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JOINT APPROXIMATION BY DIRICHLET L-FUNCTIONS
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(Communicated by Istvdn Gadl)

ABSTRACT. Inthe paper, collections of analytic functions are simultaneously approximated by collec-
tions of shifts of Dirichlet L-functions (L(s + iv1(7), x1), - - -, L(s + ivr(7), xr)), with arbitrary Dirichlet
characters x1, ..., xr. The differentiable functions v1(7),...,vr(7) and their derivatives satisfy certain
growth conditions. The obtained results extend those of [PANKOWSKI, L.: Joint universality for
dependent L-functions, Ramanujan J. 45 (2018), 181-195].
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1. Introduction

Let x be a Dirichlet character modulo ¢ € N, i.e., x is a function on Z, x(m) #Z 0, x(m) =0
for (m,q) > 1, x(mimz) = x(m1)x(mz) for my,mg € Z and x(m + q) = x(m) for all m € Z.
The properties of Dirichlet characters can be found, for example, in [9]. The Dirichlet L-function
L(s,x), s = o +it, is defined, for o > 1, by

Ls,y) = o~ x(m) :H(l— x(p))‘l’

ms p—S

where the product is taken over all prime numbers. If y(m) is the principal character (x(m) =1

if (m,q) = 1), then .
Lis0 =& T (1 - )

pS
plg

where ((s) is the Riemann zeta-function,

> 1 11
C(S)ZZ%:H@_E) . o>1
m=1 P
Therefore, in this case, the function L(s, x) has analytic continuation to the whole complex plane,
except for the point s = 1 which is a simple pole with residue [J(1—1/p). If x(m) is a non-principal
plg

character, then L(s, x) has analytic continuation to an entire function.

Voronin discovered the universality property of the functions L(s, x) concerning the approxima-
tion of analytic functions defined in the strip D = {s € C: 1/2 < o < 1}. He proved [21] that if
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f(s) is a continuous non-vanishing function on the disc |s| < r, 0 < r < 1/4, and analytic in the
interior of this disc, then, for every e > 0, there exists a real number 7 = 7(g) such that

max |L(s+3/4+1i7,x) — f(s)] < e.

|s|<r
Moreover, Voronin in [22] considered the functional independence of Dirichlet L-functions with
pairwise non-equivalent Dirichlet characters x1,..., x:, and, for this, he in fact obtained in a non-
explicit form a joint universality theorem for L(s, x1),...,L(s, x»). Voronin’s investigations were
continued by Gonek [7], Bagchi [1L|2] and the first author [11]. For the modern version of a joint
universality theorem, we need some notation. Denote by K the class of compact subsets of the strip
D with connected complements, and by Hy(K) with K € K the class of continuous non-vanishing
functions on K that are analytic in the interior of K. Let measA be the Lebesgue measure of a
measurable set A C R. Then the following statement is true, see, for example, [19].

THEOREM 1.1. Let x1,...,X, be pairwise non-equivalent Dirichlet characters. For j = 1,...,7,
let K; € K, and let fj(s) € Ho(K;). Then for every e > 0,

1
lim inf —meas{T €[0,T): sup sup |L(s+ir, x;) — fi(s)| < 5} > 0.
Tooo T 1<j<r seK;

We recall that if x(m) for (m,q) = 1 has a period less than ¢, then the character x is non-
primitive. In opposite case, x is primitive. Every non-primitive character y is induced by a
primitive character, i.e., there exists a primitive character x; modulo ¢1, ¢; | ¢, such that

xi(m) if (m,q1) =1,
x(m) = :

0 otherwise.

Two Dirichlet characters are called non-equivalent if they are not induced by the same primitive
character.

It is possible to consider the approximation of the collection (f1(s),..., f-(s)) by more general
shifts (L(s +iv1(7),x1),---» L(s +17-(7), x»)). Let K1 = -+ = K,, = K. Then it follows from [§]
that, under hypotheses of Theorem [I1] for every £ > 0,

1
lim inf —meas{T €[0,T]: sup sup |L(s+iy;(7),x;) — fi(s)] < 5} > 0,
T—oo T 1<j<rseK
where v;(7) = 7 + A;, with K satisfying Ky N K, =0, k # 1, where Xj ={s+i)\ s € K},
j=1,...,r. Nakamura [14] obtained the inequality
1
lim inf —meas{T € [0,T]: sup sup |L(s+1iv;(7),x) — fi(s)] < 5} >0,
T—oo T 1<j<r s€eK

where v;(7) = a;7 with algebraic numbers ay,...,a, € R linearly independent over the field of
rational numbers Q. The case r = 2 was studied in [15]-|17] with a1,a2 € R \ {0}, a1 # *as.
The most general result belongs to Parikowski [18]. He proved the following theorem.

THEOREM 1.2. Suppose that x1,..., X, are Dirichlet characters, aq,...,a, €R, ai,...,a, € RT,
and by, ..., b, are such that
R if a; €N,
bj S . !
(—00,00U(1+00) if a; €N,

and a; # ay or b; # by if k # j. Moreover, let K € K, fi1,..., fr € Ho(K). Then, for everye >0,

1
lim inf —meaS{T €[2,T]: sup sup |L(s +ia;7% log¥ 7, x;) — fi(s)] < E} > 0.
T—oo T 1<j<rseK
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It is very important to stress that, in Theorem X1,---,Xr are arbitrary, not necessarily
pairwise non-equivalent, Dirichlet characters. The proof is based on the uniform distribution
modulo 1.

Our aim is to obtain the joint universality for Dirichlet L-functions with other functions v;(7)
without using the uniform distribution theory. Moreover, we approximate in different sets
Ky,...,K,. eX.

Suppose that, for j = 1,...,7, 7;(7) is an increasing to infinity real continuously differentiable
functions on [Ty, 00), To > 0, with derivative

(i)

(1) = 4(7)(1 + o(1)),
where 4;(7) is monotonic such that

1
rY]( T) TgLaSXQT ,7; (U) <7

as 7 — 0Q.

Denote the class of r-tuples (v1,...,7,) satisfying the above hypotheses by U,. Then the
following joint universality theorem for Dirichlet L-functions is valid.

THEOREM 1.3. Suppose that x1,...,Xr are arbitrary Dirichlet characters, and (vy1,...,7v.) € U,.
Let, for j=1,...,r, K; € K and f; € Hyo(K;). Then, for every e > 0,

lim inf
T—o00 — 1y

meas{T € [To,T): sup sup |L(s+1iv,(7),x;) — fi(s)] < E} > 0.
1<j<r sekK;

Moreover, the limit

i
750 T — Ty

meas{T € [To,T): sup sup |L(s+1iv,;(1),x;) — fi(s)] < 5} >0
1<j<r s€K;

exists for all but at most countably many € > 0.

For example, the system of polynomials v1(7) = 7+ 1, y2(7) = 72 + 7+ 1,...,7.(1) = 7" +
7771 +... 41 is a member of the class U,.. Also (tlogT,...,7"log7) € U, and (7(I'(7)/T(7)), ...,
7"(I'(1)/T(1))) € Uy, where I'(+) is the Euler gamma-function. We note that (7logr,...,7" log)
does not satisfy hypotheses of Theorem [I:2}

Denote by H(D) the space of analytic on D functions endowed with the topology of uniform
convergence on compacta. Theorem [I.3] can be generalized for some compositions. We will give
only one theoretical example. Denote by H(K) with K € IC the class of continuous functions on
K that are analytic in the interior of K. Thus, Ho(K) C H(K). Let S = {g € H(D) : g(s) #
0 or g(s) = 0}.

THEOREM 1.4. Suppose that (y1,...,7) € Ur and F: H"(D) — H(D) is a continuous operator
such that, for every open set G C H(D), the set (F~1G) N S™ is non-empty. Let K € K and
f € H(K). Then, for every e > 0,

1
lim inf T meas{T € [Ty, T :

T—o00 — 1o

sup |F(L(s +im(7), x1), -, L(s + i (7), xr)) — f(5)] < 6} > 0.
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Moreover, the limit

lim

ML meas{r € [To,T) :

sup |F(L(8+171(7')7X1)7~-~7L(5+i%(7')7><r)) - f(3)| < 5} >0
seEK

exists for all but at most countably many € > 0.

It is known that the sets of values taking by zeta or L-functions are in some sense dense. First,
Bohr [4] obtained that the function ((s) takes every non-zero value infinitely many times in the
strip {s € C:1 <o <1+ 4} for any 6 > 0. Bohr and Courant [5] obtained that, for any fixed o,
1/2 < 0 < 1, the set

{¢(c +it) : t e R}

is dense in C. Voronin extended and generalized the above results. He proved [20] that the set
{(¢(s1 +1i7),...,C(sp +i1)) : T €R}
with any fixed different s1,...,8,, 1/2 < Resi < 1, 1 < k <n, and the set
{<QJ+MLC®HJHPHKW”NU+RU:tER}

with every fixed 0, 1/2 < o < 1, are dense in C"™. Moreover, Voronin obtained a joint generalization
of the later result for Dirichlet L-functions. Namely, he proved [22] that if x1,..., X, are pairwise
non-equivalent Dirichlet characters, then the set

KMU+MM%UW+MXﬂ~WUWU@+MXm~w
L(o +it,x,), L' (o +it, x,), ..., L V(o +it, XT')) te R}

is everywhere dense in C™*™ for every fixed o, 1/2 < o < 1.
Theorem [1.3] has the following corollary.

COROLLARY 1.4.1. Suppose that x1, ..., X, are arbitrary Dirichlet characters, and (y1,. .., v) €U,..
Then, for every fixzed o, 1/2 < o < 1, the set

{(L@+im®), ), Lo+ im0, x), - LD o+ (8, xa), -+
L(o + v (), X0) L' (0 + 19 (8), Xr), - -, LT (0 + i (8), xr)) > To}
is everywhere dense in C™*™.

The proof of the corollary uses Theorem and repeats Voronin’s arguments.
Corollary implies the following functional independence property of Dirichlet L-functions.

COROLLARY 1.4.2. Suppose that x1,...,Xr are arbitrary Dirichlet characters, ®: C™*" — C is a
continuous function, and

® (L(S»X1)7 LI(57X1)7 LR L(n_l)(sv Xl)a BERE) L(Sa Xr)a L/(Sa Xr)v ) L(n_l)(sa Xr)> =0
identically for s. Then ® = 0.

For the proof of universality theorems, we apply a method different from that of [18]. This
method is probabilistic, and is based on weak convergence of probability measures in the space of
analytic functions, see [1,/104|12] and [19].
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2. Lemmas

Denote by B(X) the Borel o-field of the space X, and by + the unit circle on the complex plane.

Define the set
Q= H )

peP
where P is the set of all prime numbers, and v, = v for all p € P. With product topology and
pointwise multiplication, the infinite-dimensional torus €2 is a compact topological Abelian group.
Let
Q" =Qy x--- xQ,,
where Q; = Q for j = 1,...,r. Then, again, Q" is a compact topological Abelian group. There-
fore, on (£27,B(€")), the probability Haar measure m}; exists. This gives the probability space
(Q",B(Q2"),m}). For j =1,...,r, denote by w;(p) the pth component of an element w; € €,
p€eP. Let w=(wr,...,w), wj € Qj, be the elements of Q.
For A € B(Q"), define

Qrl4) = 5=

LEMMA 2.1 (Main lemma). Suppose that (y1,...,7) € U,. Then Q% converges weakly to the
Haar measure my; as T — oo.

meas {T € [Ty, T] : ((p_i"“(T) cpeP),...,(p M :pe IP’)) € A} .

Proof. Let gor (ky,...,k,), k; = (kjp 1 kjp €Z, p € P), j =1,...,7, be the Fourier transform of
Qh, ie.,

sor (ks k) = [ (TLIT <)) ae,
g \i=1peP

where the sign “’” means that only a finite number of integers k;p,, j = 1,...,r, are distinct from

zero. Thus, by the definition of Q7,

T
1 S /
9qp(ky, - k) = T T, /exp{ — Z’yj(r) Z kjp logp} dr. (2.1)
o j=1 peP

Let, for brevity,

ajzz kjplog p, j=1...,m
peP

Since the set {logp : p € P} is linearly independent over the field of rational numbers Q, a; = 0 if
and only if k; =0, j = 1,...,r. Clearly, in view of (2.1,

405 (0....0) = 1. (2.2)
Now, suppose that (k;,...,k,) # (0,...,0). Since (y1,...,v) € U,, we have

(L o) =X ami(r) = L a1 +01) = a5, (r)(1 + o(1)
as T — 00, where jo = max(j : a; # 0). Hence,

(Zaﬂ;m) _ ! B (2.3
j=1

ajo’?jo (T)(l + 0(1)) ajo’s/jo (T)
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as T — 00. Moreover, since v;(7) — 0o as T — 00, we have, in view of of the class U,., that

= o(T) (2.4)

asT — 00, j=1,...,r. Let A(7) = 3 a;7v,;(7). Then (2.3), (2.4), the monotonicity of 4;(7), and
j=1

the second mean value theorem show that

T T . 1
cos A(T)dr = cos A(T)dr + O(logT) = — cos A(r) dA(r) + O(log T)
7{ log/T log/T A(7)
z T
:/T vlmA” v +/T %COS’A“)MW +O(logT) (25)
[ [ o1 +0(1)
= ———d(sin A(7 o)l +o(l)) cos A(r - o
- / () A AT) + / ) A(r)dA(r) + O(log T)
log T log T
=o(T) + / o(1) cos A(T) dr + O(log T') = o(T)
log T

as T — oo. Similarly, we find that
T
/sin A(r)dr = o(T)
To

as T — oo. This, (2.5) and (2.1) show that, in the case (kq,...,k,) # (0,...,0),
9qr(ky, - k) = o(1), T — 0.

s Lo

Thus, in view of (2.2)),

lim ggr. (k... k
S 0 if (kyyeeesk,) # (0., 0).

T—o0
Since the right-hand side of the latter equality is the Fourier transform of the Haar measure mf;,
the lemma follows by a continuity theorem for probability measures on compact groups. O

){ 1 if (Elaﬂwkr):(gv“'ag)a

Lemma by a standard way, implies a joint limit theorem in the space H"(D) for absolutely
convergent Dirichlet series. Let oo > 1/2 be a fixed number, x = (x1,...,x»), for m,n € N,

i =esn (- (2)"}

Ln(S’X) = (Ln(57X1)7 s 7Ln(S>XT)) )

and

where

o~ X (m)va(m)
Ln(&Xj):Z%a ]le--ara
m=1
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JOINT APPROXIMATION BY DIRICHLET L-FUNCTIONS

and

where

and, for m € N,

Then the series for L, (s, x;) and L(s,w;j, x;) are absolutely convergent for o > 1/2, j =1,...,r.
Define the function w,,: Q" — H"(D) by the formula

un(w) - Ln(svwaX)v weN.

The absolute convergence of the series for L, (s,w;, x;), j = 1,...,r, implies the continuity of the
function wu,. Let V,, = m%u, !, where
Vi(A) = myu, M (A) = mY (u, L A), A e B(H"(D)).

n

For A € B(H"(D)), define

1
Pro) =727

meas {T € [To,T): L, (s +iy(7),x) € A} ,
where (1) = (71(7),...,7(7)) and
Ly (s +1y(7), X) = (Ln(s +i71(7), x1)s -+ L(s + 19(7), X7)) -
Then Lemma the continuity of u, and |3t Theorem 5.1] lead to the following statement.

LEMMA 2.2. Suppose that (y1,...,7r) € U,. Then Pr, converges weakly to the measure V,, as
T — 0.

The family of probability measures {V,, : n € N} is very important for the investigation of the
collection

L(s + il(T)’X) = (L(s +in(7),x1), - L(s + 1 (7), X)) -

We recall that the family of probability measures {P} on (X, B(X)) is tight if, for every € > 0,
there exists a compact set K = K(g) C X such that

P(K)>1—¢
for all P € {P}.

LEMMA 2.3. The family {V,, : n € N} is tight.

Proof For j =1,...,r, let my; be the probability Haar measure on (€;, B(€2;)), and u,; :
Q; — H(D) be given by the formula

un,j(wj) = Ln(sawja Xj)~

o7
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-1
n,j’

Then V, ; = mg ju, -, j =1,...,r, are the marginal measures of V,,. Actually, for A € B(H(D)),

Va( H(D) x -+ x H(D) xA x H(D) x -+ x H(D))

- mgu—l(H(D) x - x H(D)xA x H(D) x -+ x H(D))

:m%(u—l(H(D) X x HD)xAx H(D) x - xH(D)))

=mpy (u;)jA) = mH,jugé (4).

It is easy to see using the absolute convergence of the series for L, (s, x;), see, for example, the
proof of Lemma 4.11 from [19] for more general functions from the Selberg class, that the families
{Va; :n €N}, j=1,...,r, are tight. Therefore, for every ¢ > 0, there exists a compact set
K; = K;(e) C H(D) such that

Vn,j(Kj)>1_§a j=1...r (2.6)
for all n € N. The set K = K; x --- x K,. is compact in the space H"(D), and, in view of ({2.6)),

V,(H" (D)~ K) = Vn( U (H(D) - x H(D) x (H(D)~ K;) x H(D) X - -+ X H(D)))

Jj=1

j—1
<> Vi (H(D)NKj) <e
j=1

for all n € N. The lemma is proved. O

3. Mean square estimates

Mean square estimates play an important role in the universality theory of zeta- and L-functions.
In this section, we present estimates for generalized mean squares of Dirichlet L-functions.

LEmMMA 3.1. Suppose that (y1,...,7.) € U.. Then, for fized o, 1/2 <o <1, andt € R,

17
[ 1L it + i) Pdr <o TA+ ), G=Lor

To

Proof. It is well known that, for fixed o, 1/2 < 0 < 1,

T
/ |L(o +it,x;)|? dt <, T.
To
Therefore, for all t € R,
[t]+7; ()
(o +iu, )| du <o ([t] 47 (7).
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Thus, for X > Ty,

2X 2X
1
/ IL(0 + it + i (7). x;) 2 dr = / Lo+ it +iny (7)) )
J
X

2X t+7;(7)

1 .
/d( 0/ |L(U+1u,xj)2du)

< max ;
X<r<2X fyj(r)

1
i(2X —_— X(1
in virtue of properties of U,. Now, taking X = 727%~! and summing over k = 0,1,..., we get the
estimate of the lemma. O

Lemma allows to obtain the approximation in the mean for L(s, X> by Ln(s,x). For g1,92 €
H(D), let
o sup [g1(s) — g2(s)]

1 SEK;
plg91,92) = 2
(01:92) = 2 2 T — el
- seK;

where {K; : | € N} C D is a sequence of compact sets such that

(oo}
D= U K,
1=1
K; C Kjyq for alll € N, and if K C D is a compact set, then K C K for some [. Then p is a
metric in H (D) inducing the topology of uniform convergence on compacta. For 9, = (9115- -5 91r),

gg = (nga s 792T) S HT(D), define
p(9,,9,) = max p(g1;: g27)-

Then p is a metric in H"(D) inducing the product topology.

LEMMA 3.2. The equality

T
lim limsup /,0 (L(S +1v(7), x)s Ly, (s + iy(7), X)) dr =0
n—00 T_so —TOT - - - - o

0

holds.

Proof. From the definitions of the metrics p and p, it follows that it suffices to prove that, for
every compact set K C Dand all j=1,...,r,

T
lim lim sup /sup |L(s+iv;(7),x;) — Ln(s +ivj(7), x;)| d7 = 0. (3.1)
n—=00 e I'— TOT seK

0

Let
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where the number oq is from the definition of v, (m). Then an application of the Mellin formula
leads to the representation

og+ioco
1 dz
L) =5 [ Lt 20b(2)F
i z
op—ioco
where x is an arbitrary Dirichlet character modulo gq. Let K be an arbitrary fixed compact set of
the strip D. We fix € > 0 such that 1/2 + 2¢ < o <1 — ¢ for points s € K. The residue theorem

for 69 > 0 implies

—d&g+ioco
1 dz
L) L0 =5 [ Lt 200h@)F + Ras), (32)
76’07i00
where
0 if x is a non-principal character,

;1)_|£ (1 — %) % otherwise.
Denote by s = ¢ + iv the points of K, and take
1

6’0:0'—6—57 0'025"‘5.

Let v(7) be one of the functions v;(7), j =1,...,7. Then, by (3.2),
|Ln (s +1v(7), x) — L(s +iv(7), X)|

‘|ln(—[70 + it)]

dt + |R i
e e [R5+ i ()

o0
1
<5r [ 1D+ () =0 +it,0)

1,(1/2 - it .
/2% e = s HI0]4R (s 4 in(r)

:% / IL(1/2 4+ & + it + (7)), ¥)|

/2 4e—s+il
—0o0
after a shift t + v — ¢. Thus,
T
[ sup Lo +i5(7)0 = La(s + (). 0] dr
T-Ty ) sek
To
LT la(1/2 )
n +e—s+it
< — L(1/2 i(t d dt
= on / (TTo/l (1724 e +it+ (), T)S?E /242 —s+il]
—00 To
T
i d .
g [ B Rals +in(r) dr (33
To
d:Cffl—f—IQ.

For the function I'(s), the well-known estimate

[(o +it) < exp{—c|t]}, ¢>0,
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uniform in 07 < o < g9 is valid. Therefore, the definition of ,,(s) implies the bound
ln(l/2+€—$+it) n1/2+€7o
; <
1/24+¢e—s+it o0
Thus, by Lemma

c
exp {—U|t - v|} <k n~exp{—clt|}.
0

oo

I <gen / (1 + |t|1/2) exp{—c|t|}dt <x.n"*. (3.4)
o0
Similarly, we find that
T
I €k 4 n1/2_25T%TO/eXp{—c'y(T)}dT L qnt/? (logT = / exp{—cy(T )}dT)
To logT
T
Lfeqnt/?% (loiT + % exp {—gw(log T)} / exp {—%’Y(T)} dT) =o(T)

log T
as T — oo because (1) — oo as 7 — oo. This, and ( . prove . The lemma is
proved. O

4. Limit theorem

In this section, we consider the weak convergence for

Pr(A) <

T Tomeas {r €Ty, T]: L(s +iy(7),x) € A}, A e B(H"(D)),

as T'— oo. For this, we recall the useful property of convergence in distribution (2))

PROPOSITION 4.1. Suppose that the space (X,d) is separable, and X, and X,,, k € N, n € N, are

X-valued random elements defined on the same probability space with measure v. If Xk, _r,
n—oo

D
Zr —— X and, for every e >0,
k—o00

lim limsup v {d(Xgpn, Xn) > e} =0,

k=00 n—oo
then X, —— X.
n—oo
The proof of the proposition is given in [3].

Define
L(S,W, X) = (L(Sawlaxl)a R L(87wTaX7‘)) )

X .
sw],xj Z AN , j=1...,n

and denote by P, the distribution of the HT(D)—valued random element L(s,w, x), i.e.,
Pp(A) =mpy {we Q" : L(s,w,x) € A}, A e B(H"(D)).

where

THEOREM 4.2. Suppose that (y1,...,7r) € Ur. Then Pr converges weakly to Py, as T — oo.
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Proof. On a certain probability space with measure pu, define a random variable {7 and assume
that & is uniformly distributed on [Ty, T']. On the above probability space, define the H"(D)-val-
ued random element

KT,n = XT,n (S) = L’ﬂ (S + 11<§T)7X)7

and denote by X, = X, (s) the H"(D)-valued random element with distribution V;,, where V;, is
the limit measure in Lemma Then Lemma [2.2] implies the relation

— X, (4.1)

By Lemma the family {V,, : n € N} is tight, therefore, in view of the Prokhorov theorem
[3: Theorem 6.1], it is relatively compact. Thus, there exists a subsequence {V;,, } C {V,,} weakly
convergent to a certain probability measure P on (H" (D), B(H"(D))) as k — oo. This is equivalent
to the relation

X 2P (4.2)

EL S0
k koo

Define one more H"(D)-valued random element

Xp = Xgp(s) = L(s +1y(&r), x)-
Then, using Lemma [3.2] we find that, for every € > 0,

lim limsup p {B(KT,XT@) > 5}

n—00 T _yno

n—00 T_sso

T
1
< lim limsupm/g(é(s—l—ij(T),X),Ln(s—i—il(T),X)) dr = 0.
To

This, (4.1), (4.2) and Proposition show that

X, 2P, (4.3)

T—o0

i.e., Pr converges weakly to P as T — oo.

It remains to prove that P = Pr. The relation (4.3) shows that the measure P is independent
of the choice of the sequence {V},, }. Hence, we have that

Xni_)Pa

n—oo

or V,, converges weakly to P as n — oco. In [6], a discrete limit theorem for Dirichlet L-functions
was discussed, and it was obtained that the limit measure P of V,,, as n — oo, is Pr. This remark
and (4.3) complete the proof of the theorem. |

Theorem {4.2| implies a limit theorem for the compositions F(L(s, x))-

THEOREM 4.3. Suppose that (71,...,7v) € Uy, and F': H" (D) — H(D) is a continuous operator.
Then

Pr.p(A) % %meas [re0,T]: F(L(s +in(r).x)) € A}  AeBH(D)),

converges weakly to PLF~' as T — oco.
Proof. The theorem follows from Theorem continuity of F' and [3; Theorem 5.1]. O
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5. Support

For proving of universality, we need the explicit form of the support of the measure Pr. Since
the space H"(D) is separable, the support Sp, of P is a minimal closed set of H"(D) such that
Pp(Sp,) = 1. The set Sp, consists of all g € H"(D) such that, for every open neighbourhood G

of g, the inequality Pr(G) > 0 is satisfied.
We recall that

S={g€ H(D):g(s) #0org(s)=0}.

PRrOPOSITION 5.1. The support of Pr, is the set S”.

Proof. Let, for w € §,

L(57W7X) = Z M :H(]_f M>_1’

m S
m=1 » p

and Py, be the distribution of the H(D)-valued random element L(s,w, x). Then it is well known,
see, for example, [1], [11], that the support of Py, is the set S. We will apply this remark for the
support of Py.

Since the space H"(D) is separable, it is known that |3]
B(H"(D)) =B(H(D)) x --- x B(H(D)).

T

Therefore, it suffices to consider the measure P, on the sets A € H"(D) of the form
A=A x---x A,, Al,...,ATEH(D).

The Haar measure mf; is the product of the Haar measures my ; on (;,B(;)), j = 1,...,r.
Therefore,

PL(4) =miy {w € Q" L(s,w,x) € A}

= [T mms{w; € Q5 Lis,wjx5) € A3} = [] Pr, (4)),

j=1 j=1
where Pr; is the distribution of the random element L(s,w;,x;). Since, for all j = 1,...,r, the
support of Pr; is the set S, the minimality of the support proves the proposition. O

PROPOSITION 5.2. Let F': H"(D) — H(D) be a continuous operator such that, for every open set
G C H(D), the set (F~'G) N S" is non-empty. Then the support of the measure PLF ™' is the
whole of H(D).

Proof. Let g € H(D) be an arbitrary element, and G its any open neighbourhood. Then the set
F~'G is open as well, and contains an element of the set S”. Thus, in view of Proposition
F~1G is an open neighbourhood of an element of the support of the measure Py. Hence,

PLFY(G)=PL(F'G) > 0.

Since g and G are arbitrary, this proves the proposition. O
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6. Proof of universality

We recall the Mergelyan theorem on the approximation of analytic functions by polynomials
[13]. Let K C C be a compact set with connected complements, and f(s) be a continuous function
on K and analytic in the interior of K. Then, for every € > 0, there exists a polynomial p(s) such
that

sup | f(s) —p(s)| <e.
seK

Proof of Theoreml[L3 By the Mergelyan theorem, there exist polynomials p;(s) such that
sup sup |f](s) —epj(s)| << (6.1)
1<j<r s€K; 2

Define the set
Gi= {(91,...,gr) € H'(D): sup sup |g;(s) —e”¥| < %}

1<j<r s€kK;

Then G, in view of Proposition is an open neighbourhood of the element (epl(s), e ,ep'”(s))

of the support of the measure Pr. Therefore
Pr(GE) > 0. (6.2)
Thus, Theorem and the equivalent of weak convergence of probability measures in terms of
open sets (|3t Theorem 2.1]) show that
liminf Pr(GL) > 0.
T—o0

This, (6.1) and the definitions of Pr and GL prove the first part of the theorem.
To prove the second part of the theorem, define one more set

GL = {(gl,...,gr) € H"(D) : sup sup |gj(s) — fi(s)] < 6}.
1<j<r seK;

Then the boundary G~ of G lies in the set

{91, 9) € H'(D): sup_ sup lg;(s) = f5(s)| = <},
1<j<r seK;

therefore, 6@21 N 8@;2 = () for different positive £; and €. From this remark, it follows that the

set ég is a continuity set of the measure Pp for all but at most countably many & > 0. Thus,
Theorem and the equivalent of weak convergence of probability measures in terms of continuity
sets ([3: Theorem 2.1 ]) imply the equality

lim Pp(GL) = PL(GY) (6.3)
T—o0 -

for all but at most countably many & > 0. In view of (6.1), G* C G”. Therefore, Pr(G”) > 0 by
(6.2). This, (6.3)) and the definitions of Pr and é; prove the second part of the theorem. |

Proof of Theorem[[4d By the Mergelyan theorem, there exists a polynomial p(s) such that

sup |f(s) = p(s)| < . (6.4)
seK
Define the set .
G = {g € H(D) : sup |g(s) —p(s)] < 5 }.
seK
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Then, by Proposition G. is an open neighbourhood of the element p(s) of the support of the
measure P, F~1. Therefore,

PL,FY(G.) > 0. (6.5)
From this, Theorem and the equivalent of weak convergence of probability measures in terms
of open sets, we obtain that

lim inf Prp(G.) > PLFY(G.) > 0,
—00 -

and the definitions of Pr p and G, and (6.4]) prove the first part of the theorem.
Define one more set

G. = {g € H(D) : supg(s) — f(s)| < 5}.

seK
Then we have that this set is a continuity set of the measure Py F~! for all but at most countably
many € > 0. Therefore, Theorem and the equivalent of weak convergence of probability
measures in terms of continuity sets show that

lim Prr(G.) = PLFY(G.) (6.6)
T—o0 -
for all but at most countably many € > 0. Moreover, in view of (6.4]), we have that G, C G..

Therefore, by (6.5)), the inequality P, p—1(G<) > 0 holds. This together with proves the
second part of the theorem. O

REFERENCES

1

BAGCHI, B.: The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and other
Allied Dirichlet Series, Ph. D. Thesis, Indian Stat. Institute, Calcutta, 1981.
[2] BAGCHI, B.: A joint universality theorem for Dirichlet L-functions, Math. Z. 181 (1982), 319-334.
[3] BILLINGSLEY, P.:. Convergence of Probability Measures, Wiley, New York, 1968.
[4] BOHR, H.: Uber das Verhalten von ((s) in der Halbebene o > 1, Nachr. Akad. Wiss. Géttingen IT Math. Phys.
K. (1911), 409-428.
[5] BOHR, H—COURANT, R.: Neue Anwendungen der Theorie der Diophantischen Approzimationen auf die
Riemannsche Zetafunktion, J. Reine Angew. Math. 144 (1914), 249-274.
DUBICKAS, A—LAURINCIKAS, A.: Joint discrete universality of Dirichlet L-functions, Arch. Math. 104
(2015), 25-35.
[7] GONEK, S.M.: Analytic Properties of Zeta and L-functions, Ph. D. Thesis, University of Michigan, 1979.
[8] KACZOROWSKI, J.—LAURINCIKAS, A.—STEUDING, J.: On the value distribution of shifts of universal
Dirichlet series, Monatsh. Math. 147(4) (2006), 309-317.
[9] KARATSUBA, A. A—VORONIN, S. M.: The Riemann Zeta-Function, Walter de Gruyter, Berlin, New York,
1992.
[10] LAURINCIKAS, A.: Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht,
1996.
[11] LAURINCIKAS, A.: On joint universality of Dirichlet L-functions, Chebyshevskii Sb. 12(1) (2011), 124-139.
[12] LAURINCIKAS, A—GARUNKSTIS, R.: The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht,
2002.
[13] MERGELYAN, S.N: Uniform approzimation to functions of a complex variable, Usp. Matem. Nauk 7(2) (1952),
31-122 (in Russian); [Amer. Math. Soc. Translation vol. 101, 1954, p. 99].
[14] NAKAMURA, T.: The joint universality and the generalized strong recurrence for Dirichlet L-functions, Acta
Arith. 138 (2009), 357-362.
[15] NAKAMURA, T.—PAI\’TKOWSKI7 L.: Erratum to: The generalized strong recurrence for non-zero rational
parameters, Archivum Math. 99 (2012), 43-47.
[16] PANKOWSKI, L.: Some remarks on the generalized strong recurrence for L-functions. In: New Directions in
Value Distribution Theory of Zeta and L-Functions, Shaker Verlag, Aachen, 2009, pp. 307-315.

6

65



ANTANAS LAURINCIKAS — DARIUS SIAUCIUNAS

[17] PANKOWSKI, L.: Joint universality and generalized strong recurrence with rational parameter, J. Number
Theory 163 (2016), 61-74.

[18] PANKOWSKI, L.: Joint ungversality for dependent L-functions, Ramanujan J. 45 (2018), 181-195.

[19] STEUDING, J.: Value-Distribution of L-Functions. Lecture Notes in Math. 1877, Springer, Berlin, 2007.

[20] VORONIN, S. M.: The distribution of the non-zero values of the Riemann zeta-function, Trudy Matem. Inst.
Steklov 128 (1972), 131-150 (in Russian).

[21] VORONIN, S. M.: Theorem on the “universality” of the Riemann zeta-function, Izv. Akad. Nauk SSSR, Ser.
Mat. 39 (1975), 475486 (in Russian); [Math. USSR Izv. 9 (1975), 443-453].

[22] VORONIN, S. M.: On the functional independence of Dirichlet L-functions, Acta Arith. 27 (1975), 493-503
(in Russian).

Received 14. 11. 2020 * Institute of Mathematics
Accepted 3. 2. 2021 Faculty of Mathematics and Informatics
Vilnius University
Naugarduko str. 24
LT-03225 Vilnius
LITHUANIA

E-mail: antanas.laurincikas@Qmif.vu.lt

** Institute of Regional Development
Siauliai Academy
Vilnius University
P. Visinskio str. 25
LT-76351 Siauliai
LITHUANIA

E-mail: darius.siauciunas@sa.vu.lt

66



	1. Introduction
	2. Lemmas
	3. Mean square estimates
	4. Limit theorem
	5. Support
	6. Proof of universality
	REFERENCES

