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Abstract. The proposed multi-objective optimization algorithm hybridizes random global search
with a local refinement algorithm. The global search algorithm mimics the Bayesian multi-objective
optimization algorithm. The site of current computation of the objective functions by the proposed
algorithm is selected by randomized simulation of the bi-objective selection by the Bayesian-based
algorithm. The advantage of the new algorithm is that it avoids the inner complexity of Bayesian
algorithms. A version of the Hooke–Jeeves algorithm is adapted for the local refinement of the
approximation of the Pareto front. The developed hybrid algorithm is tested under conditions pre-
viously applied to test other Bayesian algorithms so that performance could be compared. Other
experiments were performed to assess the efficiency of the proposed algorithm under conditions
where the previous versions of Bayesian algorithms were not appropriate because of the number of
objectives and/or dimensionality of the decision space.

Keywords: global optimization, Bayesian algorithm, Hooke–Jeeves, local refinement.

1 Introduction

The Bayesian approach is one of the most active in the development of methods for
non-convex black-box optimization [1, 4, 27]. Despite active research, some challenges
remain unresolved; see, e.g., the review in [27]. A serious challenge in widening the
application area of Bayesian algorithms is their inner complexity. One way to reduce
the complexity could be by the partition-based implementation which was successful
in Lipschitz optimization [12, 17, 19–21, 32]. Indeed, the inner complexity of partition-
based Bayesian algorithms for single and multi-objective optimization was proved to be
lower than that of the standardly implemented algorithms [25, 29, 31]. Nevertheless, the
complexity of these algorithms still limits the number of evaluations of the objective
functions which would be appropriate for solving problems of higher dimensionality
and problems with a larger number of objectives. In the present paper a multi-objective
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optimization algorithm implementing heuristically the ideas related to the Bayesian ap-
proach without using a formal model of uncertainty about the objective functions is
presented. A version of the bi-objective selection of a site for the current computation
of the objective functions is applied following the idea proposed in [24]. Two heuristic
criteria are used for the selection of a computation point: an estimate of its distance to
the Pareto front and the uncertainty of the estimate. These criteria mimic the stochas-
tic model-based assessments used in [24] which assess the exploitation and exploration
character of the search strategy. The balance between exploration and exploitation can be
varied rather broadly by accepting an appropriate compromise between the expectation
and uncertainty criteria. However, the local refinement of the approximate solutions is
frequently more efficient using a local search method than by a locally biased global
search method [18, 22, 26]. The hybridization of the single-objective Bayesian global
search with local optimization methods is shown to be efficient in [25, 30]. In the present
paper a local search algorithm for the refinement of the approximation of the Pareto
front found by the global search algorithm was applied. A version of the Hooke–Jeeves
algorithm is adapted to multi-objective optimization. The proposed hybrid algorithm is
tested under conditions previously applied to test other Bayesian algorithms [28, 31] so
that performance could be compared. Other experiments were performed to assess the
efficiency of the proposed algorithm under conditions where the previous versions of
Bayesian algorithms were not appropriate. The results were compared with the results of
the popular evolutionary optimization algorithms NSGA2 and NSGA3 [3, 7, 8] using test
problems up to 15 objective functions with up to 30 variables.

2 The proposed hybrid algorithm

Black-box multi-objective minimization problems:

minF (x), x ∈ A ⊂ Rd, F (x) =
(
f1(x), . . . , fm(x)

)T
,

are considered assuming that the feasible region (decision space) is a unit hypercube A =
[0, 1]d to which any hyperrectangular region can be rescaled. Ranges of the objective
functions are equal and rescaling is provided by the algorithm.

The algorithm consists of two alternating counterparts carried out multiple times:
random global search and local refinement of the Pareto front approximation found by the
global search algorithm. The Bayesian global optimization strategy would be preferable
because of the rational balancing of exploration and exploitation. However, the number
of iterations (computations of the objective functions) of the Bayesian algorithms is con-
siderably limited due to their inner computational complexity. The number of iterations
is limited to several hundred for the standardly implemented Bayesian algorithms, and
several thousand for the Bayesian partition-based algorithms [27]. The idea is to mimic
the search strategy of the Bayesian algorithm without using a stochastic model of the
objective functions and thus avoiding the basic computational burden. A randomized
algorithm is proposed where the criteria for selecting a point for computing the objective
functions are similar but much simpler than the Bayesian approach-based criteria [24].
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The reduced computational burden allows a considerably larger number of iterations;
see the section on testing results. The global search phase interchanges with the local
refinement phase. The approximation of the Pareto front is refined by a version of the
Hooke–Jeeves algorithm adapted to multi-objective optimization. The process of alter-
nating phases of global and local searches is terminated by a user-defined termination
condition.

The considered algorithm is initialized by the predefined number of computations of
the objective functions at the random points uniformly distributed in the feasible regionA.

2.1 Global search

The proposed algorithm consists of two alternating counterparts carried out multiple
times: global search and local refinement. Global search runs after the initialization or
after previous global-local stages and thereafter is altered with local search. Let us con-
sider the current start of global search; the set of points where the objective functions are
already computed is denoted by

UA = {xi ∈ A | i = 1, . . . , N},

and the corresponding set of function values is denoted by

U =
{
F (x)

∣∣ x ∈ UA

}
,

where non-dominated points of U constitute current Pareto optimal solutions set in ob-
jective space P ⊆ U and corresponding Pareto optimal solutions set in decision space
PA ⊆ UA. This kind of global search with the uniform distribution of function evaluation
points is a worst-case optimal algorithm in case function evaluation budget is prede-
fined and optimized multi-objective functions are Lipschitz functions [23]. The main
disadvantage of this method is that when a decision space dimensionality increases the
function evaluation count increases exponentially. However, the worst-case is very spe-
cific: the Pareto optimal set of optimized multi-objective function have a single point,
and the solutions are represented by a single point [23]. Most optimization problems in
engineering and science are not worst-case so some strategies improving the method’s
performance by imitating Bayesian search can be applied [2, 14, 29]. Bayesian approach-
based optimization algorithms search new location in decision space for a new function
evaluation based on trade-off values of statistically assessed function’s mean value and
variance [16,28]. The location of decision space with near-optimal function’s mean value
has a chance to be a new optimal point even in the case of little improvement of the
function’s evaluation value. Otherwise, a location with a high function’s variance value
has a chance of being a new optimal point in the case a vast improvement of the function’s
evaluation value. However, the computational burden of searching location in decision
space for next function evaluation is limiting a Bayesian multi-objective optimization
algorithm’s application area. Coping with such computational burden the implementation
based on the rectangular partition of the feasible region is proposed in [29, 31]. The
vertices count of hyperrectangle doubles with every new dimension. The algorithm is
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an iterative hyperrectangle subdivision by bisection. The hyperrectangle is bisected by
a hyperplane orthogonal to its longest edges. The function evaluations are computed at
intersection points and the evaluation count is only half of the hyperrectangle vertice
count. This way rectangular partition-based Bayesian algorithm is not competitive for
optimization problems having high dimensional decision space.

Strategies to mimic Bayesian search should combine simplicity and numerical sub-
stantiation. Combining both mentioned properties the exploration-exploitation strategy
can be used, i.e., let us say new random points Unew

A = {xi ∈ A | i = 1, . . . , q · N}
(q is parameter value) are uniformly generated in feasible region A and for every point
xi ∈ Unew

A bi-objective selection functions are calculated:

θ1(xi) = ‖xi − xmin‖, xmin = argmin
x∈UA

‖xi − x‖, (11)

θ2(xi) =
∥∥F (xmin)− Fmin

∥∥, Fmin = argmin
F∈P

∥∥F (xmin)− F
∥∥, (12)

where θ1(xi) is a generated point’s xi ∈ Unew
A Euclidean distance to the closest known

point xmin ∈ UA, and θ2(xi) is the closest known point’s xmin ∈ UA function evaluation
vector’s F (xmin) ∈ U Euclidean distance to the closest current Pareto optimal solution
Fmin ∈ P . In case when the closest known point’s function evaluation vector F (xmin) ∈
U is non-dominated Pareto optimal solution F (xmin) ∈ P ⊆ U , the function θ2(xi)
has zero value. Please note that θ2(xi) value is calculated using min-max normalized
function F (x) = (f1(x), . . . , fm(x))T values. An ideal F ∗ = (f∗1 , . . . , f

∗
m)T and a nadir

F nad = (fnad1 , . . . , fnadm )T point values are taken as minimum and maximum function
values [3]. Normalized function values can be expressed by the following formula:

F norm(x) =

(
f1(x)− f∗1
fnad1 − f∗1

, . . . ,
fm(x)− f∗m
fnadm − f∗m

)T

. (2)

Function θ1(xi) value can be viewed as the radius of hypersphere with center point
xi ∈ Unew

A and with no function evaluations inside of it. In case when function θ1(xi)
has a large value, a large unexplored hypersphere is found, and new function evaluation
in its center (point xi) is reasonable as this corresponds to the exploration strategy. On
the other hand, the second function θ2(xi) value can be viewed as the minimal distance
of optimized function’s F (x) nearest-neighbor interpolation value at point xi to current
Pareto optimal solutions. In the case of a small second objective function θ2(xi) value, the
generated point’s xi ∈ Unew

A closest known point xmin ∈ UA has near-optimal function
value F (xmin) ∈ U , so the new function evaluation at point xi is reasonable as this
corresponds to the exploitation strategy. The exploration-exploitation strategy is achieved
by making new function evaluations at points xi ∈ Unew

A having minimal trade-off Pareto
optimal values of selection functions (−θ1(xi), θ2(xi))T. Function θ1(xi) has a negative
sign because it is maximized. After new function evaluations are made, the sets U , UA,
P , PA are updated and reused in next phases or next iterations of the algorithm. Reuse of
search information is shown to be efficient for multi-objective optimization problems [11].

To induce function evaluations clustering near Pareto optimal solutions, the global
search has two random points generation modes: global uniform generation in all feasible
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region A and local uniform generation near current Pareto optimal solutions, i.e., for all
Pareto optimal solutions xP ∈ PA, a series of small hypercubesA1, . . . , An having center
point xP is created, and the above-described procedure is applied to a particular subregion
of feasible regionAn ⊂ · · · ⊂ A1 ⊂ A. HypercubeAi has a double-sized edge compared
to next Ai+1 hypercube, and the shrinking of hypercubes stops when there are no known
point solutions in Ai+1 except center point xP ∈ PA.

2.2 Local refinement

The proposed exploration-exploitation global search strategy lacks effective local refine-
ment since randomly generated points lack improvement direction. On the contrary, the
Hooke–Jeeves single-objective optimization algorithm searches function improvement
direction by taking a step in all decision variables [13]. A multi-objective optimization
problem can be reduced to a single-objective optimization problem by scalarization meth-
ods such as Chebyshev scalarization [15]. The Chebyshev scalarization requires a weight
vector to get a single optimal trade-off solution. To get an approximation of Pareto op-
timal front, a multiple uniformly generated weight vectors should be used. Although
weight vectors are uniformly generated, the resulting Pareto front approximation may
be non-uniformly distributed, and human expert intervention may be needed to generate
additional weight vectors to get uniformly distributed Pareto front approximation [2, 14].
To avoid complicated weight vectors selection, a weight-free approach to multi-objective
optimization problems using a modified version of Hooke–Jeeves direct search is pre-
sented [5]. In this paper a novel approach for conversion of a multi-objective optimization
problem to a single-objective optimization problem without the use of the weight vectors
is suggested.

The multi-objective function is converted to a single-objective surrogate function
fs(x), x ∈ A, which has a current solution: a decision vector xcur and multi-objective
function evaluation vector F (xcur). Initially, the surrogate function has predefined value
fs(xcur) = 0. When the new solution xnew dominates the current solution F (xcur) ≺
F (xnew), the surrogate function value at new location xnew decreases fs(xnew) =
fs(xcur)− 1, and the current solution is updated xcur = xnew. Otherwise, when the new
solution xnew does not dominate the current solution F (xcur) ⊀ F (xnew), the surrogate
function value at new location xnew remains the same fs(xnew) = fs(xcur), and the
current solution xcur is not updated, i.e.,

fs(x) =


fs(xcur)− 1 when F (xcur) ≺ F (x)

(current solution updated: xcur = x),
fs(xcur) when F (xcur) ⊀ F (x).

For every current Pareto optimal solution xP ∈ PA, a separate surrogate function
having Pareto optimal solution as current solution xcur = xP is defined. Every defined
surrogate function is optimized using the Hooke–Jeeves optimization algorithm taking xP
as the start point:

min fs(x), x ∈ A ⊂ Rd.
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Figure 1. Example Pareto front (a) of minimized bi-objective function F (x) = (f1(x), f2(x))T. Blue
circles are the set of current Pareto optimal function evaluations – P . For Pareto optimal solution xP ,
a minimized surrogate fs(x) function is defined (fs(xP ) = 0). A surrogate function value at minimal
point is negative fs(xmin) < 0, xmin = argminx∈A fs(x), so the value of the original bi-objective
function at the newly found solution F (xmin) (red asterisk) dominates bi-objective function’s value at the
initial point F (xP ). Function evaluation F (xmin) at solution found by surrogate function minimization
xmin = argminx∈A fs(x) is in the area bounded by the Pareto front and rectangle defined by points: F (xP )

and ideal point of minimal function values F ∗ = (f∗1 , f
∗
2 )

T (black dot). On the right (b), surrogate functions
are defined for all current Pareto optimal solutions (blue circles). Possible solutions found using surrogate
functions minimization cover almost the entire Pareto front except for small parts near minimal values of
functions f1(x) and f2(x).

In the case of negative value of surrogate function at minimal point fs(xmin) < 0, xmin =
argminx∈A fs(x), the value of original multi-objective function at the newly found so-
lution F (xmin) dominates multi-objective function’s value at Hooke–Jeeves optimization
start point F (xP ), i.e., the newly found solution’s value F (xmin) is located closer to the
true Pareto front compared with the initial function value F (xP ). Function evaluation
F (xmin) at solution found by surrogate function minimization xmin = argminx∈A fs(x)
is in the area bounded by true Pareto front and hyperrectangle defined by points: F (xP )
and ideal point of minimal function values F ∗ = (f∗1 , . . . , f

∗
m)T. An example of the

bi-objective case is shown in Fig. 1.

2.3 Implementation and pseudo-code

The basic concepts of the proposed optimization algorithm are presented in previous
subsections, but a more detailed explanation of the whole picture is still needed. Therefore
the pseudo-code of the proposed optimization algorithm is given in Algorithm 1. List of
the notations used:

1. F – a multi-objective optimized function.
2. d – count of variables.
3. A = [0, 1]d – a feasible region of unit hypercube.
4. UA – set of all points in a feasible region A = [0, 1]d.
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5. U – set of all function evaluations {F (x) | x ∈ UA}.
6. PA – points in a feasible region A = [0, 1]d of current non-dominated Pareto

optimal solutions.
7. P – function evaluations of current non-dominated Pareto optimal solutions.
8. Nmax – maximum allowed number of function F (·) evaluations.
9. Imax – maximum iteration number of global search with local refinement.

10. N – number of initial random solutions.
11. q ·N – number of randomly generated candidate points in decision space for new

function evaluations.
12. p – part p ∈ [0, 1] of function evaluations get by local generation near current

Pareto optimal solutions compared to function evaluations get by global generation
in the entire feasible region A.

13. h0 and hn – step size parameters of the Hooke–Jeeves optimization algorithm.
The full set of step sizes from largest to smallest are calculated using the following
expression: {0.8 · 2−i | h0 6 i 6 hn}, where the largest step size is 0.8 · 2−h0 and
the smallest step size is 0.8 · 2−hn .

14. Update – a Boolean parameter value if it is set to true, the step size parameters h0
and hn are updated at the second and following iterations of global search with lo-
cal refinement. For every Pareto optimal solution xP ∈ PA the value h0 is updated
so that the largest step size would be approximately equal to minimal Euclidean
distance to another Pareto optimal solution: 0.8 ·2−h0 ≈ minx∈PA

‖xP −x‖. The
value hn is also updated so that the smallest step size would be smaller than the
largest: hn = max{h0 + 2, hn}.

Some remarks explaining the pseudo-code of the proposed optimization algorithm
will be given. At the first algorithm’s iteration (I = 1), the local refinement phase
optimizes not only the surrogate function but also every single-objective function of the
optimized multi-objective function fi(·) ∈ F (·) to get limit solutions of Pareto front
approximation. Solutions that have been found using the surrogate function or single
criteria function optimization are not used to define and optimize the new surrogate func-
tion anymore because the surrogate function value at this point is near-optimal already.
Instead, a non-dominated Pareto optimal solutions found by the global search phase are
used to define and optimize new surrogate functions this way inducing a search in the
unexplored area to find new Pareto optimal solutions. The step size parameters h0 and
hn are updated (value of parameter Update must be set to true) so that the Hooke–Jeeves
optimization algorithm’s largest step size would be approximately equal to minimal Eu-
clidean distance to another Pareto optimal solution. In the case of a small distance to
another Pareto optimal solution, only small adjustments are needed so small step sizes
should be used. In the case of a large distance to another Pareto optimal solution, the
new distantly located solution is found, therefore more excessive local search is needed
during surrogate function optimization so that initially large step sizes should be used.
Please note that the global search phase can be reduced to simple uniform distribution of
function evaluation points in case when the following parameters are selected: q = 1/N ,
p = 0.
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Algorithm 1. The pseudo-code of the proposed optimization algorithm.
1: procedure OPTIMIZE(F)
2: UA ← randomly generated N points in feasible region A = [0, 1]d,
3: U ← function evaluation F (x) of randomly generated points x ∈ UA,
4: PA ← points in feasible region A = [0, 1]d of current non-dominated Pareto optimal solutions,
5: P ← function evaluations of current non-dominated Pareto optimal solutions,
6: HJ ← set of solutions found by the Hooke–Jeeves algorithm, I ← 0 iteration count,
7: while |UA| 6 Nmax and I 6 Imax do
8: I ← I + 1,
9: if p > 0 then

10: Pold ← PA,
11: for xP ∈ Pold do
12: A1 ← xP centered hypercube having edge size 0.2,
13: while A1 have inside only one point xP do
14: Increase the edge size of hypercube A1 by 0.2,
15: end while
16: i← 1, Ai ← A1,
17: while Ai has inside more than one point xP and edge size > 2−hn do
18: Unew

A ← generated random points {xi | i = 1, . . . , q ·N} inside of hypercube Ai,
19: Make function F (·) evaluations at points xi ∈ Unew

A having minimal trade-off values
of selection functions (−θ1(xi), θ2(xi))T,

20: Update the sets U, UA, P, PA with new function evaluations,
21: Ai+1 ← halve edge of Ai, i← i+ 1,
22: end while
23: end for
24: end if
25: while (1− p) > part of function evaluations get by generation in the entire feasible region A do
26: Unew

A ← generated random points {xi | i = 1, . . . , q ·N} inside of hypercube A,
27: Make function F (·) evaluations at points xi ∈ Unew

A having minimal trade-off values of
selection functions (−θ1(xi), θ2(xi))T,

28: Update the sets U, UA, P, PA with new function evaluations,
29: end while
30: Pold ← PA \HJ ,
31: for xP ∈ Pold do
32: Define surrogate function fs(x) having current solution xcur ← xP ,
33: if I > 1 and Update ≡ true then
34: Update step size parameters h0 and hn of Hooke–Jeeves algorithm,
35: end if
36: Optimize xmin = argminx∈A fs(x) using Hooke–Jeeves and taking xP as start point,
37: Complement set of solutions with new solution HJ ← HJ

⋃
{xmin},

38: Update the sets U , UA, P , PA with new function evaluations,
39: end for
40: if I ≡ 1 then
41: Pold ← PA,
42: for fi(·) ∈ F (·) do
43: Find solution with minimal value of current function xP = argminx∈Pold

fi(x),
44: Optimize xmin = argminx∈A fi(x) using Hooke–Jeeves and taking xP as start point,
45: Complement set of solutions with new solution HJ ← HJ

⋃
{xmin},

46: Update the sets U , UA, P , PA with new function evaluations,
47: end for
48: end if
49: end while
50: return {U, UA, P, PA}.
51: end procedure
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The global search phase interchanges with the local refinement phase multiple times.
The algorithm works until the maximum allowed number of function F (·) evaluations
or the maximum iteration number of global searches with local refinement is reached.
The algorithm returns a set of all function evaluations and a set of non-dominated Pareto
optimal solutions.

3 Performance analysis

This section first presents theoretical convergence analysis of the proposed algorithm,
and then the performance of the proposed algorithm is evaluated by the numerical ex-
periments. Many optimization problems in engineering and science have very limited
function evaluation budget, so the proposed optimization algorithm was tested in case
of extremely low function evaluation budget, and the results were compared with the
results of Bayesian rooted optimization algorithms [31]. On the other hand, a good per-
formance in case of the high dimensionality of feasible region is a desirable feature, so
the optimization algorithm was tested with test suite ZDT having many decision variables
(up to 30) [33]. Finally, test suite DTLZ was used in case of many-objective (up to 15)
optimization problems [9]. The results of the last two cases were compared with the results
of popular evolutionary optimization algorithms NSGA2 and NSGA3 [3, 7, 8].

3.1 Convergence analysis

To prove the function evaluations in the decision space of the proposed algorithm are
everywhere dense, let part of function evaluations get by generation in the entire feasible
region A have a non-zero value (1 − p > 0), and a number of generated random sample
points inside of a unit hypercube A have q · N > 2 value. Let a maximum allowed
number of function evaluations and a maximum iteration number of a global search with
a local refinement approach infinite (Nmax → ∞, Imax → ∞), then points of function
evaluations in a decision space UA are everywhere dense in the decision space A.

Let us say the opposite, there remains some hypersphere S having inside no points
from the set UA of function evaluations in a decision space. Let the radius value of the
hypersphere S be ε > 0, and a center located at a point xS ∈ A in a feasible area. Let
us define a hypersphere S0 having a radius value ε/3 and a center located at the same
point xS , hereby this newly defined hypersphere is inside of the hypersphere S, S0 ⊂ S.
Let us define another hypersphere S1 having a radius value ε/3 and a center located
at a point xS1 which is a point of function evaluations in a decision space xS1 ∈ UA.
During every iteration of the proposed algorithm, a number q · N of random sample
points are uniformly generated inside of the hypercube A. Let us define an event of the
case, then one of random sample points xrand hits inside of the hypersphere S0, so the
Euclidean distance between points xS and xrand is less than a radius of the hypersphere
S0, i.e., ‖xS − xrand‖ < ε/3, and the remaining generated random points {xi | i = 1,
. . . , q · N − 1} hit inside of the hypersphere S1, so the Euclidean distances between
points xS1

and xi, i = 1, . . . , q · N − 1 are less than a radius of the hypersphere S1,
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i.e., ‖xS1
− xi‖ < ε/3, i = 1, . . . , q · N − 1. Such a defined event has a non-zero

probability value, and it can be calculated in the following way. Assume that the value
of volumes of parts of the hypersphere S0 and the hypersphere S1 inside of the feasible
area A are noted as VS0 , VS1 . Volumes will have non-zero values VS0 > 0, VS1 > 0, as
well as the value VA = 1 > 0 of the unit hypercube volume of the feasible area A. Then
the probability of the defined event has a non-zero constant value of C1

q·N · (VS0
/VA) ·

(VS1/VA)
q·N−1 > 0. This means the defined event will definitely occur as a maximum

iteration number of a global search with a local refinement approach infinite Imax →∞,
and so experiment count approaches infinite. Let us say the defined event occurred at an
iteration I1. Selection functions are calculated at points (−θ1(xi), θ2(xi))T, i = 1, . . . ,
q ·N − 1, and at a point (−θ1(xrand), θ2(xrand))T, taking points having minimal trade-
off Pareto optimal values as evaluation points of an optimized function F (·). A selection
function θ1(x) is the generated point’s x Euclidean distance to the closest known point
xmin ∈ UA (as defined by Eq. (1)). Therefore, these inequalities are valid: θ1(xrand) >
2ε/3 and θ1(xi) < ε/3, i = 1, . . . , q · N − 1, so the selection function θ1(xrand) at
a point xrand has the biggest value; consequently, a vector of selection functions values
(−θ1(xrand), θ2(xrand))T at a point xrand will belong to minimal trade-off Pareto optimal
values of the selection functions, so the optimized function F (·) is evaluated at a point
xrand, and a new point is added to the set of function evaluations in the decision space
UA ← UA

⋃
{xrand}. This means a function evaluation point xrand ∈ UA is added to the

hypersphere S0 and S as S0 ⊂ S, and this is a contradiction to the statement that there
remains some hypersphere S having inside no points from the set of function evaluations
in the decision space UA. This means that points of UA are everywhere dense in the
decision space A.

To prove the convergence of the proposed algorithm, let the optimized multi-objective
function F (x) = (f1(x), . . . , fm(x))T, x ∈ A, consist of Lipschitz-continuous functions
f1(x), . . . , fm(x), and A is a feasible area of a unit hypercube. Let the part of func-
tion evaluations get by generation in the entire feasible region A have a non-zero value
(1 − p > 0), and a number of generated random sample points inside of the unit hyper-
cube A have q ·N > 2 value, and let a maximum allowed number of function evaluations
and a maximum iteration number of a global search with a local refinement approach
infinite Nmax → ∞, Imax → ∞, then to any point on the true Pareto front x∗ ∈ A,
F (x∗) the proposed algorithm will find a solution xP ∈ UA, F (xP ) with any small error
value ε > 0 as an Euclidean distance between the found solution and a point on the true
Pareto front ‖x∗ − xP ‖ < ε.

Let us say the opposite, there is a point on the true Pareto front x∗ ∈ A, F (x∗)
having no solution of the proposed algorithm with an error value ε. This means there is
a hypersphere S with a radius value ε and a center located at a point x∗ having inside no
points from a set UA of function evaluations in a decision space. But we already proved
that points of UA are everywhere dense in the decision space A. This means there is
a solution xP ∈ UA, F (xP ) inside of the hypersphere S and, consequently, inequality
‖x∗ − xP ‖ < ε is valid, and this is a contradiction to the statement that there is a point
on the true Pareto front x∗ ∈ A, F (x∗) having no solution of the proposed algorithm
with an error value ε. This means to any point on the true Pareto front x∗ ∈ A, F (x∗)
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the proposed algorithm will find a solution xP ∈ UA, F (xP ) with any small error value
ε > 0.

The investigation of the rate of convergence is more complex. On the other hand,
the performance of the proposed algorithm is evaluated by the numerical experiments
presented in the next subsections.

3.2 Numerical experiments having low functions evaluation budget

In case when experiments have low functions evaluation budget, the results of the pro-
posed algorithm were compared with the results of Bayesian rooted optimization algo-
rithms: standard and partition-based implementations of the P-algorithm [31]. Several
test problems are solved to illustrate the performance of Bayesian rooted optimization
algorithms [31]. The same test problems will be used here.

Frequently used multi-objective non-convex test problems were proposed in [10]. The
objective functions are defined as follows:

f1(x) = 1− e−
∑d

i=1(xi−1/
√
d)2 , (31)

f2(x) = 1− e−
∑d

i=1(xi+1/
√
d)2 , (32)

where d = 2, and the feasible region is A: −4 6 x1, x2 6 4. The next bi-objective
test problem is two Shekel functions frequently used to evaluate global optimization
algorithms [16]:

f1(x) = −
0.1

0.1 + (x1 − 0.1)2 + 2(x2 − 0.1)2

− 0.1

0.14 + 20((x1 − 0.45)2 + (x2 − 0.55)2)
, (41)

f2(x) = −
0.1

0.15 + 40((x1 − 0.55)2 + (x2 − 0.45)2)

− 0.1

0.1 + (x1 − 0.3)2 + (x2 − 0.95)2
, (42)

where the feasible region is A: 0 6 x1, x2 6 1.
For the comparison performance of the proposed algorithm having low functions

evaluation budget, the metrics applied which were used in a recent publication related to
Bayesian rooted optimization algorithms [31]. One of the most simple and most popular
performance metrics is the number of non-dominated solutions found by an optimization
algorithm (NN). The estimation of the distance between the found approximation and
the true Pareto front is the so-called generational distance (GD) [6]. GD is computed as
the maximum of distances between the found non-dominated solutions and their closest
neighbors from the Pareto front. A metric integrating measures of the approximation
precision and spread is the so-called epsilon indicator (EI) [34]. EI is computed as the
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maximum of distances between the true Pareto front and their closest neighbors from
found non-dominated solutions. Metrics GD and EI can be expressed by the following
equations:

GD = max
FP∈P

min
FP∗∈P∗

‖FP − FP∗‖,

EI = max
FP∗∈P∗

min
FP∈P

‖FP − FP∗‖,

where P is a set of non-dominated solutions found by the considered algorithm, and P ∗

is a set of solutions well representing the Pareto front, i.e., the solutions are sufficiently
densely and uniformly distributed over the Pareto front.

The proposed algorithm was tested with 100 function F (x) evaluation budget. The
proposed algorithm was run with the following parameters:

(Nmax, Imax, N, q, p, ho, hn,Update)
T = (90,∞, 20, 10000, 0.8, 2, 4, true)T.

The parameter Nmax value is selected 10% below function evaluation budget since stop
condition is checked once every iteration after global search and local refinement phase
is finished. On average function evaluation budget of 100 evaluations is not exceeded,
but some algorithm’s runs make more, and some runs make fewer function evaluations.
The same parameter Nmax selection strategy will be used in this paper. The number
of iteration Imax is selected to be the maximum number that cannot be achieved, so it
can be noted as infinite (Imax = ∞). More parameters are N and q, where N = 20
is the number of initial random function evaluations, and q = 10000 is the coefficient
value of expression q · N giving the number of randomly generated candidate points in
decision space for new function evaluations. The number of randomly generated candidate
points should be high in the case of low functions evaluation budget so such a high
value of q is selected. Value of p = 0.8 is part of function evaluations get by local
generation near current Pareto optimal solutions compared to function evaluations get by
global generation in all feasible region A. The step size parameters of the Hooke–Jeeves
optimization algorithm have the following values: h0 = 2 and hn = 4. The parameter
Update is set to true, so the step size parameters h0 and hn are updated at second and
following iterations of global search with local refinement. The same parameters were
used for both test problems except when the parameter’s ho value was ho = 4 for
problem (4).

Since the proposed algorithm and P-algorithm are stochastic, the test problems were
solved 100 times [16, 28]. The mean values and standard deviations of the considered
metrics are present in two columns of Table 1. Otherwise, the hyperrectangle partition-
based P-algorithm is deterministic, so its results occupy a single column for each test
problem [31]. The proposed algorithm shows decent performance. In case of problem (3)
the proposed algorithm gives better NN and EI values than the P-algorithm. In case of
problem (4) the proposed algorithm gives the best NN value and gives better GD and EI
values than the hyperrectangle partition-based P-algorithm.

For visualization of the proposed algorithm’s operation, the solutions of problems (3)
and (4) having the best metric EI value are presented in Fig. 2. The Pareto front is well
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Table 1. Mean values and standard deviations of performance criteria (NN, GD, EI) of the P-algorithm,
partition-based implementations of the P-algorithm and the proposed algorithm for test problems (3) and (4).

Criteria P-algorithm Partition-based Proposed algorithm
Problem (3) Problem (4) Problem (3) Problem (4) Problem (3) Problem (4)

NN 9.87 1.4 15.7 2.0 27 18 12.61 3.11 25.35 5.378
GD 0.015 0.0061 0.07 0.051 0.015 0.21 0.052 0.025 0.161 0.084
EI 0.2 0.034 0.13 0.053 0.092 0.25 0.139 0.018 0.204 0.069

𝑓1 

𝑓 2
 

(a)

𝑥1 

𝑥 2

(b)

𝑓1 

𝑓 2
 

(c)

𝑥1 

𝑥
2

 

(d)

Figure 2. Pareto front (black line) and Pareto optimal solutions (blue asterisk) found by the proposed algorithm
for problem (3) (NN = 14, GD = 0.0401, EI = 0.0782) (a) and problem (4) (NN = 20, GD = 0.0549,
EI = 0.0733) (c). The function evaluation points made by the proposed algorithm and line of Pareto optimal
solutions in decision space (black line) are accordingly in (b) and (d), where red plus marks N initial random
evaluations points, green circle marks the evaluation points made by candidate points generation near current
Pareto optimal solutions in the square areas marked by a gray dotted line, magenta triangle marks evaluation
points made by candidate points generation in all the feasible region, and blue square marks evaluation points
made during surrogate function optimization using the Hooke–Jeeves algorithm.
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approximated by Pareto optimal solutions found by the proposed algorithm in both test
problems (Figs. 2(a) and 2(c)). Function evaluation points made by global search tend
to explore the area with no function evaluations (triangle points) and to cluster new
function evaluation points near current Pareto optimal solutions (circle points) (Figs. 2(b)
and 2(d)). Function evaluation points made by local refinement (square points) are well
clustered near the line of Pareto optimal solutions in decision space (Figs. 2(b) and 2(d)).

3.3 Numerical experiments using test problems having many decision variables

In the case of the high dimensionality of the feasible region, the results of the proposed
algorithm were compared with the results of the evolutionary optimization algorithm
NSGA2 [3, 8]. The performance of the optimization algorithm was tested with the bi-
objective test suite ZDT having many decision variables. Biobjective test problems ZDT1,
ZDT2, ZDT3 have 30 decision variables, and ZDT4, ZDT6 have 10 decision variables
[33].

For the comparison performance of the proposed algorithm in the case of the high
dimensionality of the feasible region, the metrics applied which were used in publica-
tions related to the evolutionary optimization algorithm NSGA2 [3, 8]. The estimation
of the average distance between the found approximation and the true Pareto front is
the average generational distance (GDavg) [8]. GDavg is computed as the average of
distances between the found non-dominated solutions and their closest neighbors from
the Pareto front. A metric integrating measures of the approximation precision and spread
is so-called inverted generational distance (IGDavg) [3]. IGDavg is computed as the
average of distances between the true Pareto front and their closest neighbors from found
non-dominated solutions. Metrics GDavg and IGDavg can be expressed by the following
equations:

GDavg =
1

|P |
∑

FP∈P
min

FP∗∈P∗
‖FP − FP∗‖, (51)

IGDavg =
1

|P ∗|
∑

FP∗∈P∗
min
FP∈P

‖FP − FP∗‖, (52)

where P is a set of non-dominated solutions found by the considered algorithm, and P ∗

is a set of solutions well representing the Pareto front, i.e., the solutions are sufficiently
densely and uniformly distributed over the Pareto front, i.e., |P ∗| = 500 uniformly
distributed points were used as a set of solutions well representing the Pareto front.

The proposed algorithm was tested with fixed function F (x) evaluation budget. The
parameter Nmax value is selected 10% below the function evaluation budget, so on aver-
age the function evaluation budget is not exceeded. The proposed algorithm was run with
the following parameters:

(Imax, N, q, p, ho, hn,Update)
T = (∞, 100, 1, 0.8, 2, 8, true)T.

The number of iteration Imax =∞ is selected to be the maximum number which cannot
be achieved. The number of initial random function evaluations is N = 100, and the
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Table 2. Mean values and variance of performance criteria GDavg of the real-coded and binary-coded
evolutionary optimization algorithm NSGA2 and proposed algorithm for ZDT test problems.

Algorithm Problem
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA2 real-coded 0.033482 0.072391 0.114500 0.513053 0.296564
0.004750 0.031689 0.007940 0.118460 0.013135

NSGA2 binary-coded 0.000894 0.000824 0.043411 3.227636 7.806798
0 0 0.000042 7.307630 0.001667

Proposed algorithm 0.000774 0.000841 0.000910 0.069231 0.005558
1.843 · 10−9 1.229 · 10−8 7.294 · 10−10 0.004069 2.831 · 10−5

Table 3. Mean values and standard deviation of function evaluation count and performance criteria IGDavg of
evolutionary optimization algorithm NSGA2 and the proposed algorithm for ZDT test problems.

Problem Algorithm
NSGA2 Proposed algorithm

µeval σeval µIGDavg σIGDavg µeval σeval µIGDavg σIGDavg

ZDT1 17098 2393.78 0.006 0.0007 15344 29.24 0.004 0.0021
ZDT2 17657 1528.04 0.006 0.0008 15867 32.51 0.007 0.0031
ZDT3 16559 1899.07 0.007 0.0078 14911 36.83 0.003 0.0013
ZDT4 24451 2864.01 0.006 0.0013 22045 232.90 0.104 0.0431
ZDT6 24833 1084.74 0.004 0.0002 22336 10.41 0.003 0.0017

coefficient value of number q · N of randomly generated candidate points in decision
space for new function evaluations is q = 1. The number of randomly generated candidate
points should not be high in the case of a large functions evaluation budget as it cause a
great burden for the proposed algorithm, so a low coefficient value of q is selected. The
value of p = 0.8 is part of function evaluations get by local generation near current Pareto
optimal solutions compared to function evaluations get by generation in the entire feasible
region. The step size parameters of the Hooke–Jeeves optimization algorithm have the
following values: h0 = 2 and hn = 8. The step size parameters h0 and hn are updated
at second and following iterations of global search with local refinement as parameter
Update is set to true. The same parameters were used for all ZDT test problems.

Since the proposed algorithm and evolutionary optimization algorithm NSGA2 are
stochastic, the test problems were solved multiple times [3,8]. The mean values and vari-
ance or standard deviations of the considered metrics are presented in Tables 2 and 3. Note
that in this subsection the normalization of function values is performed with ideal and
nadir points in the case of IGDavg metric calculation; see Eq. (2). Table 2 shows GDavg

metric results of the proposed algorithm compared to the results of the evolutionary
optimization algorithm NSGA2 after 10 experiments having 25000 function evaluation
budget [8]. Table 3 shows IGDavg metric results of the proposed algorithm compared to
the results of the evolutionary optimization algorithm NSGA2 after 51 experiments [3].

The proposed algorithm shows good performance. Table 2 shows GDavg metric re-
sults; the proposed algorithm has better performance compared to the results of the evo-
lutionary optimization algorithm NSGA2. The proposed algorithm has a lower GDavg

metric value compared to NSGA2 except in the case of the ZDT2 test problem, where the
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binary-coded NSGA2 performs better. Table 3 shows IGDavg metric results; the proposed
algorithm has better performance compared to the results of the evolutionary optimization
algorithm NSGA2 in the case of ZDT1, ZDT3 and ZDT6 test problems. The proposed
algorithm has worse performance compared to the results of the evolutionary optimization
algorithm NSGA2 in the case of ZDT2 and ZDT4 test problems.

3.4 Numerical experiments using many-objective test problems

Many-objective optimization problems having up to 15 objective functions (M 6 15)
are considered. Representation of Pareto optimal surface for many-objective optimization
problems is usually difficult as representation needs exponentially growing points count
for the additional objective function. Multiple predefined reference points can be spec-
ified, and Pareto-optimal trade-off solutions corresponding to each reference point are
found as it is done in the genetic algorithm NSGA3 [7]. In the case of many-objective
optimization problems, adequate trade-off Pareto optimal surface approximation may not
be found using a few hundred reference points [7]. Reference points selection may be
tricky if trade-off solutions with specific properties are needed, so the newly developed
optimization algorithm does not need any predefined reference points. The newly de-
veloped optimization algorithm was tested with many-objective test suite DTLZ having
up to 15 objective functions (M 6 15) [9]. The number of variables is M + k − 1,
where number k = 5 is for DTLZ1, while number k = 10 is for DTLZ2, DTLZ3 and
DTLZ4 test problems. The results were compared with the results of popular evolutionary
optimization algorithms NSGA3 [7].

The proposed algorithm was tuned to find raw solutions since having moderate func-
tion evaluation budget an adequate representation of Pareto optimal surface for many-
objective optimization problems usually is impossible. The parameter Nmax value is
selected to be very large, it can be noted Nmax = ∞, so the number of iteration Imax

is specified as a stop condition in Table 4. The proposed algorithm was run with the
following parameters:

(N, q, p, ho, hn,Update)
T = (100, 1, 0.8, 2, 6, false)T.

The number of initial random function evaluations is N = 100, and coefficient value of
number q ·N of randomly generated candidate points in decision space for new function
evaluations is q = 1. Value of p = 0.8 is part of function evaluations get by local
generation near current Pareto optimal solutions compared to function evaluations get
by generation in all the feasible region. The step size parameters of the Hooke–Jeeves
optimization algorithm have the following values: h0 = 2 and hn = 6. Raw solutions
are searched, so step size parameters h0 and hn update can drastically increase function
evaluation budget, so parameters are not updated at second and following iterations since
the parameter Update is set to false.

After a raw trade-off solutions {P, PA} is found, random solutions {P ′, P ′A} are
selected to be tuned by the surrogate function optimization using the Hooke–Jeeves algo-
rithm. Table 5 shows how many raw solutions are taken for tuning using surrogate function
optimization. For every random solution xP ∈ P ′A, a separate surrogate function having
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Table 4. Mean values of the function evaluation count and the best, median and worst IGDref values obtained
for proposed algorithm and NSGA3 on M-objective DTLZ test problems. The number of iterations Imax is
specified as the stop condition of the proposed algorithm.

NSGA3 Proposed algorithm NSGA3 Proposed algorithm

µeval IGDref µeval IGDref Imax µeval IGDref µeval IGDref Imax

DTLZ1, M = 3 DTLZ2, M = 3

36800 4.880 · 10−4 30898 1.910 · 10−4 2 23000 1.262 · 10−3 29495 5.116 · 10−5 1
1.308 · 10−3 4.566 · 10−4 1.357 · 10−3 5.806 · 10−5

4.880 · 10−3 8.452 · 10−4 2.114 · 10−3 1.495 · 10−4

DTLZ1, M = 5 DTLZ2, M = 5

127200 5.116 · 10−4 93741 1.691 · 10−4 2 74200 4.254 · 10−3 77751 5.184 · 10−5 1
9.799 · 10−4 4.188 · 10−4 4.982 · 10−3 5.705 · 10−5

1.979 · 10−3 5.985 · 10−4 5.862 · 10−3 6.481 · 10−5

DTLZ1, M = 8 DTLZ2, M = 8

117000 2.044 · 10−3 86933 2.568 · 10−4 1 78000 1.371 · 10−2 82594 5.331 · 10−5 1
3.979 · 10−3 4.717 · 10−4 1.571 · 10−2 5.708 · 10−5

8.721 · 10−3 2.939 · 10−3 1.811 · 10−2 6.230 · 10−5

DTLZ1, M = 10 DTLZ2, M = 10

276000 2.215 · 10−3 159425 2.137 · 10−4 1 207000 1.350 · 10−2 132556 5.211 · 10−5 1
3.462 · 10−3 4.553 · 10−4 1.528 · 10−2 5.715 · 10−5

6.869 · 10−3 1.325 · 10−3 1.697 · 10−2 5.988 · 10−5

DTLZ1, M = 15 DTLZ2, M = 15

204000 2.649 · 10−3 128085 1.165 · 10−4 1 136000 1.360 · 10−2 115563 5.146 · 10−5 1
5.063 · 10−3 4.679 · 10−4 1.726 · 10−2 5.738 · 10−5

1.123 · 10−2 2.495 · 10−3 2.114 · 10−2 6.189 · 10−5

DTLZ3, M = 3 DTLZ4, M = 3

92000 9.751 · 10−4 62713 1.373 · 10−3 2 55200 2.915 · 10−4 65811 5.745 · 10−5 3
4.007 · 10−3 2.250 · 10−3 5.970 · 10−4 6.165 · 10−5

6.665 · 10−3 3.922 · 10−3 4.286 · 10−1 6.607 · 10−5

DTLZ3, M = 5 DTLZ4, M = 5

212000 3.086 · 10−3 183641 1.382 · 10−3 2 212000 9.849 · 10−4 210900 5.430 · 10−5 2
5.960 · 10−3 1.939 · 10−3 1.255 · 10−3 5.782 · 10−5

1.196 · 10−2 3.132 · 10−3 1.721 · 10−3 8.157 · 10−5

DTLZ3, M = 8 DTLZ4, M = 8

156000 1.244 · 10−2 153307 2.597 · 10−3 1 195000 5.079 · 10−3 94550 4.280 · 10−5 1
2.375 · 10−2 4.739 · 10−3 7.054 · 10−3 5.131 · 10−5

9.649 · 10−2 1.517 · 10−2 6.051 · 10−1 7.030 · 10−5

DTLZ3, M = 10 DTLZ4, M = 10

414000 8.849 · 10−3 267519 2.387 · 10−3 1 552000 5.694 · 10−3 150992 4.770 · 10−5 1
1.188 · 10−2 5.396 · 10−3 6.337 · 10−3 5.404 · 10−5

2.083 · 10−2 1.682 · 10−2 1.076 · 10−1 7.262 · 10−5

DTLZ3, M = 15 DTLZ4, M = 15

272000 1.401 · 10−2 201526 3.628 · 10−3 1 408000 7.110 · 10−3 141192 4.687 · 10−5 1
2.145 · 10−2 8.220 · 10−3 3.431 · 10−1 5.450 · 10−5

4.195 · 10−2 2.970 · 10−2 1.073 1.096 · 10−4
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Table 5. Number of reference points used in
NSGA3 and raw solutions used in proposed
algorithm.

Number of Reference Raw
objectives (M ) points solutions

3 91 91
5 210 210
8 156 156

10 275 275
15 135 135

current solution xcur = xP is defined. Every defined surrogate function is optimized
using the Hooke–Jeeves optimization algorithm taking xP as the start point:

min fs(x), x ∈ A ⊂ Rd,

where step size parameters are set to h0 = 2 and hn = 12. All test problems (Table 4)
were optimized with the same parameters, except in the case of DTLZ2 and DTLZ4 the
proposed algorithm’s step size parameters were set to h0 = 2 and hn = 4, and step size
parameters of raw solutions tuning phase was set to h0 = 2 and hn = 6 to have larger step
sizes, and therefore function evaluation budget is of similar size with NSGA3. Also, in the
case ofM -objective DTLZ4 test problems havingM = 3 andM = 5 objective functions,
a number of initial random function evaluations was set to N = 3000, and coefficient
value of number q ·N of randomly generated candidate points was set to q = 0.03. This
way enough raw solutions was found, and the needed count of raw solutions is given in
Table 5.

For the comparison performance of the proposed algorithm in the case of a many-
objective optimization problem, the metrics was applied which was used in publications
related to the evolutionary optimization algorithm NSGA3 [7]. A metric similar to in-
verted generational distance IGDavg defined by (5) equation, but instead of computing the
average of distances between the true Pareto front and their closest neighbors from found
non-dominated solutions, a new metric IGDref compute average of distances between
reference points on the true Pareto front and their closest neighbors from found non-
dominated solutions. Metric IGDref can be expressed by the following equation:

IGDref =
1

|P ∗|
∑

FP∗∈P∗
min

FP∈Ptuned

‖FP − FP∗‖,

wherePtuned is non-dominated solutions tuned to reference points, P ∗ is a set of reference
points on the true Pareto front. In the case of NSGA3 a multiple predefined Pareto-optimal
reference points P ∗ are specified, and Pareto-optimal trade-off solutions corresponding
to each reference point are found [7]. In the case of the newly developed optimization
algorithm a predefined reference points selection is not needed. Raw solutions after final
iterations of the proposed algorithm are randomly selected {P ′, P ′A}, and closest points on
the true Pareto front are selected as a set of reference points P ∗. Selected non-dominated
raw solutions {P ′, P ′A} are tuned by the surrogate function optimization using the Hooke–
Jeeves algorithm to get a non-dominated solution set Ptuned. As raw solutions are selected
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randomly {P ′, P ′A}, so this is equivalent to raw solutions selection by a human expert to
get solutions with specific properties. The sizes of sets of raw solutions {P ′, P ′A} and
reference points P ∗ are given in Table 5.

Since the proposed algorithm and evolutionary optimization algorithm NSGA3 are
stochastic, the test problems were solved 20 times [7]. The best median and worst
values of the considered metric IGDref are presented in Table 4. The results of the pro-
posed algorithm were compared to the results of the evolutionary optimization algorithm
NSGA3 [7]. The proposed algorithm gives a good performance compared to the results
of the evolutionary optimization algorithm NSGA3. Mean values of function evaluation
count are lower in the case of the proposed algorithm except in the case of M-objective
DTLZ2 (M = 3, 5, 8) and DTLZ4 (M = 3) test problems. The best median and worst
IGDref values are better in the case of the proposed algorithm except in case of the M-
objective DTLZ3 (M = 3) test problem.

4 Conclusions

The hybrid multi-objective optimization algorithm is proposed combining random global
search and local refinement of the found approximation of the Pareto front. The global
search algorithm mimics the Bayesian algorithm. The Hooke–Jeeves algorithm is used for
local refinement. At the local optimization phase, the multi-objective optimization prob-
lem is converted to a single-objective optimization problem by introducing a surrogate
function without the use of the weight vectors. The developed algorithm was tested in
the case of extremely low functions evaluation budget, and the proposed algorithm gives
decent performance comparing results with the results of Bayesian rooted optimization
algorithms. Also, the proposed optimization algorithm was tested with many decision
variables test suite and with many-objective test suite, and the results of numerical ex-
periments showed good performance compared with the results of popular evolutionary
optimization algorithms NSGA2 and NSGA3. In the case of many-objective optimization,
the proposed algorithm need no predefined reference points, so raw solutions selection can
be done by a human expert to be tuned to final solutions of needed properties. Future plans
include the development parallel version of the proposed algorithm to optimize functions
with an extreme computational burden. Another research theme of interest is integrating
the proposed algorithm execution with human expert decisions to get solutions of needed
properties.
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