DE GRUYTER

DOI: 10.1515/ms-2022-0004 Math. Slovaca 72 (2022), No. 1, 51[–66](#page-14-0)

JOINT APPROXIMATION BY DIRICHLET L-FUNCTIONS

ANTANAS LAURINČIKAS^{*} — DARIUS ŠIAUČIŪNAS^{**, c}

 $(Communicated by István Gaál)$

ABSTRACT. In the paper, collections of analytic functions are simultaneously approximated by collections of shifts of Dirichlet L-functions $(L(s + i\gamma_1(\tau), \chi_1), \ldots, L(s + i\gamma_r(\tau), \chi_r))$, with arbitrary Dirichlet characters χ_1, \ldots, χ_r . The differentiable functions $\gamma_1(\tau), \ldots, \gamma_r(\tau)$ and their derivatives satisfy certain growth conditions. The obtained results extend those of [PANKOWSKI, L.: Joint universality for dependent L-functions, Ramanujan J. 45 (2018), 181–195].

> c 2022 Mathematical Institute Slovak Academy of Sciences

1. Introduction

AUTHOR COPY Let χ be a Dirichlet character modulo $q \in \mathbb{N}$, i.e., χ is a function on $\mathbb{Z}, \chi(m) \neq 0, \chi(m) = 0$ for $(m, q) > 1$, $\chi(m_1 m_2) = \chi(m_1) \chi(m_2)$ for $m_1, m_2 \in \mathbb{Z}$ and $\chi(m+q) = \chi(m)$ for all $m \in \mathbb{Z}$. The properties of Dirichlet characters can be found, for example, in [9]. The Dirichlet L-function $L(s, \chi)$, $s = \sigma + it$, is defined, for $\sigma > 1$, by

$$
L(s, \chi) = \sum_{m=1}^{\infty} \frac{\chi(m)}{m^s} = \prod_p \left(1 - \frac{\chi(p)}{p^{-s}}\right)^{-1},
$$

where the product is taken over all prime numbers. If $\chi(m)$ is the principal character $(\chi(m) = 1)$ if $(m, q) = 1$, then

$$
L(s,\chi)=\zeta(s)\prod_{p|q}\Big(1-\frac{1}{p^s}\Big),
$$

where $\zeta(s)$ is the Riemann zeta-function,

$$
\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s} = \prod_p \left(1 - \frac{1}{p^s} \right)^{-1}, \qquad \sigma > 1.
$$

Therefore, in this case, the function $L(s, \chi)$ has analytic continuation to the whole complex plane, except for the point $s = 1$ which is a simple pole with residue $\prod (1 - 1/p)$. If $\chi(m)$ is a non-principal $p|q$

character, then $L(s, \chi)$ has analytic continuation to an entire function.

Voronin discovered the universality property of the functions $L(s, \chi)$ concerning the approximation of analytic functions defined in the strip $D = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$. He proved [\[21\]](#page-15-0) that if

²⁰²⁰ Mathematics Subject Classification: 11M41.

K e y w o r d s: Dirichlet L-functions, joint universality, functional independence, weak convergence.

The research of the first author is funded by the European Social Fund (project No. 09.3.3-LMT-K-712-01-0037) under grant agreement with the Research Council of Lithuania (LMT LT).

^c Corresponding author.

 $f(s)$ is a continuous non-vanishing function on the disc $|s| \leq r$, $0 < r < 1/4$, and analytic in the interior of this disc, then, for every $\varepsilon > 0$, there exists a real number $\tau = \tau(\varepsilon)$ such that

$$
\max_{|s|\leq r}|L(s+3/4+\textup{i}\tau,\chi)-f(s)|<\varepsilon.
$$

AU[T](#page-14-7)[HO](#page-1-0)R CO[PY](#page-15-2) Moreover, Voronin in [\[22\]](#page-15-1) considered the functional independence of Dirichlet L-functions with pairwise non-equivalent Dirichlet characters χ_1, \ldots, χ_r , and, for this, he in fact obtained in a nonexplicit form a joint universality theorem for $L(s, \chi_1), \ldots, L(s, \chi_r)$. Voronin's investigations were continued by Gonek [7], Bagchi [1, 2] and the first author [11]. For the modern version of a joint universality theorem, we need some notation. Denote by $\mathcal K$ the class of compact subsets of the strip D with connected complements, and by $H_0(K)$ with $K \in \mathcal{K}$ the class of continuous non-vanishing functions on K that are analytic in the interior of K . Let meas A be the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the following statement is true, see, for example, [19].

THEOREM 1.1. Let χ_1, \ldots, χ_r be pairwise non-equivalent Dirichlet characters. For $j = 1, \ldots, r$, let $K_j \in \mathcal{K}$, and let $f_j(s) \in H_0(K_j)$. Then for every $\varepsilon > 0$,

$$
\liminf_{T \to \infty} \frac{1}{T} \text{meas}\Big\{\tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |L(s + i\tau, \chi_j) - f_j(s)| < \varepsilon \Big\} > 0.
$$

We recall that if $\chi(m)$ for $(m, q) = 1$ has a period less than q, then the character χ is nonprimitive. In opposite case, χ is primitive. Every non-primitive character χ is induced by a primitive character, i.e., there exists a primitive character χ_1 modulo $q_1, q_1 | q$, such that

$$
\chi(m) = \begin{cases} \chi_1(m) & \text{if } (m, q_1) = 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Two Dirichlet characters are called non-equivalent if they are not induced by the same primitive character.

It is possible to consider the approximation of the collection $(f_1(s), \ldots, f_r(s))$ by more general shifts $(L(s + i\gamma_1(\tau), \chi_1), \ldots, L(s + i\gamma_r(\tau), \chi_r))$. Let $K_1 = \cdots = K_r = K$. Then it follows from [\[8\]](#page-14-6) that, under hypotheses of Theorem 1.1, for every $\varepsilon > 0$,

$$
\liminf_{T \to \infty} \frac{1}{T} \text{meas}\Big\{\tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K} |L(s + i\gamma_j(\tau), \chi_j) - f_j(s)| < \varepsilon \Big\} > 0,
$$

where $\gamma_j(\tau) = \tau + \lambda_j$, with K satisfying $\hat{K}_k \cap \hat{K}_l = \emptyset$, $k \neq l$, where $\hat{K}_j = \{s + i\lambda_j : s \in K\}$, $j = 1, \ldots, r$. Nakamura [14] obtained the inequality

$$
\liminf_{T \to \infty} \frac{1}{T} \text{meas}\Big\{\tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K} |L(s + i\gamma_j(\tau), \chi) - f_j(s)| < \varepsilon \Big\} > 0,
$$

where $\gamma_i(\tau) = a_i \tau$ with algebraic numbers $a_1, \ldots, a_r \in \mathbb{R}$ linearly independent over the field of rational numbers \mathbb{Q} . The case $r = 2$ was studied in [15]–[17] with $a_1, a_2 \in \mathbb{R} \setminus \{0\}, a_1 \neq \pm a_2$.

The most general result belongs to Pankowski [18]. He proved the following theorem.

THEOREM 1.2. Suppose that χ_1, \ldots, χ_r are Dirichlet characters, $\alpha_1, \ldots, \alpha_r \in \mathbb{R}, a_1, \ldots, a_r \in \mathbb{R}^+,$ and b_1, \ldots, b_r are such that

$$
b_j \in \begin{cases} \mathbb{R} & \text{if } a_j \notin \mathbb{N}, \\ (-\infty, 0] \cup (1 + \infty) & \text{if } a_j \in \mathbb{N}, \end{cases}
$$

and $a_j \neq a_k$ or $b_j \neq b_k$ if $k \neq j$. Moreover, let $K \in \mathcal{K}$, $f_1, \ldots, f_r \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$
\liminf_{T \to \infty} \frac{1}{T} \text{meas}\Big\{\tau \in [2, T] : \sup_{1 \le j \le r} \sup_{s \in K} |L(s + i\alpha_j \tau^{a_j} \log^{b_j} \tau, \chi_j) - f_j(s)| < \varepsilon \Big\} > 0.
$$

It is very important to stress that, in Theorem [1.2,](#page-1-1) χ_1, \ldots, χ_r are arbitrary, not necessarily pairwise non-equivalent, Dirichlet characters. The proof is based on the uniform distribution modulo 1.

Our aim is to obtain the joint universality for Dirichlet L-functions with other functions $\gamma_i(\tau)$ without using the uniform distribution theory. Moreover, we approximate in different sets $K_1, \ldots, K_r \in \mathcal{K}$.

Suppose that, for $j = 1, \ldots, r, \gamma_j(\tau)$ is an increasing to infinity real continuously differentiable functions on $[T_0, \infty)$, $T_0 > 0$, with derivative

(i)

$$
\gamma_j'(\tau) = \hat{\gamma}_j(\tau)(1 + o(1)),
$$

where $\hat{\gamma}_j(\tau)$ is monotonic such that

(ii)

$$
\hat{\gamma}_1(\tau) = o(\hat{\gamma}_2(\tau)), \ldots, \hat{\gamma}_{r-1}(\tau) = o(\hat{\gamma}_r(\tau))
$$

and

(iii)

$$
\gamma_j(2\tau)\max_{\tau\leq u\leq 2\tau}\frac{1}{\gamma_j'(u)}\ll \tau
$$

as $\tau \to \infty$.

Denote the class of r-tuples $(\gamma_1, \ldots, \gamma_r)$ satisfying the above hypotheses by U_r . Then the following joint universality theorem for Dirichlet L-functions is valid.

THEOREM 1.3. Suppose that χ_1, \ldots, χ_r are arbitrary Dirichlet characters, and $(\gamma_1, \ldots, \gamma_r) \in U_r$. Let, for $j = 1, ..., r$, $K_j \in \mathcal{K}$ and $f_j \in H_0(K_j)$. Then, for every $\varepsilon > 0$,

$$
\liminf_{T \to \infty} \frac{1}{T - T_0} \operatorname{meas}\Big\{\tau \in [T_0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |L(s + i\gamma_j(\tau), \chi_j) - f_j(s)| < \varepsilon \Big\} > 0.
$$

Moreover, the limit

$$
\lim_{T \to \infty} \frac{1}{T - T_0} \operatorname{meas}\left\{\tau \in [T_0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |L(s + i\gamma_j(\tau), \chi_j) - f_j(s)| < \varepsilon\right\} > 0
$$

exists for all but at most countably many $\varepsilon > 0$.

For example, the system of polynomials $\gamma_1(\tau) = \tau + 1$, $\gamma_2(\tau) = \tau^2 + \tau + 1$, ..., $\gamma_r(\tau) = \tau^r +$ $\tau^{r-1} + \cdots + 1$ is a member of the class U_r . Also $(\tau \log \tau, \ldots, \tau^r \log \tau) \in U_r$ and $(\tau(\Gamma'(\tau)/\Gamma(\tau)), \ldots, \tau^r \log \tau)$ $\tau^r(\Gamma'(\tau)/\Gamma(\tau))) \in U_r$, where $\Gamma(\cdot)$ is the Euler gamma-function. We note that $(\tau \log \tau, \ldots, \tau^r \log \tau)$ does not satisfy hypotheses of Theorem 1.2.

Suppose that, for $y = 1,...,r$, $\gamma_1(\tau)$ is an increasing to infinity real continuously differentiab

functions on $[T_0, \infty)$, $T_0 > 0$, with derivative

(i)

where $\hat{\gamma}_j(\tau)$ is monotonic such that

(ii)
 $\hat{\gamma}_i(\tau) = o(\hat{\gamma$ Denote by $H(D)$ the space of analytic on D functions endowed with the topology of uniform convergence on compacta. Theorem 1.3 can be generalized for some compositions. We will give only one theoretical example. Denote by $H(K)$ with $K \in \mathcal{K}$ the class of continuous functions on K that are analytic in the interior of K. Thus, $H_0(K) \subset H(K)$. Let $S = \{g \in H(D) : g(s) \neq \emptyset\}$ 0 or $g(s) \equiv 0$.

THEOREM 1.4. Suppose that $(\gamma_1, \ldots, \gamma_r) \in U_r$ and $F: H^r(D) \to H(D)$ is a continuous operator such that, for every open set $G \subset H(D)$, the set $(F^{-1}G) \cap S^r$ is non-empty. Let $K \in \mathcal{K}$ and $f \in H(K)$. Then, for every $\varepsilon > 0$,

$$
\liminf_{T \to \infty} \frac{1}{T - T_0} \operatorname{meas}\Big\{\tau \in [T_0, T] : \sup_{s \in K} |F(L(s + i\gamma_1(\tau), \chi_1), \dots, L(s + i\gamma_r(\tau), \chi_r)) - f(s)| < \varepsilon \Big\} > 0.
$$

Moreover, the limit

$$
\lim_{T \to \infty} \frac{1}{T - T_0} \text{meas}\Big\{\tau \in [T_0, T] : \sup_{s \in K} |F(L(s + i\gamma_1(\tau), \chi_1), \dots, L(s + i\gamma_r(\tau), \chi_r)) - f(s)| < \varepsilon\Big\} > 0
$$

exists for all but at most countably many $\varepsilon > 0$.

It is known that the sets of values taking by zeta or L-functions are in some sense dense. First
ori [4] obtained that the function ((s) bakes werey un-zero value infinitely many times in the function
of [4] obtained that It is known that the sets of values taking by zeta or L-functions are in some sense dense. First, Bohr [4] obtained that the function $\zeta(s)$ takes every non-zero value infinitely many times in the strip $\{s \in \mathbb{C} : 1 < \sigma < 1 + \delta\}$ for any $\delta > 0$. Bohr and Courant [5] obtained that, for any fixed σ , $1/2 < \sigma < 1$, the set

$$
\{\zeta(\sigma + \mathrm{i}t) : t \in \mathbb{R}\}
$$

is dense in C. Voronin extended and generalized the above results. He proved [20] that the set

 $\{(\zeta(s_1+i\tau),\ldots,\zeta(s_n+i\tau)) : \tau \in \mathbb{R}\}\$

with any fixed different s_1, \ldots, s_n , $1/2 <$ Re $s_k < 1$, $1 \leq k \leq n$, and the set

$$
\left\{ \Big(\zeta(\sigma+{\rm i}t), \zeta'(\sigma+{\rm i}t), \ldots, \zeta^{(n-1)}(\sigma+{\rm i}t) \Big): t \in \mathbb{R} \right\}
$$

with every fixed σ , $1/2 < \sigma < 1$, are dense in \mathbb{C}^n . Moreover, Voronin obtained a joint generalization of the later result for Dirichlet L-functions. Namely, he proved [22] that if χ_1, \ldots, χ_r are pairwise non-equivalent Dirichlet characters, then the set

$$
\left\{ \left(L(\sigma + it, \chi_1), L'(\sigma + it, \chi_1), \dots, L^{(n-1)}(\sigma + it, \chi_1), \dots, L(\sigma + it, \chi_r), L'(\sigma + it, \chi_r), \dots, L^{(n-1)}(\sigma + it, \chi_r) \right) t \in \mathbb{R} \right\}
$$

is everywhere dense in $\mathbb{C}^{r \times n}$ for every fixed σ , $1/2 < \sigma < 1$.

Theorem 1.3 has the following corollary.

COROLLARY 1.4.1. Suppose that χ_1, \ldots, χ_r are arbitrary Dirichlet characters, and $(\gamma_1, \ldots, \gamma_r) \in U_r$. Then, for every fixed σ , $1/2 < \sigma < 1$, the set

$$
\left\{ \left(L(\sigma + i\gamma_1(t), \chi_1), L'(\sigma + i\gamma_1(t), \chi_1), \dots, L^{(n-1)}(\sigma + i\gamma_1(t), \chi_1), \dots, L(\sigma + i\gamma_r(t), \chi_r), L'(\sigma + i\gamma_r(t), \chi_r), \dots, L^{(n-1)}(\sigma + i\gamma_r(t), \chi_r) \right) : t \ge T_0 \right\}
$$

is everywhere dense in $\mathbb{C}^{r \times n}$.

The proof of the corollary uses Theorem 1.3 and repeats Voronin's arguments.

Corollary 1.4.1 implies the following functional independence property of Dirichlet L-functions.

COROLLARY 1.4.2. Suppose that χ_1, \ldots, χ_r are arbitrary Dirichlet characters, $\Phi: \mathbb{C}^{r \times n} \to \mathbb{C}$ is a continuous function, and

$$
\Phi\left(L(s,\chi_1),L'(s,\chi_1),\ldots,L^{(n-1)}(s,\chi_1),\ldots,L(s,\chi_r),L'(s,\chi_r),\ldots,L^{(n-1)}(s,\chi_r)\right)=0
$$

identically for s. Then $\Phi \equiv 0$.

For the proof of universality theorems, we apply a method different from that of [\[18\]](#page-15-4). This method is probabilistic, and is based on weak convergence of probability measures in the space of analytic functions, see $[1, 10, 12]$ $[1, 10, 12]$ $[1, 10, 12]$ and $[19]$.

2. Lemmas

Denote by $\mathcal{B}(\mathbb{X})$ the Borel σ -field of the space X, and by γ the unit circle on the complex plane. Define the set

$$
\Omega=\prod_{p\in\mathbb{P}}\gamma_p,
$$

where P is the set of all prime numbers, and $\gamma_p = \gamma$ for all $p \in \mathbb{P}$. With product topology and pointwise multiplication, the infinite-dimensional torus Ω is a compact topological Abelian group. Let

$$
\Omega^r = \Omega_1 \times \cdots \times \Omega_r,
$$

where \mathbb{P} is the set of all prime numbers, and $\gamma_p = \gamma$ for all $p \in \mathbb{P}$. With product iopology an pointwise multiplication, the infinite-dumentators of Ω at a compact topological Abelian group. There $\Omega_j = \Omega$ where $\Omega_j = \Omega$ for $j = 1, \ldots, r$. Then, again, Ω^r is a compact topological Abelian group. Therefore, on $(\Omega^r, \mathcal{B}(\Omega^r))$, the probability Haar measure m_H^r exists. This gives the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$. For $j = 1, \ldots, r$, denote by $\omega_j(p)$ the pth component of an element $\omega_j \in \Omega_j$, $p \in \mathbb{P}$. Let $\omega = (\omega_1, \ldots, \omega_r), \omega_j \in \Omega_j$, be the elements of Ω^r .

For $A \in \mathcal{B}(\Omega^r)$, define

$$
Q_T^r(A) = \frac{1}{T - T_0} \text{meas} \left\{ \tau \in [T_0, T] : \left((p^{-i\gamma_1(\tau)} : p \in \mathbb{P}), \dots, (p^{-i\gamma_r(\tau)} : p \in \mathbb{P}) \right) \in A \right\}.
$$

LEMMA 2.1 (Main lemma). Suppose that $(\gamma_1, \ldots, \gamma_r) \in U_r$. Then Q_T^r converges weakly to the Haar measure m_H^r as $T \to \infty$.

P r o o f. Let $g_{Q_T^r}(\underline{k}_1,\ldots,\underline{k}_r),\,\underline{k}_j=(k_{jp}:k_{jp}\in\mathbb{Z},\ p\in\mathbb{P}),\,j=1,\ldots,r,$ be the Fourier transform of Q_T^r , i.e.,

$$
g_{Q_T^r}(\underline{k}_1,\ldots,\underline{k}_r)=\int\limits_{\Omega^r}\bigg(\prod_{j=1}^r\prod_{p\in\mathbb{P}}'\omega^{k_{jp}}(p)\bigg)\,\mathrm{d} Q_T^r,
$$

where the sign "'" means that only a finite number of integers k_{jp} , $j = 1, \ldots, r$, are distinct from zero. Thus, by the definition of Q_T^r ,

$$
g_{Q_T^r}(\underline{k}_1, ..., \underline{k}_r) = \frac{1}{T - T_0} \int_{T_0}^T \exp\left\{-i \sum_{j=1}^r \gamma_j(\tau) \sum_{p \in \mathbb{P}}' k_{jp} \log p\right\} d\tau.
$$
 (2.1)

Let, for brevity,

$$
a_j = \sum_{p \in \mathbb{P}}' k_{jp} \log p, \qquad j = 1, \dots, r.
$$

Since the set $\{ \log p : p \in \mathbb{P} \}$ is linearly independent over the field of rational numbers Q, $a_j = 0$ if and only if $\underline{k}_j = \underline{0}, j = 1, \ldots, r$. Clearly, in view of (2.1) ,

$$
g_{Q_T^r}(\underline{0},\ldots,\underline{0}) = 1.
$$
\n^(2.2)

Now, suppose that $(\underline{k}_1,\ldots,\underline{k}_r) \neq (\underline{0},\ldots,\underline{0})$. Since $(\gamma_1,\ldots,\gamma_r) \in U_r$, we have

$$
\left(\sum_{j=1}^r a_j \gamma_j(\tau)\right)' = \sum_{j=1}^r a_j \gamma'_j(\tau) = \sum_{j=1}^r a_j \hat{\gamma}_j(\tau) (1 + o(1)) = a_{j_0} \hat{\gamma}_{j_0}(\tau) (1 + o(1))
$$

as $\tau \to \infty$, where $j_0 = \max(j : a_j \neq 0)$. Hence,

$$
\left(\sum_{j=1}^{r} a_j \gamma_j'(\tau)\right)^{-1} = \frac{1}{a_{j_0} \hat{\gamma}_{j_0}(\tau)(1+o(1))} = \frac{1}{a_{j_0} \hat{\gamma}_{j_0}(\tau)}(1+o(1))\tag{2.3}
$$

as $\tau \to \infty$. Moreover, since $\gamma_j(\tau) \to \infty$ as $\tau \to \infty$, we have, in view of [\(iii\)](#page-2-1) of the class U_r , that

$$
\frac{1}{\hat{\gamma}_j(\tau)} = o(\tau) \tag{2.4}
$$

as $\tau \to \infty$, $j = 1, \ldots, r$. Let $A(\tau) = \sum^{r}$ $\sum_{j=1} a_j \gamma_j(\tau)$. Then [\(2.3\)](#page-4-1), [\(2.4\)](#page-5-0), the monotonicity of $\hat{\gamma}_j(\tau)$, and the second mean value theorem show that

$$
\int_{T_0}^{T} \cos A(\tau) d\tau = \int_{\log T}^{T} \cos A(\tau) d\tau + O(\log T) = \int_{\log T}^{T} \frac{1}{A'(\tau)} \cos A(\tau) dA(\tau) + O(\log T)
$$
\n
$$
= \int_{\log T}^{T} \frac{1}{a_{j_0} \hat{\gamma}_{j_0}(\tau)} \cos A(\tau) dA(\tau) + \int_{\log T}^{T} \frac{o(1)}{a_{j_0} \hat{\gamma}_{j_0}(\tau)} \cos A(\tau) dA(\tau) + O(\log T) \quad (2.5)
$$
\n
$$
= \int_{\log T}^{T} \frac{1}{a_{j_0} \hat{\gamma}_{j_0}(\tau)} d(\sin A(\tau)) + \int_{\log T}^{T} \frac{o(1)(1 + o(1))}{A'(\tau)} \cos A(\tau) dA(\tau) + O(\log T)
$$
\n
$$
= o(T) + \int_{\log T}^{T} o(1) \cos A(\tau) d\tau + O(\log T) = o(T)
$$
\nas $T \to \infty$. Similarly, we find that
\n
$$
\int_{T_0}^{T} \sin A(\tau) d\tau = o(T)
$$
\nas $T \to \infty$. This, (2.5) and (2.1) show that, in the case $(k_1, \ldots, k_r) \neq (0, \ldots, 0)$,
\n $g_{Q_T^r}(k_1, \ldots, k_r) = o(1), \qquad T \to \infty$.
\nThus, in view of (2.2),
\n
$$
\int_{T \to \infty}^{T} g_{Q_T^r}(k_1, \ldots, k_r) = \begin{cases} 1 & \text{if } (k_1, \ldots, k_r) \neq (0, \ldots, 0), \\ 0 & \text{if } (k_1, \ldots, k_r) \neq (0, \ldots, 0). \end{cases}
$$
\nSince the right-hand side of the latter equality is the Fourier transform of the Haar measure m_H^r , the lemma follows by a continuity theorem for probability measures on compact groups.

as $T\rightarrow\infty.$ Similarly, we find that

$$
\int_{T_0}^{T} \sin A(\tau) d\tau = o(T)
$$

as $T \to \infty$. This, (2.5) and (2.1) show that, in the case $(\underline{k}_1, \ldots, \underline{k}_r) \neq (\underline{0}, \ldots, \underline{0})$,

$$
g_{Q_T^r}(\underline{k}_1,\ldots,\underline{k}_r)=o(1),\qquad T\to\infty.
$$

Thus, in view of (2.2) ,

$$
\lim_{T \to \infty} g_{Q_T^r}(\underline{k}_1, \dots, \underline{k}_r) = \begin{cases} 1 & \text{if } (\underline{k}_1, \dots, \underline{k}_r) = (\underline{0}, \dots, \underline{0}), \\ 0 & \text{if } (\underline{k}_1, \dots, \underline{k}_r) \neq (\underline{0}, \dots, \underline{0}). \end{cases}
$$

Since the right-hand side of the latter equality is the Fourier transform of the Haar measure m_H^r , the lemma follows by a continuity theorem for probability measures on compact groups.

Lemma 2.1, by a standard way, implies a joint limit theorem in the space $H^r(D)$ for absolutely convergent Dirichlet series. Let $\sigma_0 > 1/2$ be a fixed number, $\underline{\chi} = (\chi_1, \ldots, \chi_r)$, for $m, n \in \mathbb{N}$,

$$
v_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_0}\right\},\,
$$

and

$$
\underline{L}_n(s,\underline{\chi})=(L_n(s,\chi_1),\ldots,L_n(s,\chi_r)),
$$

where

$$
L_n(s, \chi_j) = \sum_{m=1}^{\infty} \frac{\chi_j(m)v_n(m)}{m^s}, \quad j = 1, ..., r,
$$

and

$$
\underline{L}_n(s,\omega,\underline{\chi})=(L_n(s,\omega_1,\chi_1),\ldots,L_n(s,\omega_r,\chi_r)),
$$

where

$$
L_n(s, \omega_j, \chi_j) = \sum_{m=1}^{\infty} \frac{\chi_j(m) \omega_j(m) v_n(m)}{m^s}, \quad j = 1, \dots, r,
$$

and, for $m \in \mathbb{N}$,

$$
\omega_j(m) = \prod_{\substack{p^l \mid m \\ p^{l+1} \nmid m}} \omega_j^l(p), \quad j = 1, \dots, r.
$$

Then the series for $L_n(s, \chi_j)$ and $L(s, \omega_j, \chi_j)$ are absolutely convergent for $\sigma > 1/2$, $j = 1, ..., r$. Define the function $u_n: \Omega^r \to H^r(D)$ by the formula

$$
u_n(\omega) = \underline{L}_n(s, \omega, \underline{\chi}), \qquad \omega \in \Omega^r.
$$

The absolute convergence of the series for $L_n(s, \omega_j, \chi_j)$, $j = 1, \ldots, r$, implies the continuity of the function u_n . Let $V_n = m_H^r u_n^{-1}$, where

$$
V_n(A) = m_H^r u_n^{-1}(A) = m_H^r (u_n^{-1} A), \qquad A \in \mathcal{B}(H^r(D)).
$$

For $A \in \mathcal{B}(H^r(D))$, define

$$
P_{T,n}(A) = \frac{1}{T - T_0} \text{meas} \{ \tau \in [T_0, T] : \underline{L}_n(s + i \underline{\gamma}(\tau), \underline{\chi}) \in A \},
$$

where $\underline{\gamma}(\tau) = (\gamma_1(\tau), \ldots, \gamma_r(\tau))$ and

$$
\underline{L}_n(s+{\rm i}\underline{\gamma}(\tau),\underline{\chi})=(L_n(s+{\rm i}\gamma_1(\tau),\chi_1),\ldots,L_n(s+{\rm i}\gamma_r(\tau),\chi_r)).
$$

Then Lemma 2.1, the continuity of u_n and [3: Theorem 5.1] lead to the following statement.

and, for $m \in \mathbb{N}$,
 $\omega_j(m) = \prod_{p^j(m)} \omega_j^j(p), \quad j = 1, \ldots, r$.
 [T](#page-4-3)hen the series for $L_n(s, \chi_j)$ and $L(s, \omega_j, \chi_k)$ are absolutely convergent for $\sigma > 1/2, j = 1, \ldots, r$.

Define the function $u_n : \Omega^* \to H^r(D)$ $u_n : \Omega^* \to H^r(D)$ $u_n : \Omega^* \to H^r(D)$ by the formula
 $u_n(\omega$ **LEMMA 2.2.** Suppose that $(\gamma_1, \ldots, \gamma_r) \in U_r$. Then $P_{T,n}$ converges weakly to the measure V_n as $T\rightarrow\infty$.

The family of probability measures $\{V_n : n \in \mathbb{N}\}\$ is very important for the investigation of the collection

$$
\underline{L}(s + i\gamma(\tau), \underline{\chi}) = (L(s + i\gamma_1(\tau), \chi_1), \dots, L(s + i\gamma_r(\tau), \chi_r)).
$$

We recall that the family of probability measures $\{P\}$ on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ is tight if, for every $\varepsilon > 0$, there exists a compact set $K = K(\varepsilon) \subset \mathbb{X}$ such that

$$
P(K) > 1 - \varepsilon
$$

for all $P \in \{P\}.$

LEMMA 2.3. The family $\{V_n : n \in \mathbb{N}\}\$ is tight.

P r o o f. For $j = 1, \ldots, r$, let $m_{H,j}$ be the probability Haar measure on $(\Omega_j, \mathcal{B}(\Omega_j))$, and $u_{n,j}$: $\Omega_j \to H(D)$ be given by the formula

$$
u_{n,j}(\omega_j) = L_n(s, \omega_j, \chi_j).
$$

Then $V_{n,j} = m_{H,j}u_{n,j}^{-1}$, $j = 1, \ldots, r$, are the marginal measures of V_n . Actually, for $A \in \mathcal{B}(H(D))$, $V_n(H(D) \times \cdots \times H(D))$ $\overbrace{\qquad \qquad j-1}^{\qquad \qquad \qquad j-1}$ $\times A \times H(D) \times \cdots \times H(D)$ $= m_H^r u_n^{-1} \Big(H(D) \times \cdots \times H(D) \Big)$ $\frac{1}{j-1}$ $\times A \times H(D) \times \cdots \times H(D)$ $= m_H^r\Big(u_n^{-1}\Big(H(D) \times \cdots \times H(D)\Big)$ ${j-1}$ $\times A \times H(D) \times \cdots \times H(D)$ $=m_H^r(u_{n,j}^{-1}A) = m_{H,j}u_{n,j}^{-1}(A).$

It is easy to see using the absolute convergence of the series for $L_n(s, \chi_i)$, see, for example, the proof of Lemma 4.11 from [19] for more general functions from the Selberg class, that the families ${V_{n,j} : n \in \mathbb{N}}, j = 1, \ldots, r$, are tight. Therefore, for every $\varepsilon > 0$, there exists a compact set $K_j = K_j(\varepsilon) \subset H(D)$ such that

$$
V_{n,j}(K_j) > 1 - \frac{\varepsilon}{r}, \qquad j = 1, ..., r
$$
 (2.6)

for all $n \in \mathbb{N}$. The set $K = K_1 \times \cdots \times K_r$ is compact in the space $H^r(D)$, and, in view of (2.6),

$$
= m_H^r \Big(u_n^{-1} \Big(\underbrace{H(D) \times \cdots \times H(D)}_{j-1} \times A \times H(D) \times \cdots \times H(D) \Big) \Big)
$$
\n
$$
= m_H^r \Big(u_{n,j}^{-1} A \Big) = m_H j u_{n,j}^{-1} (A).
$$
\nIt is easy to see using the absolute convergence of the series for $L_n(s, \chi_j)$, see, for example, the proof of Lemma 4.11 from [19] for more general functions from the Selberg class, that the familiar $\{V_{n,j} : n \in \mathbb{N}\}$, $j = 1, \ldots, r$, are tight. Therefore, for every $\varepsilon > 0$, there exists a compact so $K_j = K_j(\varepsilon) \subset H(D)$ such that\n
$$
K_j = K_j(\varepsilon) \subset H(D) \text{ such that}
$$
\n
$$
V_{n,j}(K_j) > 1 - \frac{\varepsilon}{r}, \qquad j = 1, \ldots, r
$$
\nfor all $n \in \mathbb{N}$. The set $K = K_1 \times \cdots \times K_r$ is compact in the space $H^r(D)$, and, in view of (2.6),\n
$$
V_n(H^r(D) \times K) = V_n \Big(\underbrace{\int_{j=1}^r \Big(\underbrace{H(D) \times \cdots \times H(D)}_{j-1} \times (H(D) \times K_j) \times H(D) \times \cdots \times H(D) \Big)}_{j-1} \Big)
$$
\n
$$
\leq \sum_{j=1}^r V_{n,j}(H(D) \times K_j) \leq \varepsilon
$$
\nfor all $n \in \mathbb{N}$. The lemma is proved.\n\n3. Mean square estimates\n
$$
\text{Mean square estimates play an important role in the universality theory of zeta- and } L\text{-function.}
$$
\nIn this section, we present estimates for generalized mean squares of Dirichlet } L\text{-functions.}\n
$$
\text{LEMMA 3.1. Suppose that } (\gamma_1, \ldots, \gamma_r) \in U_r. Then, for fixed σ , $1/2 < \sigma < 1$, and $t \in \mathbb{R}$,\n
$$
\int_{T_0}^T |L(\sigma + \mathrm{i}t + \mathrm{i}\gamma_j(\tau), \chi_j)|^2 d\tau \ll_{\sigma} T(1 + |t|), \q
$$
$$

for all $n \in \mathbb{N}$. The lemma is proved.

3. Mean square estimates

Mean square estimates play an important role in the universality theory of zeta- and L-functions. In this section, we present estimates for generalized mean squares of Dirichlet L-functions.

LEMMA 3.1. Suppose that $(\gamma_1, \ldots, \gamma_r) \in U_r$. Then, for fixed σ , $1/2 < \sigma < 1$, and $t \in \mathbb{R}$,

$$
\int_{T_0}^{T} |L(\sigma + it + i\gamma_j(\tau), \chi_j)|^2 d\tau \ll_{\sigma} T(1+|t|), \qquad j = 1, \ldots, r.
$$

P r o o f. It is well known that, for fixed σ , $1/2 < \sigma < 1$,

$$
\int_{T_0}^{T} |L(\sigma + it, \chi_j)|^2 dt \ll_{\sigma} T.
$$

Therefore, for all $t \in \mathbb{R}$,

$$
\int_{0}^{|t|+\gamma_j(\tau)} |L(\sigma+iu,\chi_j)|^2 du \ll_{\sigma} (|t|+\gamma_j(\tau)).
$$

Thus, for $X \geq T_0$,

$$
\int_{X}^{2X} |L(\sigma+it+i\gamma_{j}(\tau),\chi_{j})|^{2} d\tau = \int_{X}^{2X} \frac{1}{\gamma'_{j}(\tau)} |L(\sigma+it+i\gamma_{j}(\tau),\chi_{j})|^{2} d\gamma_{j}(\tau)
$$
\n
$$
\ll \max_{X \leq \tau \leq 2X} \frac{1}{\gamma'_{j}(\tau)} |L(\sigma+it+i\gamma_{j}(\tau),\chi_{j})|^{2} d\tau
$$
\n
$$
\ll \max_{X \leq \tau \leq 2X} \frac{1}{\gamma'_{j}(\tau)} \int_{X}^{2X} d\left(\int_{0}^{t} |L(\sigma+it,\chi_{j})|^{2} du\right)
$$
\n
$$
\ll_{\sigma} (|t| + \gamma_{j}(2X)) \max_{X \leq \tau \leq 2X} \frac{1}{\gamma'_{j}(\tau)} \ll_{\sigma} X(1+|t|)
$$
\nin virtue of properties of U_{τ} . Now, taking $X = T2^{-k-1}$ and summing over $k = 0, 1, \ldots$, we get the estimate of the lemma.\n\nLemma 3.1 allows to obtain the approximation in the mean for $L(s, \chi)$ by $L_{n}(s, \chi)$. For g_{1}, g_{2}
\n
$$
\mu(p), let
$$
\n
$$
\rho(g_{1}, g_{2}) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_{l}} |g_{1}(s) - g_{2}(s)|}{1 + \sup_{s \in K_{l}} |g_{1}(s) - g_{2}(s)|},
$$
\nwhere $\{K_{l}: l \in \mathbb{N}\} \subset D$ is a sequence of compact sets such that\n
$$
D = \bigcup_{l=1}^{\infty} K_{l},
$$
\n
$$
K_{l} \subset K_{l+1}
$$
 for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact set, then $K \subset K_{l}$ for some l . Then ρ is metric in $H(D)$ inducing the topology of uniform convergence on compacta. For $g_{1} = (g_{11}, \ldots, g_{1r}$
\n $g_{2} = (g_{21}, \ldots, g_{2r}) \in H'(D)$, define\n

in virtue of properties of U_r . Now, taking $X = T2^{-k-1}$ and summing over $k = 0, 1, \ldots$, we get the estimate of the lemma. $\hfill \square$

Lemma 3.1 allows to obtain the approximation in the mean for $\underline{L}(s, \underline{\chi})$ by $\underline{L}_n(s, \underline{\chi})$. For $g_1, g_2 \in$ $H(D)$, let

$$
\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},
$$

where $\{K_l: l \in \mathbb{N}\}\subset D$ is a sequence of compact sets such that

$$
D=\bigcup_{l=1}^{\infty}K_l,
$$

 $K_l \subset K_{l+1}$ for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact set, then $K \subset K_l$ for some l. Then ρ is a metric in $H(D)$ inducing the topology of uniform convergence on compacta. For $\underline{g}_1 = (g_{11}, \ldots, g_{1r}),$ $g_2 = (g_{21}, \ldots, g_{2r}) \in H^r(D)$, define

$$
\underline{\rho}(\underline{g}_1,\underline{g}_2)=\max_{1\leq j\leq r}\rho(g_{1j},g_{2j}).
$$

Then ρ is a metric in $H^r(D)$ inducing the product topology.

LEMMA 3.2. The equality

$$
\lim_{n\to\infty}\limsup_{T\to\infty}\frac{1}{T-T_0}\int\limits_{T_0}^T \underline{\rho}\left(\underline{L}(s+{\rm i}\underline{\gamma}(\tau),\underline{\chi}),\underline{L}_n(s+{\rm i}\underline{\gamma}(\tau),\underline{\chi})\right)\,{\rm d}\tau=0
$$

holds.

Proof. From the definitions of the metrics ρ and ρ , it follows that it suffices to prove that, for every compact set $K \subset D$ and all $j = 1, \ldots, r$,

$$
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T - T_0} \int_{T_0}^{T} \sup_{s \in K} |L(s + i\gamma_j(\tau), \chi_j) - L_n(s + i\gamma_j(\tau), \chi_j)| \, d\tau = 0.
$$
 (3.1)

Let

$$
l_n(s) = \frac{s}{\sigma_0} \Gamma\left(\frac{s}{\sigma_0}\right) n^{-s},
$$

where the number σ_0 is from the definition of $v_n(m)$. Then an application of the Mellin formula leads to the representation

$$
L_n(s,\chi) = \frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} L(s+z,\chi) l_n(z) \frac{dz}{z},
$$

where χ is an arbitrary Dirichlet character modulo q. Let K be an arbitrary fixed compact set of the strip D. We fix $\varepsilon > 0$ such that $1/2 + 2\varepsilon \leq \sigma \leq 1 - \varepsilon$ for points $s \in K$. The residue theorem for $\hat{\sigma}_0 > 0$ implies

$$
L_n(s,\chi) - L(s,\chi) = \frac{1}{2\pi i} \int_{-\hat{\sigma}_0 - i\infty}^{-\hat{\sigma}_0 + i\infty} L(s+z,\chi) l_n(z) \frac{dz}{z} + R_n(s),
$$
\n(3.2)

where

$$
R_n(s) = \begin{cases} 0 & \text{if } \chi \text{ is a non-principle character,} \\ \prod_{p|q} \left(1 - \frac{1}{p}\right) \frac{l_n(1-s)}{1-s} & \text{otherwise.} \end{cases}
$$

Denote by $s = \sigma + iv$ the points of K, and take

$$
\hat{\sigma}_0 = \sigma - \varepsilon - \frac{1}{2}, \qquad \sigma_0 = \frac{1}{2} + \varepsilon.
$$

Let $\gamma(\tau)$ be one of the functions $\gamma_j(\tau)$, $j = 1, \ldots, r$. Then, by (3.2),

where
$$
\chi
$$
 is an arbitrary Dirichlet character modulo q . Let K be an arbitrary fixed compact set
the strip D . We fix $\varepsilon > 0$ such that $1/2 + 2\varepsilon \leq \sigma \leq 1 - \varepsilon$ for points $s \in K$. The residue theorem
for $\hat{\sigma}_0 > 0$ implies

$$
L_n(s, \chi) - L(s, \chi) = \frac{1}{2\pi i} \int_{-\hat{\sigma}_0 - i\infty}^{-\hat{\sigma}_0 + i\infty} L(s + z, \chi) l_n(z) \frac{dz}{z} + R_n(s),
$$
(3.3)
where

$$
R_n(s) = \begin{cases} 0 & \text{if } \chi \text{ is a non-pirical character,} \\ \prod_{p|q} \left(1 - \frac{1}{p}\right) \frac{l_n(1-s)}{1-s} & \text{otherwise.} \end{cases}
$$
Denote by $s = \sigma + iv$ the points of K , and take

$$
\hat{\sigma}_0 = \sigma - \varepsilon - \frac{1}{2}, \qquad \sigma_0 = \frac{1}{2} + \varepsilon.
$$
Let $\gamma(\tau)$ be one of the functions $\gamma_j(\tau), j = 1, ..., r$. Then, by (3.2),

$$
|L_n(s + i\gamma(\tau), \chi) - L(s + i\gamma(\tau), \chi)|
$$

$$
\leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |L(s + i\gamma(\tau) - \hat{\sigma}_0 + it, \chi)| \frac{|l_n(1/2 + \varepsilon - s + it)|}{1 - \hat{\sigma}_0 + it|} dt + |R_n(s + i\gamma(\tau)|
$$

$$
= \frac{1}{2\pi} \int_{-\infty}^{\infty} |L(1/2 + \varepsilon + i(t + \gamma(\tau)), \chi)| \frac{|l_n(1/2 + \varepsilon - s + it)|}{1/2 + \varepsilon - s + it|} dt + |R_n(s + i\gamma(\tau)|
$$
after a shift $t + v \to t$. Thus,

$$
\frac{1}{T - T_0} \int_{T_0}^{\infty} \frac{1}{s \varepsilon K} |L(s + i\gamma(\tau), \chi) - L_n(s + i\gamma(\tau), \chi) | d\tau
$$

$$
\leq \frac{1}{2\pi}
$$

after a shift $t + v \rightarrow t$. Thus,

$$
\frac{1}{T-T_0} \int_{T_0}^T \sup_{s \in K} |L(s+i\gamma(\tau), \chi) - L_n(s+i\gamma(\tau), \chi)| d\tau
$$
\n
$$
\leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{1}{T-T_0} \int_{T_0}^T |L(1/2 + \varepsilon + i(t + \gamma(\tau)), \chi)| d\tau \right) \sup_{s \in K} \frac{|l_n(1/2 + \varepsilon - s + it)|}{|1/2 + \varepsilon - s + it|} dt
$$
\n
$$
+ \frac{1}{T-T_0} \int_{T_0}^T \sup_{s \in K} |R_n(s+i\gamma(\tau)| d\tau) d\tau
$$
\n
$$
\stackrel{\text{def}}{=} I_1 + I_2.
$$
\n(3.3)

For the function $\Gamma(s)$, the well-known estimate

$$
\Gamma(\sigma + it) \ll \exp\{-c|t|\}, \qquad c > 0,
$$

JOINT APPROXIMATION BY DIRICHLET L-FUNCTIONS

uniform in $\sigma_1 \leq \sigma \leq \sigma_2$ is valid. Therefore, the definition of $l_n(s)$ implies the bound

$$
\frac{l_n(1/2+\varepsilon-s+{\rm i}t)}{1/2+\varepsilon-s+{\rm i}t}\ll \frac{n^{1/2+\varepsilon-\sigma}}{\sigma_0}\exp\left\{-\frac{c}{\sigma_0}|t-v|\right\}\ll_K n^{-\varepsilon}\exp\{-c|t|\}.
$$

Thus, by Lemma [3.1,](#page-7-1)

$$
I_1 \ll_{K,\varepsilon} n^{-\varepsilon} \int\limits_{-\infty}^{\infty} \left(1 + |t|^{1/2}\right) \exp\{-c|t|\} dt \ll_{K,\varepsilon} n^{-\varepsilon}.
$$
 (3.4)

Similarly, we find that

$$
I_1 \ll_{K,\varepsilon} n^{-\varepsilon} \int_{-\infty} (1+|t|^{1/2}) \exp\{-c|t|\} dt \ll_{K,\varepsilon} n^{-\varepsilon}.
$$
\nSimilarly, we find that

\n
$$
I_2 \ll_{K,q} n^{1/2-2\varepsilon} \frac{1}{T-T_0} \int_{T_0}^T \exp\{-c\gamma(\tau)\} d\tau \ll_{K,q} n^{1/2-2\varepsilon} \left(\frac{\log T}{T} + \frac{1}{T} \int_{\log T}^T \exp\{-c\gamma(\tau)\} d\tau\right)
$$
\n
$$
\ll_{K,q} n^{1/2-2\varepsilon} \left(\frac{\log T}{T} + \frac{1}{T} \exp\{-\frac{c}{2}\gamma(\log T)\}\int_{\log T}^T \exp\{-\frac{c}{2}\gamma(\tau)\} d\tau\right) = o(T)
$$
\nas $T \to \infty$ because $\gamma(\tau) \to \infty$ as $\tau \to \infty$. This, (3.4) and (3.3) prove (3.1). The lemma proved.\n4. Limit theorem

\nIn this section, we consider the weak convergence for

\n
$$
P_T(A) \stackrel{\text{def}}{=} \frac{1}{T-T_0} \text{meas} \{\tau \in [T_0, T] : \underline{L}(s + i\gamma(\tau), \underline{\chi}) \in A\}, \qquad A \in \mathcal{B}(H^r(D)),
$$
\nas $T \to \infty$. For this, we recall the useful property of convergence in distribution $(\frac{\mathcal{D}}{\gamma})$.\n**PROPOSITION 4.1.** Suppose that the space (\mathbb{X}, d) is separable, and X_{kn} and $X_n, k \in \mathbb{N}, n \in \mathbb{N}, a$.

\n**2.** We used random elements defined on the same probability space with measure ν . If $X_{kn} \xrightarrow{n \to \infty} X$ and, for every $\varepsilon > 0$,
\n
$$
\lim_{k \to \infty} \limsup_{n \to \infty} \nu \{d(X_{kn}, X_n) \ge \varepsilon\} = 0,
$$
\nthen $X_n \xrightarrow{n \to \infty} X$.

\nThe proof of the proposition is given in [3]. Define

as $T \to \infty$ because $\gamma(\tau) \to \infty$ as $\tau \to \infty$. This, (3.4) and (3.3) prove (3.1). The lemma is proved.

4. Limit theorem

In this section, we consider the weak convergence for

$$
P_T(A) \stackrel{\text{def}}{=} \frac{1}{T - T_0} \text{meas} \left\{ \tau \in [T_0, T] : \underline{L}(s + i\underline{\gamma}(\tau), \underline{\chi}) \in A \right\}, \qquad A \in \mathcal{B}(H^r(D)),
$$

as $T \to \infty$. For this, we recall the useful property of convergence in distribution $(\frac{\mathcal{D}}{\rightarrow})$.

PROPOSITION 4.1. Suppose that the space (\mathbb{X}, d) is separable, and X_{kn} and X_n , $k \in \mathbb{N}$, $n \in \mathbb{N}$, are $\mathbb X$ -valued random elements defined on the same probability space with measure ν . If $X_{kn} \xrightarrow[n \to \infty]{}$ $Z_k \xrightarrow[k \to \infty]{\mathcal{D}} X$ and, for every $\varepsilon > 0$,

$$
\lim_{k \to \infty} \limsup_{n \to \infty} \nu \left\{ d(X_{kn}, X_n) \ge \varepsilon \right\} = 0,
$$

then $X_n \xrightarrow[n \to \infty]{\mathcal{D}} X$.

The proof of the proposition is given in [3].

Define

$$
\underline{L}(s,\omega,\underline{\chi})=(L(s,\omega_1,\chi_1),\ldots,L(s,\omega_r,\chi_r)),
$$

where

$$
L(s, \omega_j, \chi_j) = \sum_{m=1}^{\infty} \frac{\chi_j(m)\omega_j(m)}{m^s}, \qquad j = 1, \ldots, r,
$$

and denote by $P_{\underline{L}}$ the distribution of the $H^r(D)$ -valued random element $\underline{L}(s,\omega,\chi)$, i.e.,

$$
P_{\underline{L}}(A) = m_H^r \left\{ \omega \in \Omega^r : \underline{L}(s, \omega, \underline{\chi}) \in A \right\}, \qquad A \in \mathcal{B}(H^r(D)).
$$

THEOREM 4.2. Suppose that $(\gamma_1, \ldots, \gamma_r) \in U_r$. Then P_T converges weakly to P_L as $T \to \infty$.

P r o o f. On a certain probability space with measure μ , define a random variable ξ_T and assume that ξ_T is uniformly distributed on $[T_0, T]$. On the above probability space, define the $H^r(D)$ -valued random element

$$
\underline{X}_{T,n} = \underline{X}_{T,n}(s) = L_n(s + \mathrm{i}\underline{\gamma}(\xi_T), \underline{\chi}),
$$

and denote by $\underline{\hat{X}}_n = \underline{\hat{X}}_n(s)$ the $H^r(D)$ -valued random element with distribution V_n , where V_n is the limit measure in Lemma [2.2.](#page-6-0) Then Lemma [2.2](#page-6-0) implies the relation

$$
\underline{X}_{T,n} \xrightarrow[T \to \infty]{\mathcal{D}} \underline{\hat{X}}_n. \tag{4.1}
$$

By Lemma 2.3, the family $\{V_n : n \in \mathbb{N}\}\$ is tight, therefore, in view of the Prokhorov theorem [3: Theorem 6.1], it is relatively compact. Thus, there exists a subsequence $\{V_{n_k}\}\subset \{V_n\}$ weakly convergent to a certain probability measure P on $(H^r(D), \mathcal{B}(H^r(D)))$ as $k \to \infty$. This is equivalent to the relation

$$
\hat{\underline{X}}_{n_k} \xrightarrow[k \to \infty]{\mathcal{D}} P. \tag{4.2}
$$

Define one more $H^r(D)$ -valued random element

$$
\underline{X}_T = \underline{X}_T(s) = \underline{L}(s + i\underline{\gamma}(\xi_T), \underline{\chi}).
$$

Then, using Lemma 3.2, we find that, for every $\varepsilon > 0$,

Let limit measure in Lemma 2.2. Then Lemma 2.2 implies the relation
\n
$$
\frac{X_{T,n}}{T \to \infty} \hat{\underline{X}}_n.
$$
\n(4.2)
\nBy Lemma 2.3, the family {*V_n*: *n* ∈ ℕ} is tight, therefore, in view of the Prokhorov theorem
\n[3: Theorem 6.1], it is relatively compact. Thus, there exists a subsequence {*V_{n_k}*} ⊂ {*V_n*} weak
\nconvergent to a certain probability measure *P* on (*H^r(*D*), *B(H^r(*D*)))* as *k* → ∞. This is equivalent
\nto the relation
\n
$$
\frac{\hat{X}_{n_k}}{k \to \infty} P.
$$
\n(4.2)
\nDefine one more *H^r(*D*)-valued random element
\n
$$
\frac{X_{T}}{X} = \frac{Y_{T}(s) = L(s + i\gamma(\xi_{T}), \chi).
$$
\nThen, using Lemma 3.2, we find that, for every $\varepsilon > 0$,
\n
$$
\lim_{n\to\infty} \limsup_{T\to\infty} \mu \{\underline{\rho(X_T, X_{T,n})} \ge \varepsilon\}
$$
\n
$$
\leq \lim_{n\to\infty} \limsup_{T\to\infty} \frac{1}{(T-T_0)\varepsilon} \int_{T_0}^T \underline{\rho(L(s + i\gamma(\tau), \chi), L_n(s + i\gamma(\tau), \chi))} d\tau = 0.
$$
\nThis, (4.1), (4.2) and Proposition 4.1 show that
\n
$$
\frac{X_T}{X} \xrightarrow{T \to \infty} P,
$$
\ni.e., *P_T* converges weakly to *P* as *T* → ∞.
\ni the remains to prove that *P* = *P_L*. The relation (4.3) shows that the measure *P* is independent
\nof the choice of the sequence {*V_{n_k}*}. Hence, we have that
\n
$$
\hat{\underline{X}}_n \xrightarrow{p} P,
$$
\nor *V_n* converges weakly to *P* as *n* → ∞. In [6], a discrete limit theorem for Dirichlet *L***

This, (4.1), (4.2) and Proposition 4.1 show that

$$
\underline{X}_T \xrightarrow[T \to \infty]{\mathcal{D}} P,\tag{4.3}
$$

i.e., P_T converges weakly to P as $T \to \infty$.

It remains to prove that $P = P_{\underline{L}}$. The relation (4.3) shows that the measure P is independent of the choice of the sequence ${V_{n_k}}$. Hence, we have that

$$
\hat{\underline{X}}_n \xrightarrow[n \to \infty]{\mathcal{D}} P,
$$

or V_n converges weakly to P as $n \to \infty$. In [6], a discrete limit theorem for Dirichlet L-functions was discussed, and it was obtained that the limit measure P of V_n , as $n \to \infty$, is $P_{\underline{L}}$. This remark and (4.3) complete the proof of the theorem.

Theorem [4.2](#page-10-2) implies a limit theorem for the compositions $F(\underline{L}(s,\chi))$.

THEOREM 4.3. Suppose that $(\gamma_1, \ldots, \gamma_r) \in U_r$, and $F: H^r(D) \to H(D)$ is a continuous operator. Then

$$
P_{T,F}(A) \stackrel{\text{def}}{=} \frac{1}{T} \text{meas} \left\{ \tau \in [0, T] : F\left(\underline{L}(s + \mathrm{i}\underline{\gamma}(\tau), \underline{\chi})\right) \in A \right\} \qquad A \in \mathcal{B}(H(D)),
$$

converges weakly to $P_{\underline{L}}F^{-1}$ as $T \to \infty$.

P r o o f. The theorem follows from Theorem [4.2,](#page-10-2) continuity of F and [\[3:](#page-14-13) Theorem 5.1]. \Box

JOINT APPROXIMATION BY DIRICHLET L-FUNCTIONS

5. Support

For proving of universality, we need the explicit form of the support of the measure P_L . Since the space $H^r(D)$ is separable, the support $S_{P_{\underline{L}}}$ of $P_{\underline{L}}$ is a minimal closed set of $H^r(D)$ such that $P_{\underline{L}}(S_{P_{\underline{L}}})=1$. The set $S_{P_{\underline{L}}}$ consists of all $g \in \overline{H}^r(D)$ such that, for every open neighbourhood \underline{G} of g, the inequality $P_L(\underline{G}) > 0$ is satisfied.

We recall that

$$
S = \{ g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0 \}.
$$

PROPOSITION 5.1. The support of $P_{\underline{L}}$ is the set S^r .

P r o o f. Let, for $\omega \in \Omega$,

$$
L(s,\omega,\chi)=\sum_{m=1}^{\infty}\frac{\chi(m)\omega(m)}{m^s}=\prod_{p}\Big(1-\frac{\chi(p)\omega(p)}{p^s}\Big)^{-1},
$$

By the negative $\mathbf{Y}_L(\underline{\mathbf{X}}) \geq \mathbf{V}$ is since
that $S = \{g \in H(D) : g(s) \neq 0 \text{ or } g(s) = 0\}.$
Proof. Let, for $\omega \in \Omega$,
 $L(s, \omega, \chi) = \sum_{m=1}^{\infty} \frac{\chi(m)\omega(m)}{m^s} = \prod_{p} \left(1 - \frac{\chi(p)\omega(p)}{p^s}\right)^{-1}$,
and P_L be the distribution and P_L be the distribution of the $H(D)$ -valued random element $L(s, \omega, \chi)$. Then it is well known, see, for example, [1], [11], that the support of P_L is the set S. We will apply this remark for the support of $P_{\underline{L}}$.

Since the space $H^r(D)$ is separable, it is known that [3]

$$
\mathcal{B}(H^r(D)) = \underbrace{\mathcal{B}(H(D)) \times \cdots \times \mathcal{B}(H(D))}_{r}.
$$

Therefore, it suffices to consider the measure $P_{\underline{L}}$ on the sets $A \in H^r(D)$ of the form

 $A = A_1 \times \cdots \times A_r$, $A_1, \ldots, A_r \in H(D)$.

The Haar measure m_H^r is the product of the Haar measures $m_{H,j}$ on $(\Omega_j, \mathcal{B}(\Omega_j))$, $j = 1, \ldots, r$. Therefore,

$$
P_{\underline{L}}(A) = m_H^r \left\{ \omega \in \Omega^r : \underline{L}(s, \omega, \underline{\chi}) \in A \right\}
$$

=
$$
\prod_{j=1}^r m_{H,j} \left\{ \omega_j \in \Omega_j : L(s, \omega_j, \chi_j) \in A_j \right\} = \prod_{j=1}^r P_{L_j}(A_j),
$$

where P_{L_j} is the distribution of the random element $L(s, \omega_j, \chi_j)$. Since, for all $j = 1, \ldots, r$, the support of P_{L_j} is the set S, the minimality of the support proves the proposition.

PROPOSITION 5.2. Let $F: H^r(D) \to H(D)$ be a continuous operator such that, for every open set $G \subset H(D)$, the set $(F^{-1}G) \cap S^r$ is non-empty. Then the support of the measure $P_L F^{-1}$ is the whole of $H(D)$.

P r o o f. Let $g \in H(D)$ be an arbitrary element, and G its any open neighbourhood. Then the set $F^{-1}G$ is open as well, and contains an element of the set S^r . Thus, in view of Proposition [5.1,](#page-12-0) $F^{-1}G$ is an open neighbourhood of an element of the support of the measure $P_{\underline{L}}$. Hence,

$$
P_{\underline{L}}F^{-1}(G) = P_{\underline{L}}(F^{-1}G) > 0.
$$

Since g and G are arbitrary, this proves the proposition. \square

6. Proof of universality

We recall the Mergelyan theorem on the approximation of analytic functions by polynomials [\[13\]](#page-14-15). Let $K \subset \mathbb{C}$ be a compact set with connected complements, and $f(s)$ be a continuous function on K and analytic in the interior of K. Then, for every $\varepsilon > 0$, there exists a polynomial $p(s)$ such that

$$
\sup_{s \in K} |f(s) - p(s)| < \varepsilon.
$$

P r o o f o f T h e o r e m 1.3. By the Mergelyan theorem, there exist polynomials $p_i(s)$ such that

$$
\sup_{1 \le j \le r} \sup_{s \in K_j} |f_j(s) - e^{p_j(s)}| < \frac{\varepsilon}{2}.\tag{6.1}
$$

Define the set

$$
G_{\varepsilon}^r = \Big\{ (g_1, \ldots, g_r) \in H^r(D) : \sup_{1 \leq j \leq r} \sup_{s \in K_j} \big| g_j(s) - e^{p_j(s)} \big| < \frac{\varepsilon}{2} \Big\}.
$$

Then G_{ε}^r , in view of Proposition 5.1, is an open neighbourhood of the element $(e^{p_1(s)}, \ldots, e^{p_r(s)})$ of the support of the measure $P_{\underline{L}}.$ Therefore

$$
P_{\underline{L}}(G_{\varepsilon}^r) > 0. \tag{6.2}
$$

Thus, Theorem 4.2 and the equivalent of weak convergence of probability measures in terms of open sets ([3: Theorem 2.1]) show that

$$
\liminf_{T \to \infty} P_T(G_{\varepsilon}^r) > 0.
$$

This, (6.1) and the definitions of P_T and G^r_{ε} prove the first part of the theorem.

To prove the second part of the theorem, define one more set

$$
\hat{G}_{\varepsilon}^{r} = \Big\{ (g_1,\ldots,g_r) \in H^r(D) : \sup_{1 \leq j \leq r} \sup_{s \in K_j} |g_j(s) - f_j(s)| < \varepsilon \Big\}.
$$

Then the boundary $\partial \hat{G}^r_{\varepsilon}$ of \hat{G}^r_{ε} lies in the set

$$
\Big\{(g_1,\ldots,g_r)\in H^r(D): \sup_{1\leq j\leq r}\sup_{s\in K_j}|g_j(s)-f_j(s)|=\varepsilon\Big\},\,
$$

 $\label{eq:4.1} \begin{array}{ll} \sup_{x\in\mathcal{F}}|f(s)-p(s)|<\varepsilon.\\ \text{Proo of }T\text{ hcoorem 1.3. By the Moregelyan theorem, there exist polynomials }p_j(s)\text{ such that}\\ \sup_{x\in\mathcal{F}}\sup_{x\in K_r}|f_j(s)-e^{p_j(s)}|<\frac{\varepsilon}{2}.\\ \end{array} \tag{6.1}$ Oefine the set $G^r_s=\Big\{(g_1,\ldots,g_r)\in H^r(D): \sup_{1\leq j\leq r\leq K_r}|g_j(s)-e^{p_j(s)}|<\frac{\varepsilon}{2}\Big$ therefore, $\partial \hat{G}^r_{\varepsilon_1} \cap \partial \hat{G}^r_{\varepsilon_2} = \emptyset$ for different positive ε_1 and ε_2 . From this remark, it follows that the set $\hat{G}_{\varepsilon}^{r}$ is a continuity set of the measure $P_{\underline{L}}$ for all but at most countably many $\varepsilon > 0$. Thus, Theorem 4.2 and the equivalent of weak convergence of probability measures in terms of continuity sets ([3: Theorem 2.1]) imply the equality

$$
\lim_{T \to \infty} P_T(\hat{G}_{\varepsilon}^r) = P_{\underline{L}}(\hat{G}_{\varepsilon}^r)
$$
\n(6.3)

for all but at most countably many $\varepsilon > 0$. In view of (6.1) , $G_{\varepsilon}^r \subset \hat{G}_{\varepsilon}^r$. Therefore, $P_{\underline{L}}(\hat{G}_{\varepsilon}^r) > 0$ by [\(6.2\)](#page-13-1). This, [\(6.3\)](#page-13-2) and the definitions of P_T and \hat{G}^r_{ε} prove the second part of the theorem.

P r o o f o f T h e o r e m [1.4.](#page-2-2) By the Mergelyan theorem, there exists a polynomial $p(s)$ such that

$$
\sup_{s \in K} |f(s) - p(s)| < \frac{\varepsilon}{2}.\tag{6.4}
$$

Define the set

$$
G_{\varepsilon} = \left\{ g \in H(D) : \sup_{s \in K} |g(s) - p(s)| < \frac{\varepsilon}{2} \right\}.
$$

JOINT APPROXIMATION BY DIRICHLET L-FUNCTIONS

Then, by Proposition [5.2,](#page-12-1) G_{ε} is an open neighbourhood of the element $p(s)$ of the support of the measure $P_{\underline{L}}F^{-1}$. Therefore,

$$
P_{\underline{L}}F^{-1}(G_{\varepsilon}) > 0. \tag{6.5}
$$

From this, Theorem [4.3](#page-11-3) and the equivalent of weak convergence of probability measures in terms of open sets, we obtain that

$$
\liminf_{T \to \infty} P_{T,F}(G_{\varepsilon}) \ge P_{\underline{L}} F^{-1}(G_{\varepsilon}) > 0,
$$

and the definitions of $P_{T,F}$ and G_{ε} , and (6.4) prove the first part of the theorem.

Define one more set

$$
\hat{G}_{\varepsilon} = \Big\{ g \in H(D) : \sup_{s \in K} |g(s) - f(s)| < \varepsilon \Big\}.
$$

Then we have that this set is a continuity set of the measure $P_L F^{-1}$ for all but at most countably many $\varepsilon > 0$. Theorem 4.3 and the equivalent of weak convergence of probability measures in terms of continuity sets show that

$$
\lim_{T \to \infty} P_{T,F}(\hat{G}_{\varepsilon}) = P_{\underline{L}} F^{-1}(\hat{G}_{\varepsilon}) \tag{6.6}
$$

and the definitions of $P_{T,F}$ and G_{τ} , and (GA) prove the first part of the theorem.

Define one more set
 $\hat{G}_z = \{g \in H(D) : \sup_{x \in E} |g(s) - f(s)| < \varepsilon \}$.

Then we have that this set is a continuity set of the measure P for all but at most countably many $\varepsilon > 0$. Moreover, in view of (6.4) , we have that $G_{\varepsilon} \subset \hat{G}_{\varepsilon}$. Therefore, by (6.5), the inequality $P_{\underline{L},F^{-1}}(\hat{G}_{\varepsilon}) > 0$ holds. This together with (6.6) proves the second part of the theorem.

REFERENCES

- [1] BAGCHI, B.: The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and other Allied Dirichlet Series, Ph. D. Thesis, Indian Stat. Institute, Calcutta, 1981.
- [2] BAGCHI, B.: A joint universality theorem for Dirichlet L-functions, Math. Z. 181 (1982), 319–334.
- [3] BILLINGSLEY, P.:. Convergence of Probability Measures, Wiley, New York, 1968.
- [4] BOHR, H.: Über das Verhalten von $\zeta(s)$ in der Halbebene $\sigma > 1$, Nachr. Akad. Wiss. Göttingen II Math. Phys. Kl. (1911), 409–428.
- [5] BOHR, H.—COURANT, R.: Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math. 144 (1914), 249–274.
- [6] DUBICKAS, A.—LAURINCIKAS, A.: *Joint discrete universality of Dirichlet L-functions*, Arch. Math. 104 (2015), 25–35.
- [7] GONEK, S.M.: Analytic Properties of Zeta and L-functions, Ph. D. Thesis, University of Michigan, 1979.
- [8] KACZOROWSKI, J.—LAURINCIKAS, A.—STEUDING, J.: On the value distribution of shifts of universal Dirichlet series, Monatsh. Math. 147(4) (2006), 309–317.
- [9] KARATSUBA, A. A.—VORONIN, S. M.: The Riemann Zeta-Function, Walter de Gruyter, Berlin, New York, 1992.
- [10] LAURINCIKAS, A.: Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht, 1996.
- [11] LAURINČIKAS, A.: On joint universality of Dirichlet L-functions, Chebyshevskii Sb. 12(1) (2011), 124–139.
- [12] LAURINČIKAS, A.—GARUNKŠTIS, R.: The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht, 2002.
- [13] MERGELYAN, S.N: Uniform approximation to functions of a complex variable, Usp. Matem. Nauk 7(2) (1952), 31–122 (in Russian); [Amer. Math. Soc. Translation vol. 101, 1954, p. 99].
- [14] NAKAMURA, T.: The joint universality and the generalized strong recurrence for Dirichlet L-functions, Acta Arith. 138 (2009), 357–362.
- [15] NAKAMURA, T.—PANKOWSKI, L.: Erratum to: The generalized strong recurrence for non-zero rational parameters, Archivum Math. 99 (2012), 43–47.
- [16] PANKOWSKI, L.: Some remarks on the generalized strong recurrence for L-functions. In: New Directions in Value Distribution Theory of Zeta and L-Functions, Shaker Verlag, Aachen, 2009, pp. 307–315.

- [17] PAŃKOWSKI, L.: *Joint universality and generalized strong recurrence with rational parameter*, J. Number Theory 163 (2016), 61–74.
- [18] PAŃKOWSKI, L.: Joint universality for dependent L-functions, Ramanujan J. 45 (2018), 181-195.
- [19] STEUDING, J.: Value-Distribution of L-Functions. Lecture Notes in Math. 1877, Springer, Berlin, 2007.
- [20] VORONIN, S. M.: The distribution of the non-zero values of the Riemann zeta-function, Trudy Matem. Inst. Steklov 128 (1972), 131–150 (in Russian).
- [21] VORONIN, S. M.: Theorem on the "universality" of the Riemann zeta-function, Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), 475–486 (in Russian); [Math. USSR Izv. 9 (1975), 443–453].
- [22] VORONIN, S. M.: On the functional independence of Dirichlet L-functions, Acta Arith. 27 (1975), 493-503 (in Russian).

Received 14. 11. 2020 Accepted 3. 2. 2021

Value, S. M.: On the panelitars (and the constraint) (22) VOIONIN, S. M.: On the panelitars independence of Dirichlet L-panelions, Acta Article, 27 (1975), 493–5 (In Russian).

Accepted 3. 2. 2021

Accepted 3. 2. 2021

Acc * Institute of Mathematics Faculty of Mathematics and Informatics Vilnius University Naugarduko str. 24 LT-03225 Vilnius LITHUANIA E-mail: antanas.laurincikas@mif.vu.lt

** Institute of Regional Development Šiauliai Academy Vilnius University P. Višinskio str. 25 LT -76351 $Šiauliai$ LITHUANIA E-mail: darius.siauciunas@sa.vu.lt