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Abstract: Climate change leads to more variable meteorological conditions. In many Northern Hem-
isphere temperate regions, cold seasons have become more variable and unpredictable, necessitat-
ing frequent river ice observations over long sections of rivers. Satellite SAR (Synthetic Aperture 
Radar)-based river ice detection models have been successfully applied and tested, but different 
hydrological, morphological and climatological conditions can affect their skill. In this study, we 
developed and tested Sentinel-1 SAR-based ice detection models in 525 km sections of the Nemunas 
and Neris Rivers. We analyzed three binary classification models based on VV, VH backscatter and 
logistic regression. The model sensitivity and specificity were used to determine the optimal thresh-
old between ice and water classes. We used in situ observations and Sentinel-2 Sen2Cor ice mask to 
validate models in different ice conditions. In most cases, SAR-based ice detection models outper-
formed Sen2Cor classification because Sen2Cor misclassified pixels as ice in areas with translucent 
clouds, undetected by the scene classification algorithm, and misclassified pixels as water in cloud 
or river valley shadow. SAR models were less accurate in river sections where river flow and ice 
formation conditions were affected by large valley-dammed reservoirs. Sen2Cor and SAR models 
accurately detected border and consolidated ice but were less accurate in moving ice conditions. 
The skill of models depended on how dense the moving ice was. With a lowered classification 
threshold and increased model sensitivity, SAR models detected sparse frazil ice. In most cases, the 
VV polarization-based model was more accurate than the VH polarization-based model. The results 
of logistic and VV models were highly correlated, and the use of VV was more constructive due to 
its simpler algorithm. 
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1. Introduction 
River ice is an important factor in biological, physical and chemical processes in 

higher-latitude regions. Climate change has drastically altered ice formation, as well as 
decay times and dates, around the globe [1–3]. These changes create various challenges 
for the economic sectors [4] and civilian lives. Ice creates operational constraints that hin-
der power production in hydropower systems. River ice can cause flooding, damage 
structures such as culverts and bridges, disturb water transportation or block water sup-
ply. Ice surfaces influence local air temperature and humidity, and smaller frozen rivers 
have a lower discharge and modified redistribution of water [5]. These factors make ice 
cover monitoring an important task. 

In recent years, the cold season has become more unpredictable with the frequent 
variation of air temperature. Consequently, the river ice extent and types are often altered 
throughout the winter. Due to frequent temperature fluctuations in the cold season, ice 
cover forms and melts away several times a year. Therefore, the consistent monitoring of 
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river ice is much more important than in the past when ice formation and decay were 
more predictable. 

In some regions, ground-based freshwater ice observations are scarce due to inacces-
sible remote locations or limited available resources. The global reduction of ground-
based freshwater ice observations began in the 1980s [6] and has further decreased due to 
the introduction of automatic gauges. 

Large-scale in situ observations require considerable human and financial resources. 
Therefore, satellite imagery is likely the best alternative to monitor ice formation in rivers. 
Satellite remote sensing with large spatial coverage and frequent revisit time is a robust 
addition to the in situ monitoring of freshwater ice. Satellite-based studies aim to deter-
mine ice extent, ice phenology and ice types. The variety of ice types and their distribution 
highly depend on meteorological conditions, river channel properties and hydrology [7]. 
For example, the Peace River in Canada has sections of rapids and falls that are responsi-
ble for the large variety of ice cover types found there. Meanwhile, the Vistula River in 
Poland has a slower flow and more homogenous riverbed. Therefore, its ice cover during 
winter is also more homogenous [8]. The number of identified ice types varies. In most 
studies, thermal ice, frazil ice and consolidated ice types are ignored [9], while in other 
studies, smooth clear ice, drifting frazil pans, dense moving ice floes and agglomerated 
ice types are included [10]. 

SAR (Synthetic Aperture Radar) data have relatively a high resolution and are almost 
unaffected by cloud cover. Consequently, SAR data are is typically used in river ice mon-
itoring. The SAR backscatter from water and ice is distinct because of the difference in 
roughness and dielectric properties. Rough ice surfaces usually have the highest backscat-
ter values, making, it is easy to identify consolidated ice [11] and agglomerated ice [8], 
while newly formed ice has similar backscatter values to open water [12], making it harder 
to identify. Differentiating rapids from ice are also problematic [13]. In addition to provid-
ing information about surface roughness, SAR is also capable of providing information 
about volume scattering. Volume scattering is dependent on the size, shape and density 
of air inclusions within the ice cover, and the interface between the ice layer and water 
[10]. In the case of an ice jam, ice layers are stacked, causing multiple scattering between 
these layers [14]. However, the main scattering mechanism of river ice is normally surface 
scattering rather than volume scattering, except in the case of consolidated or thick, po-
rous ice [15]. Wet snow significantly reduces the accuracy of ice monitoring. Therefore, 
some errors may occur when analyzing ice cover types under wet snow cover [9]. There 
is a high correlation between snow cover wetness and the visibility of ice cover under-
neath it [16]. When the snow cover is thick, ice cover interpretations become highly sub-
jective. It is only possible to separate very rough and smooth ice cover, but even then, the 
possibility of error remains high [10]. Most freshwater ice studies have been based on RA-
DARSAT 1–2 satellites [6,8,11,15,17,18] and performed in middle and higher latitudes of 
North America. To date, only several river ice studies have used Sentinel-1 SAR data for 
river ice monitoring [16,19–21]. The wide swath, high spatial resolution and short revisit 
time in high latitudes [8] determine the high application potential of these data in river ice 
studies. 

It is particularly challenging to validate river ice products, as in most locations, in 
situ river ice data are available only for small river sections near hydrological stations. 
Validation from aerial photos can provide information about ice extent and types. How-
ever, the spatial coverage and frequency of aerial photos in most regions are scarce. Mul-
tispectral satellite data have been used for ice detection since the end of 20th century. The 
high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) on 
Terra and Aqua NASA satellites provides an opportunity to observe the landscape daily. 
However, their low spatial resolution limits observations to only large objects, such as 
seas [22], large lakes [23] and large rivers [24]. In this case, a careful identification of mixed 
pixels that contain both water and land is needed [25,26]. Landsat satellites provide a finer 
spatial resolution, but their low temporal resolution may not allow for the observation of 
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ice freeze and break-up dates [23]. The Landsat data archive provides an opportunity for 
long-term analysis [27]. 

Ice has a higher reflectance in visible bands than water. Therefore, it is distinguisha-
ble using spectral indices that use visible and shortwave infrared (SWIR) bands. The Nor-
malized Difference Snow Index (NDSI) was used to map snow- and ice-covered areas in 
high-latitude regions from Landsat Thematic Mapper (TM) and Enhanced Thematic Map-
per+ (ETM+) scenes [28]. Li et al. [27] validated the NDSI with green and SWIR bands to 
detect river ice in high altitudes in the Tibetan Plateau. 

Clouds are the main problem of optical remote sensing, as they substantially reduce 
the usability of images. Clouds are very prominent in northern regions, such as Lithuania, 
where often there might be only several cloud-free images during the winter season. Good 
cloud masking is needed to use partly cloudy images [28]. With more and more instru-
ments in orbit, the use of multisource data becomes an advantage that has been proven to 
provide better results. In addition, webcams or crowdsourcing can be used as other com-
plementary sources of data [23,29]. 

The Copernicus Land Monitoring Service (CLMS) provides high-resolution (20 m × 
20 m) River and Lake Ice Extent (RLIE) products based on Sentinel-1 and Sentinel-2 satel-
lite imagery. The accuracy of the RLIE S2 product, which uses Sentinel-2 data, is higher 
than 85% for rivers and lakes [30]. The accuracy assessment was performed using in situ 
data from the Czech Republic, Finland, Hungary and Serbia, as well as the visual analysis 
of optical remote sensing images. The products based on Sentinel-1 data (RLIE S1) and the 
combination of Sentinel-1 and Sentinel-2 (RLIE S1 + S2) are still being validated. 

In this study, we tested the ability of Sentinel-1 SAR data to detect ice extent in two 
major Lithuanian rivers: the Nemunas and Neris Rivers. The application of river ice re-
mote sensing in these relatively narrow (width: 80–300 m) and shallow rivers added fur-
ther challenges related to backscatter interaction with vegetation, river bottom and shad-
owing by steep valley slopes. The understanding of SAR signal interaction with river ice 
remains incomplete [21,31]. Therefore, the local hydrological, morphological and climatic 
conditions might affect the accuracy of developed ice detection models and validation for 
other rivers. We analyzed long sections of the Nemunas (290 km) and Neris (235 km) Riv-
ers with different hydrological and morphological conditions. SAR data are more viable 
for ice extent monitoring in this region than optical remote sensing images due to almost 
permanent cloud cover during the cold season in Lithuania. We used the backscatter in-
tensity threshold method to detect pixels with ice in the rivers, and used in situ observa-
tion and Sentinel-2 Multispectral Imager (MSI) data to validate the accuracy of river ice 
detection. 

This study aims to provide an understanding of the application of Sentinel-1 SAR 
data for monitoring the extent of river ice. The main objective of this study was to evaluate 
the potential of SAR data to detect river ice in long sections of narrow rivers. Second, we 
tested the efficiency of classification threshold optimization using model sensitivity and 
specificity. Subsequently, we validated ice detection models in diverse ice conditions and 
described the potential sources of uncertainties. 

2. Materials and Methods 
2.1. Study Area 

Even a relatively high resolution of Sentinel-1 SAR IW GRD products limits the ap-
plication of river ice detection algorithms in narrow rivers. Consequently, for this study, 
we chose two major Lithuanian rivers: the Nemunas and Neris Riers (Figure 1). We stud-
ied ice in the Lithuanian part of these rivers due to data availability for validation from 
the Lithuanian Hydrometeorological Service hydrological stations. 



Remote Sens. 2022, 14, 1627 4 of 21 
 

 

 
Figure 1. The Lithuanian part of the Nemunas and Neris Rivers, the location of hydrological stations 
(black dots) with available ground observation data and river sections (color stripes) covered by the 
matching Sentinel-1 SAR and Sentinel-2 MSI observations used for the development and validation 
of the river ice detection models. 

The Nemunas and Neris Rivers are lowland rivers, reaching up to 200 m in width for 
most of their sections, and the width can exceed 300 m only in some places. At the Nemu-
nas River downstream from the Smalininkai hydrological station (HS), the river width is 
larger and can reach 500 m. These rivers are shallow and have several islands and shoals. 
We used river polygons from the national georeferenced base of cadastral data at scale 
1:10,000 to delineate the riverbanks. 

In the initial analysis of backscatter during winter, we found that due to different ice 
formation conditions, the backscatter from ice in the valley-dammed Kaunas hydropower 
station (HPS) Reservoir was different from the ice backscatter in other parts of the river. 
This difference was most likely caused by the reduced flow speed and thermal stratifica-
tion in the reservoir. Consequently, we excluded the 50 km-long Nemunas River section 
upstream from the Kaunas HP dam from further analyses. 

2.2. Model Development and Validation 
Depending on the stage and conditions of freezing and break-up, ice in rivers can 

consist of different types. These types range from frazil slush and frazil pans to large ice 
pans and consolidated ice cover. The boundaries between ice forms are fuzzy and subjec-
tive. Thus, the confident differentiation of river ice types is challenging, even when ob-
serving on the ground. This task is more challenging using remote sensing. Therefore, we 
aimed to study the ability of SAR to detect ice extent without the differentiation of ice 
types. On the other hand, we used in situ observations in hydrological stations to evaluate 
the skill of classification models to detect different types of ice. 

We used binary classification with water and ice classes for ice extent detection. The 
binary classification is mostly effective when the same class covers the whole pixel, which 
was an uncommon case in the rather narrow and shallow rivers that we studied. In fre-
quent cases with frazil ice and ice pans, the pixel backscatter values can be a combination 
of signals from ice and water surfaces. We used such cases to estimate the ability of the 
Sentinel-1 SAR to detect the ice signal, even in pixels that covered a mixture of ice and 
open water surfaces. 
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We developed classification models using VH and VV polarization backscatter inten-
sity, as well as the logistic model, to determine the river ice extent. VH and VV classifica-
tion models are the thresholds of the backscatter values in the respective polarizations. 
The logistic regression model linearly combines the VV and VH polarizations: 

log(p/(1 − p)) = β0 + βVV × VVSigma0 + βVH × VHSigma0, (1) 

where p is the probability of ice; VVSigma0 and VHSigma0 are the scattering coefficient values 
in the VV and VH polarizations; and β0, βVV and βVH are the model parameters. 

We used two ground truth sources for the development and validation of the river 
ice detection models: (1) in situ observations of ice types in hydrological stations, and (2) 
Sentinel-2 MSI ice extent estimated using the Sen2Cor processor. 

In situ information on ice types in all 11 hydrological stations (Figure 1) located on 
Nemunas and Neris Rivers was collected form the Lithuanian Hydrometeorological Ser-
vice archives. The classes describing the in situ ice conditions in hydrological stations 
were: open water, border ice, sparse or dense frazil ice, sparse or dense ice pans, consoli-
dated ice, consolidated ice with open water areas, and ice jams upstream or downstream 
from hydrological station. The differentiation of ice types is subjective, but it represents 
the most reliable aggregated information on ice conditions in the field of view of the ob-
server. Thus, we considered this information on river ice as the most reliable representa-
tion of the ground truth. In situ observations represent only small river areas in the field 
of the observer. To obtain information on ice conditions in other parts of the rivers, we 
used the Sen2Cor ice mask based on Sentinel-2 MSI data. Sen2Cor scene classification uses 
a series of threshold tests that use reflectance from the Sentinel-2 spectral bands. In addi-
tion, thresholds are applied on band ratios and radiometric indexes. Snow and ice masks 
are distinguished using the NDSI (Normalized Difference Snow Index). 

2.3. Satellite Data 
The data of in situ ice observations, as well as water and air temperature, were used 

to determine the beginning and end of the ice seasons. We looked for matchups (within a 
24 h window) between the Sentinel-1 SAR IW GRD High-Resolution and Sentinel-2 MSI 
Level1C acquisitions during the 2015–2019 cold seasons. The cloud cover in the Sentinel-
2 images significantly limited the number of matchups. Due to frequent overcast condi-
tions in the analyzed region in winter and early spring, we used Sentinel-2 images with 
cloud cover or cloud shadow over parts of the analyzed rivers. We found only eight oc-
currences (Table 1) where significant parts of analyzed rivers were covered by both Sen-
tinel-1 and at least partly cloudless Sentinel-2 images and had some type of ice (Figure 1). 

Table 1. Sentinel-1 SAR products and Sentinel-2 MSI products acquired within a 24 h window used 
to develop and test river the ice detection models. 

Sentinel-1 SAR IW GRD High Resolution Sentinel-2 MSI L1C 
Dataset 

Acquisition Date 
Acquisition 

Time 
Satellite Orbit Direction 

Relative Or-
bit 

Acquisition 
Time 

18 January 2017 16:19 S1B Ascending 29 09:53 

Testing 

25 January 2017 16:10 S1B Ascending 131 09:42 
14 February 2017 04:43 S1A Descending 153 09:41 
7 February 2018 16:11 S1A Ascending 131 09:51 

21 February 2018 04:43 S1A Descending 153 
09:30 
09:50 

(22 February 2018) 
24 February 2018 16:19 S1A Ascending 29 09:40 

26 February 2018 
04:51 S1A Descending 51 09:30 

16:03 S1A Ascending 58 
09:50 

(27 February 2018) 
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6 March 2018 04:34 S1B Descending 80 09:40:19 

Training 
10 May 2018 04:42 S1B Descending 153 

 
13 May 2018 16:19 S1B Ascending 29 

3 November 2018 16:20 S1A Ascending 29 
6 November 2018 04:42 S1B Descending 153 

All eight matchups were during the 2016/2017 and 2017/2018 winter seasons. We also 
used four Sentinel-1 products acquired in the spring and autumn of 2018 to estimate the 
baseline of backscatter from open water in the analyzed rivers. These products, together 
with 6 March 2018 data (when the majority of river was covered by ice), were used to train 
the ice detection models (Table 1). Seven other paired Sentinel-1 and Sentinel-2 products 
were used to validate the developed models. 

The satellite images were downloaded from the Copernicus Open Access Hub of the 
European Space Agency and pre-processed using SNAP (SeNtinel Application Platform) 
software [32]. 

We applied the orbit file, removed the thermal noise, calibrated and used Lee speckle 
filter with 3 × 3 size window on Sentinel-1 SAR IW GRD High-Resolution products. After 
pre-processing, the Sentinel-1 data had 10 m resolution. We also transformed the backscat-
ter coefficient values to dB. We used a Sen2Cor v.2.8.0 processor [33] to classify the aSen-
tinel-2 scenes. The resulting scene masks had a 20 m resolution. To train and test he ice 
classification model, we used only Sen2Cor water and snow/ice classes. Pixels within riv-
ers assigned to other Sen2Cor classes were not used in study. To merge data from both 
satellites, we resampled the Sentinel-1 data on a 20 m Sentinel-2 ice mask grid. 

3. Results 
3.1. Backscatter from Ice and Open Water 

To determine the optimal threshold between backscatter from water and ice, we an-
alyzed the distribution of backscatter values from river ice and open water (Figure 2). 
Classification accuracy and confidence highly depends on data used to train models. Dur-
ing the ice season, there is a possibility that the SAR signal in individual river pixels can 
be reflected by both ice and open water. In extreme cases, the Nemunas and Neris River 
ice season starts in November and lasts until April. Thus, to estimate backscatter from 
open water in the analyzed rivers, we used SAR data acquired in spring (10 and 13 May 
2018) and autumn (3 and 6 November 2018). The mean 30-day air temperature at the Kau-
nas meteorological station, which is near the center of our study area, was higher than 13 
°C before image acquisition in spring and higher than 8 °C before image acquisition in 
autumn. The formation of ice in such conditions is highly unlikely. Thus, we are confident 
that the observed signal was from open water. We used the Sentinel-1 SAR data from 6 
March 2018 to estimate the backscatter from river ice. We used these data because Sen2Cor 
scene classification showed large parts of analyzed rivers (98% of pixels) covered with ice 
only on that day. All Sentinel-1 pixels acquired on this day were assigned to the Sen2Cor 
ice class. With most of rivers’ surfaces covered with ice, there was a high confidence that 
the backscatter was from ice, even if ice field moved between the acquisition of Sentinel-
1 and Sentinel-2 data. On other days with available Sen2Cor classes, the large river sec-
tions were covered with floating ice, which could have moved between the sensing times 
of both satellites, leading to a higher uncertainty in the distribution of backscatter from 
the ice class. We had a highly unbalanced dataset for model development, with 30,557 
backscatter values of ice pixels and 207,645 values of water pixels. 
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Figure 2. The distribution of backscatter coefficient Sigma0 from ice (6 March 2018) and open water 
pixels (data from 10 and 13 May, 3 and 6 November 2018), including and excluding the zone within 
30 m away from riverbanks. 

Even without ice, the distribution of SAR backscatter from the pixels in the analyzed 
rivers was bimodal (Figure 2). Higher backscatter values were from the pixels in areas 
near riverbanks and were likely caused by mixed land-water pixels due to the backscatter 
from aquatic and riparian vegetation or exposed river bottoms. Using a trial-and-error 
method, we decided to use only pixels located farther than 30 m away from riverbanks, 
thus removing pixels that could cause uncertainty. 

The difference between the backscatter from Sen2Cor water and ice class pixels was 
high in both VV and VH polarizations (Figure 2). In the training dataset, the 0.1 quantile 
of backscatter intensity from ice pixels was −12.4 dB for VV polarization and −20.6 dB for 
VH polarization, and the 0.9 quantile of backscatter intensity from water pixels was −16.7 
dB and −23.2 for VV and VH polarizations, respectively. The difference between the me-
dians of backscatter in ice and water pixels was 12.9 dB in the case of VV polarization and 
9.7 dB in the case of VH polarization, showing that the differentiation between backscatter 
values was smaller in VH polarization than in VV polarization. 

3.2. Logistic Classification Model 
We fitted the logistic model to the training dataset (Table 1) using the Sen2Cor class 

as a target label. All model coefficients were significant (p > 0.01), but the scattering coef-
ficient in VV polarization (βVV = 0.76) had more than 10-times larger effect on the model 
result than the scattering coefficient in VH polarization (βVH = −0.07). The correlation be-
tween the scattering coefficient in both polarizations was high (r = 0.89). Thus, the larger 
difference of backscatter from ice and water in VV polarization indicates that it is a more 
important predictor. The backscatter in VV and VH polarization had the opposite effect 
on the model results. The interception β0 of the model fitted to the training dataset was 
7.80. 

The training dataset, considering the possible uncertainties in data and variable con-
ditions in different parts of river, was relatively small (238,202 observations. Therefore, 
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we used 100 subsets, selected with replacements from training dataset, to study the vari-
ability of the logistic model parameters (Figure 3). For each sample, we randomly selected 
7500 observations with replacements and fitted the logistic model to them. 

 
Figure 3. The distribution of logistic model coefficients estimated using 100 training dataset subsets, 
each consisting of 7500 pixels. Points were randomly jittered in horizontal direction to avoid over-
lapping. 

According to the Shapiro-Wilk test, the distributions of β0 (p = 0.35) and βVV (p = 0.69) 
were very likely to be normal, while βVH (p = 0.04) was more likely to be deviated from 
normal distribution. ΒVH was negative in 94% of the cases. The variance of βVH (mean = 
−0.07, standard deviation = 0.05) in comparison to the mean value was the largest of all 
model parameters. The value of βVH was much smaller than βVV, showing that its effect on 
the model result was less significant. The variance of β0 (mean = 7.77, standard deviation 
= 0.42) and βVV (mean = 0.76, standard deviation = 0.06) was small, indicating that the 
model parameters were stable with different training data. Considering that the small var-
iation of model parameters and the mean values of the parameters of the logistic model 
fitted to 100 subsets were very similar to the parameters of the model fitted to the complete 
training dataset, we decided to use the parameters estimated with all training data for 
further analyses. 

3.3. Classification Threshold 
To use SAR backscatter values in binary classification, the threshold dividing the ice 

and water classes must be estimated. In this study, we determined the optimal threshold 
for the classification models based on VV and VH polarization backscatter, as well as the 
logistic model, using the sensitivity and specificity (true negative rate) of classification 
with different threshold values. The sensitivity (true positive rate) in our case corresponds 
to the ratio of correctly identified ice, and the specificity (true negative rate) shows cor-
rectly detected water. The aim is to develop a classification model for the correct identifi-
cation of both ice and water. Thus, the optimal threshold value for a classification is where 
the specificity and sensitivity are equal (Figure 4). We tested the stability of all three clas-
sification models threshold value using the same 100 subsets of training data used to an-
alyze the variability of the logistic model parameters. The sensitivity and specificity of the 
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logistic classification model were calculated using 100 logistic models fitted to a particular 
subsample of data. 

 
Figure 4. Optimal ice and open water classification thresholds of the logistic, VH and VV models 
determined using 100 training dataset subsets. The threshold was considered optimal, and the true 
prediction rates for water (specificity) and ice (sensitivity) were equal. 

The variability of the optimal threshold for river surface type classification was based 
on the VV polarization scattering coefficient (mean = −13.7 dB, standard deviation = 0.2 
dB) and VH polarization scattering coefficient (mean = −21.2 dB, standard deviation = 0.2 
dB) was small (Figure 4). The variation of the optimal threshold was relatively large in the 
case of the logistic model (mean = 0.24, standard deviation = 0.02 dB). 

The classification based on the logistic model had a larger degree of freedom than the 
classification based on the scattering coefficient in VV or VH polarization. The combina-
tion of the β0, βVV and βVH parameters might determine the optimal threshold value for a 
particular logistic model. If the relationship between combinations of parameters of a par-
ticular model and its threshold value is strong, then it can be used to reduce the optimal 
threshold variability by interlinking the model parameters and reducing the degree of 
freedom. 

The model parameters βVV and βVH were highly correlated in models fitted to 100 
training data subsets (Figure 5). These parameters were linearly combined in the logistic 
model Equation (1), and the increase of the βVV parameter compensated the decrease of 
the βVH parameter. There was also a strong positive correlation between the β0, and βVH 
parameters (Figure 5). The optimal threshold value of the analyzed models had no clear 
link to the combinations of logistic model parameters. High and low threshold values 
were scattered in the parameter space without clear patterns (Figure 5), showing that the 
reduction of degrees of freedom is not likely to significantly affect the variability of opti-
mal threshold values. 
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Figure 5. Interdependency between logistic model parameters β0, βVV, βVH and ice/water classifica-
tion threshold value estimated using 100 training dataset subsets. 

Due to uncertainties in the observation phase and the pre-processing of SAR data, 
the best reasonable precision for scattering coefficient in VV and VH polarizations and its 
threshold value used for classification is 1. Considering the variability of logistic model 
parameters, the threshold value with precision higher than 2 is also not likely to be prac-
tical. The variability of estimated thresholds was small in comparison to desired precision. 
Thus, we used the mean of estimated threshold values for river ice detection (Table 2). 

Table 2. River ice detection models developed using Nemunas River Sentinel-1 SAR backscatter. 

Model Equation 

VV 
water 0 = VVSigma0 < −13.7 dB 

ice = VVSigma0 ≥ −13.7 dB 

VH 
water = VHSigma0 < −21.2 dB 

ice = VHSigma0 ≥ −21.2 dB 

Logistic 
ice = 7.8 + 0.76 × VVSigma0 − 0.07 × VHSigma0 < 0.24 

water = 7.8 + 0.76 × VVSigma0 − 0.07 × VHSigma0 ≥ 0.24 

The classification threshold for VH was very similar to the one used in the Coperni-
cus RLIE products (−22.3 dB). However, in our study the threshold for VV polarization 
was significantly higher than the one used in RLIE products (−16.7 dB) [34]. 

3.4. Model Validation 
The goal of binary classification is to assign discrete classes to continuous data. This 

discrimination between ice and open water classes works best when observations are in 
separate clusters divided by the selected threshold. In training data, we had two clusters: 
one for pixels with ice and one for pixels with water (Figure 6). We had a variety of con-
ditions in our testing dataset. Most of the pixels from 18 January 2017 and 21 February 
2018 were in two distinct clusters, and only a few pixels were near the classification thresh-
old point. Similarly, most of the pixels from 25 January 2017 were in two distinct clusters, 
but one of the clusters, which is likely to be composed of pixels with ice cover, was located 
near the crossing of classification thresholds of VH and VV polarizations (Figure 6). On 
other dates, the pixels did not form distinct ice and open water clusters. In the following 
part of results section, we examine the accuracy of binary classification under different 
distribution of backscatter values, compare the results of different SAR classification 
methods with each other and compare them to Sen2Cor classification (Table 3, Figure 7). 
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Figure 6. Distribution of observations in the VVSigma0 and VHSigma0 plain on different dates in the 
testing and training datasets. Red lines represent the ice and water classification thresholds used in 
models based on VV and VH polarization backscatter. 

 
Figure 7. The agreement of SAR-based logistic, VH and VV model classification with the Sen2Cor 
ice and water classes on different days from the testing dataset. 
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Table 3. The proportion of matching logistic, VH, VV and Sen2Cor classification model classes for 
water and ice on different days in the testing and training datasets. 

Date 
VV with 
Sen2Cor 

VH with 
Sen2Cor 

Logistic with 
Sen2Cor 

Logistic with 
VV 

Logistic 
with VH 

VH with VV 

18 January 2017 80.5 79.1 80.5 99.6 93.3 93.6 
25 January 2017 81.7 73.8 82.2 99.0 84.8 85.8 

14 February 2017 69.9 76.7 68.4 97.8 80.8 83.1 
7 February 2018 91.2 91.5 91.0 99.6 94.1 94.5 

21 February 2018 93.6 93.1 93.5 99.7 96.1 96.4 
24 February 2018 46.7 47.6 46.6 98.6 83.0 84.4 
26 February 2018 80.9 80.4 80.8 99.4 90.0 90.6 

Training data 95.2 93.7 95.4 99.7 96.7 97.0 

The VV and logistic classification models performed very similarly using the training 
dataset and testing data. The largest difference between these models was on 14 February 
2017 when the VV and logistic models predicted different classes for 2.2% of all pixels 
(Table 3). The mismatched cases were scattered, and their spatial distribution was spo-
radic. There was a larger disagreement between VV and VH classification. More than 10% 
of pixels were assigned to a different class on 25 January 2017, 14 February 2017 and 24 
February 2018. In the following paragraphs, we present a more detailed analysis of the 
agreement between SAR-based classification and Sen2Cor ice and water classes. We focus 
on the possible causes of classification uncertainty and model performance under differ-
ent ice conditions. 

3.4.1. Translucent Clouds and Cloud Shadow 
On 18 January 2017, we had Sentinel-1 and Sentinel-2 matchup data for a 95 km-long 

Nemunas River section (Figure 1). Border ice formed along banks in the eastern part of 
this river section, while the middle of the river channel remained open from ice. Starting 
from 10 km upstream from the Smalininkai HS river, the river section was covered with 
consolidated ice (Figure 8). Thin and translucent clouds, undetected by the Sentinel-2 
cloud masking process, partly covered this river section, and contributed to the mismatch 
of Sen2Cor and SAR-based classification results. Visual analysis of Sentinel-2 image re-
vealed that many pixels classified by Sen2Cor as ice were in open water, and pixels in the 
cloud shadow were classified as open water even if they were covered with ice. SAR-
based classification methods were not affected by clouds or their shadows, and were more 
accurate than Sen2Cor classification in this part of the river. 
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Figure 8. Nemunas River section near the Smalininkai HS affected by the translucent clouds and 
their shadows on 18 January 2017. The effect of clouds and their shadows for ice detection is visible 
in Sentinel-2 natural color composite (a) and the match of Sen2Cor classes with the VV model pre-
diction (b). 

3.4.2. Effect of Reservoir and River Valley Shadows 
On 25 January 2017, we had overlapping Sentinel-1 and Sentinel-2 data in a large part 

of the Neris River and in the Nemunas River upstream from the Kaunas HPS Reservoir 
(Figure 1). The consolidated ice was in a 40 km section of the Neris River near the Vilnius 
HS, and a 130 km section of the Nemunas River upstream from the Kaunas HPS Reservoir. 
In other sections of the analyzed rivers, only border ice was observed. The agreement be-
tween Sen2Cor and SAR-based classification was high in the Neris River (89% with the 
VV and logistic model, and 86% with VH). The largest mismatch of classes was in areas 
with shadow cast by the steep river valley near south-eastern riverbanks. In these areas, 
the Sen2Cor misclassified ice cover as water. 

The largest differences between Sen2Cor and SAR classification results were in the 
Nemunas River. Only 68% of pixels had the same VH class as the Sen2Cor class. The VV 
and logistic model classifications had better agreement with Sen2Cor (78% and 79%, re-
spectively). Similar to the case of the Neris River, Sen2Cor classified pixels in the shadow 
of valley as water even if they were covered with ice. This effect was most noticeable in 
the river part near the Namajunai HS (Figure 9a), where the valley slopes are high and 
steep. 

In the part of Nemunas River that is the closest to Kaunas HPS Reservoir (north from 
the Nemajunai HS), the SAR-based methods classified many pixels as water (Figure 9a), 
while Sen2Cor and visual inspection of the Sentinel-2 image revealed that almost all river 
surfaces were covered by consolidated ice or very dense frazil ice. In this part of the river, 
Sen2Cor classification was more accurate on 25 January 2017. It is likely that the slower 
current before the reservoir affected the ice formation conditions, making accumulated ice 
smoother and SAR backscatter lower. Using classification with the selected thresholds, 
the VH-based method was more sensitive to the slow current effect (Figure 9b) and was 
less accurate. 
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Figure 9. Nemunas River section between the Nemajunai HS and Kaunas HPS Reservoir (north 
from shown section) on 25 January 2017 was covered by ice. Sen2Cor predicted water class in the 
river valley shadow, while the VH model misclassified many pixels as water upstream from the 
HPS Reservoir (a). The VH model classified more pixels as water than the VV model (b). 

3.4.3. Water on Ice 
The fraction of pixels in which Sen2Cor and SAR-based methods assigned same clas-

ses was the smallest on 24 February 2018 (Table 3), but the largest number of pixels with 
mismatched classes occurred on 14 February 2017 (Figure 7). On 14 February 2017, we 
overlapped satellite data acquired for the Nemunas River downstream from the Kaunas 
HPS Reservoir and for a 70 km long section of the Neris River upstream from its mouth 
(Figure 1). According to ground observations, the Nemunas River was covered with con-
solidated ice in all hydrological stations downstream from the Smalininkai HS (111 km 
from mouth). Visual analysis of Sentinel-2 images revealed that consolidated ice or dense 
ice rafts were in the 175 km river section from the river mouth. Sen2Cor assigned most 
pixels in this section of the river to the open water class (Figure 10). 

 
Figure 10. VV model prediction compared to the Sen2Cor class on 14 February 2017. 
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A large portion of these pixels (27–40%) were assigned to the ice class by SAR-based 
methods (Figure 7). According to ground observations on the 14 February 2017, the river 
surface in the observer’s field of view was mostly covered with ice. Therefore, we cosnider 
SAR classification for this date as more accurate than Sen2Cor. The number of pixels clas-
sified by the VV model as water was still large, especially downstream from the Sma-
lininkai HS (Figure 10). The backscatter from these pixels was low (VV backscatter lower 
than −16.7 dB) (Figure 11c). Only 1.0% of ice pixels in training dataset had lower backscat-
ter values, suggesting that in areas not seen by hydrological station observers, the river 
surface was not covered with ice or, more likely, had a layer of water above the ice. 

The agreement of Sen2Cor classification with VH classification was better than with 
VV or logistic classification (Figure 7) on 14 February 2017. Many pixels were assigned to 
the water class by the VH model, while these pixels were assigned to the ice class by the 
VV model (Figure 11d). These differences between SAR-based VV and VH model results 
were in the same areas where Sen2Cor predicted water. 

 
Figure 11. Sentinel-2 natural color composition (a), VV model prediction compared to Sen2Cor class 
(b), VV polarization backscatter coefficient (c) and VV and VH classification mismatch (d) on 14 
February 2017 in the Nemunas River upstream from the Panemunes HS. 
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3.4.4. Frazil and Consolidated Ice 
According to ground observations in 2018, ice started to form in the analyzed rivers 

on 6–7 February. Border ice stayed in the majority of river sections until the 26 February. 
At the same time, sparse and dense frazil ice appeared for short periods. The Nemunas 
Delta Region River was covered with consolidated ice from the 11 February until the sec-
ond week of March. 

On 7 February 2018, border ice and sparse frazil ice were observed in most hydrolog-
ical stations. The Sen2Cor processor and SAR-based classification models detected border 
ice but were unable to detected frazil ice in the river channel. The largest mismatch be-
tween classes was on the edges of border ice, which was likely due to the averaging of the 
signal from water and ice in the pixel area, and the difference in acquisition time (7 h) 
between Sentinel-1 and Sentinel-2 data. The overall agreement between Sen2Cor and all 
SAR classification models was higher than 91% on this date, which is high considering the 
difference in the acquisition time of the images. 

The classification would be more sensitive to sparse frazil ice if the backscatter 
threshold was lower. To understand if different SAR backscatter thresholds could be used 
to detect sparse frazil ice, we used the 0.9 quantile of backscatter values from water pixels 
in the training dataset (−16.7 dB for VV and −23.2 dB for VH). Using these cut-off values, 
an additional 13.0% (VV) and 17% (VH) of pixels would be attributed to the ice class on 7 
February. A part of these pixels was adjacent to border ice, while the other part was lo-
cated in the open river channel, suggesting that the pixels might represent sparse frazil 
ice (Figure 12). On the 21 February 2018, frazil ice was not reported, and the lowering of 
ice detection threshold to the 0.9 quantile of open water backscatter would lead to an in-
crease in the ice pixels by 5.2% (VV) and 8.8% (VH). All pixels additionally classified as 
ice were on the edges of border ice. It seems that with the lowered threshold value, the 
sparse frazil ice can be detected using SAR backscatter. The trade-off of more sensitive ice 
detection would lead to the misclassification of water pixels. In case of this experimenta-
tion, 10% of pixels in our training dataset representing backscatter from open water in late 
spring and early autumn would be misclassified as ice. 

 
Figure 12. Sentinel-1 SAR backscatter in VV and VH polarizations in Nemunas River near the 
Lazdenai HS on a day with sparse frazil ice (7 February 2018) and without frazil ice (21 February 
2018). 
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On 24 February 2018, the frazil became denser. We paired satellite observations for a 
relatively short section of the Nemunas River between the Kaunas Lampedziai HS and 
Panemune HS (Figure 1). The backscatter from river pixels in most cases was close to the 
selected classification thresholds and formed single cluster in VVSigma0 and VHSigma0 scat-
terplot (Figure 6). Without a clear distinction between the backscatter from ice and water, 
VV and VH models both predicted that ice was in 35% of pixels with a Sen2Cor ice class, 
and that open water was in 72% (VV) and 75% (VH) of pixels with a Sen2Cor water class. 
Scattered and mostly translucent clouds in a part of Sentinel-2 image also contributed to 
the misclassification. For example, a 3 km river section to the west of the Smalininkai HS 
was covered with translucent clouds. According to Sen2Cor, the section was mostly cov-
ered with ice. However, when using VV polarization backscatter, many pixels in this part 
of river were classified as open water. Visual analysis of Sentinel-2 image suggests that 
Sen2Cor misclassified many pixels in this area, contributing to poor agreement between 
SAR based and Sen2Cor classification. The time gap between the Sentinel-1 and Sentinel-
2 image/data acquisitions was almost 7 h and might have affected the agreement of both 
classification methods, especially when ice was not consolidated and its arrangement in 
river could quickly change. The best agreement between the VV and Sen2Cor classifica-
tion methods was in areas with border ice and in areas of river channel where dense frazil 
ice was concentrated due to the river flow pattern. The difference between the VV and VH 
classification results was the largest on 24th February (15.6% of pixels). Many of the pixels 
classified as ice by the VV model and as water by the VH model were in areas with dense 
frazil ice. It is likely that VV polarization backscatter with the threshold used in our study 
is better is better at detecting floating river ice. 

During next 2 days, the ice conditions changed. On 26 February, consolidated ice was 
observed in all hydrological stations downstream from the Kaunas Lampedziai HS. In this 
part of the river, the concurrence between Sen2Cor and SAR-based classifications was 
high despite the large difference in the acquisition time of the Sentinel-1 (26 February 2018 
16:03) and Sentinel-2 (27 February 2018 09:50). The differences between classification re-
sults mostly occurred in the Neris River and Nemunas River upstream from the Kaunas 
Reservoir. In both sections with the lowest classification correlation, observers recorded 
frazil ice. 

4. Discussion 
In situ observations have some degree of uncertainty. An observer uses standard ice 

type classes to describe ice conditions in his field of view. The detected ice class depends 
on the experience of the observer and his interpretation, and might also depend on the 
visibility. Despite these facts, ground observations are the most reliable source of infor-
mation about river ice conditions. 

Optical satellite data with a high resolution and large spatial extent provides a pro-
spective alternative to ground observations of ice in the development of machine learning 
ice classification algorithms. The development procedure of machine learning algorithms 
involves the use of large quantities of data. Our study results suggest that the additional 
manual assessment of the quality of optical images is necessary before they can be used 
as data representing ground truth in the development of SAR-based river ice detection 
models. After the visual analysis of Sentinel-2 images, we found many cases when the 
river pixels were classified as ice with Sen2Cor due to scattered and often translucent 
cloud cover. These clouds were not detected by scene classification algorithms and were 
not included in the cloud mask. Cloud and river valley shadows also contributed to the 
misclassification of ice pixels. 

Even in cases of mismatch between Sen2Cor classes and predictions of SAR-based 
classification models, the SAR models agreed better with the ground observations and 
manual Sentinel-2 image interpretation results. SAR-based models were unable accu-
rately represent river ice conditions only in the Nemunas section with hydrology and ice 
formation affected by the Kaunas HPS Reservoir. This fact highlights the importance of 
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local studies, because even models developed using data from the same river might not 
be accurate in sections with diverse conditions. We used 100 subsets in the training dataset 
to test the stability of the classification model thresholds. The variation of optimal thresh-
old values was relatively small, even though our training dataset represented a river sec-
tion with uniform hydrological and morphological conditions. Selected thresholds per-
formed well in all analyzed Nemunas River and Neris River parts except the section near 
the Kaunas HPS Reservoir. It is likely that most optimal solution for this part of the river 
would be to develop dedicated ice detection models. There were no rapids or locations 
with significantly rough water surfaces in the analyzed river sections. Thus, we could not 
estimate how rough water might affect the ice detection accuracy with models used in this 
study. Other studies have encountered difficulties detecting river ice with SAR-based 
methods near rapids [13]. 

The Sentinel-1 acquisition time was ≈5 h earlier or ≈7 h later than the acquisition time 
of Sentinel-2 in the study area (Table 1). SAR-based ice classification models agreed better 
with the Sen2Cor class when river ice was consolidated and not moving. This is likely 
related to the different backscatter properties of moving and consolidated ice. 

The difference of backscatter from open water and ice in the analyzed rivers was sig-
nificant, but the backscatter from river pixels was in clearly separate clusters representing 
water and ice only in several cases. Frequent mild winters lead to very variable ice condi-
tions in the rivers. In most cases, cold spells are short, and only border and frazil ice form. 
All SAR and Sen2Cor classification models performed better detecting consolidated, bor-
der and dense frazil ice than sparse frazil ice. The analysis of SAR backscatter from river 
surfaces with and without frazil ice suggests that even sparse frazil ice can increase 
backscatter from the river surface. However, without visual data collected on the ground, 
it is impossible to quantify how different types of frazil ice can affect the backscatter. The 
information on hydrological and meteorological conditions is also necessary to increase 
confidence of these results. For long river sections with uniform ice properties, the radar 
incidence angle [21,35] might be an important factor affecting backscatter intensity and 
ice detection confidence. We did not find a clear effect of the incidence angle on the 
backscatter from ice and water on the analyzed days, most likely because it was out-
weighed by the high spatial variability of ice types and ice properties. 

In this analysis, we optimized classification models to provide the most accurate clas-
sification for both ice and water classes. We selected the classification threshold at the 
point where the sensitivity was equal to specificity. If the goal is to identify the beginning 
of the ice season or detect sparse frazil ice, then a different approach could be used. For 
example, using a similar classification threshold for VV backscatter (−16.9 dB) as in the 
Copernicus River and Lake Ice Extent products [34], we were more likely to detect frazil 
ice on 7 February 2018. At the same time, the risk of classifying water pixels as ice would 
be much higher. Using this threshold, about 10% of the pixels in our model training data, 
acquired during warm weather conditions in May and November (Table 1), would be 
assigned to the ice class. 

VV backscatter- and logistic model-based classification gave very similar results. The 
VV and logistic model classification result was the same in 99.3% of all cases in the testing 
dataset. This fact is not surprising because VVSigma0 had a much larger weight in the logistic 
model equation than VHSigma0. The application of VV-based classification is more practical 
for ice detection than logistic model classification. With VV classification, the same result 
can be achieved using one polarization data instead of two. In addition, the application of 
logistic model is an additional step, which can be avoided to save time and resources. The 
most important advantage of the VV polarization-based classification is that its results are 
easier to interpret than the logistic model output, which is useful in the assessment of 
classification accuracy, and might increase user confidence and uptake. 

The classification using VV polarization agreed better with Sen2Cor than VH classi-
fication on all analyzed dates except 14 February 2017. On this date, VH polarization-
based classification had better agreement with Sen2Cor, but at the same time, according 
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to ground observations, Sen2Cor misclassified many ice pixels as water. Having that in 
mind, it is likely that the VV classification model performed better than the VH model, 
even on 14 February 2017. 

As mentioned before, all SAR-based classification methods misclassified large frac-
tion of pixels with ice upstream from the Kaunas HPS Reservoir, but VH polarization 
backscatter was more affected than VV backscatter. In the large proportion of pixels in 
this part of the river, VH backscatter was lower than the classification threshold, while VV 
backscatter was higher than the threshold (Figure 9), correctly predicting ice. VH classifi-
cation was also not as accurate as VV classification in the case of floating river ice. 

These facts suggest that, at least in the analyzed sections of the Nemunas and Neris 
rivers, ice detection using VV polarization backscatter would be more accurate than using 
VH backscatter and more feasible than using the logistic model. 

In this study, we evaluated model accuracy on a pixel basis, but such approach is not 
necessary in the practical application of ice extent detection models. It is more important 
to detect river sections with ice than to be confident in the class of the individual pixel. 
Thus, spatial reducers, such as the majority, would be likely applied in practice. The ac-
curacy of individual pixel classification remains important because it affects the confi-
dence of the aggregation result. 

5. Conclusions 
The river ice detection based on optical data had large uncertainties related to cloud 

cover and shadows. Thus, it cannot be reliably used as a single ground truth source in the 
quantitative evaluation of SAR-based ice detection model accuracy. Additional ground 
observation data and the manual interpretation of optical images are necessary to under-
stand the prediction accuracy. Sentinel-1 SAR models were more reliable and more accu-
rate in Nemunas and Neris River ice detection than Sentinel-2 MSI Sen2Cor scene classi-
fication. The ice detection model based on VV polarization backscatter performed better 
than the model based on VH backscatter. The correlation between the predictions of the 
VV model and logistic model, linearly combining VV and VH polarization backscatter, 
was r = 0.99. Thus, the use of logistic model does not offer significant gains in practice. 

The optimal thresholds of the classification model-estimated findings when specific-
ity was equal to sensitivity performed well in most parts of the Neris and Nemunas Riv-
ers, except the section in which river hydrology was affected by the Kaunas HPS Reser-
voir. To achieve better classification accuracy, separate ice detection models could be de-
veloped for river sections with diverse hydrology and morphology. With the determined 
thresholds, we were able to detect consolidated, border and dense frazil ice. However, in 
the case of sparse frazil ice, the detection threshold had to be lowered, increasing model 
sensitivity. 

Our study results support that Sentinel-1 SAR backscatter can be used to detect ice 
with high confidence, but, in most cases, the development and validation of models re-
quires the manual inspection of training data quality and validation on river sections with 
different hydrological conditions. The proposed methodology would provide most confi-
dent results in lowland rivers with steady currents, but it might not be applicable in sec-
tions with disturbed water surfaces near riffles or rapids and in sections with a very slow 
current, for example, valley-dammed reservoirs. 
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