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Abstract: The article focuses on mortality models with a random effect applied in order to evaluate
human mortality more precisely. Such models are called frailty or Cox models. The main assertion
of the paper shows that each positive random effect transforms the initial hazard rate (or density
function) to a new absolutely continuous survival function. In particular, well-known Weibull and
Gompertz hazard rates and corresponding survival functions are analyzed with different random
effects. These specific models are presented with detailed calculations of hazard rates and corre-
sponding survival functions. Six specific models with a random effect are applied to the same data
set. The results indicate that the accuracy of the model depends on the data under consideration.
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1. Introduction

Survival function is one of the most important variables, and describes human mortal-
ity. This function is the main element of certain mortality models. Other human mortality
characteristics can be easily calculated by using the expression of survival function. One
of these characteristics is the force of mortality, also known as the hazard rate. The most
well-known classical examples of hazard rate functions are Weibull and Gompertz hazard
rate functions. These functions have already been analyzed by many researchers, including
Juckett and Rosenberg [1] and Missov et al. [2], among others. However, in 1979, Vaupel [3]
was the first to present the idea to apply the random variable, also known as frailty or
random effect, to the hazard rate function. Now, such derived models are called frailty
models or random effect models. The definition of Cox models may also be used; see Lai [4]
and Wienke [5], for instance. Frailty models were considered to represent mortality more
precisely compared to the standard models. Frailty models and their applications to specific
data sets have been widely used and analyzed by Manton and Vaupel, who collaborated
with Stallard, Yashin, Iachine and Begun [3,6–8], as well as by Butt and Haberman [9],
Moger and Aalen [10], Hougaard [11], Finkelstein [12] and Pitacco [13,14]. The idea of
frailty models was expanded, as mixed hazard models suggested the hazard rate to have
a polynomial expression—see Spreeuw et al. [15]—whereas Assabil [16] analyzed frailty
models with time-dependable random effects.

This article focuses on the initial idea of frailty models: multiplying the initial hazard
rate function by the random effect yields a new hazard rate function. The rest of the paper
is organized as follows: at the beginning, we describe the main definitions and formulas
for model calculations, and we present the main assertion of the paper. In this assertion,
we prove that each positive random effect transforms the initial absolutely continuous
survival function to a new absolutely continuous survival function. Furthermore, well-
known Gompertz and Weibull model modifications are analyzed with different random
effects, including random variables with gamma, Poisson, geometric and discrete uniform
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distributions. Each frailty model includes calculations of the hazard rate and survival
function expressions. At the end, six particular models with a random effect are applied to
the same data set of Baltic states mortality in order to determine which model fits the real
mortality the best.

2. Theoretical Background
2.1. Main Concepts

To describe the mortality of a population, we use the classical concepts presented,
for instance, in the book by Pitacco et al. [17] (see pages 51–58) or in papers [18,19]. The
most general quantity, describing mortality, is the survival function S. This function shows
the probability of an individual living at least x years, i.e., S(x) = P(T > x), where T
denotes the life duration of the newborn by assuming that T is an absolutely continuous
non-negative random variable.

It follows from this that the following requirements hold for each survival function S:

(i) S(x) is not increasing f or x ∈ [0, ∞);

(ii) S(0) = 1;

(iii) S(∞) := lim
x→∞

S(x) = 0;

(iv) S(x) is absolutely continuous on the interval [0, ∞).

According to the definition of absolute continuity, for an arbitrary ε > 0, there is δ > 0,
such that, for every finite collection of pairwise disjoint intervals {(a1, b1), . . . (an, bn)} with

n

∑
k=1

(bk − ak) < δ,

it holds that
n

∑
k=1

(S(ak)− S(bk)) < ε.

Due to the fundamental theorem of Lebesgue integral calculus, the above requirements
(i)–(iv) for function S are equivalent to the existence of a non-negative integrable function f
under condition ∫ ∞

0
f (y)dy = 1

such that
S(x) =

∫ ∞

x
f (y)dy, x > 0; (1)

see Chapter 5 in [20], for instance. Usually, function f is called the density function of the
life duration T. The Cantor ternary function (see, for instance, Chapter 2 in [20]) shows that
all of the requirements (i)–(iv) for the function should remain in order for the Equation (1)
to be correct.

Another function describing the behaviour of life duration T is the hazard rate function, or the
force of mortality

µx =
f (x)
S(x)

= −S′(x)
S(x)

(2)

defined for almost all x ∈ [0, ∞), such that S(x) > 0.
The last formula shows that, by knowing the force of mortality, the survival function’s

values at each non-negative x can be calculated. Namely,

S(x) = exp
{
−

x∫
0

µudu
}

(3)
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for all x under condition S(x) > 0.
The requirements (i)–(iv) and the already mentioned fundamental theorem of the

Lebesgue integral calculus imply that function S is a survival function if and only if the
Equality (3) holds for a non-negative integrable (on each finite interval [0, B], 0 < B < b)
function µ : [0, b)→ [0, ∞) under condition

∫ b

0
µudu = ∞,

where b = inf{x > 0 : S(x) = 0}.
Equations (2) and (3) show that both functions µ and S are equally important in

describing survival, and that one function can be replaced by another. In this work, we will
pay more attention to the force of mortality.

2.2. Random Effect

In this paper, we consider survival models with random effects. This means that we
consider survival functions having forces of mortality of the special form, and we focus on
this form.

In 1979, Vaupel, Manton and Stallard [21] presented the idea of analyzing the modified
function of mortality force

µx|Z = Zµx, (4)

where Z is a random variable, and, in the mortality model, is called the random effect, also
known as the frailty parameter for a group of individuals; see [22,23].

If the force of mortality has the Formula (4), then function

Ŝ(x) = E
(

SZ(x)
)
= E

(
exp

{
− Z

∫ x

0
µudu

})
(5)

should be a new survival function, and

µ̂(x) = − Ŝ′(x)
Ŝ(x)

= − log
(
E
(

SZ(x)
))′

(6)

should be a new force of mortality.
Function Ŝ is a new survival function and µ̂ is a new force of mortality in the case

where Ŝ satisfies the requirements (i)–(iv) or, equivalently, when function Ŝ satisfies the
equality of type (1). The statement below shows that, with minimal constraints on the
random variable Z, the function Ŝ, defined by Formula (5), is a survival function.

Theorem 1. Let S = S(x) be a survival function with a force of mortality µ = µx, and let
Z be a positive random variable. Then, function Ŝ = Ŝ(x), defined by Equality (5), is a new
survival function.

Proof. We will prove that function Ŝ satisfies the equality of type (1). According to Defini-
tion (5), we obtain:

Ŝ(x) = E
(

SZ(x)
)
=
∫
[0,∞)

Sz(x)dFZ(z)

=
∫
[0,∞)

exp
{
− z

∫ x

0
µudu

}
dFZ(z)

for each x > 0, where FZ is a distribution function of the random effect Z.
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Let us define two real numbers:

a = sup{x > 0 : S(x) = 1};
b = inf{x > 0 : S(x) = 0}.

It is obvious that Ŝ(x) = 1 if x ∈ [0, a] and Ŝ(x) = 0 if x ∈ [b, ∞) in the case of finite b.
It remains for us to consider x ∈ (a, b). For these x, we have that 0 < S(x) < 1.

Therefore, for z > 0 and h > 0, we have∣∣∣∣Sz(x + h)− Sz(x)
h

∣∣∣∣ = Sz(x)
h

∣∣∣∣Sz(x + h)
Sz(x)

− 1
∣∣∣∣

=
Sz(x)

h

∣∣∣∣exp
{
−z

∫ x+h

x
µudu

}
− 1
∣∣∣∣

6 z Sz(x)
1
h

∫ x+h

x
µudu

= z Sz(x)
1
h

log
S(x)

S(x + h)
.

Since S is absolutely continuous, derivative S′(x) exists almost everywhere on interval
(a, b). If S′(x) exists, then

log S(x)− log S(x + h) 6
(

1− S′(x)
S(x)

)
h

for sufficiently small h > 0, which implies that∣∣∣∣Sz(x + h)− Sz(x)
h

∣∣∣∣ 6 zSz(x)
(

1− S′(x)
S(x)

)
.

For z > 0 and sufficiently small h < 0, the same estimate can be derived analogously.
In addition, it is obvious that integral∫

[0,∞)
zSz(x)dFZ(z)

is finite if x ∈ (a, b).
Therefore, due to the Lebesgue’s dominated convergence theorem, we have that

Ŝ ′(x) =
∫
[0,∞)

lim
h→∞

Sz(x + h)− Sz(x)
h

dFZ(z)

=
∫
[0,∞)

(Sz(x))′dFZ(z)

= −µx

∫
[0,∞)

zSz(x)dFZ(z)

for almost all x ∈ (a, b).
Function µx is non-negative bounded and integrable on interval [a, B] with an arbitrary

a < B < b, whereas function ∫
[0,∞)

zSz(x)dFZ(z)

is continuous on interval (a, b).
Consequently, derivative Ŝ ′(x) is integrable on the interval [a, B] with a < B < b. For

x ∈ [0, ∞), let us define
f̂ (x) = −Ŝ ′(x)1I(a,b)(x).
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Using the Tonelli’s theorem, we obtain

∞∫
0

f̂ (x)dx =

b∫
a

(−Ŝ ′(x))dx =

b∫
a

( ∫
[0,∞)

zµxe
−z

x∫
0

µudu
dFZ(z)

)
dx

=
∫

[0,∞)

( b∫
a

d
(
− e

−z
x∫

0
µudu))

dFZ(z)

=
∫

[0,∞)

(Sz(a)− Sz(b))dFZ(z) = 1. (7)

Similarly, for x ∈ (a, b),

∞∫
x

f̂ (y)dy =

b∫
x

(−Ŝ ′(y))dy =

b∫
x

( ∫
[0,∞)

zµye
−z

y∫
0

µudu
dFZ(z)

)
dy

=
∫

[0,∞)

( b∫
x

d
(
− e
−z

y∫
0

µudu))
dFZ(z)

=
∫

[0,∞)

(Sz(x)− Sz(b))dFZ(z) = Ŝ(x).

It follows from this that

Ŝ(x) =
∫ ∞

x
f̂ (y)dy, x ∈ [0, ∞)

for an integrable non-negative function with Property (7).
The last equality has the form (1). Consequently, the function Ŝ is a new survival

function. The theorem is proved.

Remark 1. The above theorem provides us a large set of survival functions with a random effect. A
new survival function can be constructed from any survival function S that meets the requirements
(i)–(iv) and any positive random effect Z. The few examples below show that the random effect
preserves the absolute continuity of the initial survival function but significantly changes its type.

For instance, let us consider the exponential survival function

S(x) = e−0.01x, x > 0.

According to the above theorem, function Ŝ(x) = ESZ(x) is a new absolutely continu-
ous survival function in the case of the random effect Z under condition P(Z > 0) = 1.

In particular, if Z is uniformly distributed on the interval [a, b] with 0 6 a < b < ∞,
then, for x > 0

Ŝ(x) =
1

b− a

∫ b

a
e−0.01xzdz =

100
(b− a)x

(
e−0.001ax − e−0.01bx

)
.

If the random effect Z has an exponential distribution with positive parameter λ

P(Z 6 z) =
(
1− e−λz)1I[0,∞)(z),
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then the function

Ŝ(x) = λ
∫ ∞

0
e−(0.01x+λ)zdz =

λ

0.01x + λ
, x > 0,

is a Pareto-type survival function.
If the random effect Z has the Bernoulli distribution

P(Z = 1) = (1− p), P(Z = 2) = p, p ∈ (0, 1),

then the function with random effect

Ŝ(x) = e−0.01x(1− p) + e−0.02x p, x > 0,

is a mixture of exponential survival functions.
If the random effect Z is distributed according to the shifted Poisson law with positive

parameter λ, then

P(Z = k) = e−λ λk−1

(k− 1)!
, k ∈ N,

and, consequently,

Ŝ(x) = e−λ
∞

∑
k=1

(
S(x)

)k λk−1

(k− 1)!
= e−0.01xeλ

(
e−0.01x−1

)
, x > 0.

Finally, if Z has the classical Peter and Paul distribution

P(Z = 2k) =
1
2k , k ∈ N,

then

Ŝ(x) =
∞

∑
k=1

1
2k e−(2

kx)/100, x > 0,

is the infinite mixture of exponential survival functions.

Remark 2. In the case of the positive integer valued random effect Z, the survival function ESZ(x)
is the survival function of a randomly stopped minimum of independent random variables, considered,
for instance, in [24–26].

Namely, suppose that {T1, T2, . . .} are independent copies of the life duration T. In
case P(Z = 1) = 1, we have that

ESZ(x) = P(T1 > x).

If P(Z = 2) = 1, then

ESZ(x) = P(T1 > x)P(T2 > x) = P
(

min{T1, T2} > x
)
.

If P(Z = 3) = 1, then

ESZ(x) = P
(

min{T1, T2, T3} > x
)
.

Finally, in the case of integer valued random effect Z such that P(Z ∈ N) = 1, we have

ESZ(x) = P
(

min{T1, T2, . . . , TZ} > x
)
,

if random effect Z and the collection of life durations {T1, T2, . . .} are independent.
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The proved theorem justifies the use of a random effect in demographics to find the
expression of the mortality force that is as consistent as possible with data. We note that the
random effect applies not only to the transformations of survival but also to other models
used in various studies. For instance, in [27–30], models with random effects have been
used in medical research, in [31–36], models with random effects are adapted for statistical
analysis of certain problems and in [37,38], probabilistic objects with additional random
effects are examined.

3. Several Models with Random Effect

According to Theorem 1, we can construct a new survival function that has a basic
force of mortality µx and a positive random variable Z. In this section, we present several
examples of popular survival functions and corresponding hazard rates. From each selected
survival function, we construct new survival functions using well-known random effects.
For each selected pair of a survival function and random effect, we find the analytical
expression of the new survival function and the analytical formula of the corresponding
hazard rate.

3.1. Gamma–Weibull Model

At the beginning, let us consider the Weibull force of mortality

µx = cxn, x > 0,

depending on two positive parameters c and n. By choosing a gamma distributed random
variable Z ∼ Γ(k, λ) for a random effect, we obtain the gamma–Weibull model described
in [39,40], among others.

The gamma distributed random variable Z ∼ Γ(k, λ) has the density

fZ(x) =
λk

Γ(k)
xk−1e−λx, x > 0,

where k and λ are positive parameters and Γ(k) is the standard gamma function.
The information above implies the following expression of the gamma–Weibull sur-

vival function:

ŜGW(x) = E
(

e
−Z

x∫
0

µtdt)
=

∞∫
0

e
−z

x∫
0

ctndt λk

Γ(k)
zk−1e−λzdz

=
λk

Γ(k)

∞∫
0

e
−z
( x∫

0
ctndt+λ

)
zk−1dz.

By denoting w = z
( x∫

0
ctndt + λ

)
, we obtain

ŜGW(x) =
λk

Γ(k)
1( x∫

0
ctndt + λ

)k

∞∫
0

e−wwk−1dw

=
λk(

cxn+1

n+1 + λ
)k =

(
cxn+1

(n + 1)λ
+ 1
)−k

.

It is clear that the obtained survival function has derivative

Ŝ′GW(x) = − ckxn

λ

(
cxn+1

λ(n + 1)
+ 1
)−k−1

.
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Hence, by using Formula (6), we obtain the following force of mortality expression for
the gamma–Weibull model

µ̂x = −
Ŝ′GW(x)

ŜGW(x)
=

ckxn

cxn+1

n+1 + λ
. (8)

3.2. Gamma–Gompertz Model

In the gamma–Gompertz model, it is assumed that the basic force of mortality has the
Gompertz expression, i.e.,

µx = Beαx, x > 0, (9)

with positive parameters B and α. This expression can be derived from the Gompertz-
Makeham model (see [41–44], among others). It should be noted that the Gompetz force
of mortality belongs to Perk’s family of hazard rate functions and assumes that mortality
increases exponentially with age [45,46].

In the Gamma–Gompertz model, random effect Z has a gamma expression, identical
to the one in the gamma–Weibull model described in Section 3.1. Hence, in order to find
the expression of the model’s survival function, identical calculations can be used to those
that were performed while analyzing the gamma–Weibull model. The only difference is
that the expression in the integral ctn should be changed by Gompertz expression Beαt.
After the detailed calculations, we obtain the following expressions

ŜGG4(x) =
(

1 +
B

αλ
(eαx − 1)

)−k
,

Ŝ′GG4
(x) = −k

B
λ

eαx
(

1 +
B

αλ
(eαx − 1)

)−k−1
,

µ̂x = −
Ŝ′GG4

(x)

ŜGG4(x)
=

k B
λ eαx(

1 + B
αλ (e

αx − 1)
) . (10)

We can see that the above survival function ŜGG4 and force of mortality µ̂x depend
on four parameters. In addition to this general case, a separate version of the gamma–
Gompertz model with three parameters can be considered, which we obtain by supposing
k = λ. It is obvious that, for the gamma–Gompertz model with three parameters, we have:

ŜGG3(x) =
(

1 +
B

αλ
(eαx − 1)

)−λ

, µ̂x =
Beαx(

1 + B
αλ (e

αx − 1)
) . (11)

3.3. Poisson-Gompertz Model

In the Poisson–Gompertz model, the force of the mortality function has the Gompertz
expression (9), whereas random effect Z has the shifted Poisson distribution with parameter
λ > 0, i.e.,

P(Z = k) = e−λ λk−1

(k− 1)!
, k ∈ N = {1, 2, . . .}.

In the case of the integer-valued random variable Z, the expression of the survival
function (5) obtains the following form

Ŝ(x) =
∞

∑
k=1

P(Z = k) exp
{
− k

∫ x

0
µtdt

}
. (12)
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Therefore, for the Poisson–Gompertz model, we obtain

ŜPG(x) = e−λ
∞

∑
k=1

λk−1

(k− 1)!
e−kB

∫ x
0 eαtdt

= exp
{
− λ− B

∫ x

0
eαtdt

} ∞

∑
k=1

1
(k− 1)!

(
λe−B

∫ x
0 eαtdt

)k−1

= exp
{

B
α
(1− eαx) + λ

(
e

B
α (1−eαx) − 1

)}
with positive parameters α, B and λ.

The Poisson–Gompertz model is not integrated into package MortalityLaws of R.
Hence, for the data analysis, the expression should be derived for the force of mortality of
ŜPG. For this survival function, we obtain

Ŝ′PG(x) = ŜPG(x)
(

B
α
(1− eαx)′ + λ

(
e

B
α (1−eαx)

)′)
= −ŜPG(x)Beαx

(
λe

B
α (1−eαx) + 1

)
.

Consequently, the force of mortality for the Poisson–Gompertz model is the following:

µ̂x = Beαx
(

λe
B
α (1−eαx) + 1

)
. (13)

3.4. Geometric-Gompertz Model

In the geometric–Gompertz model, the mortality force function has the Gompertz
expression (9), and the random effect Z has the shifted geometric distribution, i.e.,

P(Z = k) = p(1− p)k−1, k ∈ N.

Since random variable Z is discrete, by using Equality (12), we obtain

ŜGEG(x) =
∞

∑
k=1

p(1− p)k−1e−k
∫ x

0 Beαtdt = pe−B
∫ x

0 eαtdt
∞

∑
k=1

(
(1− p)e−B

∫ x
0 eαtdt

)k−1

=
pe

B
α (1−eαx)

1− (1− p)e
B
α (1−eαx)

with parameters α > 0, B > 0 and p ∈ (0, 1).
The geometric–Gompertz model is also not integrated into package MortalityLaws

ofR. Hence, the expression should be derived for the force of the mortality function. We
obtain that

Ŝ′GEG(x) = − pBeαxe
B
α (1−eαx)(

1− (1− p)e
B
α (1−eαx)

)2 .

µ̂x =
Beαx

1− (1− p)e
B
α (1−eαx)

. (14)

3.5. Discrete-Weibull Model

In the discrete–Weibull case, differently to Section 3.1, we suppose that the force of
mortality has a Weibull expression with the modal age of death, i.e., we suppose that

µx =
1
σ

( x
M

)M
σ −1

with positive parameters M and σ.
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Usually, the parameter M is called the modal age of death, because, at this age, the
population has the largest number of deaths; for details, see [2,47–50].

In the discrete–Weibull model, random effect Z is supposed to be discrete with finite
support. We consider the case where random effect Z acquires three different values
1, 2, 3. More precisely, we consider the three-point-discrete–Weibull model with Z having
distribution P(Z = 1) = p, P(Z = 2) = q, P(Z = 3) = 1− p− q, where p, q ∈ [0, 1] and
p + q 6 1.

For the model under consideration, by using Expression (12), we obtain

ŜDW(x) = p e−(
x
M )

M/σ

+ q e−2( x
M )

M/σ

+ (1− p− q)e−3( x
M )

M/σ

.

Since

Ŝ′DW(x) = − 1
σ

( x
M

)M/σ−1
(

p e−(
x
M )

M/σ

+ 2q e−2( x
M )

M/σ

+ 3(1− p− q)e−3( x
M )

M/σ
)

,

we derive that

µ̂x =
1
σ

( x
M

)M/σ−1 p e−(
x
M )

M/σ

+ 2q e−2( x
M )

M/σ

+ 3(1− p− q)e−3( x
M )

M/σ

p e−(
x
M )

M/σ

+ q e−2( x
M )

M/σ

+ (1− p− q)e−3( x
M )

M/σ
. (15)

We note that, when p is equal to 1 the discrete–Weibull force of mortality, (15) becomes
the free Weibull force of mortality.

4. Data and Model Fitness

For the empirical data, the mortality of Lithuanian, Latvian and Estonian populations
in years 2000–2017 was used. Data were taken from the Human Mortality Database. Every
country will be analyzed separately. For simplicity purposes, unisex mortality data will
be used, i.e., results for men and women will not be separated. The reason behind this
choice is based on the law presented in the European Union in 2012, stating that insurance
companies are obliged to use the same mortality tables for both men and women. Therefore,
the choice of using combined mortality data simplifies the use of results in practice. For
empirical data, values of survival function and central mortality data of ages 0–110 were
used. For simplicity, data for ages older than 110 were not analyzed separately; therefore,
they were added to the data of age 110. Empirical values were derived by calculating
averages of years 2000–2017 for every age group. Part of the empirical data is shown in the
Table 1 below.

Table 1. Empirical data table.

Estonia Latvia Lithuania

Age m̃x S̃(x) m̃x S̃(x) m̃x S̃(x)
0 0.0045 1 0.0071 1 0.0058 1
1 0.0005 0.9954 0.0006 0.9929 0.0005 0.9942
2 0.0003 0.9949 0.0004 0.9923 0.0003 0.9936
3 0.0002 0.9946 0.0003 0.9918 0.0003 0.9933
4 0.0002 0.9944 0.0003 0.9915 0.0003 0.9930
5 0.0003 0.9941 0.0003 0.9912 0.0002 0.9927
6 0.0002 0.9938 0.0002 0.9909 0.0002 0.9925
7 0.0002 0.9936 0.0003 0.9906 0.0002 0.9923
8 0.0002 0.9934 0.0002 0.9904 0.0002 0.9920
9 0.0001 0.9933 0.0002 0.9901 0.0002 0.9918

10 0.0002 0.9931 0.0002 0.9899 0.0002 0.9916
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Table 1. Cont.

Estonia Latvia Lithuania

Age m̃x S̃(x) m̃x S̃(x) m̃x S̃(x)
11 0.0002 0.9930 0.0002 0.9897 0.0002 0.9915
12 0.0002 0.9928 0.0002 0.9895 0.0002 0.9913
13 0.0002 0.9926 0.0002 0.9892 0.0002 0.9911
14 0.0002 0.9924 0.0003 0.9890 0.0003 0.9908
15 0.0004 0.9922 0.0003 0.9887 0.0004 0.9905
16 0.0004 0.9918 0.0006 0.9884 0.0005 0.9901
17 0.0005 0.9914 0.0006 0.9878 0.0007 0.9896
18 0.0008 0.9909 0.0007 0.9873 0.0009 0.9889
19 0.0008 0.9901 0.0009 0.9866 0.0010 0.98802
20 0.0010 0.9893 0.001 0.9857 0.0011 0.9869
. . . . . . . . . . . . . . . . . . . . .
50 0.0068 0.9172 0.0083 0.8972 0.0084 0.8950
51 0.0074 0.9109 0.0088 0.8897 0.0088 0.8875
52 0.0079 0.9042 0.0097 0.8819 0.0097 0.8797
53 0.0085 0.8971 0.0104 0.8734 0.0103 0.8711
54 0.0091 0.8895 0.0113 0.8643 0.0109 0.8622
55 0.0100 0.8815 0.0120 0.8546 0.0119 0.8529
56 0.0105 0.8727 0.0129 0.8444 0.0123 0.8428
57 0.0115 0.8636 0.0136 0.8336 0.0133 0.8325
58 0.0121 0.8538 0.0145 0.8223 0.0141 0.8215
59 0.0131 0.8435 0.0162 0.8105 0.0153 0.8099
60 0.0144 0.8326 0.0167 0.7975 0.0163 0.7977
. . . . . . . . . . . . . . . . . . . . .
100 0.4641 0.0073 0.4873 0.0041 0.4799 0.0051
101 0.4966 0.0045 0.5187 0.0025 0.5109 0.0031
102 0.5291 0.0027 0.5500 0.0015 0.5414 0.0018
103 0.5614 0.0016 0.5808 0.0008 0.5711 0.0010
104 0.5932 0.0009 0.6110 0.0004 0.5998 0.0006
. . . . . . . . . . . . . . . . . . . . .

110+ 0.7613 0.00001 0.7670 0.000007 0.7422 0.00001

In the case of an arbitrary survival function S(x) with force of mortality µx, the behaviour of
this force of mortality function in age interval [x, x+ 1) can be described by the central mortality rate

mx =

1∫
0

S(x + u)µx+udu

1∫
0

S(x + u)du
=

S(x)− S(x + 1)
1∫

0
S(x + u)du

(16)

The central mortality rate is usually provided in statistics; therefore, in order to fix
the empirical values of the mortality force, the following assumption is used: the force of
mortality in age interval [x, x + 1) is constant, i.e. µx+t = µx for all x ∈ N0 = {0, 1, . . .} and
t ∈ [0, 1). This assumption implies that the central mortality rate for x ∈ N0 can be equated
to the force of mortality, i.e., mx = µx, x ∈ N0.

The force of mortality is the main characteristic analyzed in this work. According to
the above remarks, we suppose that the mean square error

MSE =

N
∑

x=1
(m̃(x)− µ̂(x))2

N
,
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describes the fitness of the chosen force of mortality to the empirical data, where N = 110,
m̃(x) are values of the empirical central mortality rate, and µ̂(x) denotes the force of
mortality function values of the selected mortality model. The smaller the mean square
error, the better the similarity between the force of the mortality function and empirical data.
In the next section, models with the smallest MSE will be chosen and will be considered as
the most fit to approximate and forecast the mortality of respective populations.

5. Data Analysis and Discussion

In this section, we consider a set of different mortality models satisfying the conditions
of Theorem 1 with a different force of mortality and random effect applied to it. We select
force of mortality functions generated by random effects analyzed in Section 3. All selected
models were applied to Lithuanian, Latvian and Estonian mortality data. For all countries,
we find the parameters of the selected force of mortality functions for which the MSE,
defined by Equation (16), is the smallest. All calculations were performed using package
MortalityLaws of the statistical program R. This package has 28 mortality models and
eight error functions integrated into it, which help to find the best parameters estimates.
The results for every country with each model’s parameter estimates are provided in
Figures 1–3 and Tables 2–4 below.

Figure 1. Mortality models with random effect applied to Lithuanian data.

Table 2. MSE for Lithuanian population.

Model Mean Square Error (MSE)

Gamma–Gompertz with four parameters 0.0001820656
Gamma–Gompertz with three parameters 0.0001824057

Gamma–Weibull 0.0003312705
Weibull (discrete–Weibull with p = 1) 0.0003361133

Poisson–Gompertz 0.0008037022
Geometric–Gompertz 0.01091893
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The best parameters for each model’s force of mortality function applied to Lithua-
nian data were:

• Gamma–Gompertz with four parameters; see (10):
{B = 5.136861× 10−7, α = 0.1250529, λ = 1.320658, k = 7.800965};

• Gamma–Gompertz with three parameters; see (11):
{B = 3.028194× 10−6, α = 0.1250734, λ = 7.798495};

• Gamma–Weibull; see (8):
{c = 5.497963× 10−13, k = 9347.058, λ = 403176.2× 1012, n = 6.752323};

• Weibull (discrete–Weibull with p = 1); see (15):
σ = 10.38606, M = 79.78316, p = 1;

• Poisson–Gompertz; see (13):
{B = 0.0003768185, α = 0.06951546, λ = 5.637439× 10−7};

• Geometric–Gompertz; see (14):
{α = 1.71132× 10−7, B = 0.1451152, p = 0.1467799}.

Figure 2. Mortality models with random effect applied to Latvian data.

Table 3. MSE for Latvian population.

Model Mean Square Error (MSE)

Gamma–Gompertz with four parameters 0.0001455127
Gamma–Gompertz with three parameters 0.0001830891

Gamma–Weibull 0.0002027425
Weibull (discrete–Weibull with p = 1) 0.0002679813

Poisson–Gompertz 0.0007349811
Geometric–Gompertz 0.01031875

The best parameters for each model’s force of mortality function applied to Lat-
vian data were:
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• Gamma–Gompertz with four parameters; see (10):
{B = 0.003359441, α = 0.1071846, λ = 2184.861, k = 10.74998};

• Gamma–Gompertz with three parameters; see (11):
{B = 6.45048× 10−6, α = 0.1171701, λ = 9.04615};

• Gamma–Weibull; see (8):
{c = 1.359224× 10−14, k = 14.06893, λ = 13115012, n = 9.822215};

• Weibull (discrete–Weibull with p = 1); see (15):
σ = 10.4192, M = 79.16829, p = 1;

• Poisson–Gompertz; see (13):
{B = 0.0004160514, α = 0.06882173, λ = 1.653197× 10−5};

• Geometric–Gompertz; see (14):
{α = 1.71132× 10−7, B = 0.1451152, p = 0.1467799}.

Figure 3. Mortality models with random effect applied to Estonian data.

Table 4. MSE for Estonian population.

Model Mean Square Error (MSE)

Weibull (Discrete–Weibull with p < 1) 0.0001198733
Gamma–Gompertz with three parameters 0.0001817575
Gamma–Gompertz with four parameters 0.0001832729

Gamma–Weibull 0.0001985111
Poisson–Gompertz 0.0006680722

Geometric–Gompertz 0.01013277

The best parameters for each model’s force of mortality function applied to Estonian
data are the following:

• Gamma–Gompertz with four parameters; see (10):
{B = 0.03077626, α = 0.1198032, λ = 61698.92, k = 8.989365};
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• Gamma–Gompertz with three parameters; see (11):
{B = 1.317173× 10−5, α = 0.1081533, λ = 11.23144};

• Gamma–Weibull; see (8):
{c = 0.9190396, k = 0.004814763, λ = 1.311606× 10−5, n = 15.05727};

• Weibull (discrete–Weibull with p < 1); see (15):
σ = 10.57929, M = 89.5228, p = 0.001071196, q = 0.8634049;

• Poisson–Gompertz; see (13):
{B = 0.0004160514, α = 0.06882173, λ = 1.653197× 10−5};

• Geometric–Gompertz; see (14):
{α = 1.71132× 10−7, B = 0.1451152, p = 0.1467799}.
Based on the results obtained, we made a conclusion that, for the Lithuanian and

Latvian population, the gamma–Gompertz (with three or four parameters) models fit the
empirical mortality data the best, whereas the discrete–Weibull model (with p < 1) is the
best fit for the mortality of the Estonian population. As a result of a sufficiently small mean
square error, all mortality force functions provided above are suitable to approximate the
mortality of populations under consideration, except the geometric–Gompertz model, since
the force of mortality of this model is similar to the step function, which is not usually
used to describe the mortality of the real population. For the gamma–Gompertz model,
the forecasted mortality is lower compared to statistics. Other analyses performed by
Missov [51] and by Wang and Brown [52] also suggest that the gamma–Gompertz model
increases the human life duration compared to actual statistics. Such a tendency is also
observed in other Gompertz frailty models (see, for instance, the Poisson– Gompertz model
and results obtained in [40] and [53]). For the discrete–Weibull model, a conclusion is made
that the introduction of additional parameters into the force of mortality does not reduce
the error of approximation of real data. It is important to note that previously described
models cannot be considered as unambiguously best applicable for mortality forecasting,
since the choice of model is highly dependent on the population that we are studying.
This work only includes a small amount of mortality models. Therefore, the search for
the unambiguously best applicable model for mortality forecasting remains one of the
unsolved tasks for mathematicians and the life insurance market.
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42. Dotlačilová, P. Comparison of selected mortality models. In Proceedings of the 11th International Days of Statistics and Economics,

Prague, Czech Republic, 14–16 September 2017; Vysoka Skola Ekonomicka: Prague, Czech Republic, 2017, pp. 324–337.
43. Jarner, S.F.; Kryger, E.M. Modelling adult mortality in small populations: The SAINT model. ASTIN Bull. 2011, 41, 377–418.
44. Saika, P.; Borah, M. A comparative study of parametric models of old-age mortality. Int. J. Sci. Res. 2014, 3 , 406–410.
45. Beard, R.E. Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes. In Biological Aspects

of Demography; Brass, W., Ed.; Taylor and Francis: London, UK, 1971; pp. 57–69.
46. Pflaumer, P. Life table forecasting with Gompertz distribution. In JSM Proceedings, Social Statistics Section; American Statistical

Association: Alexandria, VA, USA, 2007; pp. 3564–3571.
47. Horiuchi, S.; Ouellette, N.; Cheung, S.L.K.; Robine, J.M. Modal age at death: Lifespan indicator in the era of longevity extension.

Vienna Yearb. Pop. Res. 2013, 11, 37–69. [CrossRef]
48. Rau, R.; Ebeling, M.; Peters, F.; Bohk-Ewald, C.; Missov, T.I. Where is the level of mortality plateau? In Living to 100, Society of

Actuaries International Symposium; Society of Actuaries: Schaumburg, IL, USA 2017.
49. Cohen, J.E.; Bohk-Ewald, C.; Rau, R. Gompertz, Makeham and Siler models explain Taylor’s law in human mortality data. Demog.

Res. 2018, 38, 773–842. [CrossRef]
50. Romo, V.C. The modal age of death and the shifting mortality hypothesis. Demog. Res. 2008, 19, 1179–1204. [CrossRef]
51. Missov, T.I. Gamma-Gompertz life expectancy at birth. Demogr. Res. 2013, 28, 59–270. [CrossRef]
52. Wang, S.S.; Brown, R.L. A frailty model for projection of human mortality improvements. J. Actuar. Pract. 1998, 6, 1993–2006.
53. Missov, T.I.; Vaupel, J.W. Mortality implications of morality plateaus. SIAM Rev. 2015, 57, 61–70. [CrossRef]

http://dx.doi.org/10.3390/risks9080146
http://dx.doi.org/10.3390/app11115011
http://dx.doi.org/10.3390/math9172025
http://dx.doi.org/10.3390/e21050438
http://www.ncbi.nlm.nih.gov/pubmed/33267152
http://dx.doi.org/10.1016/j.tpb.2013.09.013
http://www.ncbi.nlm.nih.gov/pubmed/24084064
http://dx.doi.org/10.1016/j.jtbi.2016.08.002
http://dx.doi.org/10.1553/populationyearbook2013s37
http://dx.doi.org/10.4054/DemRes.2018.38.29
http://dx.doi.org/10.4054/DemRes.2008.19.30
http://dx.doi.org/10.4054/DemRes.2013.28.9
http://dx.doi.org/10.1137/130912992

	Introduction
	Theoretical Background
	Main Concepts
	Random Effect

	Several Models with Random Effect
	Gamma–Weibull Model
	Gamma–Gompertz Model
	Poisson-Gompertz Model
	Geometric-Gompertz Model
	Discrete-Weibull Model

	Data and Model Fitness
	Data Analysis and Discussion
	References

