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ABSTRACT. In the paper, collections of analytic functions are simultaneously approximated by collec-

tions of shifts of Dirichlet L-functions (L(s+ iγ1(τ), χ1), . . . , L(s+ iγr(τ), χr)), with arbitrary Dirichlet

characters χ1, . . . , χr. The differentiable functions γ1(τ), . . . , γr(τ) and their derivatives satisfy certain

growth conditions. The obtained results extend those of [PAŃKOWSKI,  L.: Joint universality for

dependent L-functions, Ramanujan J. 45 (2018), 181–195].
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1. Introduction

Let χ be a Dirichlet character modulo q ∈ N, i.e., χ is a function on Z, χ(m) 6≡ 0, χ(m) = 0
for (m, q) > 1, χ(m1m2) = χ(m1)χ(m2) for m1,m2 ∈ Z and χ(m + q) = χ(m) for all m ∈ Z.
The properties of Dirichlet characters can be found, for example, in [9]. The Dirichlet L-function
L(s, χ), s = σ + it, is defined, for σ > 1, by

L(s, χ) =

∞∑
m=1

χ(m)

ms
=
∏
p

(
1− χ(p)

p−s

)−1

,

where the product is taken over all prime numbers. If χ(m) is the principal character (χ(m) = 1
if (m, q) = 1), then

L(s, χ) = ζ(s)
∏
p|q

(
1− 1

ps

)
,

where ζ(s) is the Riemann zeta-function,

ζ(s) =

∞∑
m=1

1

ms
=
∏
p

(
1− 1

ps

)−1

, σ > 1.

Therefore, in this case, the function L(s, χ) has analytic continuation to the whole complex plane,
except for the point s = 1 which is a simple pole with residue

∏
p|q

(1−1/p). If χ(m) is a non-principal

character, then L(s, χ) has analytic continuation to an entire function.

Voronin discovered the universality property of the functions L(s, χ) concerning the approxima-
tion of analytic functions defined in the strip D = {s ∈ C : 1/2 < σ < 1}. He proved [21] that if
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f(s) is a continuous non-vanishing function on the disc |s| ≤ r, 0 < r < 1/4, and analytic in the
interior of this disc, then, for every ε > 0, there exists a real number τ = τ(ε) such that

max
|s|≤r

|L(s+ 3/4 + iτ, χ)− f(s)| < ε.

Moreover, Voronin in [22] considered the functional independence of Dirichlet L-functions with
pairwise non-equivalent Dirichlet characters χ1, . . . , χr, and, for this, he in fact obtained in a non-
explicit form a joint universality theorem for L(s, χ1), . . . , L(s, χr). Voronin’s investigations were
continued by Gonek [7], Bagchi [1, 2] and the first author [11]. For the modern version of a joint
universality theorem, we need some notation. Denote by K the class of compact subsets of the strip
D with connected complements, and by H0(K) with K ∈ K the class of continuous non-vanishing
functions on K that are analytic in the interior of K. Let measA be the Lebesgue measure of a
measurable set A ⊂ R. Then the following statement is true, see, for example, [19].

Theorem 1.1. Let χ1, . . . , χr be pairwise non-equivalent Dirichlet characters. For j = 1, . . . , r,
let Kj ∈ K, and let fj(s) ∈ H0(Kj). Then for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε
}
> 0.

We recall that if χ(m) for (m, q) = 1 has a period less than q, then the character χ is non-
primitive. In opposite case, χ is primitive. Every non-primitive character χ is induced by a
primitive character, i.e., there exists a primitive character χ1 modulo q1, q1 | q, such that

χ(m) =

{
χ1(m) if (m, q1) = 1,

0 otherwise.

Two Dirichlet characters are called non-equivalent if they are not induced by the same primitive
character.

It is possible to consider the approximation of the collection (f1(s), . . . , fr(s)) by more general
shifts (L(s+ iγ1(τ), χ1), . . . , L(s+ iγr(τ), χr)). Let K1 = · · · = Kr = K. Then it follows from [8]
that, under hypotheses of Theorem 1.1, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈K
|L(s+ iγj(τ), χj)− fj(s)| < ε

}
> 0,

where γj(τ) = τ + λj , with K satisfying K̂k ∩ K̂l = ∅, k 6= l, where K̂j = {s + iλj : s ∈ K},
j = 1, . . . , r. Nakamura [14] obtained the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈K
|L(s+ iγj(τ), χ)− fj(s)| < ε

}
> 0,

where γj(τ) = ajτ with algebraic numbers a1, . . . , ar ∈ R linearly independent over the field of
rational numbers Q. The case r = 2 was studied in [15]–[17] with a1, a2 ∈ Rr {0}, a1 6= ±a2.

The most general result belongs to Pańkowski [18]. He proved the following theorem.

Theorem 1.2. Suppose that χ1, . . . , χr are Dirichlet characters, α1, . . . , αr ∈ R, a1, . . . , ar ∈ R+,
and b1, . . . , br are such that

bj ∈

{
R if aj 6∈ N,

(−∞, 0] ∪ (1 +∞) if aj ∈ N,

and aj 6= ak or bj 6= bk if k 6= j. Moreover, let K ∈ K, f1, . . . , fr ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [2, T ] : sup

1≤j≤r
sup
s∈K
|L(s+ iαjτ

aj logbj τ, χj)− fj(s)| < ε
}
> 0.
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It is very important to stress that, in Theorem 1.2, χ1, . . . , χr are arbitrary, not necessarily
pairwise non-equivalent, Dirichlet characters. The proof is based on the uniform distribution
modulo 1.

Our aim is to obtain the joint universality for Dirichlet L-functions with other functions γj(τ)
without using the uniform distribution theory. Moreover, we approximate in different sets
K1, . . . ,Kr ∈ K.

Suppose that, for j = 1, . . . , r, γj(τ) is an increasing to infinity real continuously differentiable
functions on [T0,∞), T0 > 0, with derivative

(i)
γ′j(τ) = γ̂j(τ)(1 + o(1)),

where γ̂j(τ) is monotonic such that

(ii)
γ̂1(τ) = o(γ̂2(τ)), . . . , γ̂r−1(τ) = o(γ̂r(τ))

and

(iii)

γj(2τ) max
τ≤u≤2τ

1

γ′j(u)
� τ

as τ →∞.

Denote the class of r-tuples (γ1, . . . , γr) satisfying the above hypotheses by Ur. Then the
following joint universality theorem for Dirichlet L-functions is valid.

Theorem 1.3. Suppose that χ1, . . . , χr are arbitrary Dirichlet characters, and (γ1, . . . , γr) ∈ Ur.
Let, for j = 1, . . . , r, Kj ∈ K and fj ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ] : sup

1≤j≤r
sup
s∈Kj

|L(s+ iγj(τ), χj)− fj(s)| < ε
}
> 0.

Moreover, the limit

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ] : sup

1≤j≤r
sup
s∈Kj

|L(s+ iγj(τ), χj)− fj(s)| < ε
}
> 0

exists for all but at most countably many ε > 0.

For example, the system of polynomials γ1(τ) = τ + 1, γ2(τ) = τ2 + τ + 1, . . . , γr(τ) = τ r +
τ r−1 + · · ·+ 1 is a member of the class Ur. Also (τ log τ, . . . , τ r log τ) ∈ Ur and (τ(Γ′(τ)/Γ(τ)), . . . ,
τ r(Γ′(τ)/Γ(τ))) ∈ Ur, where Γ(·) is the Euler gamma-function. We note that (τ log τ, . . . , τ r log τ)
does not satisfy hypotheses of Theorem 1.2.

Denote by H(D) the space of analytic on D functions endowed with the topology of uniform
convergence on compacta. Theorem 1.3 can be generalized for some compositions. We will give
only one theoretical example. Denote by H(K) with K ∈ K the class of continuous functions on
K that are analytic in the interior of K. Thus, H0(K) ⊂ H(K). Let S = {g ∈ H(D) : g(s) 6=
0 or g(s) ≡ 0}.
Theorem 1.4. Suppose that (γ1, . . . , γr) ∈ Ur and F : Hr(D) → H(D) is a continuous operator
such that, for every open set G ⊂ H(D), the set (F−1G) ∩ Sr is non-empty. Let K ∈ K and
f ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ] :

sup
s∈K

∣∣F (L(s+ iγ1(τ), χ1), . . . , L(s+ iγr(τ), χr)
)
− f(s)

∣∣ < ε
}
> 0.

53



 
 AUTHOR C

OPY 

ANTANAS LAURINČIKAS — DARIUS ŠIAUČIŪNAS

Moreover, the limit

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ] :

sup
s∈K

∣∣F (L(s+ iγ1(τ), χ1), . . . , L(s+ iγr(τ), χr)
)
− f(s)

∣∣ < ε
}
> 0

exists for all but at most countably many ε > 0.

It is known that the sets of values taking by zeta or L-functions are in some sense dense. First,
Bohr [4] obtained that the function ζ(s) takes every non-zero value infinitely many times in the
strip {s ∈ C : 1 < σ < 1 + δ} for any δ > 0. Bohr and Courant [5] obtained that, for any fixed σ,
1/2 < σ < 1, the set

{ζ(σ + it) : t ∈ R}
is dense in C. Voronin extended and generalized the above results. He proved [20] that the set

{(ζ(s1 + iτ), . . . , ζ(sn + iτ)) : τ ∈ R}

with any fixed different s1, . . . , sn, 1/2 < Resk < 1, 1 ≤ k ≤ n, and the set{(
ζ(σ + it), ζ ′(σ + it), . . . , ζ(n−1)(σ + it)

)
: t ∈ R

}
with every fixed σ, 1/2 < σ < 1, are dense in Cn. Moreover, Voronin obtained a joint generalization
of the later result for Dirichlet L-functions. Namely, he proved [22] that if χ1, . . . , χr are pairwise
non-equivalent Dirichlet characters, then the set{(

L(σ + it, χ1), L′(σ + it, χ1), . . . , L(n−1)(σ + it, χ1), . . . ,

L(σ + it, χr), L
′(σ + it, χr), . . . , L

(n−1)(σ + it, χr)
)
t ∈ R

}
is everywhere dense in Cr×n for every fixed σ, 1/2 < σ < 1.

Theorem 1.3 has the following corollary.

Corollary 1.4.1. Suppose that χ1, . . . , χr are arbitrary Dirichlet characters, and (γ1,. . . ,γr)∈Ur.
Then, for every fixed σ, 1/2 < σ < 1, the set{(

L(σ + iγ1(t), χ1), L′(σ + iγ1(t), χ1), . . . , L(n−1)(σ + iγ1(t), χ1), . . . ,

L(σ + iγr(t), χr), L
′(σ + iγr(t), χr), . . . , L

(n−1)(σ + iγr(t), χr)
)

: t ≥ T0

}
is everywhere dense in Cr×n.

The proof of the corollary uses Theorem 1.3 and repeats Voronin’s arguments.

Corollary 1.4.1 implies the following functional independence property of Dirichlet L-functions.

Corollary 1.4.2. Suppose that χ1, . . . , χr are arbitrary Dirichlet characters, Φ: Cr×n → C is a
continuous function, and

Φ
(
L(s, χ1), L′(s, χ1), . . . , L(n−1)(s, χ1), . . . , L(s, χr), L

′(s, χr), . . . , L
(n−1)(s, χr)

)
= 0

identically for s. Then Φ ≡ 0.

For the proof of universality theorems, we apply a method different from that of [18]. This
method is probabilistic, and is based on weak convergence of probability measures in the space of
analytic functions, see [1, 10,12] and [19].
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2. Lemmas

Denote by B(X) the Borel σ-field of the space X, and by γ the unit circle on the complex plane.
Define the set

Ω =
∏
p∈P

γp,

where P is the set of all prime numbers, and γp = γ for all p ∈ P. With product topology and
pointwise multiplication, the infinite-dimensional torus Ω is a compact topological Abelian group.
Let

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for j = 1, . . . , r. Then, again, Ωr is a compact topological Abelian group. There-
fore, on (Ωr,B(Ωr)), the probability Haar measure mr

H exists. This gives the probability space
(Ωr,B(Ωr),mr

H). For j = 1, . . . , r, denote by ωj(p) the pth component of an element ωj ∈ Ωj ,
p ∈ P. Let ω = (ω1, . . . , ωr), ωj ∈ Ωj , be the elements of Ωr.

For A ∈ B(Ωr), define

QrT (A) =
1

T − T0
meas

{
τ ∈ [T0, T ] :

(
(p−iγ1(τ) : p ∈ P), . . . , (p−iγr(τ) : p ∈ P)

)
∈ A

}
.

Lemma 2.1 (Main lemma). Suppose that (γ1, . . . , γr) ∈ Ur. Then QrT converges weakly to the
Haar measure mr

H as T →∞.

P r o o f. Let gQr
T

(k1, . . . , kr), kj = (kjp : kjp ∈ Z, p ∈ P), j = 1, . . . , r, be the Fourier transform of
QrT , i.e.,

gQr
T

(k1, . . . , kr) =

∫
Ωr

( r∏
j=1

∏
p∈P

′
ωkjp(p)

)
dQrT ,

where the sign “ ′ ” means that only a finite number of integers kjp, j = 1, . . . , r, are distinct from
zero. Thus, by the definition of QrT ,

gQr
T

(k1, . . . , kr) =
1

T − T0

T∫
T0

exp

{
− i

r∑
j=1

γj(τ)
∑
p∈P

′
kjp log p

}
dτ. (2.1)

Let, for brevity,

aj =
∑
p∈P

′
kjp log p, j = 1, . . . , r.

Since the set {log p : p ∈ P} is linearly independent over the field of rational numbers Q, aj = 0 if
and only if kj = 0, j = 1, . . . , r. Clearly, in view of (2.1),

gQr
T

(0, . . . , 0) = 1. (2.2)

Now, suppose that (k1, . . . , kr) 6= (0, . . . , 0). Since (γ1, . . . , γr) ∈ Ur, we have( r∑
j=1

ajγj(τ)

)′
=

r∑
j=1

ajγ
′
j(τ) =

r∑
j=1

aj γ̂j(τ)(1 + o(1)) = aj0 γ̂j0(τ)(1 + o(1))

as τ →∞, where j0 = max(j : aj 6= 0). Hence,( r∑
j=1

ajγ
′
j(τ)

)−1

=
1

aj0 γ̂j0(τ)(1 + o(1))
=

1

aj0 γ̂j0(τ)
(1 + o(1)) (2.3)
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as τ →∞. Moreover, since γj(τ)→∞ as τ →∞, we have, in view of (iii) of the class Ur, that

1

γ̂j(τ)
= o(τ) (2.4)

as τ →∞, j = 1, . . . , r. Let A(τ) =
r∑
j=1

ajγj(τ). Then (2.3), (2.4), the monotonicity of γ̂j(τ), and

the second mean value theorem show that
T∫

T0

cosA(τ) dτ =

T∫
log T

cosA(τ) dτ +O(log T ) =

T∫
log T

1

A′(τ)
cosA(τ) dA(τ) +O(log T )

=

T∫
log T

1

aj0 γ̂j0(τ)
cosA(τ) dA(τ) +

T∫
log T

o(1)

aj0 γ̂j0(τ)
cosA(τ) dA(τ) +O(log T ) (2.5)

=

T∫
log T

1

aj0 γ̂j0(τ)
d(sinA(τ)) +

T∫
log T

o(1)(1 + o(1))

A′(τ)
cosA(τ) dA(τ) +O(log T )

= o(T ) +

T∫
log T

o(1) cosA(τ) dτ +O(log T ) = o(T )

as T →∞. Similarly, we find that

T∫
T0

sinA(τ) dτ = o(T )

as T →∞. This, (2.5) and (2.1) show that, in the case (k1, . . . , kr) 6= (0, . . . , 0),

gQr
T

(k1, . . . , kr) = o(1), T →∞.

Thus, in view of (2.2),

lim
T→∞

gQr
T

(k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),

0 if (k1, . . . , kr) 6= (0, . . . , 0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar measure mr
H ,

the lemma follows by a continuity theorem for probability measures on compact groups. �

Lemma 2.1, by a standard way, implies a joint limit theorem in the space Hr(D) for absolutely
convergent Dirichlet series. Let σ0 > 1/2 be a fixed number, χ = (χ1, . . . , χr), for m,n ∈ N,

vn(m) = exp
{
−
(m
n

)σ0
}
,

and

Ln(s, χ) = (Ln(s, χ1), . . . , Ln(s, χr)) ,

where

Ln(s, χj) =

∞∑
m=1

χj(m)vn(m)

ms
, j = 1, . . . , r,
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and

Ln(s, ω, χ) = (Ln(s, ω1, χ1), . . . , Ln(s, ωr, χr)) ,

where

Ln(s, ωj , χj) =

∞∑
m=1

χj(m)ωj(m)vn(m)

ms
, j = 1, . . . , r,

and, for m ∈ N,

ωj(m) =
∏
pl|m
pl+1-m

ωlj(p), j = 1, . . . , r.

Then the series for Ln(s, χj) and L(s, ωj , χj) are absolutely convergent for σ > 1/2, j = 1, . . . , r.
Define the function un : Ωr → Hr(D) by the formula

un(ω) = Ln(s, ω, χ), ω ∈ Ωr.

The absolute convergence of the series for Ln(s, ωj , χj), j = 1, . . . , r, implies the continuity of the
function un. Let Vn = mr

Hu
−1
n , where

Vn(A) = mr
Hu
−1
n (A) = mr

H(u−1
n A), A ∈ B(Hr(D)).

For A ∈ B(Hr(D)), define

PT,n(A) =
1

T − T0
meas

{
τ ∈ [T0, T ] : Ln(s+ iγ(τ), χ) ∈ A

}
,

where γ(τ) = (γ1(τ), . . . , γr(τ)) and

Ln(s+ iγ(τ), χ) = (Ln(s+ iγ1(τ), χ1), . . . , Ln(s+ iγr(τ), χr)) .

Then Lemma 2.1, the continuity of un and [3: Theorem 5.1] lead to the following statement.

Lemma 2.2. Suppose that (γ1, . . . , γr) ∈ Ur. Then PT,n converges weakly to the measure Vn as
T →∞.

The family of probability measures {Vn : n ∈ N} is very important for the investigation of the
collection

L(s+ iγ(τ), χ) = (L(s+ iγ1(τ), χ1), . . . , L(s+ iγr(τ), χr)) .

We recall that the family of probability measures {P} on (X,B(X)) is tight if, for every ε > 0,
there exists a compact set K = K(ε) ⊂ X such that

P (K) > 1− ε

for all P ∈ {P}.

Lemma 2.3. The family {Vn : n ∈ N} is tight.

P r o o f. For j = 1, . . . , r, let mH,j be the probability Haar measure on (Ωj ,B(Ωj)), and un,j :
Ωj → H(D) be given by the formula

un,j(ωj) = Ln(s, ωj , χj).
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Then Vn,j = mH,ju
−1
n,j , j = 1, . . . , r, are the marginal measures of Vn. Actually, for A ∈ B(H(D)),

Vn

(
H(D)× · · · ×H(D)︸ ︷︷ ︸

j−1

×A×H(D)× · · · ×H(D)
)

= mr
Hu
−1
n

(
H(D)× · · · ×H(D)︸ ︷︷ ︸

j−1

×A×H(D)× · · · ×H(D)
)

= mr
H

(
u−1
n

(
H(D)× · · · ×H(D)︸ ︷︷ ︸

j−1

×A×H(D)× · · · ×H(D)
))

= mr
H

(
u−1
n,jA

)
= mH,ju

−1
n,j(A).

It is easy to see using the absolute convergence of the series for Ln(s, χj), see, for example, the
proof of Lemma 4.11 from [19] for more general functions from the Selberg class, that the families
{Vn,j : n ∈ N}, j = 1, . . . , r, are tight. Therefore, for every ε > 0, there exists a compact set
Kj = Kj(ε) ⊂ H(D) such that

Vn,j(Kj) > 1− ε

r
, j = 1, . . . , r (2.6)

for all n ∈ N. The set K = K1 × · · · ×Kr is compact in the space Hr(D), and, in view of (2.6),

Vn(Hr(D) rK) = Vn

(
r
∪
j=1

(
H(D)× · · · ×H(D)︸ ︷︷ ︸

j−1

× (H(D) rKj)×H(D)× · · · ×H(D)

))

≤
r∑
j=1

Vn,j (H(D) rKj) ≤ ε

for all n ∈ N. The lemma is proved. �

3. Mean square estimates

Mean square estimates play an important role in the universality theory of zeta- and L-functions.
In this section, we present estimates for generalized mean squares of Dirichlet L-functions.

Lemma 3.1. Suppose that (γ1, . . . , γr) ∈ Ur. Then, for fixed σ, 1/2 < σ < 1, and t ∈ R,

T∫
T0

|L(σ + it+ iγj(τ), χj)|2 dτ �σ T (1 + |t|), j = 1, . . . , r.

P r o o f. It is well known that, for fixed σ, 1/2 < σ < 1,

T∫
T0

|L(σ + it, χj)|2 dt�σ T.

Therefore, for all t ∈ R,

|t|+γj(τ)∫
0

|L(σ + iu, χj)|2 du�σ (|t|+ γj(τ)).

58



 
 AUTHOR C

OPY 

JOINT APPROXIMATION BY DIRICHLET L-FUNCTIONS

Thus, for X ≥ T0,

2X∫
X

|L(σ + it+ iγj(τ), χj)|2 dτ =

2X∫
X

1

γ′j(τ)
|L(σ + it+ iγj(τ), χj)|2 dγj(τ)

� max
X≤τ≤2X

1

γ′j(τ)

2X∫
X

d

( t+γj(τ)∫
0

|L(σ + iu, χj)|2 du

)

�σ (|t|+ γj(2X)) max
X≤τ≤2X

1

γ′j(τ)
�σ X(1 + |t|)

in virtue of properties of Ur. Now, taking X = T2−k−1 and summing over k = 0, 1, . . . , we get the
estimate of the lemma. �

Lemma 3.1 allows to obtain the approximation in the mean for L(s, χ) by Ln(s, χ). For g1, g2 ∈
H(D), let

ρ(g1, g2) =

∞∑
l=1

2−l
sup
s∈Kl

|g1(s)− g2(s)|

1 + sup
s∈Kl

|g1(s)− g2(s)|
,

where {Kl : l ∈ N} ⊂ D is a sequence of compact sets such that

D =

∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kl for some l. Then ρ is a
metric in H(D) inducing the topology of uniform convergence on compacta. For g

1
= (g11, . . . , g1r),

g
2

= (g21, . . . , g2r) ∈ Hr(D), define

ρ(g
1
, g

2
) = max

1≤j≤r
ρ(g1j , g2j).

Then ρ is a metric in Hr(D) inducing the product topology.

Lemma 3.2. The equality

lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

ρ
(
L(s+ iγ(τ), χ), Ln(s+ iγ(τ), χ)

)
dτ = 0

holds.

P r o o f. From the definitions of the metrics ρ and ρ, it follows that it suffices to prove that, for
every compact set K ⊂ D and all j = 1, . . . , r,

lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

sup
s∈K
|L(s+ iγj(τ), χj)− Ln(s+ iγj(τ), χj)| dτ = 0. (3.1)

Let

ln(s) =
s

σ0
Γ

(
s

σ0

)
n−s,
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where the number σ0 is from the definition of vn(m). Then an application of the Mellin formula
leads to the representation

Ln(s, χ) =
1

2πi

σ0+i∞∫
σ0−i∞

L(s+ z, χ)ln(z)
dz

z
,

where χ is an arbitrary Dirichlet character modulo q. Let K be an arbitrary fixed compact set of
the strip D. We fix ε > 0 such that 1/2 + 2ε ≤ σ ≤ 1− ε for points s ∈ K. The residue theorem
for σ̂0 > 0 implies

Ln(s, χ)− L(s, χ) =
1

2πi

−σ̂0+i∞∫
−σ̂0−i∞

L(s+ z, χ)ln(z)
dz

z
+Rn(s), (3.2)

where

Rn(s) =


0 if χ is a non-principal character,∏
p|q

(
1− 1

p

)
ln(1−s)

1−s otherwise.

Denote by s = σ + iv the points of K, and take

σ̂0 = σ − ε− 1

2
, σ0 =

1

2
+ ε.

Let γ(τ) be one of the functions γj(τ), j = 1, . . . , r. Then, by (3.2),

|Ln(s+ iγ(τ), χ)− L(s+ iγ(τ), χ)|

≤ 1

2π

∞∫
−∞

|L(s+ iγ(τ)− σ̂0 + it, χ)| |ln(−σ̂0 + it)|
| − σ̂0 + it|

dt+ |Rn(s+ iγ(τ)|

=
1

2π

∞∫
−∞

|L(1/2 + ε+ i(t+ γ(τ)), χ)| |ln(1/2 + ε− s+ it)|
|1/2 + ε− s+ it|

dt+ |Rn(s+ iγ(τ)|

after a shift t+ v → t. Thus,

1

T − T0

T∫
T0

sup
s∈K
|L(s+ iγ(τ), χ)− Ln(s+ iγ(τ), χ)|dτ

≤ 1

2π

∞∫
−∞

(
1

T − T0

T∫
T0

|L(1/2 + ε+ i(t+ γ(τ)), χ)|dτ
)

sup
s∈K

|ln(1/2 + ε− s+ it)|
|1/2 + ε− s+ it|

dt

+
1

T − T0

T∫
T0

sup
s∈K
|Rn(s+ iγ(τ)|dτ (3.3)

def
= I1 + I2.

For the function Γ(s), the well-known estimate

Γ(σ + it)� exp{−c|t|}, c > 0,
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uniform in σ1 ≤ σ ≤ σ2 is valid. Therefore, the definition of ln(s) implies the bound

ln(1/2 + ε− s+ it)

1/2 + ε− s+ it
� n1/2+ε−σ

σ0
exp

{
− c

σ0
|t− v|

}
�K n−ε exp{−c|t|}.

Thus, by Lemma 3.1,

I1 �K,ε n
−ε

∞∫
−∞

(
1 + |t|1/2

)
exp{−c|t|}dt�K,ε n

−ε. (3.4)

Similarly, we find that

I2 �K,q n
1/2−2ε 1

T − T0

T∫
T0

exp{−cγ(τ)} dτ �K,q n
1/2−2ε

(
log T

T
+

1

T

T∫
log T

exp{−cγ(τ)}dτ

)

�K,q n
1/2−2ε

(
log T

T
+

1

T
exp

{
− c

2
γ(log T )

} T∫
log T

exp
{
− c

2
γ(τ)

}
dτ

)
= o(T )

as T → ∞ because γ(τ) → ∞ as τ → ∞. This, (3.4) and (3.3) prove (3.1). The lemma is
proved. �

4. Limit theorem

In this section, we consider the weak convergence for

PT (A)
def
=

1

T − T0
meas

{
τ ∈ [T0, T ] : L(s+ iγ(τ), χ) ∈ A

}
, A ∈ B(Hr(D)),

as T →∞. For this, we recall the useful property of convergence in distribution (
D−→).

Proposition 4.1. Suppose that the space (X, d) is separable, and Xkn and Xn, k ∈ N, n ∈ N, are

X-valued random elements defined on the same probability space with measure ν. If Xkn
D−−−−→

n→∞

Zk
D−−−−→

k→∞
X and, for every ε > 0,

lim
k→∞

lim sup
n→∞

ν {d(Xkn, Xn) ≥ ε} = 0,

then Xn
D−−−−→

n→∞
X.

The proof of the proposition is given in [3].

Define

L(s, ω, χ) = (L(s, ω1, χ1), . . . , L(s, ωr, χr)) ,

where

L(s, ωj , χj) =

∞∑
m=1

χj(m)ωj(m)

ms
, j = 1, . . . , r,

and denote by PL the distribution of the Hr(D)-valued random element L(s, ω, χ), i.e.,

PL(A) = mr
H

{
ω ∈ Ωr : L(s, ω, χ) ∈ A

}
, A ∈ B(Hr(D)).

Theorem 4.2. Suppose that (γ1, . . . , γr) ∈ Ur. Then PT converges weakly to PL as T →∞.
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P r o o f. On a certain probability space with measure µ, define a random variable ξT and assume
that ξT is uniformly distributed on [T0, T ]. On the above probability space, define the Hr(D)-val-
ued random element

XT,n = XT,n(s) = Ln(s+ iγ(ξT ), χ),

and denote by X̂n = X̂n(s) the Hr(D)-valued random element with distribution Vn, where Vn is
the limit measure in Lemma 2.2. Then Lemma 2.2 implies the relation

XT,n
D−−−−→

T→∞
X̂n. (4.1)

By Lemma 2.3, the family {Vn : n ∈ N} is tight, therefore, in view of the Prokhorov theorem
[3: Theorem 6.1], it is relatively compact. Thus, there exists a subsequence {Vnk

} ⊂ {Vn} weakly
convergent to a certain probability measure P on (Hr(D),B(Hr(D))) as k →∞. This is equivalent
to the relation

X̂nk

D−−−−→
k→∞

P. (4.2)

Define one more Hr(D)-valued random element

XT = XT (s) = L(s+ iγ(ξT ), χ).

Then, using Lemma 3.2, we find that, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
{
ρ(XT , XT,n) ≥ ε

}
≤ lim
n→∞

lim sup
T→∞

1

(T − T0)ε

T∫
T0

ρ
(
L(s+ iγ(τ), χ), Ln(s+ iγ(τ), χ)

)
dτ = 0.

This, (4.1), (4.2) and Proposition 4.1 show that

XT
D−−−−→

T→∞
P, (4.3)

i.e., PT converges weakly to P as T →∞.

It remains to prove that P = PL. The relation (4.3) shows that the measure P is independent
of the choice of the sequence {Vnk

}. Hence, we have that

X̂n
D−−−−→

n→∞
P,

or Vn converges weakly to P as n → ∞. In [6], a discrete limit theorem for Dirichlet L-functions
was discussed, and it was obtained that the limit measure P of Vn, as n→∞, is PL. This remark
and (4.3) complete the proof of the theorem. �

Theorem 4.2 implies a limit theorem for the compositions F (L(s, χ)).

Theorem 4.3. Suppose that (γ1, . . . , γr) ∈ Ur, and F : Hr(D)→ H(D) is a continuous operator.
Then

PT,F (A)
def
=

1

T
meas

{
τ ∈ [0, T ] : F

(
L(s+ iγ(τ), χ)

)
∈ A

}
A ∈ B(H(D)),

converges weakly to PLF
−1 as T →∞.

P r o o f. The theorem follows from Theorem 4.2, continuity of F and [3: Theorem 5.1]. �
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5. Support

For proving of universality, we need the explicit form of the support of the measure PL. Since
the space Hr(D) is separable, the support SPL

of PL is a minimal closed set of Hr(D) such that
PL(SPL

) = 1. The set SPL
consists of all g ∈ Hr(D) such that, for every open neighbourhood G

of g, the inequality PL(G) > 0 is satisfied.

We recall that

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Proposition 5.1. The support of PL is the set Sr.

P r o o f. Let, for ω ∈ Ω,

L(s, ω, χ) =

∞∑
m=1

χ(m)ω(m)

ms
=
∏
p

(
1− χ(p)ω(p)

ps

)−1

,

and PL be the distribution of the H(D)-valued random element L(s, ω, χ). Then it is well known,
see, for example, [1], [11], that the support of PL is the set S. We will apply this remark for the
support of PL.

Since the space Hr(D) is separable, it is known that [3]

B(Hr(D)) = B(H(D))× · · · × B(H(D))︸ ︷︷ ︸
r

.

Therefore, it suffices to consider the measure PL on the sets A ∈ Hr(D) of the form

A = A1 × · · · ×Ar, A1, . . . , Ar ∈ H(D).

The Haar measure mr
H is the product of the Haar measures mH,j on (Ωj ,B(Ωj)), j = 1, . . . , r.

Therefore,

PL(A) = mr
H

{
ω ∈ Ωr : L(s, ω, χ) ∈ A

}
=

r∏
j=1

mH,j {ωj ∈ Ωj : L(s, ωj , χj) ∈ Aj} =

r∏
j=1

PLj
(Aj),

where PLj
is the distribution of the random element L(s, ωj , χj). Since, for all j = 1, . . . , r, the

support of PLj
is the set S, the minimality of the support proves the proposition. �

Proposition 5.2. Let F : Hr(D)→ H(D) be a continuous operator such that, for every open set
G ⊂ H(D), the set (F−1G) ∩ Sr is non-empty. Then the support of the measure PLF

−1 is the
whole of H(D).

P r o o f. Let g ∈ H(D) be an arbitrary element, and G its any open neighbourhood. Then the set
F−1G is open as well, and contains an element of the set Sr. Thus, in view of Proposition 5.1,
F−1G is an open neighbourhood of an element of the support of the measure PL. Hence,

PLF
−1(G) = PL(F−1G) > 0.

Since g and G are arbitrary, this proves the proposition. �
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6. Proof of universality

We recall the Mergelyan theorem on the approximation of analytic functions by polynomials
[13]. Let K ⊂ C be a compact set with connected complements, and f(s) be a continuous function
on K and analytic in the interior of K. Then, for every ε > 0, there exists a polynomial p(s) such
that

sup
s∈K
|f(s)− p(s)| < ε.

P r o o f o f T h e o r e m 1.3. By the Mergelyan theorem, there exist polynomials pj(s) such that

sup
1≤j≤r

sup
s∈Kj

∣∣fj(s)− epj(s)
∣∣ < ε

2
. (6.1)

Define the set

Grε =
{

(g1, . . . , gr) ∈ Hr(D) : sup
1≤j≤r

sup
s∈Kj

∣∣gj(s)− epj(s)
∣∣ < ε

2

}
.

Then Grε, in view of Proposition 5.1, is an open neighbourhood of the element
(
ep1(s), . . . , epr(s)

)
of the support of the measure PL. Therefore

PL(Grε) > 0. (6.2)

Thus, Theorem 4.2 and the equivalent of weak convergence of probability measures in terms of
open sets ([3: Theorem 2.1]) show that

lim inf
T→∞

PT (Grε) > 0.

This, (6.1) and the definitions of PT and Grε prove the first part of the theorem.

To prove the second part of the theorem, define one more set

Ĝrε =
{

(g1, . . . , gr) ∈ Hr(D) : sup
1≤j≤r

sup
s∈Kj

|gj(s)− fj(s)| < ε
}
.

Then the boundary ∂Ĝrε of Ĝrε lies in the set{
(g1, . . . , gr) ∈ Hr(D) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− fj(s)| = ε
}
,

therefore, ∂Ĝrε1 ∩ ∂Ĝ
r
ε2 = ∅ for different positive ε1 and ε2. From this remark, it follows that the

set Ĝrε is a continuity set of the measure PL for all but at most countably many ε > 0. Thus,
Theorem 4.2 and the equivalent of weak convergence of probability measures in terms of continuity
sets ([3: Theorem 2.1 ]) imply the equality

lim
T→∞

PT (Ĝrε) = PL(Ĝrε) (6.3)

for all but at most countably many ε > 0. In view of (6.1), Grε ⊂ Ĝrε. Therefore, PL(Ĝrε) > 0 by

(6.2). This, (6.3) and the definitions of PT and Ĝrε prove the second part of the theorem. �

P r o o f o f T h e o r e m 1.4. By the Mergelyan theorem, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (6.4)

Define the set

Gε =
{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.
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Then, by Proposition 5.2, Gε is an open neighbourhood of the element p(s) of the support of the
measure PLF

−1. Therefore,

PLF
−1(Gε) > 0. (6.5)

From this, Theorem 4.3 and the equivalent of weak convergence of probability measures in terms
of open sets, we obtain that

lim inf
T→∞

PT,F (Gε) ≥ PLF−1(Gε) > 0,

and the definitions of PT,F and Gε, and (6.4) prove the first part of the theorem.

Define one more set

Ĝε =
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then we have that this set is a continuity set of the measure PLF
−1 for all but at most countably

many ε > 0. Therefore, Theorem 4.3 and the equivalent of weak convergence of probability
measures in terms of continuity sets show that

lim
T→∞

PT,F (Ĝε) = PLF
−1(Ĝε) (6.6)

for all but at most countably many ε > 0. Moreover, in view of (6.4), we have that Gε ⊂ Ĝε.

Therefore, by (6.5), the inequality PL,F−1(Ĝε) > 0 holds. This together with (6.6) proves the
second part of the theorem. �
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[12] LAURINČIKAS, A.—GARUNKŠTIS, R.: The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht,

2002.

[13] MERGELYAN, S.N: Uniform approximation to functions of a complex variable, Usp. Matem. Nauk 7(2) (1952),

31–122 (in Russian); [Amer. Math. Soc. Translation vol. 101, 1954, p. 99].

[14] NAKAMURA, T.: The joint universality and the generalized strong recurrence for Dirichlet L-functions, Acta

Arith. 138 (2009), 357–362.
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