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Abstract: In this paper, we study the asymptotic normality in high-dimensional linear regression. We
focus on the case where the covariance matrix of the regression variables has a KMS structure, in
asymptotic settings where the number of predictors, p, is proportional to the number of observations,
n. The main result of the paper is the derivation of the exact asymptotic distribution for the suitably
centered and normalized squared norm of the product between predictor matrix, X, and outcome
variable, Y, i.e., the statistic ‖X′Y‖2

2, under rather unrestrictive assumptions for the model parameters
β j. We employ variance-gamma distribution in order to derive the results, which, along with the
asymptotic results, allows us to easily define the exact distribution of the statistic. Additionally,
we consider a specific case of approximate sparsity of the model parameter vector β and perform
a Monte Carlo simulation study. The simulation results suggest that the statistic approaches the
limiting distribution fairly quickly even under high variable multi-correlation and relatively small
number of observations, suggesting possible applications to the construction of statistical testing
procedures for the real-world data and related problems.

Keywords: linear regression; sparsity; asymptotic normality; variance-gamma distribution

MSC: 60F05; 62E20; 62J99

1. Introduction

Consider a linear regression model

Y = Xβ + ε, (1)

where Y := (y1, . . . , yn)′ ∈ Rn×1 are n observations of outcome and X = (X1, . . . , Xn)′ ∈
Rn×p are p-dimensional predictors with X1, . . . , Xn being i.i.d. p × 1 random vectors
Xi = (X1,i, . . . , Xp,i)

′, which are normally distributed with zero mean and the covariance

matrix Σ, denoted Xi
d
= Np(0, Σ). We assume that the covariance matrix Σ has a form

Σ = ($|i−j|)
p
i,j=1 =


1 $ . . . $p−1

$ 1 . . . $p−2

...
...

. . .
...

$p−1 $p−2 . . . 1

, (2)

if 0 < |$| < 1 and Σ = Ip if $ = 0 (here and below Ip denotes the p× p identity matrix).
This matrix is often called the Kac–Murdock–Szegő (KMS) matrix, originally introduced
in [1]. As the autocorrelation matrix of corresponding causal AR(1) processes, the KMS
matrix is positive definite and is considered due to the wide array of applications in the
literature and its well known spectral properties (see, e.g., [2] for a thorough literature
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review). When carefully chosen, such a structure could well-approximate a wide array
of possible covariance structures (see, e.g., [3] for a more general approach with various

Toeplitz covariance structures). Furthermore, ε := (ε1, . . . , εn)′ ∈ Rn×1 d
= Nn(0, σ2

ε In) are
unobserved i.i.d. errors with Eεi = 0, Var(εi) = σ2

ε > 0, and β := (β1, . . . , βp)′ ∈ Rp×1 is
an unknown p-dimensional parameter. In practice, the assumption is that EXi = 0 can be
untenable, and it may be appropriate to add an intercept to the linear model (1); however,
for simplicity, throughout this paper we will assume that the intercept is known and the
variables are centered. Similar settings are considered when dealing with certain geospatial
data, longitudinal studies, microarray data, and research on approximate message passing
algorithms (see, e.g., [4–9]).

This paper is concerned with the derivation of the exact asymptotic distribution for
the suitably centered and normalized squared norm ‖X′Y‖2

2 under the assumption of the
KMS type covariance structure in (2), where p and n are assumed to be large. Throughout
the paper, we assume that p, n→ ∞ and p/n→ c ∈ (0, ∞). We are particularly interested
in cases where p > n. Statistics of such form arise in various applications in the context of
high-dimensional linear regression, and under normality assumptions general results can
be derived using random matrix theory through Wishart distributions (see, e.g., [7,10–12]).
Dealing with such statistics typically require strong restrictions on the model parameters β;
however, in this paper, we only require that ‖β‖2

2 < ∞ is satisfied. Moreover, our results
could be extended by using β-generating functions (e.g., parameters of FARIMA models).
In comparison to the related papers, ref. [12] assumes exact sparsity, while [7,10] require
approximate sparsity.

We approach the problem following an observation by [13] that the distribution
of product of Gaussian random variables admits a variance-gamma distribution, which
results in a set of attractive properties. We contribute to the literature on variance-gamma
distribution by extending the results by [14–16]. We demonstrate that, along with the
derivation of the asymptotic distribution of ‖X′Y‖2

2, this approach allows us to define
the exact distribution of the statistic given any fixed values p, n, which can be expressed
through a combination of gamma and normal random variables. In the related literature we
were not able to find results for the exact distribution and asymptotic analysis of the statistic
‖X′Y‖2

2 based on the variance-gamma distribution. Furthermore, we deem that such a
result is much easier to work with than when considering the characteristic or density
functions of ‖X′Y‖2

2 straightforwardly. Therefore, in addition to the `2-norm statistic, we
argue that the obtained results can be easily extended towards alternative forms of the
statistic, e.g., by using a different norm, which would reduce the problem to manipulating
variance-gamma distribution, thus suggesting possible further research cases and useful
extensions.

Additionally, we examine a specific case of parameter β by considering β j = j−1,
j ≥ 1. Similar structures of the vector β are often found in the literature when approximate
sparsity of the coefficients in the linear regression model (1) is assumed. See, e.g., [17,18]
for a broader view towards sparsity requirements and its implications to specific high-
dimensional algorithms; refs. [19,20] for model selection problems in autoregressive time
series models; refs. [21–28] for applications on inference of high-dimensional models and
high-dimensional instrumental variable (IV) regression models; or [29–33] for recent ap-
plications of high-dimensional and sparse methods with financial and economic data.
Performing Monte Carlo simulations, we find that the empirical distributions of the cor-
responding statistic approach the limiting distribution reasonably quickly even for large
values of $ and c. These results suggest that the assumption of sparse structure can be
included in the applications and statistical tests, thus, could be further extended following
the literature on testing for sparsity or construction of signal-to-noise ratio estimators (see,
e.g., [7,10–12]).

In this paper, d
=, d→ and P→ denote the equality of distributions, convergence of

distributions and convergence in probability, respectively. The notation of C represents a
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generic positive constant which may assume different values at various locations, and 1A
denotes the indicator function of a set A.

The structure of the paper is as follows. In Section 2, we present the main results of the
paper. In Section 3, we present useful properties of variance-gamma distribution, which are
used in Section 4 in order to prove some auxiliary results. In Section 5, we present the proof
of the main result. Finally, in Section 6, we provide an example of the main result under
imposed approximate sparsity assumption for the parameter β of the model (1). Technical
results are presented in Appendix A, while, for brevity, some straightforward yet tedious
proofs are presented in the Supplementary material.

2. Main Results

In this section we formulate the main results on the normality of statistic ‖X′Y‖2
2.

Introduce the notations:

κ1,p :=
p

∑
k=1

p

∑
l=1

βkβl$
|k−l|, (3)

κ2,p :=
p

∑
k=1

( p

∑
l=1

βl$
|k−l|

)2
, (4)

κ3,p :=
p

∑
k,l,j,j′=1

β jβ j′$
|k−j|$|l−j′ |$|k−l|. (5)

It can be observed that under ∑∞
j=1 β2

j < ∞, there exist limits

κi = lim
p→∞

κi,p, i = 1, 2, 3.

Additionally, κ2,p ≥ 0. Since ($|i−j|)
p
i,j=1 is positive semi-definite, κi,p ≥ 0, i = 1, 3.

Indeed, ∑
p
k,l=1 $|k−l|akal ≥ 0, thus it suffices to take ak = βk for i = 1 and ak = ∑

p
j=1 β j$

|k−j|

for i = 3.
Our first main result is the following theorem.

Theorem 1. Assume the model in (1) with covariance structure in (2). Let n→ ∞ and let p = pn
satisfy

p→ ∞,
p
n
→ c ∈ (0, ∞). (6)

Let also the β j satisfy

∞

∑
j=1

β2
j < ∞. (7)

Then

‖X′Y‖2
2 − n2κ2,p − pn(κ1,p + σ2

ε )

n3/2
d→ N (0, s2), (8)

where variance s2 has the structure

s2 = 4κ2
2 + 4(κ1 + σ2

ε )(2κ2c + κ3) + 2c(κ1 + σ2
ε )

2
(

c +
1 + $2

1− $2

)
. (9)

Our second main result deals with the case where the centering sequence in (8) is
modified to include the limiting values of κi,p, i = 1, 2.
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Theorem 2. Let the assumptions of Theorem 1 hold. In addition, assume that ∑∞
j=p+1 β2

j = o(p−1/2)

and supj≥1 |β j|jα < ∞ with α > 1/2. Then,

‖X′Y‖2
2 − n2(κ2 + c(κ1 + σ2

ε )
)

n3/2
d→ N (0, s2). (10)

The proofs of these theorems are given in Section 5.

Remark 1. For alternative expressions of κ1, κ2 and κ3, see Lemma 5 below.

Define

β(x) :=
∞

∑
j=1

β2
j xj, |x| ≤ 1.

The following corollary deals with the case when $ = 0, i.e., Σ = Ip. The result follows
from Theorem 2, noting that in this case κi = β(1), i = 1, 2, 3.

Corollary 1. Assume a model (1) with covariance structure Σ = Ip. Let assumptions (6) and
(7) be satisfied. In addition, assume that ∑∞

j=p+1 β2
j = o(p−1/2) and supj≥1 |β j|jα < ∞ with

α > 1/2. Then,

‖X′Y‖2
2 − n2(β(1)(1 + c) + cσ2

ε )

n3/2
d→ N (0, s2), (11)

where

s2 = 2β(1)2(4 + 5c + c2)+ 4β(1)σ2
ε

(
1 + 3c + c2)+ 2σ4

ε (c + c2). (12)

3. Properties of the Variance-Gamma Distribution

In this section, we provide some properties of the variance-gamma distribution, which
will be used in the following proofs.

Recall that the variance-gamma distribution with parameters r > 0, θ ∈ R, σ > 0 and
µ ∈ R has density

f VG(x) =
1

σ
√

πΓ(r/2)
eθ(x−µ)/σ2

(
|x− µ|

2
√

θ2 + σ2

)(r−1)/2

K(r−1)/2

(√
θ2 + σ2

σ2 |x− µ|
)

,

(13)

where x ∈ R, Kν(x) is the modified Bessel function of the second kind. For a random

variable Q with density (13), we write Q d
= VG(r, θ, σ, µ). Let Γ(a, b), a > 0, b > 0, denote

the gamma distribution with density

f G(x) =
ba

Γ(a)
xa−1e−bx, x > 0.

It holds that

Q d
= µ + θWr + σ

√
WrU, (14)

where Wr
d
= Γ(r/2, 1/2), U d

= N (0, 1), Wr and U are independent. The characteristic

function of Q d
= VG(r, θ, σ, µ) has a form (see, e.g., [34,35])

ϕQ(t) =
eiµt

(1 + σ2t− 2iθt)r/2 , t ∈ R. (15)
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We note the following properties of the variance-gamma distribution.

(i) If Q1
d
= VG(r1, θ, σ, µ1) and Q2

d
= VG(r2, θ, σ, µ2) are independent random vari-

ables then

Q1 + Q2
d
= VG(r1 + r2, θ, σ, µ1 + µ2).

(ii) If Q d
= VG(r, θ, σ, µ), then for any a > 0

aQ d
= VG(r, aθ, aσ, aµ).

The following proposition is crucial for our purposes.

Proposition 1. (i) If (ξ1, ξ2)
′ d
= N2(0, Σ), where Σ =

( σ2
1 $σ1σ2

$σ1σ2 σ2
2

)
, then

ξ1ξ2
d
= VG(1, $σ1σ2,

√
1− $2σ1σ2, 0).

(ii) If (ξ1j, ξ2j)
′, j = 1, . . . , n, are i.i.d. random vectors with common distribution N2(0, Σ), then

n

∑
j=1

ξ1jξ2j
d
= VG(n, $σ1σ2,

√
1− $2σ1σ2, 0)

and

n

∑
j=1

ξ1jξ2j
d
= σ1σ2($Wn +

√
1− $2

√
WnU),

where Wn
d
= Γ(n/2, 1/2) and U d

= N (0, 1) are independent random variables.

(iii) Assume that (ξ
(1)
1j , . . . , ξ

(p)
1j , ξ2j)

′, j = 1, . . . , n, are i.i.d. copies of (ξ(1)1 , . . . , ξ
(p)
1 , ξ2)

′ d
=

Np+1(0, Σ(p)) and let $(kl) := Corr(ξ(k)1 , ξ
(l)
1 ), $(k) := Corr(ξ(k)1 , ξ2), (σ

(k)
1 )2 := Var(ξ(k)1 ),

σ2
2 := Var(ξ2), k, l = 1, . . . , p. Then

∑n
j=1 ξ

(1)
1j ξ2j

...

∑n
j=1 ξ

(p)
1j ξ2j

 d
=


σ
(1)
1 σ2($

(1)Wn +
√

1− ($(1))2
√

WnU1)
...

σ
(p)
1 σ2($

(p)Wn +
√

1− ($(p))2
√

WnUp)

,

where (U1, . . . , Up)′
d
= Np(0, ΣU), ΣU = (σ

(kl)
U ) with

σ
(k,l)
U = EUkUl =

$(kl) − $(k)$(l)√
1− ($(k))2

√
1− ($(l))2

, k, l = 1, . . . , p. (16)

Proof. The statements in (i), (ii) are well known, see e.g., [16]. The proof of part (iii) follows
from Lemma 1.
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Lemma 1. Assume that (ξ
(1)
1 , . . . , ξ

(p)
1 , ξ2)

′ has distribution Np+1(0, Σ(p)) and let $(kl) :=

Corr(ξ(k)1 , ξ
(l)
1 ), $(k) := Corr(ξ(k)1 , ξ2), (σ

(k)
1 )2 := Var(ξ(k)1 ), σ2

2 := Var(ξ2), k, l = 1, . . . , p.
Then 

ξ
(1)
1 ξ2

...
ξ
(p)
1 ξ2

 d
=


σ
(1)
1 σ2

(
$(1)W1 +

√
1− ($(1))2

√
W1U1

)
...

σ
(p)
1 σ2

(
$(p)W1 +

√
1− ($(p))2

√
W1Up

)
,

where W1
d
= Γ(1/2, 1/2), (U1, . . . , Up)′ is, independent of W1, zero mean normal vector with

covariances in (16).

Proof. It suffices to prove that for any (t1, . . . , tp) ∈ Rp it holds

( p

∑
k=1

tkξ
(k)
1

)
ξ2

d
= σ2

p

∑
k=1

tkσ
(k)
1
(
$(k)W1 +

√
1− ($(k))2

√
W1Uk

)
. (17)

Since

p

∑
k=1

tkξ
(k)
1

d
= N

(
0,

p

∑
k,l=1

tktl$
(kl)σ

(k)
1 σ

(l)
1

)
, ξ2

d
= N (0, σ2

2 ),

by Proposition 1(i) we obtain that

( p

∑
k=1

tkξ
(k)
1

)
ξ2

d
= VG

(
1, σ2

p

∑
k=1

tk$(k)σ
(k)
1 , σ2

√√√√ p

∑
k,l=1

tktlσ
(k)
1 σ

(l)
1 ($(kl) − $(k)$(l)), 0

)
.

(18)

For the right-hand side of (17) write

σ2

p

∑
k=1

tkσ
(k)
1
(
$(k)W1 +

√
1− ($(k))2

√
W1Uk

)
=

(
σ2

p

∑
k=1

tkσ
(k)
1 $(k)

)
W1 +

(
σ2

p

∑
k=1

tkσ
(k)
1

√
1− ($(k))2Uk

)√
W1.

Here, by (16),

σ2

p

∑
k=1

tkσ
(k)
1

√
1− ($(k))2Uk

d
= σ2

( p

∑
k,l=1

tktlσ
(k)
1 σ

(l)
1

√
1− ($(k))2

√
1− ($(l))2E(UkUl)

)1/2

U1

= σ2

( p

∑
k,l=1

tktlσ
(k)
1 σ

(l)
1 ($(kl) − $(k)$(l))

)1/2

U1.

Note that U1
d
= N (0, 1). So that,

σ2

p

∑
k=1

tkσ
(k)
1
(
$(k)W1 +

√
1− ($(k))2

√
W1Uk

)
d
=

(
σ2

p

∑
k=1

tkσ
(k)
1 $(k)

)
W1 + σ2

( p

∑
k,l=1

tktlσ
(k)
1 σ

(l)
1 ($(kl) − $(k)$(l))

)1/2√
W1U1,

which, by representation (14), has the same VG distribution as that in (18). This proves
(17).
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4. Some Auxiliary Lemmas

In this section we establish some auxiliary results that will be used in the proofs of
Theorems 1 and 2. Here and throughout the paper we remove the upper indices when
working with triangular schemes of random variables, e.g., (V1, . . . , Vp) ≡ (V(p)

1 , . . . , V(p)
p ),

whenever it is clear from the context.

Lemma 2. Let V = (V1, . . . , Vp)′
d
= Np(0, Σ(p)

V ), where Σ(p)
V is positive definite covariance

matrix and tr((Σ(p)
V )2) = o(p2), p→ ∞. Then

1
p

p

∑
k=1

(
V2

k −EV2
k
) P→ 0 as p→ ∞. (19)

If, in addition, p−1 tr(Σ(p)
V )→ 1, then

1
p

p

∑
k=1

V2
k

P→ 1 as p→ ∞. (20)

Proof. Due to the Spectral Theorem, we have

V′V =
p

∑
k=1

V2
k

d
=

p

∑
j=1

λ
(p)
j Z̃2

j , (21)

where Z̃j are i.i.d. standard normal variables and λ
(p)
1 , . . . , λ

(p)
p are the eigenvalues of Σ(p)

V .
Observe from (21) that

EV′V =
p

∑
j=1

λ
(p)
j = tr(Σ(p)

V ), (22)

Var(V′V) = Var
( p

∑
j=1

λ
(p)
j Z̃2

j

)
= 2

p

∑
j=1

(λ
(p)
j )2 = 2 tr((Σ(p)

V )2). (23)

Thus, by (22) and (23), for any ε > 0

P
(∣∣∣ 1

p
(
V′V −EV′V

)∣∣∣ > ε
)
≤ Var(V′V)

p2ε2 → 0, p→ ∞,

and the relation in (19) follows due to assumption tr((Σ(p)
V )2) = o(p2). Finally, if

p−1 tr(Σ(p)
V ) → 1, by (22), the result (19) leads to (20).

Remark 2. The assumption on matrix ΣV = Σ(p)
V in Lemma 2, requiring that tr(Σ2

V) = o(p2), is
not overly restrictive: assume, for example, that ΣV = (σ(i,j)) is any KMS type covariance matrix,
as in (2). Then, it can be seen that

tr(Σ2
V) =

p

∑
i,j=1

(σ(i,j))2 =
p

∑
i,j=1

$2|i−j|

= ∑
|m|<p

(p− |m|)$2|m| ≤ p ∑
|m|<p

|m|$2|m| = O(p).

Lemma 3. Assume that Z̃1, Z̃2, . . . are i.i.d. N (0, 1) random variables. For any p ∈ N define

ζ
(p)
j := ν

(p)
j (Z̃2

j − 1) + γ
(p)
j
√

pZ̃j, j = 1, . . . , p, (24)
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where ν
(p)
j , j = 1, . . . , p, are positive scalars, and γ

(p)
j , j = 1, . . . , p, are real scalars, such that

p

∑
j=1

(ν
(p)
j )3 = o

(( p

∑
j=1

Var
(
ζ
(p)
j
))3/2)

, (25)

p
p

∑
j=1

(γ
(p)
j )2ν

(p)
j = o

(( p

∑
j=1

Var
(
ζ
(p)
j
))3/2)

(26)

with Var(ζ(p)
j ) = 2(ν(p)

j )2 + p(γ(p)
j )2. Then, as p→ ∞,

∑
p
j=1 ζ

(p)
j√

∑
p
j=1 Var(ζ(p)

j )

d→ N (0, 1). (27)

Proof. The proof uses the method of cumulants and is structured as follows:

(i) We establish the moment-generating function of ζ
(p)
j , M

ζ
(p)
j
(t) := Eetζ(p)

j , and

log
(

M
ζ
(p)
j
(t)
)
;

(ii) We find G(t; p) which corresponds to the cumulant generating function of the sum

∑
p
j=1 ζ

(p)
j ;

(iii) We find K(t; p) := G
(

t√
∑

p
j=1(2(ν

(p)
j )2 + p(γ(p)

j )2)

; p
)

, which corresponds to the

cumulant generating function of the left hand side of (27);
(iv) Finally, in order to prove (27), we show that the cumulants κ(p)

j , generated by

K(t; p), satisfy κ(p)
1 = 0, κ(p)

2 = 1 and κ(p)
d → 0, d = 3, 4, . . . , as p→ ∞.

Step 1. First, rewrite

ζ
(p)
j = ν

(p)
j

(
Z̃j +

γ
(p)
j
√

p

2ν
(p)
j

)2

− ν
(p)
j −

(γ
(p)
j )2 p

4ν
(p)
j

. (28)

Here, ψ
(p)
j :=

(
Z̃j +

γ
(p)
j
√

p

2ν
(p)
j

)2
has a noncentral chi-squared distribution with the following

moment-generating function:

M
ψ
(p)
j
(t) := Eetψ(p)

j = (1− 2t)−1/2 exp
{( γ

(p)
j

2ν
(p)
j

)2

tp(1− 2t)−1
}

, |t| < 1
2

. (29)

Therefore, by (28) and (29),

M
ζ
(p)
j
(t) = M

ψ
(p)
j
(ν

(p)
j t) exp

{
− tν(p)

j − tp
( γ

(p)
j

2ν
(p)
j

)2}

=
(
1− 2ν

(p)
j t
)− 1

2 exp
{ (γ

(p)
j )2

4ν
(p)
j

tp
(
1− 2ν

(p)
j t
)−1 − t

(
ν
(p)
j +

(γ
(p)
j )2 p

4ν
(p)
j

)}
,

for |t| < (2ν
(p)
j )−1, and
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log
(

M
ζ
(p)
j
(t)
)

=

( γ
(p)
j

2ν
(p)
j

)2

ptν(p)
j
(
1− 2ν

(p)
j t
)−1 − 1

2
log
(
1− 2ν

(p)
j t
)
− t
(

ν
(p)
j +

(γ
(p)
j )2 p

4ν
(p)
j

)

=
1
2
(
(γ

(p)
j )2 p + 2(ν(p)

j )2)t2 +
(γ

(p)
j )2 p

2

∞

∑
k=3

tk2k−2(ν
(p)
j )k−2 +

1
2

∞

∑
k=3

2k(ν
(p)
j )ktk

k
.

Step 2. Since ζ
(p)
1 , . . . , ζ

(p)
j are independent, we have that

G(t; p) =
p

∑
j=1

log M
ζ
(p)
j
(t) =

t2

2

p

∑
j=1

(
(γ

(p)
j )2 p + 2(ν(p)

j )2)
+

p
2

∞

∑
k=3

2k−2tk
p

∑
j=1

(γ
(p)
j )2(ν

(p)
j )k−2 +

1
2

∞

∑
k=3

2k

k
tk

p

∑
j=1

(ν
(p)
j )k.

Step 3. It can be observed that

K(t; p) = G

(
t√

∑
p
j=1

(
2(ν(p)

j )2 + p(γ(p)
j )2

) ; p

)

=
t2

2
+

1
2

∞

∑
k=3

2k−2tk
p ∑

p
j=1(γ

(p)
j )2(ν

(p)
j )k−2(

∑
p
j=1(2(ν

(p)
j )2 + (γ

(p)
j )2 p)

)k/2

+
1
2

∞

∑
k=3

2k

k
tk ∑

p
j=1(ν

(p)
j )k(

∑
p
j=1(2(ν

(p)
j )2 + (γ

(p)
j )2 p)

)k/2 =
∞

∑
k=1

κ(p)
k

tk

k!
,

where κ(p)
1 = 0, κ(p)

2 = 1, and for k ≥ 3,

κ(p)
k =

k!2k−3 p ∑
p
j=1(γ

(p)
j )2(ν

(p)
j )k−2 + (k− 1)!2k−1 ∑

p
j=1(ν

(p)
j )k(

∑
p
j=1(2(ν

(p)
j )2 + (γ

(p)
j )2 p)

)k/2 . (30)

Step 4. In order to prove that (27) holds, it remains to show that, as p→ ∞, κ(p)
d → 0 for all

d ≥ 3. By (30), it is equivalent to showing that for any fixed k ≥ 3, as p→ ∞,

∑
p
j=1(ν

(p)
j )k(

∑
p
j=1

(
2(ν(p)

j )2 + (γ
(p)
j )2 p

))k/2 → 0, (31)

p ∑
p
j=1(γ

(p)
j )2(ν

(p)
j )k−2(

∑
p
j=1

(
2(ν(p)

j )2 + (γ
(p)
j )2 p

))k/2 → 0. (32)

In order to prove (31) we use induction. The case for k = 3 holds by assumption. Assuming
that (31) holds for fixed k ≥ 3, we have
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∑
p
j=1(ν

(p)
j )k+1(

∑
p
j=1

(
2(ν(p)

j )2 + (γ
(p)
j )2 p

))(k+1)/2
≤

(
∑

p
j′=1(ν

(p)
j′ )2)1/2

∑
p
j=1(ν

(p)
j )k(

∑
p
j=1

(
2(ν(p)

j )2 + (γ
(p)
j )2 p

))(k+1)/2

≤

(
∑

p
j′=1

(
2(ν(p)

j′ )2 + (γ
(p)
j′ )2 p

))1/2
∑

p
j=1(ν

(p)
j )k(

∑
p
j=1

(
2(ν(p)

j )2 + (γ
(p)
j )2 p

))(k+1)/2

=
∑

p
j=1(ν

(p)
j )k(

∑
p
j=1

(
2(ν(p)

j )2 + (γ
(p)
j )2 p

))k/2 → 0,

concluding that (31) holds for all k ≥ 3. The proof for (32) is analogous: the case for k = 3
holds by assumption; thus, we repeat the same arguments as with (31) and conclude that
(32) holds for all k ≥ 3. This concludes the proof of the lemma.

5. Proof of the Main Results

In this section we give the proofs of Theorems 1 and 2. Throughout the proofs, we
express corresponding constants in terms of κi,p and κi, i = 1, 2, 3, introduced in (3)–(5).
Recall that κi,p ≥ 0, and, by Remark 3, κi < ∞, for i = 1, 2, 3.

Proof of Theorem 1. Write

‖X′Y‖2
2 = H2

1 + · · ·+ H2
p =: H,

where

Hk :=
n

∑
j=1

Xk,j

( p

∑
l=1

βlXl,j + ε j

)
, k = 1, . . . , p.

Denote Zj := ∑
p
l=1 βlXl,j + ε j, j = 1, . . . , n. By covariance structure (2) and Xk,j

d
= N (0, 1),

ε j
d
= N (0, σ2

ε ), we have Zj
d
= N (0, σ2

Z), where σ2
Z = ∑

p
l,l′=1 βl βl′$

|l−l′ | + σ2
ε and

Cov(Xk,j, Zj) = ∑
p
l=1 βl$

|k−l|.

Applying Proposition 1(iii) with ξ
(k)
1j = Xk,j, ξ2j = Zj, and σ

(k)
1 = 1, σ2,p = σZ,

θ
(p)
k := $(k) = σ−1

Z ∑
p
l=1 βl$

|k−l|, where $(kl) = $|k−l|, we obtain that

‖X′Y‖2
2

d
= σ2

2,p

p

∑
k=1

(
θ
(p)
k Wn +

√
1− (θ

(p)
k )2

√
WnUk

)2
,

where Wn
d
= Γ(n/2, 1/2) and (U1, . . . , Up)′

d
= Np(0, Σ(p)

U ) with Σ(p)
U = (σ

(k,l)
U ) defined as

(see (16)):

σ
(k,l)
U =

$|k−l| − θ
(p)
k θ

(p)
l√

1− (θ
(p)
k )2

√
1− (θ

(p)
l )2

, k, l = 1, . . . , p. (33)

By expanding the square we can write

‖X′Y‖2
2

d
= σ2

2,p

(
(Wn −EWn +EWn)

2
p

∑
k=1

(θ
(p)
k )2 + 2W3/2

n

p

∑
k=1

θ
(p)
k

√
1− (θ

(p)
k )2Uk

+ (Wn −EWn)
p

∑
k=1

(
1− (θ

(p)
k )2)U2

k +EWn

p

∑
k=1

(
1− (θ

(p)
k )2)U2

k

)
.
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By further rearranging the right-hand side, we have

‖X′Y‖2
2

n3/2
d
= I1 + I2 + I3 + I4, (34)

where

I1 :=
σ2

2,p

n3/2 (Wn −EWn)
2

p

∑
k=1

(θ
(p)
k )2, (35)

I2 :=
σ2

2,p

n3/2 (Wn −EWn)
(

2EWn

p

∑
k=1

(θ
(p)
k )2 +

p

∑
k=1

(1− (θ
(p)
k )2)U2

k

)
, (36)

I3 :=
σ2

2,p

n3/2 2W3/2
n

p

∑
k=1

θ
(p)
k

√
1− (θ

(p)
k )2Uk +

σ2
2,p

n3/2 EWn

p

∑
k=1

(
(1− (θ

(p)
k )2)U2

k − 1
)
, (37)

I4 :=
σ2

2,p

n3/2

(
pEWn + (EWn)

2
p

∑
k=1

(θ
(p)
k )2

)
. (38)

We will show that, as p, n → ∞, p/n → c ∈ (0, ∞), the term I1 = oP(1), while the

terms I2 and I3 are asymptotically normal. More precisely, we will show that I2
d→ N (0, s2

1)

and I3
d→ N (0, s2

2), where s2
1 and s2

2 are given by (44) and (62) below. Here, since Wn and

(U1, . . . , Up)′ are mutually independent for each n, it follows that I2 + I3
d→ N (0, s2

1 + s2
2).

Finally, the term I4 defines the mean of the statistic, i.e.,

‖X′Y‖2
2

n3/2 − I4
d→ N (0, s2

1 + s2
2). (39)

Thus, we will conclude by establishing that I4 =
√

n(κ2,p + pn−1(κ1,p + σ2
ε )), while s2

1 +

s2
2 = s2, as in the statement of the theorem.

First, consider I1 defined in (35). We will show that I1 = oP(1). Denote

c2 := lim
p→∞

p

∑
k=1

(θ
(p)
k )2 = (κ1 + σ2

ε )
−1κ2, σ2

2 := lim
p→∞

σ2
2,p = κ1 + σ2

ε . (40)

It is clear that c2 < ∞ and σ2
2 < ∞. Recall that, by CLT,

Wn −EWn

n1/2
d→ N (0, 2). (41)

Therefore,

I1 = O(1)n−1/2
(Wn −EWn

n1/2

)2
= o(1)OP(1) = oP(1). (42)

Second, consider I2, defined in (36). We will show that

I2
d→ N (0, s2

1) (43)

with s2
1 given by

s2
1 = 2σ4

2 (2c2 + c)2 = 8κ2
2 + 8c(κ1 + σ2

ε )κ2 + 2c2(κ1 + σ2
ε )

2. (44)

Rewrite

I2 = σ2
2,p

Wn −EWn

n1/2

(2EWn

n

p

∑
k=1

(θ
(p)
k )2 +

1
n

p

∑
k=1

(1− (θ
(p)
k )2)U2

k

)
. (45)
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Applying (40) and (41) for the outer term of (45), we obtain

σ2
2,p

Wn −EWn

n1/2
d→ N (0, 2σ4

2 ).

We will show that the inner term of (45) approaches 2c2 + c. Since EWn = n, by (40) and
assumption p/n→ c it suffices to prove the convergence

1
p

p

∑
k=1

(1− (θ
(p)
k )2)U2

k
P→ 1. (46)

Denote matrix

A := diag
(
1− (θ

(p)
1 )2, . . . , 1− (θ

(p)
p )2). (47)

To prove (46), we apply Lemma 2 with Vj =

√
1− (θ

(p)
j )2Uj, j = 1, . . . , p, and

Σ(p)
V = A1/2ΣU A1/2. The conditions of Lemma 2 will hold if tr((A1/2ΣU A1/2)2) = O(p)

and p−1 tr(A1/2ΣU A1/2)→ 1, as p → ∞. Observe, that

tr((A1/2ΣU A1/2)2) = tr((AΣU)
2)

=
p

∑
k=1

p

∑
k′=1

(1− (θ
(p)
k )2)(1− (θ

(p)
k′ )2)(σ

(k,k′)
U )2

=
p

∑
k=1

p

∑
k′=1

(
$2|k−k′ | − 2$|k−k′ |θ

(p)
k θ

(p)
k′ + (θ

(p)
k )2(θ

(p)
k′ )2)

=
p

∑
k=1

p

∑
k′=1

$2|k−k′ | − 2
(

κ1,p + σ2
ε

)−1
κ3,p +

(
κ1,p + σ2

ε

)−2
κ2

2,p

=
p

∑
k=1

p

∑
k′=1

$2|k−k′ | + o(p) ∼ p
1 + $2

1− $2 , (48)

since κi < ∞, i = 1, 2, 3 and κ1,p ≥ 0. Here we used (40) and the observation that

p

∑
k=1

p

∑
k′=1

$|k−k′ |θ
(p)
k θ

(p)
k′ =

κ3,p

κ1,p + σ2
ε
→ κ3

κ1 + σ2
ε

, as p→ ∞. (49)

Similarly, we have

1
p

tr(A1/2ΣU A1/2) =
1
p

p

∑
k=1

(1− (θ
(p)
k )2) = 1 −

κ2,p

p(κ1,p + σ2
ε )
→ 1,

since, by Lemma A4, κ2,p = o(p), while κ1,p ≥ 0, κ1 < ∞. This concludes the proof of (46).
Next, consider I3, defined by (37). We will show that

I3
d→ N (0, s2

2), (50)

with s2
2 defined in (62). Write

I3 = σ2
2,p

(
2

W3/2
n

n3/2 b′U + n−1/2(U′AU − p)
)

,

where U =
(
U1, . . . , Up

)′, A is defined by (47), and

b =
(

θ
(p)
1

√
1− (θ

(p)
1 )2, . . . , θ

(p)
p

√
1− (θ

(p)
p )2

)′
.
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Observe that n−3/2W3/2
n

P→ 1 due to the Law of Large Numbers. Thus, since Wn and
U are independent for any n and p/n→ c, it follows that

I3 = σ2
2,p

(
2b′U +

√
c
p
(
U′AU − p

))
+ oP(1). (51)

First, we consider the inner term of (51) and show that as p → ∞,

2b′U +

√
c
p
(UAU′ − p) d→ V2, (52)

where V2
d
= N (0, σ−4

2 s2
2). Then, (50) readily follows from (51).

Recall, that U d
= Np(0, ΣU), ΣU > 0. Further, let Z̃ d

= Np(0, Ip). Clearly, one has

that U d
= Σ1/2

U Z̃, where Σ1/2
U denotes the symmetric square root of ΣU . By the Spectral

Theorem, we construct V := P′Z̃, where V d
= Np(0, Ip) and P is an orthogonal matrix

that diagonalizes Σ1/2
U AΣ1/2

U , such that P′Σ1/2
U AΣ1/2

U P = Λ, with Λ = diag(λ(p)
1 , . . . , λ

(p)
p )

comprised of the eigenvalues of Σ1/2
U AΣ1/2

U . Then,

√
c
√

p
(
U′AU − p

)
+ 2b′U d

=

√
c
√

p
(
V′ΛV − p

)
+ 2b′Σ1/2

U PV

=

√
c
√

p

( p

∑
j=1

(
λ
(p)
j (V2

j − 1) + g(p)
j
√

pVj

))

=:
√

c
√

p

p

∑
j=1

Ṽ(p)
j , (53)

where (g(p)
1 , . . . , g(p)

p ) = 2c−1/2b′Σ1/2
U P, and

Ṽ(p)
j := λ

(p)
j (V2

j − 1) + g(p)
j
√

pVj, j = 1, . . . , p. (54)

Clearly, EṼ(p)
j = 0 and E(Ṽ(p)

j )2 = 2(λ(p)
j )2 + (g(p)

j )2 p. Therefore, proving the result (52)
is equivalent to showing:

√
c
√

p

p

∑
j=1

Ṽ(p)
j

d→ N (0, σ−4
2 s2

2), (55)

where

σ−4
2 s2

2 = c lim
p→∞

p−1
p

∑
j=1

E(Ṽ(p)
j )2 = 2c lim

p→∞
p−1

p

∑
j=1

(λ
(p)
j )2 + c lim

p→∞

p

∑
j=1

(g(p)
j )2. (56)

We prove (55) by applying Lemma 3 with ν
(p)
j = λ

(p)
j as the eigenvalues of Σ1/2

U AΣ1/2
U

and γ
(p)
j = g(p)

j . By the conditions of Lemma 3, we need to show that the following holds

p

∑
j=1

(λ
(p)
j )3 + p

p

∑
j=1

(g(p)
j )2λ

(p)
j = o

(( p

∑
j=1

(
2(λ(p)

j )2 + (g(p)
j )2 p

))3/2)
. (57)
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First, observe that p−1 ∑
p
j=1(2(λ

(p)
j )2 + (g(p)

j )2 p) → C ∈ (0, ∞). Indeed, we have that

∑
p
j=1(g(p)

j )2 → Cg ∈ (0, ∞), since

p

∑
j=1

(g(p)
j )2 = 4c−1(b′Σ1/2

U P)(b′Σ1/2
U P)′ = 4c−1b′ΣUb

= 4c−1
p

∑
j=1

p

∑
j′=1

θ
(p)
j θ

(p)
j′

√
1− (θ

(p)
j )2

√
1− (θ

(p)
j′ )2σ

(j,j′)
U

= 4c−1
p

∑
j=1

p

∑
j′=1

θ
(p)
j θ

(p)
j′

(
$|j−j′ | − θ

(p)
j θ

(p)
j′

)
→ 4c−1

(
κ1 + σ2

ε

)−1
κ3 − 4c−1

(
κ1 + σ2

ε

)−2
κ2

2 = Cg (58)

by (40) and (49).
Next, by (48), we find that p−1 ∑

p
j=1(λ

(p)
j )2 → Cλ ∈ (0, ∞). Indeed, by (48), we have

p

∑
j=1

(λ
(p)
j )2 = tr ((Σ1/2

U AΣ1/2
U )2) = tr ((ΣU A)2)

=
p

∑
j=1

p

∑
j′=1

$2|j−j′ | + o(p) ∼ p
1 + $2

1− $2 . (59)

Thus, by (58) and (59), it follows that p−1 ∑
p
j=1(2c(λ(p)

j )2 + (g(p)
j )2 p) → C ∈ (0, ∞) and

condition (57) reduces to:

p

∑
j=1

(λ
(p)
j )3 + p

p

∑
j=1

(g(p)
j )2λ

(p)
j = o(p3/2). (60)

We show that (60) holds. For the first term of (60), we have

p

∑
j=1

(λ
(p)
j )3 = tr((Σ1/2

U AΣ1/2
U )3) = tr((ΣU A)3)

=
p

∑
i,j,k=1

(
1− (θ

(p)
i )2)(1− (θ

(p)
k )2)(1− (θ

(p)
j )2)σ(i,j)

U σ
(i,k)
U σ

(k,j)
U

=
p

∑
i,j,k=1

(
$|i−j| + θ

(p)
i θ

(p)
j
)(

$|i−k| + θ
(p)
i θ

(p)
k
)(

$|k−j| + θ
(p)
k θ

(p)
j
)

= o(p3/2), (61)

where the last equality follows from Lemma A5. For the second term of (60), observe that
by Hölder’s inequality and (61),

p
p

∑
j=1

(g(p)
j )2λ

(p)
j ≤ p

( p

∑
j=1
|g(p)

j |
3
)2/3( p

∑
j=1

(λ
(p)
j )3

)1/3

= p3/2O(1)
(∑

p
j=1(λ

(p)
j )3

p3/2

)1/3

= o(p3/2).

This concludes with (60), ensuring that the conditions of Lemma 3 hold.
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Now we can establish the expression for s2
2. By (40), (56), (58) and (59),

s2
2 = σ4

2 lim
p→∞

p

∑
j=1

(
2p−1c(λ(p)

j )2 + c(g(p)
j )2)

= σ4
2 lim

p→∞

2c
p

( p

∑
k=1

p

∑
k′=1

$2|k−k′ | + o(p)
)
+ 4σ4

2

(
κ1 + σ2

ε

)−1
κ3 − 4σ4

2

(
κ1 + σ2

ε

)−2
κ2

2

= 2c
1 + $2

1− $2 (κ1 + σ2
ε )

2 + 4(κ1 + σ2
ε )κ3 − 4κ2

2. (62)

By (44) and (62), recalling that s2 = s2
1 + s2

2, we have that

s2 = 4κ2
2 + 4(κ1 + σ2

ε )(2κ2c + κ3) + 2c(κ1 + σ2
ε )

2
(

c +
1 + $2

1− $2

)
. (63)

Finally, consider I4, defined by (38). Since EWn = n, we have that

I4 =
κ1,p + σ2

ε

n3/2

(
n2 κ2,p

κ1,p + σ2
ε
+ pn

)
=
√

n
(

κ2,p +
p
n
(κ1,p + σ2

ε )
)

. (64)

By (34), having established four parts by (35)–(38), we proved that (39) holds due
to (42), (43), (50), (62), with terms (63) and (64), as in the statement of the theorem, thus
concluding the proof.

Before proceeding with the proof of Theorem 2, we establish the following lemma
that ensures O(p−1/2) convergence rate for κ1,p and κ2,p, appearing in Theorem 1, under
additional restrictions for the parameters β j.

Lemma 4. Assume that ∑∞
j=p+1 β2

j = o(p−1/2) and supj≥1 |β j|jα < ∞, α > 1/2, and |$| < 1.
Then,

(i) κ1 = κ1,p + o(p−1/2),
(ii) κ2 = κ2,p + o(p−1/2).

Proof. For the proof see Supplementary Materials, Section S1.

Proof of Theorem 2. Rewrite the left-hand side of (10) as follows:

‖X′Y‖2
2 − n2(κ2 + c(κ1 + σ2

ε ))

n3/2 =
‖X′Y‖2

2 − n2κ2,p − pn(κ1,p + σ2
ε )

n3/2

+
√

n(κ2,p − κ2) +
√

nc(κ1,p − κ1) + o(1).

It remains to apply Lemma 4 and Theorem 1 in order to conclude the proof of the
theorem.

We end this section by deriving two supporting results that allows us to derive
convenient alternative expressions for the terms κ1, κ2 and κ3. For this, we introduce
functions β(·) and b(·) by Definition 3 below, which, under the assumptions of Theorem 1
and a given structure of β j’s, requires only to evaluate the terms β(1), β($), β($2) and
b1($), b2($). Then, due to Lemma 5 below, the expressions for κ1, κ2 and κ3 easily follow.
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Definition 3. Assume that ∑∞
j=1 β2

j < ∞ and |$| ≤ 1. Define,

β($) :=
∞

∑
j=1

β2
j $j, (65)

b1($) :=
∞

∑
j′=2

j′−1

∑
j=1

β jβ j′$
j′−j, (66)

b2($) :=
∞

∑
j=2

j−1

∑
j′=1

β jβ j′$
j+j′ , (67)

and define the following quantities which involve derivatives of (65)–(67):

β(1)($) := $
dβ($)

d$
=

∞

∑
j=1

jβ2
j $j, (68)

b(1)1 ($) := $
db1($)

d$
=

∞

∑
j′=2

j′−1

∑
j=1

β jβ j′$
j′−j(j′ − j), (69)

b(1)2 ($) := $
db2($)

d$
=

∞

∑
j′=2

j′−1

∑
j=1

β jβ j′$
j′+j(j′ + j), (70)

b(2)($) := $2 d2b1($)

d$2 + b(1)1 ($) =
∞

∑
j′=2

j′−1

∑
j=1

β jβ j′$
j′−j(j′ − j)2. (71)

Note that, by the rules of differentiation of power series, the functions (68)–(71) are
well defined.

Lemma 5. Let the assumptions of Theorem 1 hold. Let κ1, κ2 and κ3 be given by (3)–(5), respectively.
Then, under notation in Definition 3, the following identities hold:

(i) κ1 = β(1) + 2b1($),

(ii) κ2 = β(1)
1 + $2

1− $2 − β($2)
1

1− $2 + 2
(

b(1)1 ($) + b1($)
1 + $2

1− $2 − b2($)
1

1− $2

)
,

(iii) κ3 =
1

(1− $2)2

(
(1 + 4$2 + $4)(β(1) + 2b1($))− (1 + 3$2)(β($2) + 2b2($))

)
+

1
1− $2

(
3b(1)1 ($)(1 + $2)− 2

(
b(1)2 ($) + β(1)($2)

))
+ b(2)($).

Proof. See the proof in Appendix A.2.

Remark 3. From the assumptions of Definition 3 it follows that β(1), |β($)|, |b1($)|, |b2($)| < ∞
for |$| < 1. Thus, it follows from Lemma 5 that κi < ∞, i = 1, 2, 3.

Proof of Remark 3. Cases for β(1) and β($) follow straightforwardly from the assump-
tions. Consider b1($). Note that for any p,

|b1($)| ≤
∞

∑
l1,l2=1

|βl1 ||βl2 ||$|
|l1−l2| =

∞

∑
l1,l2=1

(
|βl1 ||$|

|l1−l2|/2)(|βl2 ||$|
|l1−l2|/2)

≤ (1/2)
∞

∑
l1,l2=1

(
β2

l1 |$|
|l1−l2| + β2

l2 |$|
|l1−l2|

)
=

∞

∑
l1=1

β2
l1

∞

∑
l2=1
|$||l1−l2| ≤ β(1)

1 + |$|
1− |$| < ∞



Mathematics 2022, 10, 1657 17 of 27

by (S9). In a similar manner, it can be seen that |b2($)| ≤ β(1) |$|1−|$| .

6. Approximate Sparsity: An Example

In this section, we study the case when coefficients β j decay hyperbolically, i.e., β j =

j−1, j ≥ 1. This assumption is analogous to the assumption of approximate sparsity, as
defined by [21]. The authors of the aforementioned paper note that for approximately
sparse models, the regression function can be well approximated by a linear combination
of relatively few important regressors, which is one of the reasons of popularity of variable
selection approaches such as LASSO ([36]) and its modifications (see, e.g., [37–39]). At the
same time, approximate sparsity allows all coefficients β j to be nonzero, which is a more
plausible assumption in many real world settings.

In order to derive the quantities in Theorem 2, we apply the results of Lemma 5. For
this, we establish the expressions for the quantities in Definition 3.

Define the real dilogarithm function (see, e.g., [40]):

Li2(x) = −
∫ x

0

log(1− u)
u

du, x ≤ 1, x ∈ R. (72)

(Here and below,
∫ x

0 = −
∫ 0

x if x ≤ 0.) For |x| ≤ 1 the real dilogarithm has a series
representation,

Li2(x) =
∞

∑
k=1

xk

k2 . (73)

Then,

β(1) =
∞

∑
j=1

1
j2

=
π2

6
, β($) =

∞

∑
j=1

$j

j2
= Li2($).

Additionally, we have

d
d$

Li2($) = − log(1− $)

$
. (74)

Thus, by (68) and (74), we establish

β(1)($) = $
d

d$
β($) = $

d
d$

Li2($) = − log(1− $).

Next, note that

b1($) =
∞

∑
i=2

i−1

∑
j=1

$i−j

ij
=

∞

∑
i=2

i−1

∑
k=1

$k

i(i− k)

=
∞

∑
k=1

$k
∞

∑
i=k+1

1
i(i− k)

=
∞

∑
k=1

$k

k

k

∑
l=1

1
l

=
∞

∑
l=1

1
l

∞

∑
k=l

$k

k
=

∞

∑
l=1

1
l

∫ $

0

xl−1

1− x
dx

= −
∫ $

0

log(1− x)
x(1− x)

dx =
log2(1− $)

2
+ Li2($), (75)

where we have used identities

∞

∑
i=k+1

1
i(i− k)

=
1
k

k

∑
l=1

1
l

, k ≥ 1,
∞

∑
k=l

$k

k
=
∫ $

0

xl−1

1− x
dx
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and (72). Then, by (69), (74) and (75),

b(1)1 ($) = $
d

d$
b1($) = − log(1− $)

1− $
,

whereas by (71),

b(2)($) = $2 d2b1($)

d$2 + b(1)1 ($) =
$− $ log(1− $)

(1− $)2 .

Furthermore, note that

b2($) =
∞

∑
i=2

i−1

∑
j=1

$i+j

ij
=

∞

∑
i=2

$i

i

i−1

∑
j=1

$j

j
=

∞

∑
i=2

$i

i

∫ $

0

i−1

∑
j=1

xj−1 dx

=
∞

∑
i=1

$i+1

i + 1

∫ $

0

1− xi

1− x
dx

= − log(1− $)

( ∞

∑
i=1

$i

i
− $

)
−
∫ $

0

(
∞

∑
i=1

$i

i
xi−1

1− x
− $

1
1− x

)
dx

= − log(1− $)
∞

∑
i=1

$i

i
−
∫ $

0

∞

∑
i=1

($x)i

i
1

x(1− x)
dx

= log2(1− $) +
∫ $

0

log(1− $x)
x(1− x)

dx

=
1
2
(

log2(1− $)− Li2($2)
)
, (76)

where the last equality follows from Lemma A1. Next, by (69), (74) and (76) we have

b(1)2 ($) = log
(

1− $2
)
− $ log(1− $)

1− $
.

Thus, we can apply Lemma 5(i) and arrive at the following expression for κ1:

κ1 =
π2

6
+ log2(1− $) + 2Li2($). (77)

Similarly, for κ2, by collecting and simplifying the terms, by Lemmas 5(ii) and A1, we have

κ2 =
1 + $2

1− $2

(π2

6
+ 2Li2($)

)
− 2 log(1− $)

1− $
+ log2(1− $)

$2

1− $2

=
1

1− $2

(
(1 + $2)κ1 − log2(1− $)− 2(1 + $) log(1− $)

)
. (78)

Lastly, for κ3, by Lemma 5(iii), through simplification of terms, we get

κ3 =
1

(1− $2)2

(
(1 + 4$2 + $4)

(π2

6
+ 2Li2($)

)
+ log2(1− $)$2(1 + $2)

− (3− $ + 4$2)(1 + $) log(1− $) + $(1 + $)2
)

= κ2
1 + 3$2

1− $2 +
1

(1− $2)2

(
(−1 + $ + 2$2)(1 + $) log(1− $) + $(1 + $)2 − 2$4κ1

)
. (79)

This allows us to apply Theorem 2 under the considered specification of the parameter
β and conclude with the following corollary.
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Corollary 2. Assume a model (1) with (2) covariance structure and consider β j := j−1, j = 1, . . . , p.
Let p = pn satisfies

p→ ∞,
p
n
→ c ∈ (0, ∞).

Then

‖X′Y‖2
2 − n2(κ2 + c(κ1 + σ2

ε )
)

n3/2
d→ N (0, s2), (80)

where

s2 = 4κ2
2 + 4(κ1 + σ2

ε )(2κ2c + κ3) + 2c(κ1 + σ2
ε )

2
(

c +
1 + $2

1− $2

)
, (81)

and κ1, κ2 and κ3 are defined by (77)–(79), respectively.

In order to illustrate the results of Corollary 2, we end this section with a Monte Carlo
simulation study where we generate 1000 independent replications of the statistic ‖X′Y‖2

2.
The data is generated following the assumptions of Corollary 2. We consider the following
parameter values: p = 100, 500, 1000, 1500, 2000, 3000, c = 1, 2, 5, 10, σ2

ε = 1, 2, 4, 10. Due to
the large number of resulting figures, we present only selected cases in Figures 1–9, which
demonstrate certain disparities in greater detail. Figures show the empirical cumulative
distribution function (CDF) and the empirical probability density function (PDF), together
with the limiting CDF and PDF of N (0, s2) by (80) for different parameter combinations.
In addition, we present the corresponding Q-Q plots in order to inspect the tails of the
resulting distributions in greater detail.
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Figure 1. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = 0.3, c = 1, σ2

ε = 2 and p = 100, 500, 1000.

We find that for relatively small values of $, the observed distribution of the statistic
is fairly close to the limiting distribution even for small values of p, n and larger σ2

ε , c (see,
e.g., Figures 1–4). However, slower convergence is more evident with increasing values
of $. Furthermore, for moderate values of $, c, σ2

ε , only with larger values of p we observe
adequate convergence towards the limiting distribution (see Figures 5 and 6). Similar
behaviour is observed when the relation between the parameters $, c, σ2

ε is appropriately
controlled: e.g., in Figure 7, we see comparable results to those presented by Figure 6,
where the effect of the increase in parameter value $ is countered by a smaller value of σ2

ε .
Alternatively, analogous effects can be achieved when reducing the values of c, instead.
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Figure 2. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = 0.3, c = 1, σ2

ε = 2 and p = 1500, 2000, 3000.
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Figure 3. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = 0.3, c = 1, σ2

ε = 10 and p = 100, 500, 1000.
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Figure 4. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = 0.3, c = 1, σ2

ε = 10 and p = 1500, 2000, 3000.
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Figure 5. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = 0.7, c = 5, σ2

ε = 4 and p = 100, 500, 1000.
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Figure 6. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = 0.7, c = 5, σ2

ε = 4 and p = 1500, 2000, 3000.
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Figure 7. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = 0.9, c = 5, σ2

ε = 1 and p = 1500, 2000, 3000.

Finally, slow convergence is observed for large values of $, c, σ2
ε , as expected (see

Figures 8 and 9). In such cases, the simulation results suggest that even larger values of p, n
would be needed for more accurate results.
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Figure 8. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = −0.95, c = 10, σ2

ε = 4 and p = 100, 500, 1000.
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Figure 9. Comparison of the PDF and CDF (left) and the corresponding Q-Q plots (right) after
1000 replications from the Monte Carlo simulation of the statistic (80) with the limiting distribution
N (0, s2) by the Corollary 2 (in black) for $ = −0.95, c = 10, σ2

ε = 4 and p = 1500, 2000, 3000.

7. Discussion

In this paper, we consider a specific KMS covariance structure due to its attractive prop-
erties and wide application possibilities for working with real world datasets. Moreover,
our results could be extended further by considering a wider family of Toeplitz covariance
structures. For instance, under specific constraints, one could employ the approaches
proposed in [3] in order to extend the application of our results towards more complex
covariance structures of the data.

Furthermore, for future work, it would be interesting to expand and examine the
results by removing the assumption of independence between the observations Xi, i =
1, . . . , n.

Finally, in this paper we have established both the exact and the asymptotic distribu-
tions of the statistic ‖X′Y‖2

2 (see (34) and (8), (10)). Both distributions could be used for
estimating β, σ2

ε or related measures (e.g., by applying the method of moments or maximum
likelihood estimation) in future research. Such research direction could open up interesting
avenues when compared with popular LASSO type methods in high-dimensional linear re-
gression. Similar approach is taken by [10], who construct maximum likelihood estimators
for the signal strength ‖β‖2

2 in a high-dimensional regression context. Note that the results
by [10] are achieved under certain strong restrictions, which are consistent with the related
literature (see, e.g., [7,41,42]). In our case, we impose weaker assumptions; therefore, both
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our asymptotic or exact results could be used in order to extend the approaches in the
aforementioned literature.
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Appendix A

Throughout the proofs we use the notation C to mark generic constants, the specific
values of which can change from line to line.

Appendix A.1. Technical Lemmas

Lemma A1. Assume that |$| < 1. Then,∫ $

0

log(1− $x)
x(1− x)

dx = −1
2
(

Li2($2) + log2(1− $)
)
,

where Li2 denotes the real dilogarithm function. (Recall, that for $ < 0, by
∫ $

0 we denote −
∫ 0

$ .)

Proof. Write,∫ $

0

log(1− $x)
x(1− x)

dx =
∫ $

0

log(1− $x)
x

dx +
∫ $

0

log(1− $x)
1− x

dx.

By (72), we have ∫ $

0

log(1− $x)
x

dx = −Li2($2). (A1)

It remains to show that∫ $

0

log(1− $x)
1− x

dx =
1
2
(

Li2($2)− log2(1− $)
)
. (A2)

Indeed, by substitution v = $− $x, we have∫ $

0

log(1− $x)
1− x

dx =
∫ $

$−$2

log(1− $ + v)
v

dv

=
∫ $

$−$2

log(1 + v
1−$ )

v
dv − log2(1− $). (A3)

https://www.mdpi.com/article/10.3390/math10101657/s1
https://www.mdpi.com/article/10.3390/math10101657/s1
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Further, by substitution w = − v
1−$ , we have

∫ $

$−$2

log(1 + v
1−$ )

v
dv = −

∫ −$

− $
1−$

log(1− w)

w
dw

= Li2(−$)− Li2
(
− $

1− $

)
= Li2(−$) + Li2($) +

1
2

log2(1− $) (A4)

=
1
2
(

Li2($2) + log2(1− $)
)
, (A5)

where for (A4) and (A5) we apply the easily verifyable identities (see, e.g., [43]):

Li2
( x

x− 1

)
= −Li2(x)− 1

2
log2(1− x), x < 1,

Li2(x) + Li2(−x) =
1
2

Li2(x2), |x| < 1.

Thus, (A3) and (A5) imply (A2), which concludes the proof.

Lemma A2. Assume that ∑∞
j=1 β2

j < ∞ and |$| < 1. Then, the following inequalities hold:

(i)

∣∣∣∣ ∞

∑
l=p+1

∞

∑
l′=l+1

βl βl′$
l′−l
∣∣∣∣ ≤ C

∞

∑
l=p+1

β2
l .

(ii)
∣∣∣∣ ∞

∑
l=p+1

∞

∑
l′=l+1

βl βl′$
l′−l(l′ − l)

∣∣∣∣ ≤ C
∞

∑
l=p+1

β2
l .

(iii)

∣∣∣∣ p

∑
l=1

∞

∑
l′=p+1

βl βl′$
l′−l
∣∣∣∣ ≤ C

∞

∑
l=p+1

β2
l .

(iv)

∣∣∣∣ p

∑
l=1

∞

∑
l′=p+1

βl βl′$
l′+l
∣∣∣∣ ≤ C

∞

∑
l=p+1

β2
l .

Proof. See the proof in Supplementary Materials, Section S2.

Lemma A3. Assume that supj≥1 |β j|jα < ∞, α > 1/2 and that |$| < 1. Then,

∣∣∣∣ p

∑
j=1

β j$
p−j
∣∣∣∣ = o(p−1/4).

Proof. We have∣∣∣∣ p

∑
j=1

β j$
p−j
∣∣∣∣ ≤ b√pc

∑
j=1
|β j||$|p−j +

p

∑
j=b√pc+1

|β j||$|p−j

≤ sup
j≥1
|β j|

b√pc

∑
j=1
|$|p−j + p−α/2

p

∑
j=b√pc+1

|β j|pα/2|$|p−j

≤ sup
j≥1
|β j|

b√pc

∑
j=1
|$|p−j + p−α/2 sup

j≥1
|β j|jα

p

∑
j=b√pc+1

|$|p−j

≤ C
( b√pc

∑
j=1
|$|p−j + p−α/2

p

∑
j=b√pc+1

|$|p−j
)

≤ C
(
|$|p−b

√
pc + p−α/2

)
.
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Here we used the fact that ∑
p
j=b√pc+1 |$|

p−j → (1− |$|)−1 < ∞. Thus,

p1/4
∣∣∣∣ p

∑
j=1

β j$
p−j
∣∣∣∣ ≤ C

(
p1/4|$|p−b

√
pc + p

1
4−

α
2

)
→ 0. (A6)

Remark A1. The assumption supj≥1 |β j|jα < ∞, for α > 1/2, implies that ∑∞
j=1 β2

j < ∞:

∞

∑
j=1

β2
j =

∞

∑
j=1

β2
j j2α j−2α ≤ sup

j≥1
β2

j j2α
∞

∑
k=1

k−2α < ∞.

Lemma A4. Assume that the assumptions of Theorem 1 hold. Then,

κ2,p = o(p).

Proof. Observe, that

κ2,p =
p

∑
k=1

( p

∑
l=1

βl$
|k−l|

)2

=
p

∑
k=1

p

∑
l1,l2=1

βl1 βl2 $|k−l1|+|k−l2|

≤
p

∑
l1,l2=1

|βl1 ||βl2 |
p

∑
k=1
|$||k−l1|+|k−l2|

≤ C
( p

∑
l=1
|βl1 |

)2

(A7)

= o(p)

where (A7) follows from (S9). Meanwhile, ∑
p
l=1 |βl1 | = o(p1/2), since

p

∑
l=1
|βl | =

bp1/2c

∑
l=1
|βl | +

p

∑
l=bp1/2c+1

|βl |

≤ p1/4
( ∞

∑
l=1

β2
l

)1/2

+ p1/2
( ∞

∑
l=bp1/2c+1

β2
l

)1/2

= o(p1/2).

Lemma A5. Assume that ∑∞
j=1 β2

j < ∞ and |$| < 1. Define θ
(p)
k = ∑

p
j=1 β j$

|k−j|. Then,

∣∣∣∣ p

∑
i,j,k=1

(
$|i−j| + θ

(p)
i θ

(p)
j
)(

$|i−k| + θ
(p)
i θ

(p)
k
)(

$|k−j| + θ
(p)
k θ

(p)
j
)∣∣∣∣ = o(p3/2). (A8)

Proof. See the proof in Supplementary Material, Section S3.

Appendix A.2. Proof of Lemma 5

Here and throughout the proof we employ the notation as in Definition 3.
(i) Note that, by (65) and (67), we have

κ1,p =
p

∑
k=1

β2
k + 2

p

∑
k=2

k−1

∑
l=1

βkβl$
k−l → β(1) + 2b1($) as p→ ∞.
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(ii) Write

κ2,p =
p

∑
l=1

p

∑
k=1

β2
l $2|k−l| + 2 ∑

l′>l

p

∑
k=1

βl βl′$
|k−l|$|k−l′ |.

From here, it can be seen that

κ2,p → β(1)
1 + $2

1− $2 − β($2)
1

1− $2 + 2
(

b(1)1 ($) + b1($)
1 + $2

1− $2 − b2($)
1

1− $2

)
. (A9)

Technical details of the proof of (A9) are presented in Supplementary Materials,
Section S4.

(iii) Consider

κ3,p =
p

∑
l=1

β2
l J1(l) + 2 ∑

l<l′
βl βl′ J2(l, l′), (A10)

where

J1(l) :=
p

∑
k,k′=1

$|k−k′ |$|k−l|$|k
′−l|1{l=l′}, (A11)

J2(l, l′) :=
p

∑
k,k′=1

$|k−k′ |$|k−l|$|k
′−l′ |1{l<l′}. (A12)

Then, as p→ ∞, using the notation in Definition 3, we have that

p

∑
l=1

β2
l J1(l) → β(1)

1 + 4$2 + $4

(1− $2)2 − β($2)
1 + 3$2

(1− $2)2 −
2

1− $2 β(1)($2), (A13)

and

∑
l′>l

β2
l J2(l, l′) → 1

2(1− $2)2

(
b(2)($)(1− $2)2 + 3b(1)1 ($)(1− $4) + 2b1($)(1 + 4$2 + $4)

− 2b(1)2 ($)(1− $2)− 2b2($)(1 + 3$2)
)
. (A14)

Technical details of the proof of (A13)–(A14) are omitted here and presented in the
Supplementary Materials, Section S5. This concludes the proof.
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