the samples
are drawn, they can be marginalized to evaluate the uncertainty of model’s parameters or projected
into stress-life space to evaluate lifetime uncertainty by constructing highest posterior density
(HPD) intervals [22]. Even though MCMC methods are easy to interpret, they are computationally
intensive. Fortunately, the recent development of freely accessible implementations of MCMC
algorithms allows practitioners to easily apply this powerful technique in practice. In this work,
an open-source implementation [24] of affine invariant MCMC sampler [25] was used to perform
the sampling. A total of 200 virtual walkers were used to perform the random walk procedure
for 100 steps in order to sample the distribution (using 50 last steps in further analysis to avoid
non-converged data). On a typical desktop computer MAP estimation is performed in a few
seconds, while MCMC sampling for uncertainty evaluation takes several minutes to complete
(the duration is highly dependent on the number of virtual walkers and steps).

3. Results and discussion

3.1. Investigation of S-on-1 protocols with simulated data

S-on-1 simulations were performed for up to 104 laser pulses at fluence levels exponentially
spaced between 1 and 10 J/cm2 with 25 test sites per fluence level (as recommended by the ISO
21254-2 standard). Gaussian beam with 200 µm beam diameter at 1/e2 level with 5% energy
and diameter instability was used for irradiation. Previously described incubation law (4) with
parameters F1 = 8 J/cm2, β = 5 was used to simulate cases of both low density (104 cm−2) and
high density (5 · 105 cm−2) defects. Linear power-law distribution (DT ,min = 1, DT ,max = 10)
was used for the defect ensemble (the same distribution as in Fig. 2(c)). Three S-on-1 protocols
differing in their damage detection mechanisms were chosen for investigation of Bayesian lifetime
analysis:

1. Exact online detection protocol - damage detection is performed at the same rate as the
pulse repetition rate and irradiation is immediately stopped in case of damage. This is the
most common S-on-1 protocol outlined in the ISO 21254-2 standard which produces exact
observations of damage events.

2. Interval online detection protocol - damage detection is performed at the rate slower
than the pulse repetition rate and irradiation is immediately stopped in case of damage.
Specifically, damage detection after 1, 10, 100, 1000 and 10000 laser pulses was used.
This protocol produces interval-censored observations of damage events, i.e. if damage
was detected after 1000 pulses, we know that it occurred between 100 and 1000 pulses.

3. Offline detection protocol - damage detection is performed after the test. This requires
selecting values for fluence and number of pulses that form a grid on stress-life plot and
irradiating test sites independently of the state of damage. This S-on-1 protocol is also
outlined in the ISO 21254-2 standard as an alternate method when online damage detection
is not available. This protocol produces left-censored observations of damage as well as
substantially more right-censored observations compared to the other protocols.

Simulated data was extrapolated using both the approach outlined in the ISO 21254-2 standard
as well as Bayesian lifetime analysis using MAP estimation. The standard approach is a two step
process: first, the experimental CDC curve is determined by performing linear regression on
damage probability at selected pulse classes (25 for exact online and offline detection protocols,
5 for interval online detection protocol); second, the experimental CDC curve is fitted with
extrapolation curve (all optimization steps are performed using least squares approach). The MAP
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estimation approach requires just a single optimization step to maximize posterior probability
(19). Additional MCMC run was performed to evaluate uncertainty of the MAP estimation.
Inverse power relationship between peak fluence and number of pulses (1) was used as the
extrapolation curve in both cases.

Single simulations for each combination of defect density and S-on-1 protocol are provided in
Fig. 4. We see that the MAP estimation analysis produced results that are closer to true LIDT
values than the standard approach for all simulated cases. The accuracy of standard approach
suffers at lower defect density, especially for offline damage detection protocol case (Fig. 4(c)).
This is mainly caused by the fact that data-reduction technique for damage probability outlined
in the ISO 21254-2 standard is not suitable for left-censored data. Also, large percentage of
right-censored data reduced the accuracy of this test (as seen in wider credible region obtained
with MCMC for MAP estimate).

Fig. 4. Comparison of simulated S-on-1 experiments for low density (104 cm−2) (a-c) and
high density (5 · 105 cm−2) power-law defects (d-f). Simulations were performed for 200 µm
beam diameter (1/e2) and 5% energy and diameter instability. Blue dashed line represents
true LIDT from fatigue model, black solid line – ISO extrapolation, red solid line – Bayesian
lifetime extrapolation (1st percentile), light red area – 95% credible HPD region for Bayesian
lifetime extrapolation retrieved from MCMC sampling.

Accuracy and repeatability of extrapolation approaches was compared by performing 100
simulations for each combination of defect density and S-on-1 protocol. LIDT values extrapolated
to 106 laser pulses are provided in Fig. 5. We see that MAP estimation analysis produced both
more precise and repeatable LIDT values for all tested cases. Interestingly, accuracy and
repeatability of exact online and interval online detection protocols was very similar. Offline
detection protocol produced wider spread of LIDT values as predicted by MCMC credible regions
in Fig. 4.

The standard approach appears to be more sensitive to discretization of fluence levels than
MAP estimation, because it produced multimodal LIDT distribution for the case of interval online
detection protocol with high density defects (white distribution in middle column of Fig. 5(b)).
This effect may be caused by the fact that the standard approach is based on measuring damage
probability instead of the directly observed lifetime data which is used by the MAP estimation.
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Fig. 5. Comparison of LIDT extrapolation to 106 pulses (from experiments performed up
to 104 pulses) for low density (104 cm−2) defects (a) and high density (5 · 105 cm−2) defects
(b). Each violin plot represents 100 experiments analyzed using Bayesian lifetime analysis
and standard ISO extrapolation.

3.2. Predicting lifetime of HR dielectric mirror

The developed Bayesian lifetime analysis based on MAP estimation was applied to experimental
interval-censored S-on-1 data [7] for highly-reflective (HR) dielectric mirror. The sample was
coated using ion beam sputtering (IBS) on a conventionally polished 25.4 mm diameter fused
silica substrate. The S-on-1 experiment was performed at a wavelength of 355 nm, pulse duration
of 10 ns, repetition rate of 100 Hz, beam diameter of 209 µm and angle of incidence of 45
deg. The test bench included both a photodiode and a differential interference contrast (DIC)
microscope for online damage detection. The photodiode was used for measuring back-scattered
light and offered fast damage detection after every laser pulse, while online DIC microscope was
used to separate damage caused fabrication defects from damage caused by material modification.
DIC microscopy images were collected after pulses 1, 2, 3,. . . , 10, 20, 30,. . . , 107. More
experimental details are provided in Ref. [7].

Test results for material modification failure mode are provided in Fig. 6(a). Right-censoring of
test sites up to around 103 laser pulses was caused by online back-scattered light detection due to
defect-driven damage, while right-censoring of test sites after 103 laser pulses was due to limited
number of pulses allowed for irradiation. All of the damaged test-sites were interval-censored
due to semi-online nature of DIC microscopy damage detection. MAP estimation was performed
on posterior probability function (19) assuming inverse power stress-life relationship (1) and
log-normal lifetime distribution (16). MCMC run was performed to evaluate uncertainty of the
estimate (Fig. 7). The lifetime of HR coating was estimated for applications at 1 J/cm2 and 0.5
J/cm2 and resulted in most likely values of 2.9 and 34.0 million laser pulses respectively with
95% credible HPD intervals of 0.1–10.5 and 0.7–175.7 million laser pulses (Fig. 6(b)).

It is important to note, that the single test site at 107 laser pulses (the so-called validation
point) was included in the MAP estimation. Evaluating damage probability at 107 laser pulses
and including such point into the extrapolation approach outlined in ISO 21254-2 would be
impossible due to lack of non-damaged test sites at/above 107 pulses.
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Fig. 6. Fit of experimental data (a) and lifetime prediction at two application fluences (b).
Red line corresponds to Bayesian MAP estimation while surrounding red area corresponds
to 95 % credible interval obtained with MCMC. The lifetime was estimated for applications
at 1 J/cm2 (median value of 2.9 million laser pulses with 95% credible HPD interval of
0.1–10.5 million laser pulses) and 0.5 J/cm2 (median value of 34.0 million laser pulses with
95% credible HPD interval of 0.7–175.7 million laser pulses).

Fig. 7. Corner plot of MCMC samples which correspond to credible interval in Fig. 6.
Parameter σ corresponds to log-scale of log-normal lifetime distribution (16) while γ0
and γ1 are parameters of inverse power stress-life relationship (1). Dashed vertical lines
represent 95% credible HPD intervals.
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4. Conclusions

In conclusion, we have developed the Bayesian lifetime analysis approach based on MAP
estimation for the analysis of S-on-1 laser-induced damage fatigue experiments. Lifetime
distribution for the simplest case of degenerate defect ensemble was derived and statistical
log-normal distribution was suggested as an approximation for lifetime distribution of power-
law defects. MAP estimation produced more accurate and repeatable extrapolation results
as compared to the standard extrapolation approach for all simulated S-on-1 protocols due to
correct treatment of censored observations. Credible HPD intervals retrieved from single S-on-1
experiment using MAP estimation correlated with uncertainties resulting from both the S-on-1
test protocol (different damage detection mechanisms) as well as the statistical nature of damage
(different defect densities).

Lifetime prediction of material modification mode for HR dielectric coating was performed at
two application fluence values using interval-censored experimental S-on-1 results that could not
be interpreted with standard approach. The lifetime was estimated for applications at 1 J/cm2

(median value of 2.9 million laser pulses with 95% credible HPD interval of 0.1–10.5 million
laser pulses) and 0.5 J/cm2 (median value of 34.0 million laser pulses with 95% credible HPD
interval of 0.7–175.7 million laser pulses).
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and S. Guizard, “What time-resolved measurements tell us about femtosecond laser damage?” Proc. SPIE 9632,
96320O (2015).
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