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Preface

This thesis consists of a selection of publications which summarise some

of the research on computational genomics that I have conducted before,

during and after my PhD studies (2014 — 2020). I performed most

findings summarised in this work guided by my supervisors. Nonetheless,

it should be noted that I did not perform any of the wet lab experiments

and all the data I used was generated by my colleagues or was published

a priori.

In most cases, the results are disseminated in peer–reviewed publications

and some irrelevant details have been omitted. These peer–reviewed pub-

lications alone amount to 93 pages and their inclusion here would have

rendered this thesis a somewhat lengthy document. Appropriate refer-

ences necessary to locate them are given in the Section 1.6 below. The

chronological order in which the major parts of the works described in

the publications below were performed was: I, i, II, ii. Nonetheless, most

of the research was intervened and usually two or three experiments were

conducted simultaneously, therefore there is no clear distinction between

the publications in this thesis; usually, their results or methodology are

summarised in the same sections.

Finally, as advised by D. Knuth, I have decided not to use the first person

voice in this thesis, only using it in the introductory sections (Knuth

et al., 1989). The word “we” is used instead to avoid a passive voice and

emphasise that I am just one of many researchers that contributed to

the previously mentioned publications.
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Introduction

1.1 Study Rationale

Epigenetic control mechanisms, such as DNA modifications, play impor-
tant roles in practically all living organisms in regulating various cellu-
lar, developmental, and behavioural processes. Despite the importance
of DNA modification in biology, the many difficulties associated with
identifying and characterising epigenetic profiles discourages researchers
from pursuing this avenue of investigation.

There are two major obstacles to widespread research of epigenetic regu-
lation effects. First, the methods to quantify the epigenetic state genome–
wide, such as whole genome bisulfite sequencing (WGBS), are very ex-
pensive and generate enormous amounts of data. Second, these meth-
ods cannot optimally distinguish between different types of DNA mod-
ifications, such as 5–methylcytosine (5mC), 5–hydroxymethylcytosine
(5hmC), and 5–carboxylcytosine (5caC). Furthermore, while WGBS is
the most widely used and accepted as the gold standard, it suffers from
experimental artefacts due to extensive DNA degradation and obstructed
genomic mapping of sequencing reads. Due to harsh conditions required
for bisulfite conversion, 90% of the template DNA can be lost (Grunau
et al., 2001). Most importantly, whole genome bisulfite sequencing un-
avoidably generates large amounts of data as it requires blind sequencing
of the whole genome, even loci lacking cytosines, and most reads (50%
–– 80%) provide little to no information about DNA modification (Ziller
et al., 2013).

Tethered oligonucleotide–primed sequencing (TOP–seq) was the first
method to use covalent tagging of individual unmodified CG sites, fol-
lowed by priming of the DNA polymerase at these positions to mark sites
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1.2. Thesis Layout

for sequencing and precise genomic mapping. The key novel aspect of the
TOP–seq method is the combination of enrichment for unmodified DNA
fraction, single base resolution and strand specificity. hmTOP–seq is a
single nucleotide resolution 5hmC profiling method which is based on di-
rect sequence readout primed at covalently labelled 5hmC sites from an in
situ tethered DNA oligonucleotide. Finally, caC–Clearance (caCLEAR)
is bisulfite–free, single nucleotide resolution method that enables tar-
geted genome–wide mapping of 5caC residues. These new methods can
help to profile genome–wide single nucleotide epigenetic maps with fewer
resources than whole genome bisulfite sequencing.

However, to employ these techniques at their full potential, a collection
of appropriate statistical and computational techniques is needed. This
research presents a set of solutions to solve new challenges arising from
highly–specific type of TOP–seq data. Moreover, it offers multiple ap-
plications of TOP–seq data varying from differentially modified region
(DMR) identification, production of epigenomic maps, and signal nor-
malisation by genomic context.

In essence, all the work that is presented here follows a narrative of three
main parts: design, enhance, apply. In design part we introduce a data
processing pipeline that transforms raw TOP–seq epigenomic data to
a CG–coverage signal. In enhance part we propose and integrate three
signal transformations that can greatly improve enrichment–based epige-
nomics signal. Finally, in apply part we present multiple case–studies
where TOP–seq signal can be used to retrieve biological information.

1.2 Thesis Layout

First, the Chapter 2 reviews the biological, technological, and statistical
concepts that form the basis of this work, presenting the cellular memory
hypothesis, C. H. Waddington’s epigenetic landscape, DNA modification
forms and molecular mechanism behind establishing or removing them.
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Next, the current most widely used technologies to profile DNA modi-
fications are discussed, closing this section with the statistical methods
applied in this work, namely, linear regression, Kernel density estima-
tion, dimensionality reduction techniques, and artificial neural networks.
The Chapter 3 introduces the general methods, genomic datasets and
computational tools used in this research.

Chapter 4 presents the methodology and set of computational tools
needed for efficient processing of TOP–seq sequencing data. This method-
ology covers read processing from the raw data format to modification
level evaluation per each CG site. Chapter 5 discusses the statistical
methodologies developed to enhance TOP–seq sequencing signal, pre-
senting statistical techniques such as Kernel density estimation, regres-
sion and artificial neural networks.

Chapter 6 details the application of TOP–seq based sequencing meth-
ods, presenting a detailed analysis of TOP–seq application to decipher
epigenetic differences between various human derived cell–types. A brief
introduction to the sequencing processing results for hmTOP–seq and
caCLEAR methods follows. Finally and most importantly, the chapter
concludes with a case study of the application of TOP–seq and hmTOP–
seq methods to investigate DNA modifications in cell–free DNA (cfDNA)
samples from pregnant female. An approach is presented to identify dif-
ferentially modified regions specific to the fetus with a trisomy of chro-
mosome 21. Also, the statistical techniques that can be used to estimate
the fetal fraction using TOP–seq sequencing data are detailed.

1.3 Aim and Objectives

The overarching aim of the work described in this thesis was to develop
a set of statistical and computational tools tailored for the analysis of
TOP–seq based high–throughput epigenomic data and to apply these
tools in experimental settings to gain biological knowledge. To achieve
this aim, the following objectives were set:
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• Develop computational methods for efficient and accurate process-
ing of TOP–seq sequencing reads.

• Develop statistical learning techniques to enhance the quality of the
TOP–seq signal in the presence of technical and biological noise.

• Apply the developed methods and techniques to compare different
DNA modifications across genomic elements.

• Identify differentially modified regions across samples pertaining to
distinct experimental groups using TOP–seq based high–throughput
epigenomic data.

1.4 Statements to Be Defended

• The developed computational methods can be used to efficiently
and accurately process TOP–seq based high–throughput epige-
nomic data.

• The developed statistical learning techniques can be used to en-
hance the quality of the TOP–seq epigenomic signal in the presence
of technical and biological noise.

• TOP–seq, hmTOP–seq and caCLEAR methods provide informa-
tion about DNA modification signal across different genomic ele-
ments.

• TOP–seq method could be used to identify differentially modified
regions across samples pertaining to different tissues or cell–types.

• TOP–seq and hmTOP–seq methods could be used to identify fetal
abnormalities in maternal cell–free DNA.
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1.5 Scientific Novelty and Practical Value

The most prominent novel aspect of this work is the development and
application of statistical and computational methods for the analysis
and evaluation of DNA modifications in TOP–seq, hmTOP–seq and ca-
CLEAR derived high–throughput epigenomic datasets. This work pro-
vides a detailed step–by–step description of the read processing pipeline
developed specifically for TOP–seq sequencing data which can be used
by other researchers to assure the accuracy and quality of the TOP–seq
method. Additionally, we demonstrate library quality parameters, such
as read length, CG content, read mapping rate, and distance to a CG
site.

This thesis also describes a novel computational genomics approach for
sequencing data transformation to enhance the coverage signal, u–density
improves the accuracy of the coverage signal by leveraging modification
information from the neighbouring CG sites and normalising the signal
for CG–content. A novel approach for the normalisation of bandwidth
selection was proposed, developed and tested. Furthermore, two super-
vised DNA modification transformation approaches were also designed
and implemented in this thesis. This framework exploits TOP–seq data
and genomic context information to estimate underlying DNA modifi-
cation levels. A small fraction of the whole genome bisulfite sequencing
dataset was used to train an exponential decay or an artificial neural net-
work model which was then used to convert the TOP–seq signal into the
so called CG methylation estimate signal. These enhancements trans-
formed the relative coverage signal into an absolute scale which greatly
increased correlation with a reference dataset and allowed easier signal
interpretation. Our study serves as a starting point for further research
to use genomic information for the coverage signal enhancement — de-
termined genomic covariates to enhance coverage signal are provided in
this thesis and could be used by other researchers.

The research presented in this thesis began with the optimised process-
ing of the TOP–seq based high–throughput epigenomic data. Eventually,
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this advancement allowed us to apply our developed methods and open
new venues for a larger scale epigenomic studies. This thesis presents the
first detailed study of fetal unmodified and hmC modified CG sites in
maternal cell–free DNA for not invasive prenatal testing (NIPT). For the
first time, we investigated the unmodified DNA fraction in chorionic villi
tissue samples and compared it to a cell–free fetal DNA (cffDNA) or DNA
from non–pregnant control samples. Furthermore, the methodology to
identify DMRs was introduced as a promising strategy to determine fetal
karyotypes. This genome–wide TOP–seq based DNA modification pro-
filing performed in healthy and chromosome 21 trisomy positive samples
led to the identification of a set of novel putative biomarkers with diag-
nostic value. The differentially modified regions obtained in the present
study may assist in the selection of suitable diagnostic regions in a par-
ticular clinical context. It is anticipated that this method might even
surpass currently available NIPT tests. Moreover, the investigation of
the fetal–fraction prediction was introduced as a promising strategy to
determine the amount of fetal DNA in maternal blood samples.

In addition to the practical value presented in this thesis, it is also sci-
entifically novel. This study involved the biological systems of human
tissues (e.g., chorionic villi), cancerous cell–types, mouse embryonic stem
cells, and cell–free fetal DNA. DNA modification maps, both for un-
modified, 5hmC modified, and 5caC modified DNA were generated and
enriched. Profiles of DNA modifications were generated for genes, en-
hancers, and large epigenomic structures like lamina associated domains.

1.6 Approbation of the Research Results

This thesis is mainly based on the following publications:

(I) Staševskij Z.* , Gibas P.*, Gordevičius J., Kriukienė E.,
Klimašauskas S.; Tethered Oligonucleotide–Primed Sequencing, TOP–
Seq: A High–Resolution Economical Approach for DNA Epigenome

*Shared first co–author
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Profiling ; Molecular Cell; 2017 Feb 2; 65(3):554-564.e6.

(II) Gordevičius J., Narmontė M., Gibas P., Kvederavičiūtė K.,
Tomkutė V., Paluoja P., Krjutškov K., Salumets A, Kriukienė E.;
Identification of fetal unmodified and 5–hydroxymethylated CG sites
in maternal cell–free DNA for non–invasive prenatal testing ; Clin-

ical Epigenetics; 2020 Oct 20; 12(1):153.

Additional publications to which I contributed during my PhD studies:

(i) Gibas P.*, Narmontė M.*, Staševskij Z., Gordevičius J.,
Klimašauskas S., Kriukienė E.; Precise genomic mapping of 5–
hydroxymethylcytosine via covalent tether–directed sequencing ; PLoS

Biology; 2020 Apr 10; 18(4):e3000684.

(ii) Ličytė J.*, Gibas P.*, Skardžiūtė K., Stankevičius V., Rukšėnaitė
A., Kriukienė E.; A bisulfite–free approach for base–resolution anal-
ysis of genomic 5–carboxylcytosine; Cell Reports; 2020 Sep 15;
32(11):108155.

(iii) Carlucci M., Kriščiūnas A., Li H., Gibas P., Koncevičius K., Petro-
nis A., Oh G.; DiscoRhythm: an easy–to–use web application and
R package for discovering rhythmicity ; Bioinformatics; 2019 Nov
8; 36(6):1952-1954.

(iv) Daniūnaitė K., Dubikaitytė M., Gibas P., Bakavičius A., Lazutka
R. J., Ulys A., Jankevičius F., Jarmalaitė S.; Clinical significance
of miRNA host gene promoter methylation in prostate cancer ; Hu-

man Molecular Genetics; 2017 Jul 1; 26(13):2451-2461.

Author’s contribution to the listed publications:

(I) I created a pipeline for TOP–seq high–throughput epigenomic data
processing; completed the TOP–seq signal quality control on a
model bacterial genome; performed sequencing data analysis for
all sequenced human derived samples; calculated CG–coverage and
DNA modification signal; suggested, developed and fully imple-
mented signal enhancement techniques, such as u–density and m–
estimate; calculated genomic–element covariates that could be used
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to adjust high–throughput epigenomic signal; identified differen-
tially modified regions between various sample groups and per-
formed downstream ontological gene analysis; calculated the DNA
modification signal in various genomic elements; participated in
the interpretation and discussion of results, contributed to review-
ing the manuscript; created the main data visualisations (figures 2

— 6); deployed data to the Gene Expression Omnibus database.

(II) Analysed sequencing data for all TOP–seq and hmTOP–seq sam-
ples; created epigenomic DNA modification maps (CG–coverage
and identified CG–fraction) for all samples; calculated the DNA
modification signal in various genomic elements; suggested and
applied the technique to identify differentially modified regions
across samples pertaining to distinct experimental groups; vali-
dated and identified differentially modified regions using the cross–
validation technique; performed fetal–fraction estimation analysis;
participated in the interpretation and discussion of the results, con-
tributed to drafting the manuscript; created all main data visuali-
sations; deployed data to the Gene Expression Omnibus database.

(i) Analysed hmTOP–seq sequencing data for all sequenced samples;
created the hmTOP–seq data analysis pipeline adjusted for strand
specific analysis; created the hmTOP–seq data analysis pipeline for
DNA modification identification in a non–CG context; calculated
the DNA modification signal in various genomic elements; partic-
ipated in the interpretation and discussion of results, contributed
to drafting the manuscript; created the main data visualisations
(figures 2 — 4); deployed data to the Gene Expression Omnibus
database.

(ii) Analysed caCLEAR sequencing data for all sequenced samples;
calculated the DNA modification signal in various genomic ele-
ments; participated in the interpretation and discussion of results,
contributed to drafting the manuscript; created the main data vi-
sualisations (figures 3 — 5); deployed data to the Gene Expression
Omnibus database.
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(iii) Contributed to developing R shiny data analysis platform code
base; participated in reviewing the manuscript and creating data
visualisations.

(iv) Contributed to bioinformatical data analysis; contributed to the
first draft of the manuscript.

List of conferences related to the thesis:

(a) Oral presentation; Staševskij Z., Gibas P., Gordevičius J.,
Kriukienė E., Klimašauskas S.; High–Throughput Data Analysis
Workflow for Large Scale Epigenome Profiling ; NGS’17; Barcelona,
Spain; April 3 — 5 2017.

(b) Poster presentation; Šarakauskas M., Gibas P., Gordevičius J.;
Estimation of DNA modification using artificial neural networks,
TOP–seq data and genomic context information ; International

work–conference on bioinformatics and biomedical engi-

neering; Granada, Spain; April 25 — 28 2018.

(c) Oral presentation; Gibas P., Šarakauskas M., Gordevičius J.,
Kriukienė E., Klimašauskas S.; Estimation of DNA modification
using artificial neural networks, TOP–seq data and genomic con-
text information; Bioinformatics and Computational Biology

Conference; Naples, Italy; November 19 — 21 2018.
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Theoretical Foundations for the

Scientific Problem

2.1 Biological Aspects

2.1.1 A Brief Guide to Epigenetics

Every known living organism contains genetic information that tends to
be transmitted to the progeny of cells or organisms. Usually, the defini-
tion of this genetic information is crystallised down to a DNA sequence
that is stored in the cell nucleus 1. This DNA sequence is composed
of four canonical nitrogenous bases which are studied in sufficient detail
and out of the 3.8 × 1013 cells estimated to be in the human body, the
majority of them will contain the same DNA sequence (Sender et al.,
2016). Interestingly, despite arising from a single fertilised oocyte and
being almost genetically identical, these cells vary in their phenotypes –
function, gene expression intensity and manage to make up various tis-
sues and organs (Moris et al., 2016). The main reason why this primary
DNA sequence can be interpreted differently is due to various epigenetic
factors – mechanisms that allow adapting to the changing environment
without changing the base composition. There are many epigenetic fac-
tors known to date, some of which are ubiquitous to most life forms, while
others are restricted to only some species, and new epigenetic players are
continually being discovered (Wu et al., 2016).

These principal epigenetic modalities are DNA modifications, histone
1However, at least in mammals, the term “genetic information” tends to be much
broader due to mitochondrial DNA, double minute chromosomes, circulating cell–
free DNA, and circulating cell–free RNA.
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modifications, non–coding RNAs (such as long non–coding RNAs, mi-
croRNAs, enhancer RNAs), and RNA modifications (i.e., epitranscrip-
tome) (Morris and Mattick, 2014; Suganuma and Workman, 2011; Wiener
and Schwartz, 2020). This union of DNA sequence and epigenetic factors
may be defined as chromatin (Allis and Jenuwein, 2016). It is impor-
tant to note that the genome–wide pattern of epigenetic factors is highly
environment–specific (e.g., tissue or time) because it reflects the function
or current state of the cell while the DNA sequence is relatively stable
and changes at a very different pace (Kundaje et al., 2015; Narasimhan
et al., 2017; Oh et al., 2018).

DNA modifications refer to a covalent modification of the bases directly
in the DNA sequence by the addition of various chemical groups at
strictly defined positions without changing the sequence itself (Razin
and Riggs, 1980). The most widespread form of DNA modification is
the methylation of cytosine at the fifth carbon atom of the pyrimidine
ring, which is commonly known as 5–methylcytosine. Other DNA modi-
fications may include 5–hydroxymethylcytosine, 5–formylcytosine (5fC),
5–carboxycytosine, N4–methylcytosine and N6–methyladenine (Kumar
et al., 2018).

2.1.2 Cellular Memory Hypothesis

The coining of the term “epigenetics” originates from “epigenesis” and
should be attributed to Conrad H. Waddington (Waddington, 1942).
Waddington used “epigenetics” to describe the process of “epigenesis”
which was the prevailing theory of how a fertilised oocyte progressed into
a complex organism. Waddington introduced an incredibly compelling
way to describe the concept of the epigenetic landscape in which a cell
traverses a canalised landscape and once a route is chosen, then the cell
must continue down the chosen path until its ultimate fate (Figure 2.1)
(Waddington, 1957).

The last decade was outlined by the discovery of a great variety of epige-
netic players that affect gene expression, such as histone modifications
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Figure 2.1 | The Epigenetic Landscape

This classical drawing by Conrad H. Waddington illustrates the process of regulation
during organisms development as a landscape (Waddington, 1957). This landscape
consists of valleys separated by ridges on an inclined surface through which the cell
traverses on its way from undifferentiated to a fully differentiated form. A branch-
ing pathway is used as a visual metaphor that depicts a decision point of cell fate
determination.

or non–coding RNAs, which culminated with multiple consortia. EN-
CODE is a multi–phase research project that aims to identify functional
elements in the human genome, with the most recent phase expanding to
other organisms and covering many different cell types (Dunham et al.,
2012; Snyder et al., 2020). The National Institutes of Health Roadmap
consortium aims to produce a collection of epigenomic maps for stem
cells and primary tissues selected to represent the normal counterparts
of tissues and organ systems frequently involved in human disease (Bern-
stein et al., 2010; Kundaje et al., 2015). The European Union funded
BLUEPRINT consortium focused on distinct types of haematopoietic
cells from healthy individuals and diseased counterparts to advance and
exploit knowledge of the underlying biological processes and mechanisms
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(Stunnenberg et al., 2016). Though epigenetics has been continuously re-
defined to accommodate ever–increasing knowledge, there is still a debate
in the scientific community about the appropriate definition of epigenet-
ics (Bird, 2007; Greally, 2018; Haig, 2004; Russo et al., 1996). For the
purpose of this thesis, epigenetics is defined as: “The study of mitotically
and / or meiotically heritable changes in gene function that cannot be
explained by changes in DNA sequence”.

To summarise, one can rephrase that conceptually, epigenetics provides
an explanation of how cells interpret their genetic blueprint under the
light of changing time, space, and other stochastic factors (Fraga et al.,
2005). For example, thousands of cell subtypes of a multicellular or-
ganism can have variations in the readout of their genetic template in
response to a large number of internal and external factors. Epigenet-
ics thus connects DNA sequence and environmental influences to the
phenotype.

2.1.3 5–methylcytosine

5–methylcytosine has been termed as the fifth base of the genome, as
reflected by its high abundance across all domains of life — 5mC is
present in most eukaryotes, including vertebrates, invertebrates, plants,
fungi, and many prokaryotes (Bewick et al., 2019; Goll and Bestor, 2005;
Keller et al., 2016; Suzuki and Bird, 2008). In the human genome, 5mC
comprises 1% to 4% of the cytosine residues (Breiling and Lyko, 2015;
Ehrlich et al., 1982).

In mammalian genomes, 5–methylcytosine is predominantly found to
precede a guanine base (commonly known as a CG dinucleotide) (Bern-
stein et al., 2007; Doskocil and Sorm, 1962). The fact that CG din-
ucleotide is palindromic 2 is directly linked to the propagation of the
modification patterns through the cell divisions. Interestingly, these CG
2Mirrors itself in an anti–parallel fashion on both forward and reverse strands of the
same DNA molecule.
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sites tend to be underrepresented across the genome since the CG din-
ucleotide is prone to mutate (i.e., mutational hotspot) — methylated
cytosines have high rate of spontaneous deamination which results in C
to T transitions 3 (Duncan and Miller, 1980). As a consequence, CG
dinucleotides are drastically underrepresented in the vertebrate genomes
and occur at only 20% — 25% of the expected frequency (Lander et al.,
2001; Saxonov et al., 2006; Swarts et al., 1962). Therefore, variation in
the methylation level within the genome causes variation in the local CG
sites density.

In the haploid human genome there are around 28 million CG sites, of
which, 60% — 80% are modified (Smith and Meissner, 2013; Zhao et al.,
2014). The density of these CG dinucleotides throughout the genome is
not even since CG sites tend to form clusters known as CG islands (CGI).
CGIs are usually defined as DNA segments that are longer than 200 base
pairs (bp), have a G + C content of 50% or higher, and a CG frequency
of at least 0.6 (Gardiner-Garden and Frommer, 1987; Illingworth and
Bird, 2009). There are ∼27.7 thousands CGIs in the human genome 4

(average size ∼750 bp with 1st and 3rd quartiles at ∼320 bp and ∼950 bp
respectively), while in the mouse genome there are ∼16 thousand CGIs
(average size ∼650 bp with 1st and 3rd quartiles at ∼330 bp and ∼820
bp respectively). CGIs are frequently associated with gene upstream
regions but a significant fraction of them are found within gene bodies
(i.e., intragenic CGIs) (Medvedeva et al., 2010; Saxonov et al., 2006).
Around 70% of protein–coding genes have at least one CGI in their
upstream region (usually two kilobases (kb) in size) and CG sites in
these CGIs tend to be unmethylated, which contrasts with the high CG
modification signal in the rest of the genome (Jones, 2012; Saxonov et al.,
2006). These genes correspond to nearly all housekeeping genes, 93% of
the genes expressed during embryogenesis, and 40% of tissue–specific
genes (Larsen et al., 1992; Ponger et al., 2001). However, about half
of CGIs in mammalian genomes are not associated with a known gene
3The transition rate of CG dinucleotides to TG, or CA on the reverse strand, is
approximately twelve times the normal transition rate. Interestingly, it is much
higher in human germline cells (Sved and Bird, 1990).

4However, it is reported that the actual number may be close to 50 thousand (Lander
et al., 2001).
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and have been termed orphan CGIs due to the uncertainty surrounding
their origin (Sarda and Hannenhalli, 2018). Nevertheless, it seems that
despite not being associated with specific genes, many orphan CGIs are
actual sites of transcription initiation for unannotated protein–coding
genes, non–coding RNAs or acting as enhancers (Bell and Vertino, 2017;
Illingworth et al., 2010; Koerner et al., 2019; Sarda and Hannenhalli,
2018). Following the marine metaphor of the CGI, one can find the CGI
shore from 0 to 2 kb on either side of a CGI, and the CGI shelf from 2 to
4 kb on either side of a CGI 5 (Bibikova et al., 2011; Price et al., 2013;
Sandoval et al., 2011).

It is worth mentioning that 5mC in mammalian genomes is also found
within a non–CG context (i.e., CHG or CHH sites, where H can be
any nucleotide except for guanine), where it can comprise 1% to 25% of
all 5–methylcytosines 6 (Guo et al., 2014a; Laurent et al., 2010; Lister
et al., 2009). It was discovered that a relatively high fraction of non–
CG methylation occurs in human and mouse brain or embryonic stem
cells (Guo et al., 2014b; He and Ecker, 2015; Xie et al., 2012). The high
abundance of non–CG modifications in the mentioned cell types and
organs can be attributed to the increased expression of enzymes that
can introduce this type of modification (Lister et al., 2013).

2.1.4 Mechanisms to Introduce DNA Modifications

Multiple proteins catalyze the establishment, maintenance, and removal
of DNA modifications in organisms. In mammals, DNA methylation is
established during embryonic development by the enzymes of the DNA
methyltransferase (DNMT) family that catalyse DNA methylation by
transferring the methyl–group of S–adenosyl–L–methionine to a cytosine
base (Bestor, 2000; Bird, 2002). There are three main known DNMT
enzymes that methylate CG sites in mammalian genomes – DNMT1,
5While open sea is used to refer to CG sites that do not fall into these categories
and interestingly, these CG sites are mostly modified in human somatic cells (Bird,
2002).

6In plants, non–CG methylation can make up 25% — 50% of all 5mC (Bouyer et al.,
2017).
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DNMT3A, and DNMT3B (Lyko, 2018). Although these proteins are
similar, they are activated during the different time points of organism’s
lifetime and perform different functions (Dahlet et al., 2020; Lyko, 2018).
Eukaryotic DNA methyltransferase (DNMT1) was discovered first and
then cloned from the human and mouse (Bestor et al., 1988; Gruenbaum
et al., 1982; Yen et al., 1992). Later, another family of DNMT enzymes
was discovered, which included two de novo DNMTs – DNMT3A and
DNMT3B (Okano et al., 1999).

Expression of the maintenance methyltransferase DNMT1 peaks in the S
phase, where it accordingly methylates DNA during cell division (Kishikawa
et al., 2003; Lei et al., 1996). DNMT1 recognises hemimethylated DNA
(i.e., when only one of the DNA strands of the CG site has 5mC) during
DNA replication, and modifies cytosines on the newly synthesised DNA
(Probst et al., 2009). This function provides a mechanism for maintain-
ing DNA modification patterns during cell division, therefore making it
a true epigenetic mark capable of generating cellular memory as orig-
inally hypothesised in 1975 (Holliday and Pugh, 1975; Li and Zhang,
2014; Riggs, 1975; Vilkaitis et al., 2005). DNMT1 is crucial for nor-
mal development as its deletion in mice results in a drastic loss of DNA
methylation at a global level and is lethal to the organism (Brown and
Robertson, 2007; Kurihara et al., 2008). DNMT1 also plays a role in im-
printing mechanisms by supressing either the paternal or maternal copy
of DNA, and is involved in DNA repair (Branco et al., 2008; Ha et al.,
2011).

In mammals, DNA methylation patterns are rapidly erased immediately
after fertilisation (Reik et al., 2001). De novo DNA methylation does not
occur until the blastocyst stage when these patterns are re–established
and eventually cell type specific methylation patterns are generated (At-
lasi and Stunnenberg, 2017; von Meyenn et al., 2016). This de novo
DNA methylation is largely established by DNMT3A and DNMT3B en-
zymes, which catalyse the addition of methylation marks in those CG
sites that originally lack the modification in any of the two DNA strands
(Okano et al., 1999; Reik et al., 2001; Saitou et al., 2012). Both enzymes
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have similar domain arrangements but exhibit divergence in their N–
terminal regions which carry a number conserved motifs governing their
interactions with chromatin and other cellular proteins (Chédin, 2011;
Gao et al., 2020). While DNMT3A is ubiquitously expressed in most
cell types, DNMT3B is specifically expressed only in differentiating cells
(Watanabe et al., 2002). Both enzymes are crucial for viable organisms
while individuals with mutated variants exhibit pathological phenotypes
(e.g., Tatton–Brown–Rahman syndrome, microcephalic dwarfism, ICF
syndrome) (Jiang et al., 2005; Norvil et al., 2019; Nowialis et al., 2019).
There is also evidence that DNMT3A and DNMT3B methylate non–CG
sites (Laurent et al., 2010; Ramsahoye et al., 2000).

It is worth mentioning that another de novo DNA methyltransferase that
is catalytically inactive, DNMT3L, has also been identified in mammals
(Aapola et al., 2000). DNMT3L is a variant of the previously mentioned
DNMT3 enzymes that lacks the N–terminal part of the regulatory do-
main and the C–terminal region of the catalytic domain (Lyko, 2018).
DNTM3L does not bind DNA as strongly as other DNMT3 enzymes but
directly interacts with both of them and enhances their activity (Chen
et al., 2005; Suetake et al., 2004). DNMT3L cooperates mostly with
DNMT3A to establish maternal imprints and its deletion can lead to
embryo development abnormalities (Arima et al., 2006; Veland et al.,
2019). Additionally, DNMT3C was recently discovered as a de novo
DNA methyltransferase in several rodent species 7, where it plays a
role in modifying young repeat elements during spermatogenesis (Barau
et al., 2016). Lastly, DNMT2 is the most conserved member of the DNA
methyltransferase family that acts as a transfer RNA methyltransferase
and influences intergenerational epigenetic inheritance through sperm
non–coding RNAs (Goll et al., 2006; Schaefer et al., 2010; Zhang et al.,
2018).
7Dnmt3C arose through a duplication of Dnmt3B that occurred in the last common
ancestor of muroid rodents (Molaro et al., 2020).

17



2.1. Biological Aspects

2.1.5 Mechanisms to Remove DNA Modifications

In the fertilised mammalian oocyte, the paternal pronucleus undergoes
extensive genome–wide DNA demethylation hours after fertilisation be-
fore the first round of DNA replication commences, suggesting the exis-
tence of an active 5mC removal mechanism (Oswald et al., 2000). Albeit
maternal pronucleus undergoes passive global methylation dilution, tak-
ing place over the first replication cycles (Howell et al., 2001; Rougier
et al., 1998), both pronuclei lose almost most of the 5mC marks and
preimplantation blastocysts contain only 25% of global methylation level
(Lee et al., 2014). Such removal of 5mC marks can occur through either
an active or passive mechanism (Saitou et al., 2012).

Passive demethylation is realised by the transcriptional or functional
inhibition of DNMT1 (Kagiwada et al., 2013). In the absence of func-
tional DNMT1, the newly synthesised DNA strand remains unmethy-
lated, thus, methylated cytosine marks will be diluted in daughter cells
resulting in gradually decreasing methylation levels (Sharif et al., 2007).
Since this process is sequence independent, it results in genome–wide
demethylation.

Active demethylation can occur locally in both differentiating and non–
differentiating cells through a series of targeted chemical reactions via
ten–eleven translocation methylcytosine dioxygenase (TET) enzymes (Branco
et al., 2011; Gu et al., 2011b; Ito et al., 2010). TET enzymes catalyse
the oxidation of 5mC to 5hmC, which is further oxidised to 5fC and sub-
sequently to 5caC, in reactions that are probably also catalysed by TET
family members (Figure 2.2) (Ito et al., 2010). These oxidised 5hmC
variants can be diluted during replication or recognised and removed by
thymine DNA glycosylase (TDG) to produce an abasic site 8 and later
repaired by the base excision repair apparatus (He et al., 2011; Ito et al.,
2010). TDG specifically recognises both 5fC and 5caC bases (but neither
5mC or 5hmC), suggesting a mechanistic link for both TET and TDG
8A site in DNA that consists of a deoxyribose unit lacking a purine or pyrimidine
base.
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system and spinal cord (∼0.5%). These data strengthen the observa-
tion that nervous system tissues contain the highest levels of 5hmC.
Medium levels of 5hmC (0.15%–0.17%) are detected in the epigenomes
of kidneys, bladder, heart, skeletal muscles, and lungs. Finally, DNA
from the liver, spleen, and the endocrine glands (testes and pituitary
gland) possesses the lowest amounts of 5hmC with levels ranging from
0.03%–0.06%. Interestingly, the pituitary gland, which is located in the
brain, has a low amount of 5hmC, supporting the hypothesis that a high
5hmC content is related to neuronal function rather than mere localisa-
tion in the brain. In contrast to 5mC, the amount of which is relatively
consistent across different tissues, the amount of 5hmC is tissue specific
(Globisch et al., 2010). It has been established that the 5hmC is defi-
cient at transcription start sites and enriched at gene upstream regions
and gene bodies in mammalian genomes (Pastor et al., 2011; Song et al.,
2011b). Also, 5hmC shows high enrichment in regulatory chromatin
states mainly marked by H3K4me1 (mark for active enhancers), active
transcription start sites, and bivalent enhancer regions (Cui et al., 2020).
This 5hmC enrichment has also been reported at the promoters of long
interspersed nuclear elements, CTCF and pluripotency transcription fac-
tor binding sites (Ficz et al., 2011). Although most 5hmC cytosines are
in the CG context, a relatively significant proportion of them also exist
in a strand–specific CH context (Ficz et al., 2011; Pastor et al., 2011).
Importantly, 5hmC shows a relatively high difference between the two
opposite strands of a chromosome with differences up to tenfold (Mooij-
man et al., 2016). It is thought that 5hmC strand bias, therefore strand
age, may serve as a source of chromosome–wide epigenetic memory to
determine downstream protein activity and instruct biological processes
such as chromosome segregation. Interestingly, 5hmC strand bias can
flip within a chromosome and this sharp transition is consistent with a
putative sister chromatid exchange events 10. Most importantly, such
10Exchange of genetic material between two identical sister chromatids with mecha-

nism involved in this phenomenon still largely unknown (Lazutka, 1995).
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asymmetric 5hmC distribution might be an explanation for the underly-
ing mechanisms of immortal DNA strand theory 11 that were not known
before (Huh et al., 2013).

Further products of 5mC oxidation, 5fC and 5caC, can also be generated
by TET enzymes, although their abundance is incredibly low (5fC levels
around 0.002% and 5caC levels only at 0.0003%) in the genome (He et al.,
2011; Ito et al., 2011; Pfaffeneder et al., 2011). Since TDG recognises
both 5fC 12 and 5caC bases, perhaps partly explaining why neither 5fC or
5caC appear to accumulate to significant levels within DNA (He et al.,
2011; Zhang et al., 2012). For 5fC modification, it was found that it
predominantly clusters in enhancer regions, and several transcription
factors have been shown to preferentially bind regions containing 5fC
(Iurlaro et al., 2013; Song et al., 2013).

Finally, it is worth mentioning that another type of DNA modification,
N6–methyladenine, has recently been identified in mammals. However,
measurements of abundance are very dissimilar between studies, even
when performed on DNA from identical cell types and more evidence
is needed to support the presence of this modification (Douvlataniotis
et al., 2020; Kweon et al., 2019; Xiao et al., 2018).

2.1.7 Biological Functions of DNA Modifications

2.1.7.1 Repression of Genetic–Information

One of the most important functions of DNA modification is dosage com-
pensation. The methylation level of the inactivated X chromosome 13 is
substantially higher compared to the other copy of the X chromosome
11Old DNA strands are retained by stem cells during asymmetric cell divisions to

reduce the mutational load arising from genome replication (Cairns, 1975; Sherley,
2008).

12It was shown that TDG removes only half of 5fC residues at specific genomic cites
(Su et al., 2016).

13By the process of X chromosome inactivation organism balances X–encoded gene
products between male and female mammalian cells (Ohno et al., 1959).
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(Duncan et al., 2018; Wolf et al., 1984). Interestingly, while most CGIs
(68%) on the inactivated X chromosome show increased methylation, a
small fraction of CGIs (7%) have significantly lower levels of methylation
(Sharp et al., 2011). Another interesting example of the importance of
methylation in dosage compensation is modification of duplicated genes
in the honeybee Apis mellifera (Dyson and Goodisman, 2020). It was
found that in Apis mellifera, levels of gene body methylation were signif-
icantly lower in duplicate genes than in single–copy genes, implicating a
possible role of DNA methylation in postduplication gene maintenance.
Similar methylation patterns were discovered in plants where genes that
returned to single copies after the whole genome duplication event show
a higher level of gene body methylation compared to the long–retained
duplicates (Shi et al., 2020).

Besides regulating genetic information dosage on a large scale, methy-
lation plays a fundamental role in local gene silencing, such as genomic
imprinting 14 (Barlow and Bartolomei, 2014). The life cycle of these
methylation imprints is i) erasure in the primordial germ cells, ii) es-
tablishment in mature gametes, and iii) maintenance during embryonic
development (Reik and Walter, 2001). To date, 228 imprinted genes
have been reported in human and 260 in mouse genomes (Tucci et al.,
2019). As a consequence of this monoallelic methylation, genes will ex-
hibit maternal, paternal or isoform–specific expression and have effects
on multiple developmental stages (e.g., fetal growth, circadian machin-
ery, and behaviour). It is important to mention that 5hmC was also
discovered at imprinted loci, however, often overlapping regions are as-
sociated with parent–of–origin allelic 5mC sites (Hernandez Mora et al.,
2018).

Since a large portion of the mammalian genome consists of repetitive
elements, such as short interspersed nuclear elements (SINE), long in-
terspersed nuclear elements (LINE), long terminal repeats (LTR), and
satellites which endanger genomic stability, it was suggested that DNA
14Monoallelic DNA methylation according to parental origin.
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methylation might be a protection mechanism of suppressing their par-
asitic functions (Yoder et al., 1997). DNA methylation facilitates tran-
scriptional silencing of these parasitic elements, and it has been suggested
that DNA methylation may have originally evolved as a defence mech-
anism to prevent activation and subsequent genome instability before
acquiring its role in gene regulation (Slotkin and Martienssen, 2007).
Important to mention that not only the 5mC mark is found in repet-
itive elements but significant amounts of 5hmC modification were also
observed in LINE1 elements (Ficz et al., 2011)

2.1.7.2 Epigenetic Regulation at Genic and Regulatory Ele-

ments

More than half of the protein–coding genes contain a CGI in their up-
stream regions or transcription start sites (TSS) (Jones, 2012). Most
upstream CGIs are unmethylated and nucleosome depleted, which has
been associated with increased DNA accessibility and gene expression
levels (Bestor et al., 2015). Hypermethylation of these CGIs can i) di-
rectly prevent the recruitment of the transcription complex scaffolding
that can activate RNA polymerase II, or ii) serve as a specific binding
motif for inhibitory regulation, thus inhibit gene expression. Given the
observations of methylation at repressed TSSs, this raises the question of
whether silencing or methylation comes first. An epigenetic “lock” model
has been proposed to explain this phenomenon, where DNA methylation
acts as a stabiliser of the inactive state established through other epige-
netic mechanisms (Jones, 2012).

Gene bodies, as regions usually having low CG–density, are extensively
methylated, which may be necessary to suppress genomic repeats that
reside within introns (Jones, 2012). However, it was observed that mod-
ification of the gene bodies is positively correlated with the transcrip-
tional level of respective genes (Wolf et al., 1984). Interestingly, while
most upstream CGIs remain unmethylated as many as 34% of all intra-
genic CGIs are methylated in a tissue–specific manner (Maunakea et al.,
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2010). Moreover, even though intragenic CGIs can be modified, this
does not suppress RNA synthesis (Jones, 2012). It was suggested that
intragenic methylation may be also used to avoid spurious transcription
initiation (Neri et al., 2017). Thus, it seems that in mammals, it is the
initiation of transcription but not transcription elongation that is sensi-
tive to DNA methylation silencing. On the contrary, 5hmC levels within
the gene body show a positive correlation with gene expression, suggest-
ing a possible role for 5hmC in promoting transcriptional activity (Song
et al., 2011b). Also, it has been observed that exons and introns have a
different methylation level, and transitions in the degree of methylation
occur exactly at exon–intron boundaries, possibly suggesting a role for
methylation in regulating splicing (Laurent et al., 2010). Furthermore,
5hmC modification was also observed at the mammalian exon–intron
cross boundary with its levels varying between tissues (Khare et al.,
2012).

DNA modification was found to contain specific patterns at various ge-
nomic elements. Enhancers, which are key to the cell type–specific con-
trol of gene activity, were associated with low methylated regions 15

(Stadler et al., 2011). Similarly to enhancers, super–enhancers 16 tend
to be hypomethylated or differentially methylated depending on the cell
type, with hypermethylated super–enhancers being linked to the silenc-
ing of target genes (Bell et al., 2020). It has been shown that 5hmC
modification also plays a role in epigenetic regulation of enhancers, with
it being a mark of tissue–specific enhancers (Cui et al., 2020).

2.1.8 DNA Modifications in Higher–Order Genome Struc-
tures

Recently, it has been proven that DNA methylation plays a role in defin-
ing higher–order genomic structures (Jeong et al., 2014; Lister et al.,
2009; Timp and Feinberg, 2013; Xie et al., 2013). Already in 2009, it
15Regions with low levels of methylation in the range of 10% – 50% that comprise

around 4% of all CG sites in the mouse genome.
16Clusters of enhancers that control the expression of cell identity genes.
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was shown that a large proportion of the lung fibroblast cell line genome
displayed lower levels of CG methylation (Lister et al., 2009). Large
regions with an average methylation level less than 70% were identified
(average size 153 kb), which were termed partially methylated domains.
These domains comprised on average ∼38% of every autosome, and 80%
of chromosome X and encoded genes with relatively lower expression lev-
els. Even larger epigenomic structures were identified a couple of years
later. Genome–wide methylome analyses have revealed the existence of
large hypomethylated regions, called “canyons” or “valleys” (Jeong et al.,
2014; Xie et al., 2013). These regions can span up to one megabase
(Mb) in size, are hypomethylated throughout development, and are very
conserved across vertebrates. More than half of the genes identified in
human hypomethylated regions were also present in mice regions. These
genes were strongly enriched for functional groups in transcription fac-
tors, homeobox family, embryonic morphogenesis, and cancer pathways
(Xie et al., 2013). Importantly, the borders of these regions are demarked
by 5hmC and become eroded in the absence of DNMT3A, suggesting that
there is competition between DNMT3A and TET proteins to maintain a
status quo at the same loci (Jeong et al., 2014). Large hypomethylated
regions have also been identified as a common epigenetic alteration in
several tumour types (Timp and Feinberg, 2013). These regions were on
average 28 kb in size and in normal samples exhibited methylation lev-
els of ∼80%, while in the cancer samples methylation ranged from 40%
to 60%. These regions tend to be co–localised with lamina associated
domains (LADs), which confirms that DNA methylation plays a role in
higher–order chromosome organisation within the nucleus.
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2.2 Technological Aspects

2.2.1 Profiling Techniques for 5–methylcytosine

Multiple techniques have been developed to profile DNA methylation,
which can be broadly grouped into restriction enzyme, affinity enrich-
ment, and bisulfite conversion–based techniques.

2.2.1.1 Restriction Enzyme–Based Techniques

Methods that use enzymatic digestion employ methylation–sensitive re-
striction enzymes, which show variability in digestion properties at methy-
lated and unmethylated CG sites. The first quantification of DNA
methylation using restriction enzymes was performed almost half a cen-
tury ago to show that DNA modification in mammals occurs in CG
sites (Gautier et al., 1977). Nowadays, the two most commonly used
methylation–sensitive restriction enzymes are HpaII and Msp1 (Takamiya
et al., 2006). These isoschizomers recognise the same sequence (CCGG)
but have different methylation sensitivity: HpaII cleaves unmethylated
CG sites, and Msp1 cleaves methylated CG sites. Restriction enzyme–
based methods are cost–effective and enable genome–wide methylation
profiling. However, these enzymes identify only a limited fraction of
genome CG sites (adjacent to restriction enzymes digestion sites), and
they cannot quantify the methylation level of single CG (Yong et al.,
2016).

2.2.1.2 Affinity Enrichment–Based Techniques

Affinity enrichment–based methods enrich for methylated DNA frag-
ments by either methyl–binding domain (MBD) proteins or antibod-
ies that target 5mC. Methylated DNA immunoprecipitation (MeDIP)
uses an antibody to 5–methylcytosine targeting single–stranded DNA,
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while the MBD approach uses the methylated CG binding domain of
the MBD2 protein to capture double–stranded DNA (Li et al., 2010;
Robinson et al., 2010). After enriching for methylated regions, DNA
methylation can be quantified with either high–resolution array hybridi-
sation or high–throughput sequencing.

MBD is more sensitive than MeDIP for high CG–density regions 17 and
is not related to the DNA methylation level, while MeDIP is generally
more efficient than MBD in enriching for highly methylated medium
CG–density regions (Li et al., 2010). MBD is a cost–effective method
that can be used with very low amounts of DNA (Aberg et al., 2012,
2017). The MeDIP method is also economical and can differentiate be-
tween CG or CH methylation contexts. On the downside, they provide
low resolutions and are biased towards hypermethylated regions. Also, if
the technology is biased towards CG rich regions, then regions with poor
CG–density will be underrepresented or interpreted as unmethylated,
therefore, computational corrections are necessary to normalise the CG
content (Rauluseviciute et al., 2019). It is important to mention that
peak identification algorithms that are usually used for enrichment–based
methods are developed for chromatin immunoprecipitation data analysis
(e.g., to locate transcription factor binding sites from the immunopre-
cipitation data). DNA methylation sites differ from transcription factor
binding sites in that methylated CG dinucleotides are highly abundant in
most differentiated cells, thus the signal peaks in affinity–based method
data are densely distributed. The characteristic of this type of data raises
the demand for a computational analysis programme with higher resolu-
tion since the aforementioned algorithms fail to finely detect methylation
level of CG dinucleotides (Lan et al., 2011). As an alternative method
methyltransferase–directed transfer of activated groups, the method of-
fers isolation of the unmodified CG–fraction via immunoprecipitation of
biotin–labelled unmodified cytosines (Kriukienė et al., 2013). This ap-
proach is much more sensitive since it isolates only the unmodified frac-
tion of the genome and can detect more subtle changes. Furthermore,
17This makes MBD a highly effective method to measure the methylation status of

CGIs.
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MeDIP based technologies can also be adapted to hydroxymethylation
by choosing an antibody specific to 5hmC (Nestor and Meehan, 2014).

2.2.1.3 Bisulfite Conversion–Based Techniques

Sodium bisulfite (BS) sequencing is considered the gold standard for
DNA methylation profiling. BS converts unmethylated cytosine to uracil,
which eventually turns into thymine, while methylated cytosines are pro-
tected 18 (Clark et al., 1994; Frommer et al., 1992). The resulting C to
T conversion is detected either by next–generation sequencing or array
hybridisation, thereby CG sites are classified as methylated or unmethy-
lated. BS conversion–based techniques can produce single nucleotide
resolution, strand specific DNA methylome that is not influenced by
uneven coverage across the genome. However, while BS conversion can
differentiate methylated from unmethylated cytosines, it cannot discrim-
inate between 5mC and 5hmC modifications, which do not undergo C
to T transitions after bisulfite treatment and both are read as C after
sequencing (Huang et al., 2010).

Whole genome bisulfite sequencing detects C to T conversions by se-
quencing bisulfite–treated fragments, and aligning reads back to a refer-
ence sequence 19 (Urich et al., 2015). However, whole–genome BS is more
expensive owing to genome–wide deep sequencing of bisulfite–treated
fragments as most WGBS reads do not originate from CG regions, while
techniques such as MeDIP and MBD produce DNA libraries covering
only highly methylated genomic regions (on the other hand, WGBS is
not biased towards any underlying region type) (Ziller et al., 2013). Sec-
ond, the reduction in sequence complexity resulting from the conversion
of cytosine into uracil can be problematic in the polymerase chain re-
action (PCR) amplification step (Berney and McGouran, 2018). Also,
because of the DNA degradation by purification and sodium bisulfite
18While the nucleotide sulfonation effect was then known for more than twenty years

(Hayatsu et al., 1970).
19Arabidopsis thaliana genome was the first to be fully sequenced using WGBS (Cokus

et al., 2008).
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treatment, BS based techniques depends on a relatively large amount of
DNA starting material 20 (Berney and McGouran, 2018). Additionally,
two types of error can occur during bisulfite treatment: over–conversion
(when methylated cytosines are deaminated to uracil which leads to
false–negative cytosines) and under–conversion (when unmethylated cy-
tosines are not converted to uracil which leads to false positive cytosines)
(Chappell et al., 2018). These errors require adequate evaluation of the
conversion rate before performing data analysis.

Reduced representation bisulfite sequencing is a cost–effective alterna-
tive to WGBS, which quantifies DNA modification only for a fraction of
genomic regions (Lister et al., 2009; Meissner et al., 2005, 2008). This
method utilises Msp1 and size selection of digested fragments (40 —
200 bp) 21 prior to BS conversion. Even though this method combines
the sensitivity of BS methods with the cost–effectiveness of enzyme–
based methods, it provides lower coverage for many other genomic re-
gions. Also, reduced representation bisulfite sequencing coverage varies
to some extent by the size selection or choice of enzymes and prior in
sicilo analysis should be performed to determine the optimal experimen-
tal parameters (Gu et al., 2011a).

Illumina’s Infinium HumanMethylation 450K BeadChip is the most widely
used microarray for profiling DNA modification in human 22. It uses
bisulfite treatment, polymerase chain reaction amplification, hybridisa-
tion and allows the interrogation of more than 450 thousands CG sites
from the human genome that cover almost all protein–coding genes and
CGIs 23 (Bibikova et al., 2011). In this approach, two probes are em-
ployed to distinguish between unmodified and modified CG sites, which
are marked with different fluorescence dyes and hybridised to arrays.
BeadChip consists of twelve arrays making this technology suitable for
20It has been reported that 95% of the DNA is destroyed by sodium bisulfite treat-

ment.
21Covers most of the CGIs in the human genome by isolating only 1% — 3% of the

genome (Gu et al., 2011a).
22Before 450K two other platforms existed: GoldenGate genotyping technique with

1536 CG sites and Illumina’s Infinium 27K technique (Bibikova et al., 2006, 2009).
23As control regions, it also includes more than three thousand non–CG sites and

random SNPs.
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analysing larger cohorts. Moreover, the most recent version of this tech-
nology (Infinium MethylationEPIC) covers 850 thousand CG sites in the
human genome. This version contains more than 90% of the 450K sites
as well as more than 300 thousand new CG sites located in enhancer
regions (Moran et al., 2016). While this approach is relatively cheaper
and requires less complex data processing 24, it still depends on sodium
bisulfite conversion, therefore cannot be used to discriminate 5mC from
5hmC modifications.

Another method based on bisulfite conversion is bisulfite padlock probes
(or molecular inversion probes) (Deng et al., 2009; Hardenbol et al., 2003;
Nilsson et al., 1994). This technology was first applied for exon capturing
and only then transferred to quantify DNA methylation using targeted
bisulfite sequencing (Deng et al., 2009; Diep et al., 2012; Porreca et al.,
2007). This technology offers the sensitivity of bisulfite sequencing and
customisable selection of wanted CG sites. Similar to the polymerase
chain reaction design, padlock probes are designed to target a pair of
sequences flanking the target of interest, however, the hybridising seg-
ments correspond to the 5' and 3' ends of a single molecule that loops
around itself in the padlock design. Custom–designed molecular inver-
sion probes can be multiplexed (ten thousands of genomic loci can be
enriched simultaneously) and such selection enrichment of genomic tar-
gets prior to sequencing substantially reduces sequencing costs. When
molecular inversion probes were first used to enrich for exonic regions,
one of the concerns was the high dropout rate, that is, in each replicate
around 80% of the intended targets were not observed by deep sequenc-
ing (Porreca et al., 2007). Improvements to the bisulfite padlock probe
design were made later with around 330 thousand probes that covered
around 140 thousand non–overlapping regions with a total size of 34
mega bases (Diep et al., 2012). However, there are a couple of challenges
that need to be considered when working with bisulfite padlock probes.
First, off–target annealing (bisulfite converted sequences have very few
cytosines so the annealing arms cannot have cytosines) and secondly,
24On January 17 2021 NCBI GEO data submission platform contained: 346 submitted

research projects for Infinium 27K technique, 1437 for 450K, and 374 Infinium
MethylationEPIC (Edgar et al., 2002).
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to avoid polymorphisms and CG sites that may be methylated within
annealing arms.

2.2.2 Profiling Techniques for Oxidised 5–methylcytosine
Forms

The first genome–wide 5hmC profiling was performed by selective chem-
ical labelling of 5hmC, followed by deep sequencing in the mouse cere-
bellum (Song et al., 2011b). In this study, the 5hmC modification was
labelled with a customised glucose moiety which was later modified with
biotin for enrichment and sequencing. The drawback of this technique is
that custom–made reagents are needed. Later, another study on mouse
embryonic stem cells suggested two new approaches for genome–wide
5hmC profiling (Pastor et al., 2011). One highly specific method used
glusosylation, oxidation, and biotinylation but did not require custom–
made reagents, while the other method used 5hmC conversion to 5–
methylenesulphonate which was precipitated with specific antibodies,
followed by high–throughput sequencing. However, there were issues
with this method including the i) efficiency of antibody precipitation
was dependent on 5hmC density, and the ii) antibodies cross reacted to
unmodified or methylated DNA. Another method based on MeDIP pro-
tocols for 5mC profiling was developed for 5hmC identification – hMeDIP
(Ficz et al., 2011; Williams et al., 2011). However, hMeDIP also faces
the previously mentioned antibody–based immunoprecipitation method
problems.

Additional chemical derivatisation steps before sodium bisulfite treat-
ment made it possible to profile 5hmC modification at single base res-
olution (Booth et al., 2012). The oxidative bisulfite method is based
on a DNA oxidation step prior to bisulfite conversion. During oxida-
tion, 5hmC modifications are converted to 5fC and are again converted
into uracil in subsequent sodium bisulfite treatment, therefore, only 5mC
modification is detected as cytosine. By comparing the readouts of ox-
idative bisulfite and standard BS, one can estimate the 5hmC signal
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at each CG site. An alternative method for 5hmC profiling, termed
TET–assisted BS sequencing (TAB–seq), uses glucosylation of 5hmC by
β–glucosyltransferase to protect it from oxidation by TET1, whereas
all other modified cytosine residues are oxidised to 5caC (Yu et al.,
2012a,b). In addition, single molecule real–time sequencing can differen-
tiate between unmodified or methylated, hydroxymethylated cytosines
(Flusberg et al., 2010; Song et al., 2011a). This method monitors the
incorporation of fluorescently labelled nucleotides into newly synthesised
DNA molecules. The duration of the resulting fluorescence pulse emis-
sions yield information about polymerase kinetics and allow differentia-
tion between modified nucleotides in the DNA template. Recently a new
method, termed Jump–seq, was shown to achieve bisulfite–free, nearly
base resolution detection of 5hmC at the whole genome scale (Hu et al.,
2019). This method uses 5hmC labelling with an azide–modified glu-
cose and genomic DNA tagging with biotin–P7 adapter. A hairpin DNA
(with P5 adapter) carrying an alkyne is added covalently to the modified
glucose. After primer extension from the hairpin and cleavage from the
tethered hairpin, the newly synthesised strand is subjected to library
construction and sequencing. The 5hmC single site location is inferred
from the polymerases landing site pattern that connects the hairpin se-
quence and any genomic DNA sequence. However, this method showed
a lower accuracy of the priming reaction and limited the resolution of
the method to twenty nucleotide sized bins.

The 5fC modification can also be detected using 5fC chemical modification–
assisted BS sequencing (fCABseq), in which 5fC is first protected from
deamination resulting in 5fC, 5mC and 5hmC being read as cytosine.
Then, the locations of 5mC or 5hmC modifications can be determined
using conventional BS sequencing, and the location of 5fC modifica-
tions can then be inferred by the comparison of the two readouts (Song
et al., 2013). Another variation of the CABseq method (caCABseq)
can detect 5caC chemical labelling and biotin tagging. As a result,
the 5caC–containing DNA is pulled down, enriched, and subjected to
high–throughput sequencing (Lu et al., 2013). Methylase assisted BS
sequencing (MABseq) uses methylase to modify all unmodified cytosine

32



2.2. Technological Aspects

bases to 5mC. Sodium bisulfite treatment then converts 5fC and 5caC
modifications into uracil, enabling their identification using standard BS
sequencing, although these two modifications cannot be distinguished
from each other (Neri et al., 2015; Wu et al., 2014). Sodium borohydride
can be used after the enzymatic methylation to convert 5fC to 5hmC
enabling selective detection of 5caC because it is the only base that is
read as uracil. Employing the 5hmC–selective chemical labelling can be
also used to identify 5fC modification. After the protection of 5hmC
modification by glucosylation, 5fC can be selectively reduced to 5hmC
by sodium borohydride treatment, and the newly created 5hmC residues
are then enzymatically labeled with an azide–modified glucose for the at-
tachment of biotin tags (Song et al., 2013). Finally, the antibody–based
DNA immunoprecipitation (5caC–DIP) approach was used to generate
genome–wide distribution maps of 5hmC, 5fC, 5caC modifications in
mouse embryonic stem cells (Shen et al., 2013).

Another newly published approach to decipher DNA modification pat-
terns that could be used not only for 5hmC modification but also for
5mC modification is enzymatic methyl–seq. This enzymatic deamina-
tion approach, named long–read enzymatic modification sequencing, al-
lows long–range DNA modification profiling of 5–methylcytosine and 5–
hydroxymethylcytosine over multikilobase lengths of genomic DNA (Sun
et al., 2021). The principle of this methodology is as follows, genomic
DNA can either be treated with TET2 and β–glucosyltransferase (BGT)
to protect both 5mC and 5hmC modifications or only with BGT to
protect 5hmC modification, subsequent deamination by APOBEC3A,
followed by an amplification step allows the distinction between the un-
protected substrate from the protected cytosine derivatives. The TET2
and BGT treatment results in the distinction of 5mC and 5hmC from
cytosines, whereas treatment with BGT alone results in the distinction
of 5hmC from cytosines and 5mC.
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2.2.3 Tethered Oligonucleotide–Primed Sequencing–Based
Techniques

Since most CG sites in the human genome are methylated (approxi-
mately 60%—80%), analysis of the remaining fraction of CG sites may
be more sensitive and simpler for detecting subtle changes in DNA mod-
ification profiles. The TOP–seq method has the advantage of previously
developed mTAG–seq technique, which uses an engineered version of
the SssI methyltransferase for biotin labelling of unmodified CG dinu-
cleotides (Kriukienė et al., 2013; Staševskij et al., 2017). In both meth-
ods, SssI methyltransferase uses S–adenosylmethionine cofactor and tags
the unmodified and hemimodified CG sites with a reactive azide group
(Figure 2.3). For the TOP–seq method in the next step, a covalently
tethered alkyne–bearing DNA oligonucleotide promotes non–homologous
priming of a DNA polymerase at the tagged sites, thus facilitates the
template–dependent polymerase action from the 3' end of the tethered
DNA duplex 25. In addition to unmodified CG sites, a 5hmC modifi-
cation can be identified using the hmTOP–seq method which is based
on the same sequence readout mechanism primed at covalently labelled
5hmC sites from an in situ tethered DNA oligonucleotide (Gibas et al.,
2020). Finally, the caCLEAR method enables targeted mapping of 5caC
sites by combining a methyltransferase–promoted C–C bond cleavage
reaction, leading to the decarboxylation of 5caC that yields unmodified
cytosine, followed by targeted sequencing of the introduced unmodified
CG sites (Liutkevičiūtė et al., 2014; Ličytė et al., 2020).

25While for the mTAG–seq tecnique biotin–labelling is used.
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Regression analysis is a statistical technique to estimate a response (de-
pendent) variable with one or more predictors (independent variables)
(Kutner et al., 2004). A regression model is based on several con-
cepts: i) the dependent variable changes with the change in the indepen-
dent variable in a systematic manner; ii) for each independent variable,
there is a probability distribution for the dependent variable. Often in
(bio)statistics, it is investigated how a variable Y depends on a variable
X26. Linear regression is an approach that proves useful for providing
insights about such biological relationships, as one can model the depen-
dent variable Y given an independent variable X by assuming that X

has a linear effect on Y . This linear function has the following param-
eters: i) x1, . . . , xk are the values of the k covariates; ii) interception of
β0 (value of xi when value of yi = 0); iii) slope of βi; iv) residuals or
random error εi – an unobserved random variable that adds noise to the
linear relationship:

y = β0 + β1x1 + · · ·+ βkxk + ε (2.1)

Suppose that we have observations y = (y1, y2, . . . , yn) ∈ Rn and want
to model a linear function using x = (x1, x2, . . . , xn) ∈ Rn. Then, one
can try to define a value for β̂ which minimises the squared error ε2:

β̂ = argmin
β

n
∑

i=1

(yi − βxi − β0)
2 (2.2)

Often in (bio)statistics, one response can be explained using multiple
predictors, multiple linear regression should be used in such a case 27.
The design matrix X is used to present such multivariate data (one can
26For example, cytosine modification levels in prostate cancer patients and exposure

to abiraterone acetate or the number of Nobel prize laureates and chocolate con-
sumption per capita (Gordevičius et al., 2018; Maurage et al., 2013).

27For example, gene expression level and modification levels of all the cytosines from
an associated locus.
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represent n samples in rows and k observations in columns):

X =













x11 x12 . . . x1k

x21 x22 . . . x2k
...

...
. . .

...
xn1 xn2 . . . xnk













∈ R
n×k

Following similar notation, the response variables, random errors, and
regression coefficients can be written in vector forms:

Y = (Y1, . . . , Yn)
T ∈ R

n

ε = (ε1, . . . , εn)
T ∈ R

n

β = (β0,β1, . . . ,βk+1)
T ∈ R

k

Linear models have assumptions about the predictors, the response vari-
ables, and their relationship to simplify the modelling problems:

• Linear relationship – relationship between the independent and
dependent variables is linear, therefore Yi can be estimated using
independent variables xi1, . . . , xik and the random error.

• Normality of residuals – error variables are normally distributed
(i.e., the mean is zero and the variance is σ2) with the expected
value zero E[ε] = 0.

• Independence – error variables are independent of each other and
there is no correlation between them.

• No multicollinearity – the independent variables do not correlate.
If there is a high correlation, then it is difficult to explain the
relationship between the independent and dependent variables.

• Homoscedasticity – the variance of the random error ε is con-
stant and finite regardless of the values of the predictor variables:
V ar(Yi) = V ar(εi) = σ2 < ∞, for all i = 1, . . . , n.
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2.3.2 Generalised Linear Models

Sometimes in (bio)statistics, the given relationship does not follow lin-
ear model assumptions, so the response variable comes from a non–
continuous distribution and is categorical (e.g., survival status) or dis-
crete (e.g., stages of cancer). Error variables are correlated and non–
normal distributed (e.g., DNA modification level that is always non–
negative). In such a case, the classical linear model cannot be applied,
however, it can be replaced with a generalised linear model (GLM) which
elevates the classical linear models, allowing non–linear relationships be-
tween independent and dependent variables (Nelder and Wedderburn,
1972). GLM represents a regression model family that uses transforma-
tion for a response variable that is not in the form of normal distribution.

As mentioned above, Y s are independent from each other and they come
from the probability distribution with a mean E[Y ] = µ, Xs are predictor
variables and Xβ = η is a linear predictor. In the classical linear model,
the relationship between the linear predictor and the mean is µ = η.
GLM improves this linear model by allowing a more complex relationship
between µ and η via the so called link function g(·) which enhances the
relationship to η = g(µ). Which link function is optimal depends on
the underlying distributions that are explained below, however, these
functions can be: identity (η = µ), log (η = log(µ)), logit (η = log( µ

1−µ)),
and others (Lindsey, 1997).

Probability distributions used in GLM are members of the exponential
family, which represents a set of flexible probability distributions ranging
through continuous or discrete variables. All these distributions follow
the general formula:

f(x; θ) = h(x) exp[ η(θ) · T (x) +A(θ) ] (2.3)

In a given formula, the following representations are used:

• x – vector of measurements

• θ – canonical link
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• h(x) – base measurement

• η – natural parameter

• T (x) – sufficient statistic of the distribution

• A(θ) – log partition function (log normaliser)

Some probability distributions that are members of this family are:

• Bernoulli – binary {0, 1}; logit link

• Binomial – counts of success or failure; logit link

• Gaussian – R; identity link

• Exponential – R; negative inverse link

• Poisson – N; log link

A Gaussian distribution can be rewritten in terms of the general expo-
nential format using the following parameters:

• Canonical link θ – µ

• Base measure h(x) – 1√
2π

• Natural parameter – 〈 µ
σ2

−1
2σ2 〉

• Sufficient statistic T (x) – 〈xx2〉

• Log partition A(θ) – µ2

2σ2 + log |σ|

Finally, the equation for the Gaussian exponential family can be stated
as follows:

p(x) =
1

σ
√
2π

exp−
(x−µ)2

2σ2 (2.4)

2.3.3 Kernel Density Estimation

This section forms the foundation of Section 5.2 and will describe kernel
density estimators.
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Kernel density estimation (KDE) is a non–parametric method to esti-
mate the probability density function of a variable X. Let (x1, x2, . . . , xn)
∈ Rn be independently and identically distributed copies of a random
variable drawn from a continuous distribution with an unknown prob-
ability density f . The underlying function f(·) used to generate this
sample can be approximated by the KDE given:

f̂h(x) =
1

nh

n
∑

i=1

K

(

x− xi
h

)

(2.5)

where n is the number of observations, h > 0 is the bandwidth parameter
which determines the smoothness of the density estimate, and K(·) is the
kernel, which is unimodal, symmetrical, usually non–negative function
that integrates to one (Silverman, 1986). Intuitively, one can also explain
that KDE creates a bump around each data point, then normalises over
all the bumps. The shape of a bump depends on the used kernel function
and the width of the bump depends on the bandwidth parameter (Ross,
2013).

Choosing the bandwidth parameter h is similar to specifying the number
of bins in a histogram. Usually one wants to choose h as small as the
data will allow, however, there is a trade–off between the bias of the
estimator and its variance. Choosing a h that is too large will produce
an over–smoothed KDE, which will reduce the variance across different
samples but fail to capture local structure, whereas, a h that is too small
will result in an estimate that is over fit to the actual samples available.
There are several methods to select the bandwidth parameter, some of
the most commonly used include:

• A rule–of–thumb method by Silverman estimates h using h =

Cn− 1
5 , with C = 0.9min(sd, iqr

1.34), where sd is the standard de-
viation of the sample of size n, and iqr is the interquartile range
(Silverman, 1986). In R 3.5, this estimator is implemented under
stats::bw.nrd0.

• An alternative solution by Scott uses 1.06 as a factor (implemented
in R with stats::bw.nrd) (Scott, 2015).
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Table 2.1 | Kernel Estimators

Most commonly used kernel functions.

Kernel K(x)

Cosine
π

4
cos

(π

2
x
)

Epanechnikov
3
4

(

1− x2)

Gaussian
1√
2π

e−
1

2
x2

Triangular (1− |x|)

Tricube
70
81

(

1− |x|3
)3

Uniform
1
2

• The method of Sheather and Jones estimates the bandwidth using a
pilot estimation of derivatives (implemented in R with stats::bw.SJ)
(Sheather and Jones, 1991).

• Two other methods that use biased and unbiased cross–validation
are implemented in R with stats::bcv and stats::ucv (Scott and
Terrell, 1987).

Functions that are used as kernel estimators are provided in Table 2.1.
The Epanechnikov kernel is claimed to be optimal in the sense that it
minimises the mean integrated squared error, however quite often, the
Gaussian kernel is also used (Epanechnikov, 1969).

2.3.4 Dimensionality Reduction

This section forms the foundation of Section 6.5.2.1 data processing
and will describe high dimensionality data.

Firstly, problems that arise from high dimensionality data are intro-
duced, followed by features for dimensionality reduction (DR) methods
and finally, the section closes with the most popular techniques for DR.
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2.3.4.1 The Curse of Dimensionality

In nature, combining multiple simple units allows to perform complex
tasks. These units are redundant and after failing they can be replaced
with others that achieve the same task 28 (in essence, the world is mul-
tidimensional). Such multidimensional data causes many, both practical
and theoretical, problems.

The term curse of dimensionality was first used by Richard E. Bellman
to describe an empty space phenomenon (Bellman, 1961). This term
characterised a theoretical problem — with an increasing dimensionality,
the volume between randomly distributed variables also increases 29. To
illustrate this problem in a different way, consider a circle that is embed-
ded within a square, when they are presented within a two–dimensional
space, the ratio between the two is around 0.8, in a three–dimensional
space this ratio is only around 0.5, and the ratio of hyper–cube and
hyper–sphere reduces exponentially for further high–dimensional spaces.
Another theoretical problem named egg and a shell problem was used
by Christopher M. Bishop to describe the hypervolume of a spherical
shell (Bishop, 2006). Let us introduce two concentric spheres – first with
radius r, second with slightly smaller radius r− ε (i.e., ε is the thickness
of the first sphere) in a space of D dimensions. Next, we can calculate
the fraction of the volume occupied by inner sphere using:

VD(r)− VD (r − ε)

VD(r)
=

rD − (r − ε)D

rD
(2.6)

When D increases, the ratio tends to move towards one as the shell
contains almost all the volume.
28For example, multiple CG sites in specific locus. It is expected that these CG sites

perform the same task and usually failure of one CG will be balanced by the rest
of CG sites.

29Consider a set of variables distributed within one dimensional space (i.e., a vector).
When this vector is transferred to a two–dimensional space (i.e., an array), the
spaces between variables increases.
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2.3.4.2 Features of Dimensionality Reduction Techniques

The goal of dimensionality reduction is to identify and eliminate the
redundancies among the variables. This goal requires to i) estimate the
number of latent variables, ii) embed data to reduce their dimensionality,
and iii) embed data to recover the latent variable 30.

A certain process in nature may be generated from a small set of inde-
pendent degrees of freedom but it will usually appear in a more complex
way due to a number of reasons (e.g., measurement procedure, stochastic
variation). Consider a sample of D–dimensional vectors that has been
generated by an unknown distribution, it is assumed that this distribu-
tion in data space is actually due to a small number L < D of variables
acting in combination, called latent variables. DR is achieved by defining
a reverse mapping from data space onto latent space, so that every data
point is assigned a representative in latent space. The number of latent
variables can be computed from a topological point of view by estimating
the intrinsic dimension(ality) of the data. When this intrinsic dimension
L is equal to D, there is no structure, whereas when L < D, data points
are often constrained to lie in a well–delimited subspace 31. Different
approaches can be used to cope with intrinsic dimension estimation:
i) minimising a reconstruction error; ii) preserving pairwise distances;
iii) fractal methods (Grassberger and Procaccia, 1983). Additional con-
straints can be imposed on the desired L–dimension representation.

DR techniques vary in many characteristics, such as i) the model that
data is assumed to follow (e.g., linear or non–linear, continuous or dis-
crete), ii) the type of algorithm (e.g., batch or online), and iii) the crite-
rion to be optimised (e.g., mean square error, variance, pairwise distances
30There is no ideal method that can perform all three tasks optimally.
31This peculiar feature was well exemplified using the swiss roll problem (Roweis and

Saul, 2000).
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32); iv) hard or soft DR; v) global or local recovery 33.

2.3.4.3 Dimensionality Reduction Techniques

The most basic and maybe even the oldest technique for DR is principal
component analysis (PCA) (Pearson, 1901). As a linear DR technique,
PCA assumes that the embedded subspace is a linear subspace and looks
for a linear projection. PCA converts a data matrix X with zero column–
wise mean into a lower dimensional representation Y . The goal of the
PCA is to find an orthonormal transformation (projection) matrix P

with which Y = PX. Intuitively, what PCA does is that it converts
high–dimensional data into a low–dimensional representation that cap-
tures as much variance of the original data as possible through a linear
transform. Therefore, in the reduced representation, each column in Y

can be considered as a linear combination of the columns in the original
data X. The PCA algorithm works as follows:

• Subtract the mean for each data dimension to obtain the mean–
adjusted data matrix B:

B = X −

(

1

n

n
∑

i=1

Xi

)T

(2.7)

• Calculate the covariance matrix C:

C =
1

n− 1
BBT (2.8)

• Solve for the eigenvector and eigenvalues of C using spectral de-
composition UOUT , where O is the diagonal matrix and U is an
orthogonal matrix. The diagonals in O represent the eigenvalues
of C and the columns of U represent the associated eigenvectors

32Measured between the observations in the data set (from a topological point of
view, the projection of the object should preserve its structure).

33Global techniques try to recover the global information while local techniques con-
centrate on recovering the local structure of the data, the global structure then
emerges from the continuity of the local fits.
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of the covariance matrix, which are also known as the principal
components of the matrix.

• Order the eigenvector into descending order to maximise the amount
of variance.

• Construct a projection matrix and derive the new dataset in a
lower dimension space.

PCA with complexity O(p2n+p3) is implemented in R with stats::prcomp.

If groups are linearly inseparable in the input space R2, then it is possible
to make them linearly separable by mapping them to a higher dimension
space R3 (Schölkopf et al., 1998). In such a case, kernel PCA would use
function Φ which can Φ : R2 ⇒ R3 ((x1, x2) ⇒ (x1, x2, x21 + x22)). Such
mapping can be computationally expensive but one can apply kernel
trick – the principal components can be computed from the inner product
matrix K = XTX. Here it is not needed to explicitly map all points into
the high–dimensional space and do the calculations there, it is enough to
obtain the kernel matrix. The kernel PCA algorithm works as follows:

• Select kernel function

• Calculate the kernel matrix

• Centre kernel matrix

• Solve the eigeinproblem for a given kernel matrix

• Project the data to each new dimension

Classical multidimensional scaling is another technique that uses eigen-
value decomposition, however not on the original data, rather on a trans-
formed distance matrix. The algorithm for this method is:

• Set up squared matrix D2 for a given proximity matrix D

• Calculate the double–centred matrix B = −1
2JD

2J , where J is the
centring matrix

45



2.3. Statistical Aspects

• Use eigen–decomposition and determine n largest eigenvalues and
corresponding eigenvectors of B

Non–metric multidimensional scaling (nMDS) is an improvement of clas-
sical scaling in a way that relies on the ranking of distances (min-
imising stress function solved by iterative algorithms). A solution is
found such that the rank order of distances between points in the or-
dination match the order of dissimilarity between the points. Another
technique, locally linear embedding, reconstructs points from the high–
dimensional space using their neighbourhoods. First, this technique com-
putes the neighbours of each data point, then it computes the weights
that best reconstruct each data point, and finally applies eigenvalue de-
composition. One of the most popular non–linear technique is t–SNE
(t–distributed stochastic neighbourhood embedding) that uses local re-
lationships between points to create a low–dimensional mapping. In
the high–dimensional space, t–SNE creates a probability distribution
that dictates the relationships between various neighbouring points, then
recreates a low–dimensional space that best follows that probability dis-
tribution as possible (Kobak and Berens, 2019).

2.3.5 Machine Learning

This section forms the foundation of Section 5.4 and will describe the
theory behind artificial neural networks (ANN) for estimating DNA mod-
ification signal.

2.3.5.1 Learning Process

Supervised learning models, in the context of machine learning 34, aim to
learn a generalised function f(·) (e.g., classifier or regression model) from
34Machine learning can be explained as: a computer programme is said to learn from

experience E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E. (Mitchell,
1997)
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a set of training pairs (x1, y1), . . . , (xn, yn). Here a goal of function f(·)
is to perform a wanted task on unseen data xu as well as on the original
set x. By contrast, unsupervised machine learning techniques aim to
discover patterns from the set x itself, without the need for output y

(e.g., PCA, clustering). A machine learning model can be characterised
by a set of parameters to be optimised on the training dataset (Zador,
2019).

A simple example of a supervised learning model is logistic regression.
The goal of binary logistic regression is to train a classifier (in this case, a
sigmoid classifier) to make a binary decision about the class of a new in-
put observation. The classifier will use a single input x, which represents
a vector of features x1, x2, . . . , xn. Logistic regression trains a model by
learning from a training set, a vector of weights and a bias (intercept).
Each weight wi is associated with one of the input features xi and repre-
sents how important that input feature is to the classification decision.
The resulting value z expresses the weighted sum of the evidence for the
class:

z =

(

n
∑

i=1

wixi

)

+ b (2.9)

Then, one can pass calculated z to a sigmoid function to obtain values
between 0 and 1:

y = σ(z) =
1

1 + e−z
(2.10)

This simple example shows how a supervised machine learning function
(classifier) works, more advanced machine learning techniques will be
discussed in the next section.

2.3.5.2 Artificial Neural Networks

The previously discussed classification task can be considered as a neu-
ral network composed of only one neuron. However, not all statistical
problems are linearly separable and extra layers of complexity might
be needed, such a multi–layer network is called a multi–layer perceptron
(Krogh, 2008). An artificial neural network is a model training technique
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composed of one or more layers of neurons, with each layer containing
one or more neurons 35. Such architecture was inspired by neural net-
works in the brain (Farley and Clark, 1954). Neurons perform operations
(calculations) on the data passed by upstream neurons given an activa-
tion function, then provide the output to downstream neurons. The
connections between the neurons in different layers are represented by
weights. The sensory neurons (neurons in the first layer) receive the data
from the input dataset and each neuron computes a weighted sum of its
inputs, applying an activation function to calculate its output. Training
an ANN means optimising parameters and bias values of the activation
function of each neuron so that the output of the ANN is more similar
to the known value in the training set. ANN with too many layers or
too many neurons can cause model overfitting, while underfitting might
be caused by too few layers:

There are two categories of ANNs:

• Feedforward ANN – information moves one–way from the first until
the last layers

• Recurrent ANN – information can move both ways and feedback
can be given backwards from the later layers

ANNs are based on linear combinations of non–linear basis functions
φj(x) and take the form:

y(x,w) = f





M
∑

j=1

wjφj(x)



 (2.11)

Here f(·) is a non–linear function (e.g., sigmoid). The goal of ANN is
to make φj(x) depend on parameters, then allow these parameters to be
adjusted along with the coefficients wj (Bishop, 2006).

Basic ANN is constructed as follows:
35The number of layers and the number of neurons is a hyperparameter that must be

optimised.
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• M linear combinations of input variables (x1, . . . , xD) are con-
structed using:

aj =
D
∑

i=1

w(1)
ji xi + w(1)

j0 (2.12)

where the superscript (1) indicates that the corresponding param-
eters are in the first layer, wji encodes weights, and wj0 – bias
parameter.

• Calculated activations aj are transformed using a differentiable,
non–linear activation function h(·) (e.g., sigmoid):

zj = h(aj) =
1

1 + exp(−aj)
(2.13)

• Calculated values zj are linearly combined to give output activa-
tions:

ak =
M
∑

i=1

w(2)
ki xi + w(2)

k0 (2.14)

This transformation corresponds to the second ANN layer where
w2
k0 are bias parameters and k = 1, . . . ,K is the total number of

outputs.

• The output unit activations are transformed using an appropriate
activation function to give a set of outputs yk:

yk = σ(ak) (2.15)

• In the last ANN layer, output is normalised (the most commonly
used transformation function for the output layer is Softmax):

yk(x,w) =
exp (ak(x,w))
∑

j exp (aj(x,w))
(2.16)

The ANN predicted value is compared to the true value and based on the
given loss function, the ANN model adjusts the weights. Minimisation
of a loss function can be achieved in two ways (Murphy, 2012):
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• Forward propagation – at the beginning of the training epoch ran-
dom weights for the network layers are initialised. When the input
data is forward propagated through the ANN and predicted values
are provided by the last layer, a comparison is performed between
predicted and true values.

• Backpropagation – initially uses random values for model parame-
ters and optimises them by sequentially updating the parameters
from the last layer to the first ANN layer. This is achieved by mea-
suring the squared difference between the predicted and desired
values. The backpropagation is repeated with the new weights
that minimise the total error until the optimum weights are found
(Krogh, 2008).

2.3.5.3 Cross–Validation

This section forms the foundation of Section 6.5.5 and will describe
the technique used for model appropriateness.

Bias and variance dilemma in statistical learning is a common problem
for the trade–off between good generalisation and to avoid over–training.
When working with statistical learning methods, one should separate
the data into training set, test set and validation set to not evaluate the
model on the same data as was used in the learning process. In such a
case, cross–validation is a primary approach to validate the appropriate-
ness of the classification algorithm to the given problem (Kurtz, 1948).
The main goal of cross–validation is to verify the replicability of results.
Subsets of the data are held out for use as testing sets and the model is
fitted to the remaining data (a training set) and used to predict for the
testing set. Averaging the quality of the predictions across the validation
sets yields an overall measure of prediction accuracy.

Cross–validation is applied as follows: Let us introduce a dataset D =

{(xi, yi), i = 1, . . . , n} where one wants to apply a regression model M
to estimate values ŷi, i = 1, . . . , n. Then, it is possible to partition D
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dataset into two sets: D = D1 ∪D2, with k data in D1 and n− k data
in D2. The desired regression model M can be fitted using D2, this step
is called model training and D2 is correspondingly a training set. Then,
trained model M is used to obtain estimates ŷD1 using data D1. This
step is known as testing and D1 is called a testing set. There are

(

n
k

)

possible partitions of the original set. The cross–validation error is the
averaged prediction error over all test iterations.

When k = 1, the validation process is called leave–one–out cross valida-
tion (test set has cardinality 1, and each of the i = 1, . . . , n partitions
are used to train and then test the model), which is calculated using:

1

n

n
∑

i=1

(

yi − ŷ−i
)2 (2.17)

where ŷ−i is the estimated value of a given leave–one–out iteration.
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General Materials and Methods

This chapter briefly summarises all the samples, genomic datasets, and
computational tools used in this study. More detailed, case specific data
analysis applications are provided for each application section in Chap-

ter 6.

3.1 Samples Analysed

All used samples are summarized in the Table 3.1 bellow, while more
detailed information for each study is presented in the mentioned appli-
cation chapter. In summary, we processed samples from two mammalian
organisms – Homo Sapiens and Mus Musculus. DNA was extracted from
multiple organs or cell–types (e.g., Chorionic villi, mESCs) while samples
pertained to distinct genotypical or experimental groups (e.g., wild–type,
knockout). In total 3.5 billion reads were processed that attributed to
almost one terabyte of raw next–generation sequencing data.
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3.1. Samples Analysed

Table 3.1 | Samples Analysed
Number of samples processed in specific TOP–seq application study. This table
contains rough amount of samples per specific experimental group.
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3.2. Genomic Datasets

3.2 Genomic Datasets

Reference genome sequences were downloaded from the UCSC database
(Karolchik, 2004):

• Homo Sapiens (build GRCh37/hg19; 2009) – 28 million CG sites

• Mus Musculus (build GRCm38/mm10; 2011) – 21.3 million CG
sites

CG sites in a given genome sequence were identified using in–house script
and only those originating from the autosomes and chromosome X were
used in the downstream analysis.

Homo Sapiens genome elements were downloaded from the following
sources:

• Genes – GENCODE genes (Frankish et al., 2018). All used gene
biotypes (e.g., protein–coding genes, long–intergenic RNAs) were
taken from this source. Accordingly, exon and intron sets were
generated. Upstream (i.e., promoter), donwstream regions were
defined by two kilobases upstream or downstream from the gene
starting and ending coordinates.

• CGIs – the UCSC database (Gardiner-Garden and Frommer, 1987;
Karolchik, 2004). CGIs were assigned promoter, intragenic, inter-
genic status according to their position to a nearest protein–coding
gene using hierarchical assignment. First, CGI regions were inter-
sected with protein–coding gene promoters and only those regions
that did not intersect were used for intragenic CGI assignment.
CGIs that were not assigned promoter or intragenic status were
defined as intergenic. CGI shores were defined as region −/+ two
kb around the CGI regions, and CGI shelves – −/+ two kb regions
around the CGI shores.

• Major repeat families (SINE, LINE, LTR, DNA, simple repeats)
(Jurka, 2000; Karolchik, 2004).
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3.2. Genomic Datasets

• Mappability score – the level of sequence uniqueness of the refer-
ence genome assembly (Derrien et al., 2012; Karolchik, 2004).

• GERP score – estimates of sequence evolutionary constraint (Cooper
et al., 2005; Davydov et al., 2010; Karolchik, 2004).

• Single nucleotide polymorphisms (SNP) (Karolchik, 2004; Sherry
et al., 2001).

• Lamina associated domains (Karolchik, 2004).

• Gaps in the assembly (Karolchik, 2004).

• Placental enhancers – the enhancer atlas (Gao et al., 2016).

• Epigenome Roadmap chromatin states – expanded chromatin model
was downloaded from the Epigenome Roadmap project database
for the following datasets: cell–line IMR90 (E017) and brain dor-
solateral prefrontal cortex (E073) (Bernstein et al., 2010; Kundaje
et al., 2015). Chromatin states were defined as follows: EnhA –
active enhancers, EnhBiv – bivalent enhancer, EnhG – genic en-
hancers, EnhWk – weak enhancers, Het – heterochromatin, Queis
– quiscent/low, ReprPC – repressed polycomb, ReprPCWk – weak
repressed polycomb, TssA – active transcription start site, Tss-
Biv – bivalent TSS, TssFlnk – flanking TSS, TssFlnkD – flanking
TSS downstream, TssFlnkU – flanking TSS upstream, Tx – strong
transcription, TxWk – weak transcription, ZNF/Rpts – Zinc finger
genes and repeats.

• ARIES mQTL probes (Gaunt et al., 2016).

• High confidence Illumina probes (Naeem et al., 2014).

Sequence characteristics, such as GC content, CG content, cytosine ratio
were computed manually using in–house scripts implement in R.

Additional genomic and epigenomic Homo Sapiens datasets were down-
loaded from the following sources:

• WGBS from the adult frontal lobe (GEO accession GSE46710)
(Wen et al., 2014)
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3.2. Genomic Datasets

• WGBS IMR90 dataset 1 (GEO accession GSM432687) (Lister et al.,
2009)

• WGBS IMR90 dataset 2 (GEO accession GSM1204464) (Ziller
et al., 2013)

• MBD–seq IMR90 (GEO accession GSM947460) (Bert et al., 2013)

• MRE–seq IMR90 (GEO accession GSM830153) (Xie et al., 2012)

• SeqFF (Kim et al., 2015)

Mus Musculus genome elements were downloaded from the following
sources:

• Genes – GENCODE genes (Frankish et al., 2018). Gene related
annotations were constructed the same way as for the Homo Sapi-
ens.

• CGIs – the UCSC database (Gardiner-Garden and Frommer, 1987;
Karolchik, 2004). CGI related annotations were constructed the
same way as for the Homo Sapiens.

• Major repeat families (SINE, LINE, LTR, DNA, simple repeats)
(Jurka, 2000; Karolchik, 2004).

• Histone marks – were download from the ENCODE project con-
sortium (Davis et al., 2018; Dunham et al., 2012).

• Transcription factor chromatin immunoprecipitation regions – were
download the GEO database (GEO accession GSE11431) (Chen
et al., 2008).

• Open chromatin ATAC–seq regions – were download the UCSC
database (Karolchik, 2004).

• 5hmC TAB–seq signal – was downloaded from the GEO database
(GEO accession GSE36173) (Yu et al., 2012b).
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3.3 Experimental Procedures

3.3.1 Processing of Additional Datasets

In downloaded Homo Sapiens WGBS datasets we only considered CG
methylation and averaged beta values across the strands. Additionally,
IMR90 dataset 2 was filtered for CG sites with coverage greater than
four. Continuous signal values downloaded from the UCSC database
were in the bigWig file format. It was converted to the bedGraph format
using bigWigToBedGraph conversion tool. For IMR90 MRE–seq dataset
signals from both strands were summed and genomic coordinates were
lifted to the genome build hg19 using liftOver tool. IMR90 MBD–
seq dataset was lifted to the genome build hg19 and the same value
was assigned to all the CG sites that intersect a particular MBD–seq
region. mESC TAB–seq dataset was also converted from the original to
the mm10 genome build using the liftOver tool.

3.3.2 Training Neural Network

Neural network model used to compute nn–estimate values discussed in
Section 5.4 was designed using the sklearn tool in python environment
(Pedregosa et al., 2011). MLPRegressor function was used to train the
model with the following parameters: i) hidden_layer_sizes = 43 (the
number of neurons in the hidden layer); ii) activation = ’relu’ (use
the rectified linear unit function as an activation function); iii) solver =

’adam’ (use stochastic gradient–based optimizer as a solver); iv) alpha

= 0.00005.
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3.4 Computational Tools

Following bioinformatical tools were used to process and analyse next–
generation sequencing data: BEDTools, bwa, cutadapt, FastQC, FASTX-
–Toolkit, litfOver, samtools (Babraham Bioinformatics, 2019; Han-
non Lab, 2010; Hinrichs et al., 2006; Li and Durbin, 2009; Li et al., 2009;
Martin, 2011; Quinlan and Hall, 2010). Finally, a significant part of data
visualisation and inspection was performed using the UCSC Genome
Browser (Kent et al., 2002).

To test similarity, statistical significance or intersection between given
datasets following functions in R environment were used: Fisher’s ex-
act test (fisher.test), Student’s t–Test (t.test), analysis of variance
(aov), correlations (cor), Jaccard (in–house script implemented in R) (R
Core Team, 2019). If not specified otherwise all other data analysis was
also performed in R environment (versions 3.3 – 3.5) using official expan-
sions. Some of these expansions are data.table, ggplot2 (Dowle and
Srinivasan, 2020; Wickham, 2016).

3.5 Hardware Infrastructure

All the data was analysed and results were generated using two com-
putational stations: Intel(R) Core(TM) i5–4460 with 4 physical cores
and 16 GB of memory running GNU/Linux (Ubuntu 16.04.4 LTS); In-
tel(R) Xeon(R) Gold 6126 with 48 physical cores and 284 GB of memory
running GNU/Linux (CentOS 7.6).
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3.6 Data Availability

Raw and processed data from which main conclusions in this thesis were
drawn were deposited to the GEO database under the following acces-
sion numbers: TOP–seq signal in human derived cell–lines – GSE91023;
hmTOP–seq signal in mESCs – GSE140206; caCLEAR signal in mESCs
– GSE142319; TOP–seq and hmTOP–seq signals in prenatal testing
analysis – GSE148964.
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Processing Tethered

Oligonucleotide–Primed

Sequencing Data

Galbūt ne garsas skamba tyloj,

o tyla garse,

Ką apie tylą žinome mes?

Foje

4.1 Introduction

This section presents the methodology developed for the processing of
the TOP–seq sequencing data. This workflow is a modified version of
widely used bioinformatics pipelines and is applicable not only for the un-
modified DNA sequencing method (i.e., TOP–seq) data analysis but also
for other variations (i.e., hmTOP–seq – 5hmC modification, caCLEAR
– 5caC modification). In this chapter, the term “TOP–seq” is used how-
ever it is important to mention that processing procedures are applicable
to other variations. This workflow provides the basis for all the results
described in this thesis and for the publications listed in Section 1.6.

The TOP–seq processing workflow consists of four major steps:

• Sequencing read processing

• Mapping reads to a reference genome

• PCR duplicate removal

• Assigning reads to CG sites
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4.2. Sequencing Read Processing

The different source of genomic DNA (e.g., bacteriophage lambda, eu-
karyotic cell) or different targeted DNA modifications (e.g., unmodified
CG sites, 5hmCG sites) might require different TOP–seq data process-
ing methodology. The most commonly used, which is adopted for un-
modified CG sites in eukaryotic cells, is described below in detail with
recommended parameters for other specific cases. The processing pa-
rameters used for each tool might affect the downstream parameters so
it is necessary to have thorough knowledge of each tool. Furthermore,
the TOP–seq method can generate tens of millions of sequencing reads
corresponding to tens of gigabytes of data, the analysis of which requires
intensive computational processing steps and semi–powerful or even pow-
erful hardware infrastructure.

This chapter is divided into five major parts, with four sections pre-
senting a separate workflow step (mentioned above) and one section dis-
cussing the advantages and disadvantages, recommendations and ideas
that could be implemented in the future to improve processing of high–
throughput tethered oligonucleotide–primed sequencing data.

4.2 Sequencing Read Processing

Raw sequencing reads come from the next–generation sequencing ma-
chine and are typically in the FASTQ file format which includes (for each
read) a unique identifier, the nucleotide sequence, and a Phred quality
score for each nucleotide.

Processing of the raw reads takes place in four steps that are visualised in
a Figure 4.1 flowchart. The initial step uses fastq_quality_trimmer

command (implemented in FASTX–Toolkit) to remove sequencing reads
that are too short (Hannon Lab, 2010). This step is a speed optimisation
for the consequent steps as reads that are too short usually do not contain
5' and/or 3' sequencing adapters, thus cannot be classified as suitable
for the analysis. We used 80 nucleotides as a filtering threshold but
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4.2. Sequencing Read Processing

this length parameter might vary between different experiments 1. On
average, this procedure discards 21.3% (sd = 3.6) of reads (Figure 4.2,
Supp. Table 1). In Figure 4.3 A panel, these reads can be identified
in the top row. Before short read removal, read length distribution is
bimodal — the first peak is around 50 nucleotides and the second peak
is around 190 nucleotides. However, after the mentioned brute force
read discard approach, only the right side of this distribution is kept and
further processed in the consequent workflow steps.

Then, cutadapt suite was used to remove or trim adapter sequences
from the 5' and 3' ends of the reads (Martin, 2011). The parameters
to cut 5' adapter were as follows: i) –error-rate = 0.1 (maximum
allowed error rate); ii) –overlap = 10 (minimal overlap length between
read and adapter for an adapter to be found); iii) –trimmed-only (retain
reads only with found adapter sequence) to increase quality of maintained
reads. iv) depending on experiment parameter –front was changed (se-
quence of an adapter ligated to the 5' end) (Gibas et al., 2020; Gorde-
vičius et al., 2020; Ličytė et al., 2020; Staševskij et al., 2017). It is worth
noting that –front parameter was prepended with ˆ symbol to identify
the adapter only if it was a prefix of the read. Figure 4.3 B visualises
the general read structure before and after removal of the 5' adapter
sequence. A non–random pattern of bases can be seen at the beginning
of reads, which is caused by the predefined 5' adapter sequence. After
removing 5' adapter sequence, only a random distribution (i.e., around
25% of each base) is left. Usually, a very high amount of reads (99%,
sd = 1.6) contain a 5' adapter as shown in Figure 4.2 (Supp. Ta-

ble 1). The presence of the 3' adapter is represented by a guanine rich
pattern that reaches a fractional maximum around 200 nucleotides in
Figure 4.3 B. To trim the 3' adapter, the cutadapt suite was used
with the same –error-rate and –overlap parameters as for 5' adapter
and –adapter parameter (sequence of an adapter ligated to the 3' end)
was adjusted according to experiment (Gibas et al., 2020; Gordevičius
et al., 2020; Ličytė et al., 2020; Staševskij et al., 2017). However, it is
worth noting that the $ symbol which is usually appended to the adapter
1Dependency on the next–generation sequencing machine or different length of se-
quencing adapters.
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Raw Signal

Remove Short Reads

Remove 5' adapter

Trim 3' adapter

Trim low quality

Map to a reference sequence

Select high mapping score

Remove duplicate reads

Assign reads to CG sites

Calculate CG coverage

Figure 4.1 | TOP–seq Read Processing Workflow

Workflow of the current TOP–seq read processing approach to achieve genome–wide
DNA (un)modification signal. Each processing phase is indicated with a distinct
colour code. Raw next–generation sequencing reads are first processed to achieve
higher quality set of reads that are mapped to a reference sequence. Duplicate reads
are then removed using custom algorithm and finally a single CG resolution DNA
(un)modification signal is computed.

sequence (equivalent of ˆ symbol) was not used as it might have a neg-
ative impact on the results. Since a fraction of reads do not contain the
full 3' adapter sequence as DNA polymerase may stop its synthesis after
the genomic DNA part or sometimes mid 3' adapter sequence, the pa-
rameter –trimmed-only was not used as for the 5' adapter and a change
in read number was not observed.

Finally, the fastq_quality_trimmer command is used to increase the
quality of the reads (Hannon Lab, 2010). Typically, the 3' end of the
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Assigned to
CG

Duplicates
removed

High mapping
quality

Mapped

Low quality
trimmed

3' adapter
trimmed

5' adapter
removed

Short reads
removed

0% 25% 50% 75% 100%
Amount of reads

TOP−seq hmTOP−seq

Figure 4.2 | Change in Amount of Reads

The absolute change in the amount of reads after each workflow step in cfDNA sample
(sample identifier 137) from the NIPT study using TOP–seq and hmTOP–seq meth-
ods. The change was calculated as a percentage from the total amount of reads in the
preceding workflow step (starting number of reads is 37 and 18 millions in TOP–seq
and hmTOP–seq methods, respectively). It is apparent that 25% of reads are dis-
carded as too short in both the TOP–seq and hmTOP–seq methods. The quantity
of reads does not change much during adapter removal and quality trimming steps.
In the hmTOP–seq method, around 60% of reads are classified as duplicates, while
in the TOP–seq method only 15% of reads were removed in this step.

reads has a lower Phred quality score, which may cause false mapping
to the reference genome due to nucleotide mismatch between a specific
read and a reference sequence. The FASTX–Toolkit was used to trim
read ends having Phred quality score below 20 (-t 20). Additionally,
the FASTX–Toolkit removed reads that were too short for alignment
after removing the adapter sequences and low quality nucleotides (used
15 nucleotides as a minimum length -l 15). This step ensures faster
alignment and higher mappability score. The quality score before and
after trimming according to a given threshold is visualised in Supp.

Figure 1.
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Figure 4.3 | TOP–seq Read Structure

(A) Distribution of read lengths after each processing step in cfDNA sample (sample
identifier 137) analysed the using TOP–seq method. Original sequencing reads show
bimodal distribution and only the longer reads are kept for the consequent data
analysis. (B) Base composition measured in percentage along sequencing reads. In
the first two processing steps, non–random base composition at the beginning of reads
represent the 5' adapter sequence. At the final step, each base composition is close
to the 25% — expected proportion in the human genome.
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After each processing step, the FastQC suite was used (with default pa-
rameters) to generate a quality report (Babraham Bioinformatics, 2019).
This seemingly redundant procedure ensures that adapter sequences were
removed correctly, the Phred score is high enough and, in the case of
TOP–seq library type, reads begin with a CG dinucleotide. At the end
of this raw read processing pipeline, we are left with a normal distri-
bution of read lengths with a peak around 100 nucleotides. Nucleotide
distribution along the reads is close to random (except the beginning of
the read) which is expected as reads are originating genome–wide. The
read start is visualised in Supp. Figure 2, where it is apparent that
most reads originate from a CG site.

4.3 Mapping Reads to a Reference Genome

Processed TOP–seq reads can be mapped to a reference genome using
standard algorithms and tools (e.g, bwa mem or bwa aln) (Li and Durbin,
2009). However, alternative methods, such as Salmon quasi–aligner could
be also used (Patro et al., 2017). For the standard TOP–seq analysis,
the bwa mem command was used with default parameters (except for the
idxbase parameter – reference genome, which depended on the experi-
mental design) (Gibas et al., 2020; Gordevičius et al., 2020; Ličytė et al.,
2020; Staševskij et al., 2017).

samtools tool was used to convert the bwa alignment SAM file format
into a BAM file format (Li et al., 2009). BAM file is accordingly sorted
and subsetted for reads with a mapping quality equal or greater than
30 (samtools sort and samtools view commands). Mapping quality
represents how unique each alignment is in the genome and is equal to
an integer that is closest to −10 log10 P (mapping position is incorrect).
Figure 4.4 represents mapping quality distribution for a single cfDNA
sample. In most experiments the mapping quality distribution is bimodal
(first mode group at the lowest mapping quality and second mode group
at the highest mapping quality), therefore it was decided to divide this
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Figure 4.4 | TOP–seq Mapping Quality

Distribution of mapping quality values in cfDNA sample (sample identifier 137) com-
puted using bwa tool. For better representation, values were binned into groups with
a maximum mapping quality value 60 having its own group. Usually, the mapping
quality forms a bimodal distribution with peaks centring at the lower and higher ends.

distribution into two parts (at 30), and use all reads that fall on the right
side of the distribution.

4.4 PCR Duplicate Removal

PCR duplicates occur when shattered DNA fragments (e.g., sonicated)
are amplified by the PCR method. In this case, the same DNA frag-
ment will be amplified and sequenced multiple times. These identical
reads will use space on a sequencer flow cell. Moreover, when the depth
of sequencing coverage is an important factor (e.g., TOP–seq method),
PCR duplicates can obstruct the true amount of DNA molecules and er-
roneously inflate the coverage (Marx, 2017). Most sequencing pipelines
recommend marking and removing them using either unique molecular
identifiers or computational tools such as Picard or samtools (Ebbert
et al., 2016; Li et al., 2009).

Standard tools find PCR duplicates by identifying groups of reads that
align to the same exact start and end positions in the genome (i.e., exter-
nal mapping coordinates are identical) by assuming that the probability
for reads to align to the same position is very low (actually, at least
for the human genome, it is close to zero). However, such identification
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strategy is not applicable to TOP–seq based sequencing methods since
TOP–seq methods target and enrich specific genomic positions (i.e., CG
dinucleotides), resulting in reads aligning to exactly the same genomic
coordinates and conventional computational tools would not work in this
case. The optimal solution for this PCR duplicate problem would be
unique molecular identifiers (Kivioja et al., 2011), however, at the time
of writing this thesis, the usage of unique molecular identifiers for the
TOP–seq method was still in the early stages, so a different approach was
needed. We developed a PCR duplicate identification and removal algo-
rithm similar to canonical ones, however is not as stringent. In our PCR
identification algorithm, all reads that start at exactly the same genomic
coordinate on the same strand and have the same original length were
classified as duplicates and only one read per each group was retained.
This strategy is similar to the canonical approach as it evaluates the
starting position (5' end) of the read, however, by evaluating the origi-
nal read length, this algorithm takes into account the length of 5' and 3'
adapters. DNA polymerase tends to prematurely stop the synthesis of
the 3' adapter and sometimes skip nucleotides in the 5' adapter and such
variation will be unique to a specific PCR duplicate group. Figure 4.5

shows the variation in the 5' and 3' adapter lengths which creates ∆

space to classify new groups of PCR duplicates. In summary, instead of
removing all reads that have identical mapping coordinates (except the
one that is left as a group representative), this algorithm retains m× n

reads where m and n is number of different 5' and 3' adapter lengths
accordingly.
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Figure 4.5 | Adapter Length Variation

Variation in adapter length as observed in cfDNA sample (sample identifier 137)
analysed using TOP–seq and hmTOP–seq methods. Most encountered adapters had
the expected length (i.e., 37 nucleotides for 5' adapter and 32 nucleotides for 3'
adapter, thus their ∆ is equal to 0). However, a fraction of encountered adapters
were shorter or longer with most ∆ values distributed between −3 and 3 nucleotides.

4.5 Assigning Reads to CG Sites

For each mapped read, we computed the distance from its starting po-
sition to the nearest CG dinucleotide (i.e., distance measured in nu-
cleotides from the reads 5' end). Depending on the modification type,
different distance thresholds were selected to assign reads to CG sites.
For the TOP–seq library strategy, an absolute distance of three nu-
cleotides was used and within this threshold on average 90% (sd = 5.2)
of reads were assigned to CG sites (Supp. Table 1). Meanwhile for
hmTOP–seq and caCLEAR methods, an absolute distance of four nu-
cleotides was used (on average retaining 85% of reads with sd = 4.2).
Summarised read distances can be found in Table 4.1.

Table 4.1 | Distance to CG sites

Distance threshold in nucleotides used to assign reads to the nearest CG site in a
particular TOP–seq library strategy.

Library strategy Distance (nuc.)

TOP–seq | 3 |
hmTOP–seq | 4 |
caCLEAR | 4 |
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Figure 4.6 | Read Distance to CG sites

The distribution of the absolute distance from the read start to the nearest CG site.
Y–axis on the left side represents the exact amount of reads that start from a nearest
CG site within a given distance. Y–axis on the right side represents the cumulative
sum of read quantity that starts within a given threshold from the nearest CG site.
Red dashed line represents used distance threshold for read assignment to a CG site.

The decision to use different distances for different library strategies was
made after inspecting scree–like plots (usually used in PCA to visualise
eigenvalues for each component). The scree plot is used to determine
the number of factors to retain using “elbow” rule (first sharp change
in the slope indicates number of factors to use) (Cattell, 1966). The
absolute distance from the CG site and amount of reads that started
at exactly that distance are visualised in Figure 4.6 and it is evident
that most reads can be retained using an absolute distance of three or
four. Interestingly, we also observed strand specific distance distributions
(Supp. Figure 3). For each separate strand reads started exactly at
the CG site with a very small fraction starting in the upstream direction.

After assigning reads to CG sites CG–coverage was calculated (defining
coverage as the total number of reads on any strand starting within the
given distance threshold). Such procedure usually divides genomic CG
sites into two opposite groups (CG sites with coverage greater than 0 –
identified CG sites and CG sites with coverage equal to 0 – non–identified
CG sites). Depending on the study, all or only a fraction of identified
CG sites were used. Strategies for selecting identified CG sites, general
coverage statistics and coverage comparison with other DNA modifica-
tion analysis methods are mentioned in Chapter 6. Finally, sequence
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Figure 4.7 | Nucleotide Composition Around CG sites

Probability of nucleotide composition around 50 thousand randomly selected CG sites
identified in cfDNA sample (sample identifier 137). At the centre of the generated
sequence there is an identified CG site with most encountered nucleotides flanking it.
Each nucleotide is indicated with a distinct colour code.

composition around identified CG sites was extracted (Figure 4.7). It
is evident that for TOP–seq library reads are starting at CG sites and
that there is no other observable sequence bias in flanking sequences
(nucleotides around the CG site have equal probability to be observed).
However, in hmTOP–seq library strategy there was a small bias for iden-
tified CG sites towards C and G rich loci.

4.6 Discussion

4.6.1 The Implications and Applications of This Method-
ology

This section summarised a newly developed sequencing data processing
pipeline specifically tailored for TOP–seq high–throughput epigenomic
data. This methodology empowered the usability and applicability of
TOP–seq based techniques to process TOP–seq data from raw sequenc-
ing reads produced by next–generation sequencing technologies and to
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compute the DNA modification signal by calculating the coverage of CG
sites.

The workflow was presented in detail summarising the processing of the
sequencing reads before alignment to a reference sequence, alignment to
a reference sequence, duplicate read removal, and read assignment to CG
sites. Notably, all used computational tools and parameters are speci-
fied for the full reproducibility of this methodology. It is important to
mention that the duplicate read removal algorithm was specially devel-
oped for the TOP–seq method as standard duplicate removal techniques
would not be applicable for this method and probably would distort the
true coverage signal. Finally, this processing pipeline contains a couple
of speed optimisation steps, such as removing relatively short reads in
the beginning of the pipeline, to reduce the processing time of low quality
reads.

4.6.2 The Difficulties in Processing TOP–seq Data

Most difficulties of analysing TOP–seq data arise from a large range of
computational tools used in this data processing pipeline. Since this
pipeline consists of multiple sequential steps, in theory, it could be par-
allelised on a multi–core computing machine. However, not all of the
used tools are customised for parallelisation. For example, tools used for
adapter and quality trimming cannot be parallelised and can only pro-
cess sequencing reads sequentially, while tools used for read alignment
are fully parallelisable.

Additionally, one peculiar problem arises from assigning reads to CG
sites. It is possible that a specific read would start from its original CG
site with an absolute distance greater than zero. Usually, assignment
of such reads to their original CG site is straightforward, however, it
is possible that within the same distance there is another CG site and
in such a case, singular assignment is impossible. Consider a read that
starts −2 nucleotides from its original CG site a, from the CG site a there
is another CG site b in −4 nucleotides direction, then the mentioned read
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would have same absolute distance 2 to the CG site a and CG site b and
in such case, unique assignment would be impossible.

4.6.3 Unanswered Questions and Future Research Direc-
tions

Since we observed a specific distance distribution between the start of
the read and CG sites, it could be further applied in our further data
analysis. For a positive strand, most reads started exactly at the CG
site with a small fraction starting in the upstream direction, the same
tendency was observed for the negative strand too. It is possible to
further implement this feature while assigning reads to CG sites. Instead
of using a straightforward approach and assigning all reads to CG site
that start within -4 to +4 bp window, they can be retained in a strand
specific manner – selecting reads that start exactly at the CG site or
in a small upstream direction shift. Such an approach should decrease
background noise originating from the falsely assigned reads.

As the TOP–seq method is based on enrichment of target genomic re-
gions (i.e, CG sites), additional improvement of its data analysis would
be partitioning the genome into peak and non–peak regions. In such a
case, the current high resolution would be lost, however, the different per-
spective on DNA modifications might shed light on different epigenomic
processes. The TOP–seq method could be fully used at a single base reso-
lution, however, when inspecting higher–order genomic elements, such as
lamina associated domains or even genes, it might be useful to compute
DNA modification peaks. A naive implementation of peak calculation
was proposed during the TOP–seq data analysis process but it was never
fully implemented and further tested. For such implementation, a high
confidence reference dataset would be needed but more importantly, an
appropriate algorithm must be fully developed. Since some of the cur-
rently most popular peak calling algorithms assume symmetrical read
coverage on both strands and specific distributions around targeted sites,
they are not possible to use with TOP–seq based methods (Wilbanks and
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Facciotti, 2010; Zhang et al., 2008). A further investigation, algorithm
development and testing is needed to confirm peak calling applicability
from TOP–seq high–throughput data.

To further improve TOP–seq method, unique molecular identifiers could
be introduced into the library preparation step. Such technological ad-
dition to the method could be used to reduce errors and quantitative
bias introduced by the DNA amplification. The unique molecular iden-
tifier technique incorporates a unique barcode onto each molecule. By
incorporating individual barcodes on each original DNA sequence, the
sensitivity of the DNA modification detection should increase. Computa-
tional tools could be used to filter out duplicate reads and report unique
reads. This approach would be more precise than the current solution to
filter out duplicate reads by evaluating the starting position of the read
and the total read length.

Instead of using conventional and more popular read aligners, it is pos-
sible to implement newer read aligning procedures. The Salmon tool
performs quasi–alignment to rapidly determine the set of reads compat-
ible with a given reference sequence (Patro et al., 2017). Incorporation
of such a tool would lead to a faster alignment of sequencing reads with
a cost of resolution. However, in cases where the TOP–seq method is
used to determine DNA modification level in a set of genomic regions,
such as CGIs or genes, this approach could be more preferable.

Another speed optimisation could be achieved by parallelisation of the
used tools that are not parallelised already. For those tools that parallel
computing is not implemented, it is possible to submit sequencing reads
divided into batches, which would require changing the read processing
pipeline focus from a single sample towards a single batch. In theory,
each set of original reads produced by a next–generation sequencing ma-
chine could be split into k non–overlapping read batches that would be
submitted to a processing pipeline as individual units. This processing
pipeline could be run using k–cores on a multi–core computing machine.
At the end of the pipeline, parsed batches would be merged into a sin-
gular unit that would be used to calculate the DNA modification level.
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In theory, such implementation should be faster, however, one should
consider the time for dividing reads into batches and merging them back
into a singular unit.

Finally, to further improve TOP–seq method reproducibility and appli-
cability for other research, a fully developed code base is needed. Con-
sidering that the TOP–seq processing pipeline was developed using R

programming environment, it would be useful to release an R package
with version and quality controls, unit tests and continuous integration.

4.6.4 Concluding Remarks

Herein, we provide a detailed description of a next–generation sequencing
data processing pipeline that was engineered to process TOP–seq based
high–throughput epigenomic data. This efficient and scalable approach
combines different conceptual ideas from published methods into a com-
prehensive pipeline. It covers steps and tools used to process TOP–seq
signal from raw sequencing data to CG–coverage profiles.

Statement I — Developed computational methods to efficiently and
accurately process TOP–seq based high–throughput epigenomic data.
Created strategies that enable investigation of DNA modification signal
at a single cytosine resolution in a strand specific manner.
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Statistical Tools to Enhance the

Quality of the TOP–seq Signal

Good is good, but better is better

Old Yiddish motto

5.1 Introduction

High–throughput methods, as an approach to measure and produce high
quantities of data, might suffer from the inseparable effect of measure-
ment bias, which can be expressed as intra–sample or inter–sample vari-
ation. In such cases, the calculated TOP–seq signal might also contain
unwanted variation in coverage across samples within the same sequenc-
ing chip or between different sequencing chips. Such variation might
be caused by the different sequencing depth, average modification level
differences or other unknown biological or technological factors. Hence,
three TOP–seq signal transformations were developed to reduce such
variation effect and enhance the quality of the signal. First and most
basic transformation is u–density which is based on weighted coverage
level normalised by CG level, m–estimate and nn–estimate are TOP–
seq coverage signal projections calculated using either exponential decay
model or neural networks.

This methodology was developed and adapted for an unmodified DNA se-
quencing method and used to estimate h–density (i.e., 5hmCG modified
DNA density), however, this estimate was not used in any major analysis
and will not be covered here. This chapter comprises three main sections
(one for each transformation): u–density, m–estimate, nn–estimate, with
each section composed of three parts: reasoning behind the calculation

76



5.2. u–density

of the specific estimate, algorithm to calculate estimate and comparison
of estimate with a reference method. Finally, the chapter closes with
a discussion of the improvements that these transformations brought
to TOP–seq signal applicability, difficulties in computing and applying
transformations and unanswered questions for future research.

5.2 u–density

5.2.1 Motivation for Calculating the u–density Signal

Since the TOP–seq method might be affected by several limitations faced
by other enrichment–based methods (e.g., signal quality dependence on
the sequencing depth, bias towards a specific sequence context), statisti-
cal adjustments were applied to the TOP–seq signal. First, the sequenc-
ing depth influence was minimised by converting the TOP–seq coverage
signal into weighted–density estimates (Parzen, 1962). Such conversion
equalised the signal strength between different sequencing depth experi-
ments. Of course, the simplest solution to this problem would have been
calculating n

M , where n is the number of reads assigned to a specific
CG site and M is the total number of reads in sample. However, this
weighted–density approach allows us to exploit information from neigh-
bouring CG sites and in this way, it maximised usability of low–coverage
regions. To remove possible sequence context (i.e., CG) bias, we addi-
tionally normalised calculated weighted–density estimates by unweighted
CG–density. The obtained signal was named u–density as it reflected un-
methylated DNA density (Figure 5.1). An identical approach was used
on the hmTOP–seq signal to calculate h–density.

5.2.2 Summary of the u–density Algorithm

Weighted–density estimates of TOP–seq coverage were computed using
the Epanechnikov kernel over 221 points uniformly distributed across
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each chromosome (computation workflow is represented in Figure 5.2).
The number of equally spaced points at which the density is to be esti-
mated was high enough to suppress the number of possible nucleotides
1. The Epanechnikov kernel was chosen as it is optimal in a mean
square error optimisation (Loftsgaarden and Quesenberry, 1965). Read
counts were normalised to sum to 1 within each chromosome and used as
weights for the density function Equation 5.1. The same approach with
the omission of weights was used to estimate unweighted CG–density in
the given chromosome Equation 5.2. Finally, TOP–seq unmethylation
density were obtained by dividing weighted TOP–seq density by the un-
weighted CG–density at each CG dinucleotide Equation 5.3. After
normalising weighted–density by CG–density, Gaussian kernel smooth-
ing with the same bandwidth was used to interpolate respective density
values at the exact positions of CG nucleotides 2. Kernel bandwidth
parameters were determined by scanning the TOP–seq u–density corre-
lations in a wide range of kernel windows with the corresponding public
IMR90 WGBS signal in human chromosome 1 (Figure 5.3) (Lister et al.,
2009). After evaluating correlations at a single CG resolution, selected
kernel bandwidth parameters were: 180 bp for weighted–density and 80

bp for CG–density (the same parameters were subsequently used for all
samples and all chromosomes).

Weightedh(x) =
1

nh

n
∑

i=1

Ci
∑n

j=1Cj
K

(

x− xi
h

)

(5.1)

CGh(x) =
1

nh

n
∑

i=1

K

(

x− xi
h

)

(5.2)

u-densityh1,h2
(x) =

Weightedh1
(x)

CGh2(x)
(5.3)

After calculating the weighted–density, more representative signal distri-
bution was noted across the samples. Observed coverage statistics (e.g.,
1There are only ∼249 M nucleotides in human chromosome 1.
2Projection from 221 uniformly distributed points back to specific CG sites along the
chromosome.
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Figure 5.2 | u–density Computation Workflow

Workflow of the current u–density computation algorithm. Genome–wide CG–
coverage is normalized by the total amount of reads within each sequencing library
to remove global bias in sequencing depth. This normalized signal is then used to
calculated weighted coverage–density. Weighted coverage–density is then normalized
by unweighted CG–density to minimize for local coverage biases caused by uneven
CG site distribution along the given chromosome.

mean and median coverage) per sample correlated well with the number
of sequencing reads assigned to a specific sample. Such effect could easily
influence result interpretation as samples with larger library sizes would
have higher unmodification (or in case of hmTOP–seq — modification)
signal. However, if less or more sequencing reads were used in another
experiment, these two results would not be comparable. Observed cov-
erage statistics correlated well (Pearson’s r = 0.85, Spearman’s ρ = 0.8,
p–value 2× 10−4) with number of reads per sample, however this corre-
lation decreased when weighted–density values were used instead (Pear-
son’s r = 0.46, Spearman’s ρ = 0.55, p–value 1× 10−1) (Figure 5.4).

After calculating the u–density, an increase in correlation between tech-
nical replicates was observed (Pearson’s r = 0.5 and r = 0.8 before
and after transformation for human derived TOP–seq low library depth
samples). Similar effect was observed for higher depth IMR90 libraries
where Pearson’s correlation increased from r = 0.62 to r = 0.87. Finally,
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Figure 5.3 | u–density Bandwidth Optimisation

Heatmap represents similarity statistics (i.e., Pearson’s correlation coefficient) be-
tween computed TOP–seq u–density signal and reference WGBS signal. To calculate
u–density signal combinations of different kernel bandwidth sizes were used to esti-
mate weighted and unweigted density. Combination of 180 bp weighted–density and
80 bp unweighted–density bandwidths was selected as an optimal one since it re-
sulted in a relatively high similarity between the TOP–seq method and WGBS, and
represented relatively high resolution.
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Figure 5.4 | TOP–seq Signal Dependence on the Library Size

(A) Distribution between the total library sizes (millions of reads) in human derived
TOP–seq low library depth samples and average CG–coverage within given samples.
Both measurements showed relatively high Pearson’s correlation r and significant
linear relationship R2. (B) Distribution between library sizes and average weighted–
density signals. After normalisation dependence between the library size and DNA
modification signal decreased.
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there was a great improvement in signal distribution across different ge-
nomic elements. Since the TOP–seq method is biased towards CG sites,
a stronger signal would be expected in CG–rich regions only solely be-
cause the number of targets is higher there. To prove this assumption,
we evaluated relationship between the two measurements in different
genomic elements (Figure 5.5). Higher weighted–density signal was
observed in elements with higher CG–density, however this bias was cor-
rected after normalising TOP–seq signal by CG amount per each region.
To further confirm CG–density normalisation effect a specific genomic
loci with a high CG–density variability was interrogated (Figure 5.6).
TOP–seq signal along the KAZN gene locus shows high signal bias to-
wards CG–rich regions (i.e., CGI elements), however after CG–density
normalisation signal peaks are not longer centered at CGI elements and
u–density signal gradually decreases towards the end of the gene.

5.2.3 Concordance Between u–density and Other Meth-
ods

Cross–platform single nucleotide resolution correlations between TOP–
seq and WGBS signal confirmed signal transformation usability. Pear-
son’s correlation between CG–coverage and WGBS was | r |= 0.23,
| r |= 0.36, | r |= 0.44 for the Brain, IMR90 low library depth and
IMR90 high library depth samples, respectively. When using u–density
this correlation increased to | r |= 0.28, | r |= 0.59, | r |= 0.64, ac-
cordingly. For comparison, single CG resolution IMR90 WGBS signal
was compared to MRE–seq and MBD–seq DNA modification signals
and computed Pearson’s correlations were | r |= 0.18 and | r |= 0.3,
respectively. Such low correlations between WGBS and the enrichment–
based methods may in part be derived from the non–linear relationship
between the data produced with different methods (Stevens et al., 2013).
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5.3 m–estimate

5.3.1 Motivation for Calculating m–estimate Signal

After calculating u–density values, we decided to make further signal im-
provements. Since TOP–seq and u–density represent enrichment–based
signal, their values are distributed along the heavy–tailed Poisson distri-
bution (i.e., coverage or u–density values are from 0 to plus infinity) with
most sites receiving no or just very low positive values, while the WGBS
method is able to present the same modification signal in an absolute
scale (from 0% to 100%). Therefore, one of the adjustments was signal
conversion from a relative to an absolute scale.

Another improvement was related to analysing epigenomes with differ-
ent average modification levels. Figure 5.7 represents two simulated
epigenomes with different average modifications levels that are depen-
dent on the position along the simulated chromosome. After perform-
ing simulation of the random coverage distribution, we observed that
the epigenome with higher average hypomethylation level receives lower
coverage than the epigenome with lower hypomethylation modification
level. These results show that epigenomes with different modification
levels are not comparable when analysed using enrichment–based meth-
ods since the observed coverage distributions are inaccurate.

5.3.2 Summary of the m–estimate Algorithm

Methylation estimates, m–estimate, were obtained by training an expo-
nential decay model that assumes a linear decrease of WGBS methylation
with exponential increase of u–density signal and other genomic feature–
specific covariates Equation 5.4. Chromosome 20 (2.5% of all CG sites
in the human genome) was used to train an exponential decay model and
additional genomic feature–specific covariates were used. Covariate val-
ues were calculated for each CG site using 50 bp regions around each CG.
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Figure 5.7 | Coverage Dependence on the DNA Modification Level

(A) Two simulated epigenomes with different average DNA modification levels.
Epigenome A has 2.5 times higher hypomethylation level than Epigenome B with a
tendency for higher methylation regions to cluster towards the start of the simulated
genome. Meanwhile hypomethylation level in Epigenome B is normally distributed
with global maximum at the middle of the genome. (B) Simulated TOP–seq cover-
age (with identical library sizes — one thousand reads) along two epigenomes. Given
same library size Epigenome B shows higher coverage across most of the CG sites
while containing lower hypomethylation level. Meanwhile Epigenome A shows higher
coverage only in a smaller fraction of CG sites with highest hypomethylation levels.

Implemented covariates were as follows: i) GC frequency – percentage of
guanine and cytosine bases per region; ii) fraction of CG dinucleotides
among CN pairs within given region; iii) average sequence mappability
value per region; iv) fraction of given region that intersects with SINE
or LTR repeats; v) fraction of given region that intersects upstream re-
gions (2 kb) of protein–coding genes; vi) fraction of given region that
intersects 5'UTR of protein–coding genes; vii) fraction of given region
that intersects intergenic regions.

b ! expb0+b1∗u-density+
∑k

i=2 bi∗covariatei (5.4)
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5.3.3 Concordance Between m–estimate and Other Meth-
ods

Calculation of m–estimate values had a minor effect on correlation among
the TOP–seq technical replicates. Pearson’s correlation increased only to
r = 0.89 for the high–depth IMR90 samples (from u–density r = 0.87).
However, m–estimate calculation greatly improved single CG correlation
with WGBS signal. Computed Pearson’s r values increased to 0.69.

5.4 nn–estimate

Results presented in this section contain yet unpublished data. Nonethe-
less they were already presented in two conferences listed in Section 1.6

5.4.1 Motivation for Calculating nn–estimate Signal

After calculating m–estimate, we solved major issues that enrichment–
based methods face, however, we still saw an opportunity to increase
concordance, such as correlations, between the TOP–seq and WGBS sig-
nals. Since WGBS is considered a gold standard method, we attempted
to approximate the TOP–seq produced signal as close as possible to it.
We attempted to compute nn–estimate – methylation estimates calcu-
lated using neural networks. We expected neural network based method
to perform better than an exponential decay model by learning the rep-
resentations of the data that we were not aware of. A disadvantage of
such approach is that neural network is a black box phenomenon and re-
lationships, associations of the data it creates are usually left unknown.
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5.4.2 Summary of the nn–estimate Algorithm

A multi–layer perceptron regressor with 2 hidden layers (44 and 22 nodes
respectively) was used to predict IMR90 WGBS values employing TOP–
seq signal and various genomic features from chromosome 20 (Supp.

Figure 4). Most important features in the perceptron were u–density
and TOP–seq coverage (relative importance 6.4% and 4.4% respectively).
All other used features were split into three groups — genomic elements,
sequence characteristics, and base composition around the specific CG
site (Figure 5.8). Genomic elements with the highest relative impor-
tance were CGI and, surprisingly, SINE repeats. Unexpectedly, the im-
portance of SINE repeats was relatively high compared to other major
repeat families (i.e., LTR and LINE) as their importance was one of
the lowest of all the used features. Most important features from the
sequence characteristics group were the amount of GC dinucleotides in
a given region, amount of CG dinucleotides, and sequence mappability
score. Most of the features from the base composition group showed only
mediocre relative importance values.

5.4.3 Concordance Between nn–estimate and Other Meth-
ods

Calculation of nn–estimate values had a minor effect on correlation
among the TOP–seq technical replicates. Pearson’s correlation for the
high–depth IMR90 replicates increased to r = 0.89. However, nn–
estimate calculation improved single CG correlation with WGBS sig-
nal – r = 0.71 for the combined high–depth IMR90 dataset. Similarity
between the WGBS and nn–estimate was even greater in higher scale
genomic regions. Figure 5.9 represents correlation between the ref-
erence IMR90 WGBS signal and TOP–seq DNA modification signal in
protein–coding gene promoters. Correlation between the TOP–seq signal
gradually increases with each signal transformation. Similarity remains
high even using other IMR90 WGBS dataset. Finally, we divided CGI
elements into DNA methylation groups according to a reference IMR90
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Figure 5.8 | Importance of Genomic Features in nn–estimate Model

Relative importance of selected genomic features in nn–estimate model measured in
percent scale. Genomic features were calculated for each CG site in a 50 bp region.
CGI, Exon, Intron, Upstream, Downstream, genomic repeats, Intergenic, 5'UTR,
3'UTR represent fraction of region covered with a specific element. Mappability,
GERP, C ratio, GC%, CG% represent average sequence score for a given measure-
ment. Absence or presence of a specific nucleotide at a given distance from a CG site
was measured in a binary scale.
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and comparison with a reference signal. All presented transformations
achieve better similarity evaluation with reference data than the original
TOP–signal. This is extremely promising as with larger and more vari-
ate set of reference datasets performance and applicability of our models
can increase even more.

Additionally to the designed transformations, a set of genomic features
that are informative for epigenomic signal normalisation were presented.
These genomic features consist of genomic elements, such as SINE re-
peats, sequence characteristics, and base compositions. We believe that
this set could be easily applicable for other research.

5.5.2 The Difficulties in Developing Statistical Tools to
Enhance the Quality of the TOP–seq Signal

A major difficulty in computing the u–density signal is maintaining the
balance between single CG site resolution and using coverage information
from the neighbouring CG sites. In practice, u–density computation can
be divided into two jumps between resolutions: i) projection from a single
CG site into a vector of CG sites to include their coverage into estimate
computation, and ii) projection from an estimate vector back to a single
CG site resolution. The most critical decision therefore is the selection
of bandwidth sizes. On one side, these values might be too large and
the loss of precision in measurements will occur, while using values that
are too small will not deliver optimal results and the mentioned jumps
between resolutions will only cause loss of quality in the original signal.
While it was demonstrated that close to optimal selection of bandwidths
values is possible, available improvements for future research are listed
in the next section.

A major drawback of m–estimate and nn–estimate is the dependence on
a dataset used for supervised learning. When such a dataset is not avail-
able, or its quality is not satisfactory enough, these signal transforma-
tions will not be possible. However, an appreciable amount of epigenomic
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data is available in this age of genomic research and many human tis-
sues or even cell–types are investigated using WGBS technologies. If no
exact tissue type is available, then it might be possible to assemble and
utilise an additional reference dataset from similar tissues, nonetheless
such extrapolation should be carefully tested before its application.

Finally, the biggest issue that a researcher might face is a decision which
transformation to use. With a sequencing depth high enough simple
CG site coverage might be satisfactory. In such a case no jumping be-
tween resolutions or signal estimations will be necessary. Given a low
sequencing depth one might desire to use transformations but the deci-
sion whether to use u–density or supervised techniques needs to be made
on a case–by–case basis given the available resources, budget, computa-
tional infrastructure, sample availability etc.

5.5.3 Unanswered Questions and Future Research Direc-
tions

Since u–density transformation is sensitive to used parameters even wider
testing of their combinations is needed. First, it is possible to test
optimal bandwidth window sizes for each chromosome separately. For
the current study, the kernel bandwidth window size was optimised on
human chromosome 1, however each chromosome might contain differ-
ent optimal weighted–density and unweighted–density bandwidths. The
bandwidth window size might also be DNA modification dependent and
the optimal window size for u–density might be different than for h–
density. Finally, different window sizes might be optimal for different
organisms and even for different epigenomes, thus an extensive study is
needed to define optimal combinations of all possible u–density param-
eters.

Another possible optimisation for u–density transformation is computa-
tion time reduction by limiting the number of points on which density is
calculated. In the present study, a brute force approach was implemented
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to compute density using the Epanechnikov kernel over 221 points uni-
formly distributed across each chromosome. This number was selected
to be large enough to cover chromosome 1, however it might be signifi-
cantly reduced. For example, the size difference between chromosome 1

and chromosome 21 3 is five times and the currently used value might
be unnecessarily large.

Further improvements for the m–estimate and nn–estimate transforma-
tions are also possible. For example, some of the used predictors might
be unnecessary. Both u–density and CG site coverage were used as co-
variates in our model, however usage of only one of them might be suf-
ficient. Next, we can try adding other features to further improve our
models, such as implementing library size in computation and in such a
way to directly normalise for the number of reads. Moreover, there are
many genomic elements and features that were not tested in this study,
including CGI type or their evolutionary status, various gene types, repli-
cation timing information, and many others. Current trends in genomic
research tend to focus on artificial intelligence, new algorithms, and im-
provements, testing types are being developed constantly in this area.
Thus, current concepts and algorithms of this work should be viewed as
the basis of an ongoing project that needs to be further developed and
tested.

5.5.4 Concluding Remarks

This chapter proposed to leverage TOP–seq data and genomic context
information to estimate underlying DNA modification levels. Three
transformations — u–density, m–estimate, and nn–estimate were de-
signed. u–density is based on weighted kernel estimate of CG site cov-
erage normalised by unweighted CG site density, m–estimate and nn–
estimate are supervised learning based techniques created using either
exponential decay model or a multi–layered neural network predictor
3Smallest autosome in the human genome.

94



5.5. Discussion

using features as TOP–seq signal, genomic sequence and genomic con-
text information. Our results indicate that it is necessary to combine
advanced computation methods with novel sequencing technologies for
cost–effective population–wide studies of DNA modification.

Statement II — Developed statistical learning techniques to enhance
the quality of the TOP–seq epigenomic signal. For a model IMR90
genome the applied statistical learning approaches increased Pearson’s
correlation estimate between technical replicates up to r = 0.89, while
absolute Pearson’s correlation estimate at a single CG site with a refer-
ence WGBS signal increased up to r = 0.71.
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Application of TOP–seq Based

Methods

Chaos is merely order waiting

to be deciphered

José Saramago

6.1 Introduction

This chapter consists of four major sections — applications of TOP–seq
based high–throughput epigenome profiling methods. The first section
presents the results of the unmodified DNA profiling in human tissues
and cell–types, with the second and third sections briefly summarising
quality control of hmTOP–seq and caCLEAR methods in mouse em-
bryonic stem cells (mESCs). Finally, the last section present a detailed
application of TOP–seq and hmTOP–seq methods in deciphering epige-
nomic profiles in cell–free DNA from a pregnant female. In these appli-
cation sections, how previously designed computational and statistical
methods can be implemented in specific cases of epigenomic research is
discussed.
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6.2 Application of the TOP–seq Method in Hu-

man Derived Cell–Lines

6.2.1 Introduction

To understand DNA modification dynamics, sensitive high–resolution
methods are required for genome–wide mapping epigenetic residuals.
This presents an application of the TOP–seq method for the sensitive
detection of genome–wide unmodified cytosines. The TOP–seq method
identifies genomic uCG positions.

We present genome–wide maps of unmodified cytosines in various hu-
man tissues and cell–types, first proving that the TOP–seq signal is re-
producible and agrees well with other DNA modification profiling tech-
niques. Next, DNA modification enrichment maps in genomic elements
and DNA modification signal across genes or epigenetic elements, such
as lamina associated domains or chromatin segments are provided. Fi-
nally, we demonstrate that TOP–seq signal is sensitive enough to iden-
tify epigenetic differences between cell–types, hence, can be applied for
a genome–wide DNA modification profiling. CGI elements are used as
a platform to detect differential modifications between neuroblastoma
(NB) cell–types and the brain tissue.

6.2.2 Materials and Methods

6.2.2.1 Samples Analysed

TOP–seq libraries were prepared using different sources of human DNA:
prefrontal brain cortex, fetal lung fibroblasts IMR90, and two clonal
neuroblastoma cell–types: N–type LA1–55n, and S–type LA1–5s (both
derived from the LA–N–1 cell–line). Most of the analysed samples con-
tained at least two technical replicates to ensure signal variability within
and between samples. A fraction of the IMR90 samples were sequenced
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with higher than usual sequencing depth to investigate possible bias that
could be caused by variable sequencing depth. A summary of all sam-
ples used is provided in Table 6.1. Sequencing data was processed as
described in Chapter 4 and the signal was further enhanced using sta-
tistical techniques provided in Section 5.2 and Section 5.3.

Table 6.1 | Human Samples Analysed Using the TOP–seq Method

“Sample identifier” defines biological replicate, while “Replicate identifier” defines tech-
nical replicate. “DNA source” describes human tissue or cell–line from which DNA
was purified. “Library depth” specifies depth of sequencing library and “GEO code”
encodes sample identifier deposited under GEO accession GSE91023.

Sample Replicate Library GEO
identifier identifier DNA source depth accession code

Brain 1 R1 Prefrontal brain cortex Low GSM2419856
Brain 1 R2 Prefrontal brain cortex Low GSM2419857
Brain 2 R1 Prefrontal brain cortex Low GSM2419858
Brain 2 R2 Prefrontal brain cortex Low GSM2419859
IMR90 1 R1 Fetal lung fibroblasts (IMR90) Low GSM2419860
IMR90 1 R2 Fetal lung fibroblasts (IMR90) Low GSM2419861
IMR90 2 R1 Fetal lung fibroblasts (IMR90) Low GSM2419862
IMR90 3 R1 Fetal lung fibroblasts (IMR90) High GSM2419863/4/5
IMR90 4 R1 Fetal lung fibroblasts (IMR90) High GSM2419866/7/8
LA1–55n R1 Neuroblastoma (LA1–55n) Low GSM2419869
LA1–55n R2 Neuroblastoma (LA1–55n) Low GSM2419870
LA1–55n R3 Neuroblastoma (LA1–55n) Low GSM2419871
LA1–5s R1 Neuroblastoma (LA1–5s) Low GSM2419872
LA1–5s R2 Neuroblastoma (LA1–5s) Low GSM2419873
LA1–5s R3 Neuroblastoma (LA1–5s) Low GSM2419874

6.2.2.2 DMR Calculation in Neuroblastoma Samples

To evaluate modification differences in the clonal neuroblastoma cell
types promoter, intragenic, and intergenic CGIs were used. For each
CGI element, the average TOP–seq u–density value per each sample was
computed (if CGI had an average u–density value less than 1× 10−4,
it was omitted from the analysis). Next, all samples were passed to
limma tool (linear models for microarray data) for multigroup analysis
and DNA modification contrasts were interrogated for N–type versus S–
type, N–type versus Brain, and S–type versus Brain samples for each
CGI group separately (Ritchie et al., 2015). Regions having a false dis-
covery rate (FDR) adjusted q–value less than 1× 10−2 and absolute fold
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change greater than 20% were termed statistically significant. Each sig-
nificant promoter or intragenic CGI was associated with a protein–coding
gene and gene enrichment analysis was performed using the DAVID an-
notation tool for each CGI group separately (Huang et al., 2008). Sum-
marised flowchart of DMR identification algorithm can be found in Fig-

ure 6.1.

6.2.2.3 DNA Modification Analysis Across Genomic Elements

DNA modification profiles along lamina associated domains and inter–
LAD regions were computed as follows: first, from the set of all LAD
elements, those that intersected gaps in the genome assembly were re-
moved. Remaining LADs were further filtered according to their size,
retaining only those that were between 0.1 and 0.9 quantiles of all the
LADs. Inter–LAD domains were filtered using the same procedure. Each
resulting region was divided into 10 equally sized non–overlapping bins
before removal of CG sites that intersected CGIs or their 5 kb flanking
regions. Due to possible MYCN amplification, we also excluded chro-
mosome 2 from analysis. For each CG site, a corresponding bin of LAD
or inter–LAD region was assigned. The final profile was obtained by aver-
aging the signal in each bin using a Gaussian kernel smoother with band-
width 2 (in R 3.5 this function is implemented under stats::ksmooth).

DNA modification profiles along gene bodies were constructed as follows:
for each protein–coding gene, we selected its longest processed transcript
and used it as a reference gene. This step was needed as different iso-
forms might have different gene–start or gene–end sites that might dis-
tort observed signal in upstream or downstream regions. Additionally,
genes were removed that were shorter than 1 kb. Upstream regions were
defined as 2 kb flanks from the gene start site. When computing the
generic gene modification profile each specific upstream, 5'UTR, exon,
intron, 3'UTR region was divided into 20 equally sized non–overlapping
bins and CG modification signals were averaged within corresponding
bins.
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Figure 6.1 | DMR Identification in Neuroblastoma Samples Workflow

The average u–density signal per each CGI element was computed and all CGIs
were grouped according to their position to protein–coding genes. Computed values
were used in limma tool for multigroup analysis. DNA modification contrasts were
compared for Brain versus N–type (LA1–55n), Brain versus S–type (LA1-5s), and N–
type versus S–type for the intergenic, intragenic or promoter CGIs separately. Finally,
statistically significant CGIs (FDR q–value less than 0.01 and absolute fold–change
difference above 20%) were associated with protein–coding genes that were used in
consequent gene ontology analysis.
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6.2.3 Quality Control of Processed TOP–seq Sequencing
Data

On average, each sample contained 42 millions raw sequencing reads
(sd = 6), except for high–depth IMR90 samples that on average con-
tained 238 millions raw reads (sd = 4). After processing and mapping
reads to a reference genome, the number of reads decreased significantly
(Figure 6.2). A large fraction of this decrease in high–depth IMR90
samples was caused by short read removal or PCR duplicate read re-
moval. After removing duplicate reads and assigning remaining reads to
CG sites, on average 16 million reads remained in low–depth (sd = 3)
and 91 million reads in high–depth libraries (sd = 3).

In all analysed samples, all unmodified CG sites (coverage greater than
0) were used, resulting in on average 21% identified genomic CG sites in
low–depth and 35% in high–depth samples (Table 6.2). The average
coverage of identified CG sites per low–depth sample was 2.8 and 9.6

per high–depth sample, however, after more detailed inspection, it was
discovered that the coverage was uneven between the chromosomes with
neuroblastoma samples showing much higher average coverage in chro-
mosome 2 (Figure 6.3). After closer examination, it was found that
this higher coverage was caused by reads originating from a specific 1.6
Mb region on chromosome 2 (chr2:15026730 — 16640120) (Figure 6.4).
This region contains proto–ongonenic MYCN gene which is expected to
amplify exactly in the neuroblastoma samples (Spengler et al., 1997).

After selecting all identified CG sites, we measured the correlation be-
tween technical replicates (average Pearson’s r = 0.69 and Spearman’s
ρ = 0.49) (Figure 6.5). Such medium correlation could be caused by
the shallow sequencing depth that was used and indeed, after measur-
ing the Jaccard coefficient between the identified CG sites, low overlap
between technical replicates was observed (average Jaccard’s coefficient
0.4) (Figure 6.5 A). The Jaccard coefficient shows that given CG sets
between technical replicates are different, however this result could be at-
tributed to the previously mentioned shallow sequencing depth. To prove
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Figure 6.2 | Amount of TOP–seq Reads After Each Processing Step

The absolute change in read numbers after each processing step in a set of human
derived samples. High library depth IMR90 samples have higher amount of reads
compared to the other samples, however amount of reads in these samples decreases
at a similar rate throughout the pipeline.
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Table 6.2 | Coverage Statistics of uCG Sites

The amount of identified CG sites (coverage greater than 0) is represented in absolute
and relative numbers. Coverage of identified CG sites is represented with arithmetic
mean (i.e., average).

Sample Replicate Amount Average
identifier identifier of uCG,% coverage

Brain 1 R1 26 3.3
Brain 1 R2 20 2.5
Brain 2 R1 20 3.4
Brain 2 R2 20 3.2
IMR90 1 R1 19 2.8
IMR90 1 R2 20 2.7
IMR90 2 R1 21 3
IMR90 3 R1 34 9.1
IMR90 4 R1 32 10
LA1-55n R1 20 2.5
LA1-55n R2 21 2.5
LA1-55n R3 23 2.7
LA1-5s R1 17 3.4
LA1-5s R2 17 3.1
LA1-5s R3 17 3.1
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Figure 6.3 | Unmodified DNA Signal in Human Samples

(A) The average coverage of identified CG sites per each chromosome in selected
low–depth samples. Neuroblastoma derived samples show unusually high coverage
in chromosome 2 (marked with a yellow circle), possibly due to the amplification
in the MYCN gene locus. (B) The amount of identified CG sites per each chromo-
some. All samples show normal distribution of identified CG sites without any outlier
chromosomes.

this assumption, we simulated very low sequencing depth datasets and
monotonically increased their library size, demonstrating a clear linear
dependency between the library size and Jaccard’s coefficient (Figure 6.6).
To further confirm the reproducibility of the TOP–seq method we calcu-
lated correlation between the technical replicates using various sizes of
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Figure 6.5 | Similarity Statistics of Samples Analysed Using the
TOP–seq Method

(A) Similarity index measured in Pearson’s correlation, Spearman’s correlation or
Jaccard’s coefficient between replicates in given sample groups at a single CG reso-
lution. On average low–depth libraries showed Pearson’s r around 0.53, except for
neuroblastoma derived samples that had higher Pearson’s r probably to the MYCN
gene locus amplification. This was confirmed with Spearman’s correlation as all low–
depth libraries showed similar Spearman’s ρ. Jaccard’s coefficient between shared
CG sites was low–medium to medium for all used sample groups. (B) Correlation
coefficient between replicates at varying sizes of genomic bins. (C) Fisher’s estimates
between all identified CG sites.
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Figure 6.6 | Jaccard’s Coefficient Between Identified CG Sites in Sim-
ulated Datasets

Jaccard’s similarity coefficient between identified CG sites in simulated replicates
computed using varying genome and library sizes. Higher library size (i.e., amount
of reads) results in higher Jaccard’s coefficient which is proportional to available CG
sites in the genome.
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Figure 6.7 | Identified CG Amount Dependence On the Library Size

The number of identified CG sites monotonically increases with the total number
of reads in the IMR90 library. After reaching ∼50 million reads this relationship
plateaus and the amount of newly identified CG sites increases only marginally.

Next, we performed a computational adjustment of the TOP–seq cover-
age data to generate a high–resolution genome–wide prediction of DNA
modification levels. Using kernel density estimation, weighted density
estimates from the TOP–seq coverage signal were computed and nor-
malised by the unweighted CG–density estimates to obtain the TOP–seq
unmethylome density (u–density) signal. This adjustment enhanced the
Pearson correlation of the low–depth replicates to r = 0.8 (Spearman’s
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ρ = 0.77). Correlation of the high–depth IMR90 replicates increased to
r = 0.9 (Spearman’s ρ = 0.85) (Figure 6.8).
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Figure 6.8 | Concordance Between TOP–seq Replicates Using Vari-
ous Signal Modifications

Single CG site correlation coefficients between replicates using TOP–seq coverage, u–
density, and m–estimate signals. u–density transformation improves TOP–seq signal
reproducibility on average by 55%.

Cross–platform single CG absolute correlation of the low–depth and
high–depth TOP–seq u–density datasets with IMR90 WGBS data was
| r |= 0.59 and | r |= 0.64, respectively (Figure 6.9). In a further
adjustment step, we sought to account for possible sequence–specific
variations that may influence the TOP–seq signal. We used a small
fraction of the WGBS dataset (chromosome 20) to train an exponential
decay model containing additional genomic feature–specific covariates
which was then used to convert the TOP–seq u–density into so–called
CG methylation estimates (m–estimate, methylation values presented in
the absolute scale from 0 — 100). Although the second enhancement
step had a minor effect on the correlation among the TOP–seq technical
replicates, it improved single CG site correlation with the IMR90 WGBS
to r = 0.69 (Spearman’s ρ = 0.65) high–depth set (Figure 6.9).

After observing the increased correlation between TOP–seq and WGBS
methods within genomic bins, we compared the agreement between these
methods within various genomic elements. Dissection of the whole–
genome profiles across major genomic features showed good agreement
of the TOP–seq signal and WGBS in CGIs, enhancers, 3'UTRs, ex-
ons, introns, upstream, and downstream regions of protein–coding genes
(Figure 6.10). Interestingly, TOP–seq signal correlation was low with
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Figure 6.9 | Concordance Between the TOP–seq and WGBS Methods
at Single CG resolution

Single CG site absolute correlation coefficients between given TOP–seq signals and
whole–genome bisulfite signal. u–density transformation increased TOP–seq signal
similarity with WGBS on average by 42% and m–estimate transformation by 10%.

WGBS signal in TSS chromatin segments, while MBD showed medium
correlation in these elements. However, such low correlation should not
be attributed to higher CG content in these elements as TOP–seq re-
ported relatively high correlation in CGIs and therefore there should be
another unknown effect that results in such low agreement between the
methods.

Conversion of the u–density signal to the m–estimate signal was also
successful (led to improved correlation with WGBS, r = 0.69, ρ = 0.63)
using another independently produced IMR90 WGBS dataset (Ziller
et al., 2013). However, a similar conversion of the Brain u–density data
based on the published brain WGBS map did not lead to satisfactory m–
estimate maps, which was understandable given the poor correlation of
the u–density and the WGBS dataset (Pearson’s | r |= 0.28, | ρ |= 0.24).
Altogether, the presented examples suggest that this optional adjustment
step is only feasible when a high–quality reference WGBS map derived
from a related tissue is available. Accordingly, the TOP–seq u–density
profiles were used in all further comparative tissue analyses due to lack
of a suitable Brain and neuroblastoma WGBS maps.

As the ultimate validation of the predictive power of the method, we
evaluated how the bottom and top 10% of unmethylated CGIs, genes
and 10 kb sized regions in IMR90 cells, as well as in Brain, identified by
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Figure 6.10 | Concordance Between the TOP–seq and WGBS Meth-
ods Within Various Genomic Elements

Absolute correlations between average IMR90 WGBS and TOP–seq or MBD–seq
signal in gene–coding, Epigenome Roadmap chromatin states or repeat elements.
Both TOP–seq signal transformations correlate relatively well with a WGBS signal
in gene related elements and CGIs, but show decreased similarity in TSS associated
elements. The Epigenome Roadmap chromatin states are defined in Chapter 3.

109



6.2. Application of the TOP–seq Method in Human Derived Cell–Lines

Brain IMR90

Bottom 10% Top 10% Bottom 10% Top 10%
0

2

4

6

F
is

h
e
r'

s
 e

s
ti

m
a
te

, 
lo

g
2
  

CGI Gene Whole genome

Figure 6.11 | Intersection Between the Top Modified and Unmodified
Regions

Fisher’s estimate for overlaps between the 10% of lowest and 10% of highest modified
regions as computed with TOP–seq and WGBS methods. Lowest and highest modi-
fication retaining regions were selected from CGI, protein–coding gene set or genomic
bins divided into 10 kb regions (represented as a whole genome). All reported Fisher’s
exact test estimates have p–values less than 2× 10−19.

the TOP–seq method, overlap with the bottom and top 10% of unmethy-
lated regions derived by WGBS. In IMR90, we observed a very strong
association between the TOP–seq u–density and WGBS in all top 10%
used elements, as well as bottom 10% genes (Fisher’s exact test odds ra-
tio (OR) ∼ 37) (Figure 6.11). For the Brain samples only the bottom
10% genes showed such high and, interestingly, very similar enrichment
to IMR90 samples. Also, Brain samples showed relatively low enrich-
ment for the top 10% of CGIs while CGIs had the highest enrichment in
top 10% of elements in IMR90 samples.

6.2.4 Epigenomic Maps

After selecting identified CG sites their enrichment and distribution
throughout various genomic elements was tested (Figure 6.12). In
most of the tested genomic elements enrichment or depletion of selected
CG sites was similar between different sample groups. Biggest enrich-
ment was observed in elements associated with the beginning of genes
(5'UTRs, CGIs, promoters of various gene biotypes). Interestingly only
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CG sites from the Brain sample showed enrichment in other protein–
coding gene related elements (i.e., exons, 3'UTRs and introns). High-
est depletion of identified CG sites was observed in pseudogenes and
SINE repeats with all sample groups showing similar tendencies. The
TOP–seq signal was detectable in 96% of 26,641 autosomal CGIs. As
expected, promoter CGIs were the most enriched in uCG sites (50% ––
100% CG sites identified in ∼ 85% of CGIs), indicating their highly un-
modified state (Figure 6.13). The variation in identified uCG sites was
higher among intragenic and intergenic CGIs, attesting their diversity
and, on average, higher methylation levels. Interestingly, a relatively
high proportion of intergenic CGIs showed either absolute modification
or only very light modification forming bimodal distributions in Brain
and IMR90 sample groups, but not in neuroblastoma derived samples.
These findings showed that the TOP–seq data are generally consistent
with established genome methylation patterns.

We also compared the TOP–seq u–density profiles with WGBS across
different gene–associated elements (Figure 6.14). As expected, the
TOP–seq and WGBS profiles of the corresponding tissues showed in-
verse patterns throughout the analysed regions. We further determined
the TOP–seq u–density in and around segments representing a range
of chromatin states (Kundaje et al., 2015). Among the active promoter
states, active TSS, bivalent/poised TSS promoters, and flanking TSS up-
stream segments showed higher TOP–seq u–density signals, indicating
their lower methylation levels (Figure 6.15).

To assess the power of TOP–seq to discern large–scale DNA modification
patterns, we investigated LAD elements. It has been noted previously
that LAD elements correspond to partly modified DNA regions and are
directly involved in gene repression and usually range from 80 kb to 30
Mb in size (Berman et al., 2011; Guelen et al., 2008).

Since dynamic association with the nuclear lamina has been implicated
as a key mechanism in the developmental regulation of long–range gene
silencing that can be perturbed in cancer cells, we sought to investi-
gate the DNA modification status in LAD elements (Figure 6.16). The
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Figure 6.12 | TOP–seq Signal Across Genomic Elements

Fisher’s estimate of enrichment or depletion of identified CG sites in various genomic
elements (p–values for all reported Fisher’s estimates are less than 0.05). Highest
TOP–seq CG enrichment was observed in gene start associated elements — 5'UTR,
CGIs, promoters of various gene biotypes.
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Figure 6.13 | Identified CG Sites in CGIs

DNA modification level represented as a percentage of identified CG sites in CGIs
using the TOP–seq method. CGIs are divided into three groups according to their
position relatively to protein–coding genes. X–axis represents amount of CG sites
identified in a particular CGI and Y–axis represents amount of CGIs with a specific
amount of identified CG sites. Highest CG–fraction was observed in promoter CGIs,
while intragenic and intergenic CGIs tend to be more modified in neuroblastoma
derived cell–lines.

analysis showed strong hypomethylation of the LAD regions compared
to inter–LAD regions in the IMR90 cells, while no comparable changes
in the TOP–seq u–density were detected in the brain sample. The ob-
served methylation differences were mirrored by the WGBS data further
confirming that LADs are absent in the cells of the adult brain cortex.
Similar analysis of NB cells revealed the presence of LADs in both these
tissues.
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Figure 6.15 | TOP–seq Signal Along the Epigenome Roadmap Chro-
matin Segments

u–density (A) and WGBS (B) signals in IMR90 samples across the loci that contain
various chromatin segments as identified in the Epigenome Roadmap project. Spec-
ified chromatin segment is centralized at the X–axis and 5kb of flanking regions are
shown around it. In most of the segments TOP–seq and WGBS methods mirror each
other and show similar DNA modification distributions. The Epigenome Roadmap
chromatin states are defined in Chapter 3.
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CGI promoters (Maunakea et al., 2010). Importantly, functional anno-
tation analysis of the intragenic CGI–DMRs of the N and S cells (with
respect to Brain and each other) revealed substantial differences between
the NB cell types. In contrast to the S/B–hypoM (and S/N–hypoM)
comparisons, for N/B–hypoM (and N/S–hypoM) CGI–DMRs, we iden-
tified significantly enriched terms related to glycoproteins, extracellular
matrix structure, collagens, EGF–like domain proteins which included
many growth factors, developmental and receptor proteins. Compari-
son of the intragenic N/B–hyperM and S/B–hyperM CGI DMRs found
a strong overlap in GO terms associated with sequence–specific DNA
binding proteins, neuron differentiation/development, and cell adhesion.
However, N–type specific hypermethylated CGIs with respect to S (N/S–
hyperM) were in large gene clusters involved in neuron differentiation and
development, cell–cell signalling, synaptic transmissions, and neurologi-
cal system process, pointing at potential downregulation of these genes
compared to the non–tumorigenic S–type cells.

6.2.6 Discussion

6.2.6.1 New Insights Provided by This Study

In the first part of this section, the quality control results were presented
for samples analysed using the TOP–seq method. Even though coverage
correlation and Jaccard’s coefficient of the identified CG sites were in the
range of medium values, Fisher’s estimates proved that CG site identifi-
cation is not a random process. Additionally, Jaccard’s coefficient values
obtained using a simulated dataset proved that samples with larger li-
brary sizes would produce higher similarity. Comparison with a reference
WGBS datasets revealed that the TOP–seq signal correlates much better
than other analysed methods. Importantly, similarity to the WGBS sig-
nal depends on genomic element type suggesting possible DNA sequence
bias towards enrichment–based methods.

Further signal transformations proved to be useful as correlations with
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a WGBS signal were significantly higher. Higher correlations were ob-
served even for another WGBS dataset that was not used to optimise
transformation parameters. Obtained signal transformations showed rel-
atively high agreement with WGBS signal while investigating gene or
other genomic elements DNA modification profiles. Finally, we employed
the TOP–seq signal and identified a wide range of CGI DMRs pertaining
to specific types of neuroblastoma derived cell–types.

6.2.6.2 The Difficulties of Applying the TOP–seq Method in

This Study

Since the TOP–seq method, in contrast to bisulfite conversion–based
methods, cannot directly determine the absolute methylation levels, a
signal transformation might be required. The u–density technique seemed
to be a perfect solution for this problem as it takes in account variation in
different library sizes and DNA sequence bias. However, the m–estimate
transformation worked only for the IMR90 samples since they showed
relatively high agreement with a corresponding WGBS signal, while this
transformation did not show as good results for Brain samples. This
suggests that a good reference dataset is needed for such a supervised
learning technique.

The TOP–seq method, as many other read–count–based epigenome pro-
filing approaches, is sensitive to copy number variations. When a very
high coverage pattern is observed (e.g., MYCN locus), it is possible that
such signal enrichment is solely caused by the high abundance of targeted
DNA sites. Therefore, de novo discovered DMRs should be verified to
fall outside genetic aberrations or validated by an independent method.

6.2.6.3 Unanswered Questions and Future Research Directions

One simple adjustment to the TOP–seq analysis that would greatly im-
prove the overall quality of results would be removal of possibly amplified
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sites. In this study, the MYCN locus was removed due to a possible am-
plification, however a larger set of regions is needed. It would be of a
great use to compile a collection of regions that are usually amplified
in cancers or regions that vary in copy numbers across different pop-
ulations to help adjust for possible signal enrichment caused by more
targeted sites.

One important piece of future work could be TOP–seq method applica-
bility to identify another type of genetic variation — single nucleotide
polymorphisms. Within a sample with a very deep coverage, it is possible
to align sequencing reads and identify polymorphisms compared to a ref-
erence sequence. Such analysis would not only provide the modification
status of CG sites but also provide information regarding DNA sequence
variants that are in linkage with a given CG site. Such application would
result in genomic and epigenomic profiles and, taking in account that the
TOP–seq method is more economically accessible, makes TOP–seq an
exceptional method both for genome–wide and epigenome–wide studies.
TOP–seq method projection from the epigenomic to genomic applica-
bility for large–scale population–level analyses would be of great scien-
tific interest as the relationship between DNA sequence variability, DNA
modification level and phenotype is not well elucidated.

6.2.6.4 Concluding Remarks

Herein, we described the application of the TOP–seq method in human
derived tissues and cell–types. The obtained results suggest that TOP–
seq provides a combination of single CG resolution and genome–wide cov-
erage. Epigenomic maps generated using this TOP–seq method provide
insights about DNA modification variability across samples pertaining
to distinct experimental groups or different types of genomic elements.

Statement III — The TOP–seq method provides information about
DNA modification signal across different genomic elements.
Statement IV — The TOP–seq method could be used to identify differ-
entially modified regions across samples pertaining pertaining to distinct
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sample groups.

6.3 Application of the hmTOP–seq Method in

mESCs

6.3.1 Introduction

5hmC is the most abundant form of oxidative DNA modification. It is
involved in multiple biological processes, including embryogenesis, neu-
rological processes, and cancerogenesis. Profiling of this relatively scarce
genomic modification requires sensitive, high–resolution techniques. This
chapter describes analysis of the new sequencing technique called hmTOP–
seq that can be used to identify 5hmC at single base resolution genome–
wide. To validate our approach, we used mouse ESC genomic DNA and
compared generated hmTOP–seq signal with data obtained from other
DNA modification profiling method and found good correlation between
5hmC mapped regions. We also compared 5hmCG distributions in genic
and epigenomics features such as histone modifications. Based on this
analysis, we conclude that hmTOP–seq could be used as a genome–wide
5hmCG modification profiling technique.

6.3.2 Materials and Methods

6.3.2.1 Samples Analysed

hmTOP–seq libraries were prepared using various amounts of DNA from
mESCs: 5, 50, and 500 nanograms (ng). For each specified DNA amount,
two technical replicates were generated. Additionally, negative control
libraries were prepared using the same hmTOP–seq library preparation
pipeline but without the BGT labelling step. A summary of all used
samples can be found in Table 6.4. All sequencing data were processed
as described in Chapter 4.
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Table 6.4 | mESCs Samples Analysed Using the hmTOP–seq Method

“Sample identifier” defines biological replicate, while “Replicate identifier” defines tech-
nical replicate. “DNA input” specifies the amount of DNA used for a given sample.
“Library type” describes library preparation type and “GEO code” encodes sample
identifier deposited under GEO accession GSE140206.

DNA GEO
Sample Replicate input, accession
identifier identifier ng Library type code

hmC ctrl 5 K1 5 hmTOP–seq (−BGT) GSM4156657
hmC ctrl 5 K2 5 hmTOP–seq (−BGT) GSM4156658
hmC 5 R1 5 hmTOP–seq GSM4156659
hmC 5 R2 5 hmTOP–seq GSM4156660
hmC ctrl 50 K1 50 hmTOP–seq (−BGT) GSM4156661
hmC ctrl 50 K2 50 hmTOP–seq (−BGT) GSM4156662
hmC 50 R1 50 hmTOP–seq GSM4156663
hmC 50 R2 50 hmTOP–seq GSM4156664
hmC ctrl 500 K1 500 hmTOP–seq (−BGT) GSM4156665
hmC ctrl 500 K2 500 hmTOP–seq (−BGT) GSM4156666
hmC 500 R1 500 hmTOP–seq GSM4156667
hmC 500 R2 500 hmTOP–seq GSM4156668

6.3.2.2 Identifying 5hmC Modified Cytosines

To analyse the 5hmC modification in the CG context, we used all CG
sites that were identified in both technical replicates. To identify the
5hmC modification in the CH context, we used a more sophisticated
filtering approach. First, we selected all mapped sequencing reads that
started exactly at cytosines in the CH context that contained no CG
site closer than seven nucleotides in the downstream direction. Next, we
removed all CH sites that were identified in at least one control sample
and finally selected only those CH sites that were identified in both
technical replicates.

6.3.3 Quality Control of Processed hmTOP–seq Sequenc-
ing Data

On average, each non–control sample contained 59 million raw sequenc-
ing reads (sd = 2.2) that decreased significantly after removing short
sequencing reads (Figure 6.17). The mapping rate for all samples was
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relatively high and after removing reads due to low mapping quality, the
read number decreased only marginally.

Average coverage of identified CG sites differed greatly between the dif-
ferent DNA input libraries, as well as, between the samples and their
corresponding controls (Figure 6.18 A, Supp. Table 2). Average
CG–coverage in samples varied from 4.5 to 12.8, while in the corre-
sponding control samples CG–coverage was on average two times lower.
After further investigation a great difference between samples and con-
trols was found in identified CG–fraction. While identified CG–fraction
varied from 5.6% to 34% in controls this fraction on average was only
0.01%.

Technical replicates of the higher–input hmTOP–seq libraries correlated
well at a single CG resolution (Pearson’s r = 0.46 and r = 0.8 for 50
ng and 500 ng input libraries, respectively Figure 6.19 A). While the
5 ng DNA input libraries showed considerably lower correlation between
technical replicates (Pearson’s r = 0.11). A further improvement in cor-
relations between technical replicates was noticed when larger genomic
regions were used. Pearson’s correlation in higher input libraries on av-
eraged increased up to r = 0.92 using 5 kb resolution, while 5 ng sample
this measurement increased only up to r = 0.55 (Figure 6.19 B). We
also found that overlap between the identified CG sites increases with
the amount of input DNA. Jaccard’s coefficient between in 500 ng tech-
nical replicates was 0.08 while in 50 ng samples it was 0.056, and in 5
ng samples only 0.02 (Figure 6.19 A). Even though overlap between
the identified CG sites was very low it was significant and non–random.
We additionally tested overlap between the identified CG sites using
Fisher’s exact test and discovered that 500 ng samples overlapped well
not only between the technical replicates, but also with other samples
(Figure 6.19 C). Additionally, subsampling of the original higher input
datasets was performed (Figure 6.20). This subsampling showed that
using higher amount of input DNA, but lower amount of reads higher cor-
relations between the technical replicates could still be achieved. After
decreasing library sizes 50% we observed only 10% decrease in correlation
between the technical replicates. Further subsampling only marginally
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Figure 6.17 | Amount of hmTOP–seq Reads After Each Processing
Step

The absolute change in read numbers after each processing step in mESC samples
analysed using different amount of input DNA (color scale encodes amount of used
DNA in nanograms). Samples and controls have different library sizes, but propor-
tional change in read numbers is similar between the two sample groups.
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decreased correlation and significant drop in correlation was observed
only reducing libraries down to 1%.
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Figure 6.18 | 5hmCG Modified DNA Signal in mESC Samples

(A) The average coverage of identified CG sites per each chromosome. Lower input
DNA libraries show higher average coverage than greater input DNA libraries. X–axis
represents amount of input used in particular sample. (B) The amount of identified
CG sites per chromosome. Control samples show close to zero amount of identified
CG sites while samples with BGT show higher amount and variability of identified
CG sites with greater amount of used DNA.

We then compared our 5hmCG datasets with the bisulfite treatment–
based TAB–seq data, showing that hmTOP–seq recovered 50% and 25%
of TAB–seq identified 5hmCG sites in the 500 ng and 50 ng input DNA
datasets, respectively (Fisher’s exact test estimates 4 and 3.8, respec-
tively, p–values < 2.2× 10−16). Direct comparison between the hmTOP–
seq and TAB–seq signal indicated good agreement between the two meth-
ods (Pearson’s r = 0.94, Spearman’s ρ = 0.96, Figure 6.21).

6.3.4 Epigenomic Maps

Analysis of 5hmCG distribution across various genomic elements demon-
strated good agreement with the published data. The highly hydrox-
ymethylated CG sites (top 20% of hmTOP–seq data) were enriched
in poised enhancers marked by histone H3 lysine 4 monomethylation
(H3K4me1) histone marks, active enhancers (marked by histone H3
lysine 27 acetylation (H3K27ac) and histone H3 lysine 4 trimethyla-
tion (H3K4me3), exons, 3'UTRs , downstream regions of protein–coding
genes, shores of CGIs, and non–active promoters depleted in histone
H3 lysine 9 acetylation (H3K9ac) histone mark (Figure 6.22). CGIs,
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Figure 6.19 | Similarity Statistics of Samples Analysed Using the
hmTOP–seq Method

(A) Similarity index measured in Pearson’s correlation, Spearman’s correlation or
Jaccard’s coefficient between replicates at a single CG site resolution. (B) Correlation
coefficient between replicates at varying sizes of genomic bins. (C) Fisher’s estimates
between all identified CG sites.

active promoters marked by H3K9ac, intergenic regions, and all major
type of repeats were depleted in 5hmCG sites (data shown only for long
terminal repeats), except for SINE repeats that demonstrated moderate
enrichment for less hydroxymethylated 5hmCG sites.

Using six hmTOP–seq control libraries, we observed 55,025 non–CG sites
of which only 190 overlapped in at least two control libraries, and only
284 of them overlapped with the hydroxymethylated CH sites identified
in the 500 ng hmTOP–seq libraries, suggesting that these sites resulted
from random priming events rather than from BGT directed covalent
labelling and could be defined as false positives. Of all CH sites detected
in the 500 ng hmTOP–seq libraries, we selected only those sites which
overlapped between technical replicates for further analysis, resulting
in a final set of 76,665 5hmCHs (average coverage 2.7, Pearson’s r =
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Figure 6.20 | Concordance Between hmTOP–seq Technical Replicates

Correlation between technical replicates using subsamples of the original library sizes.
Original library sizes in 500 ng and 50 ng samples were gradually reduced every
10% up to 1%. Pearson’s correlation decreases only marginally with up to 50% of
the library sizes and reaches 0 with only 1% of the original library size. Percentage
displayed in a clockwise manner represents amount of used library size which decreases
from 100% to 1%. Color scale and distance towards the centre of the graph represents
Pearson’s correlation between technical replicates.
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Figure 6.21 | Concordance Between hmTOP–seq and TAB–seq

Comparison of hmTOP–seq average CG–coverage and 5hmC percentages estimated
by bisulfite–based TAB–seq. Relationship between both signals showed high Pear-
son’s correlation r and significant linear relationship R2.
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Figure 6.22 | hmTOP–seq Signal Across Genomic Elements

Fisher’s exact test estimates for the enrichment or depletion of the high–(top 20%),
and low–coverage (bottom 20%) 5hmCG sites across various genomic elements.
Poised enhancers (“enh.”): regions with H3K4me1 mark only; active enhancers: re-
gions with H3K4me1 and H3K27ac histone marks; active promoters: 2 kb regions
upstream of the gene start that overlap H3K9ac histone mark; inactive promoters: 2
kb upstream regions depleted in H3K9ac. All estimates (presented for a 500 ng input
hmTOP–seq library) have Fisher’s exact test p–values less than 0.05.

0.76). Half of detected 5hmCHs were found in CA sites (CA:CT:CC =
0.50:0.33:0.17) and distributed in a ratio 1:2 in CHG and CHH context.

6.3.5 Discussion

6.3.5.1 New Insights This Study Provided

In this chapter, we provided an application of the hmTOP–seq method
to profile 5hmCG modification at a single CG resolution genome–wide.
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We show that the computed 5hmCG signal is reproducible and corre-
lates well in higher input DNA libraries. Moreover, agreement in DNA
modification signal between the hmTOP–seq and other methods is rela-
tively high. We also proved that the hmTOP–seq method can identify
5hmC modification in the CH context in a reproducible manner. Fi-
nally, we presented genome–wide 5hmCG modification enrichment maps
across various genomic elements. Computed enrichments agree well with
previously reported results, proving that the hmTOP–seq method could
be used as an alternative method for currently applied epigenome–wide
profiling techniques.

6.3.5.2 Concluding Remarks

Herein, we presented an application of the hmTOP–seq method to profile
5hmCG modification in mouse embryonic stem cells. The obtained re-
sults suggest that the hmTOP–seq method could be used as an epigenome–
wide single nucleotide profiling technique for 5hmC DNA modification.

Statement V — The hmTOP–seq method provides information about
the DNA modification signal across different genomic elements.

6.4 Application of the caCLEAR Method in mESCs

6.4.1 Introduction

This chapter presents caCLEAR, a new method for sequence–specific
detection of 5caC, a rare DNA modification. To date, most mapping
technologies of 5caC have relied on the use of bisulfite which converts
5caC differentially from other modified cytosines. Herein, we present
quality control results for the caCLEAR method in mouse embryonic
stem cells of different states of pluripotency as well as cells lacking TDG,
an enzyme that can remove 5caC. Additionally, 5caC enrichment maps
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are presented across various genomic elements and show that caCLEAR
could be used as genome–wide DNA modification profiling technique.

6.4.2 Materials and Methods

6.4.2.1 Samples Analysed

The caCLEAR method was applied for the analysis of 5caC in mouse
ESCs. Tdg depleted (Tdg −/−; Tdg) and Tet1/2/3 triple knockout (Tet
TKO) mESCs were used as positive and negative controls in addition to
wild–type (WT) mESCs. Depending on the culture conditions, mESCs
can adopt two inter–convertible states resembling two different devel-
opmental stages (Habibi et al., 2013). For instance, mESCs grown in
serum supplemented with leukaemia inhibitory factor are similar to cells
from the early epiblast, while mESCs cultivated in serum–free medium
with two small molecule kinase inhibitors (2i) closely resemble cells from
the inner cell mass (Martello and Smith, 2014). The mESCs were culti-
vated in serum/LIF and serum/LIF/2i conditions (termed later as serum
and serum–2i mESCs) and to increase the quality of analysis and repro-
ducibility of results, all samples contained two technical replicates. A
summary of all the samples used can be found in Table 6.5. All se-
quencing data was processed as described in Chapter 4.

6.4.2.2 Identifying 5caC Modified CG sites

The 5caCG sites were selected by evaluating various combinations be-
tween CG sites identified in different samples (i.e., Tet TKO, Tdg and
WT). First, CG sites identified in Tet TKO libraries were removed from
all the samples. Since Tet TKO samples were negative controls, these
CG sites should be random noise, thus are false–positive sites. For Tdg
samples, we only used those CG sites that in both technical replicates
had CG–coverage equal or greater than the average coverage in that
particular sample. A similar strategy was applied for wild–type samples,
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Table 6.5 | mESCs Samples Analysed Using the caCLEAR Method

“Sample identifier” defines biological replicate, while “Replicate identifier” defines
technical replicate. “Genotype” specifies genetic buildup, and “Growth conditions”
environmental conditions of a given sample. “GEO code” encodes sample identifier
deposited under GEO accession GSE142319.

GEO
Sample Replicate Growth accession
identifier identifier Genotype conditions code

Serum WT R1 Wild type Serum GSM4225201
Serum WT R2 Wild type Serum GSM4225202
Serum 2i WT R1 Wild type Serum 2i GSM4225203
Serum 2i WT R2 Wild type Serum 2i GSM4225204
Serum Tdg R1 Tdg−/− Serum GSM4225205
Serum Tdg R2 Tdg−/− Serum GSM4225206
Serum 2i Tdg R1 Tdg−/− Serum 2i GSM4225207
Serum 2i Tdg R2 Tdg−/− Serum 2i GSM4225208
Tet TKO R1 Tet 1/2/3 triple knockout Serum GSM4225209
Tet TKO R2 Tet 1/2/3 triple knockout Serum GSM4225210

however additional filtering steps were included. First, CG sites that in
both technical replicates had coverage equal or greater than the aver-
age coverage were selected, then all CG sites that were not identified in
the corresponding Tdg sample were removed. Finally, 10% of identified
CG sites that had the largest coverage difference between the technical
replicates were removed.

6.4.3 Quality Control of the Processed caCLEAR Sequenc-
ing Data

On average, each sample contained 34 million raw sequencing reads that
varied greatly between different sample groups (Figure 6.23). Both Tdg
sample groups and 2i wild–type sample group on average compromised
53 million reads (sd = 8), while remaining sample groups on average
contained only 15 million reads (sd = 1.5).

Highest average coverage of identified CG sites was observed in Tdg
samples, where it was very similar between the 2i and not 2i groups.
In wild–type samples coverage was lower and varied greatly between
two previously mentioned groups (Figure 6.24 B, Supp. Table 3).
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Figure 6.23 | Amount of caCLEAR Reads After Each Processing Step

The absolute change in read numbers after each processing step in mESC samples
pertaining to different experimental groups.
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Interestingly we observed great difference in the amount of identified
CG sites when comparing 2i and not 2i groups (Figure 6.24 B). Both
Tdg and wild–type samples with 2i contained higher amount of identified
CG sites than samples without 2i (almost two times for Tdg and three
times for wild–types samples).

Technical replicates from both Tdg groups showed similar medium to
high correlation (Pearson’s r = 0.87 and Spearman’s ρ = 0.49, Fig-

ure 6.25 A). Meanwhile both wild–type groups showed different corre-
lations between the technical replicates. Pearson’s r = 0.42 (Spearman’s
ρ = 0.12) for 2i group and Pearson’s r = 0.29 (Spearman’s ρ = 0.23)
for not 2i group. Correlation between the technical replicates expect-
edly increased when computed and higher resolutions (Figure 6.25 B).
Pearson’s r reached nearly maximum correlation when evaluated in 5 kb
regions for both Tdg groups. Meanwhile for wild–type and Tet samples
correlation increased with the size of used genomic bins and expectedly
could be even higher when computed in even larger regions. Finally,
overlap between the identified CG sites was calculated (Figure 6.25 A,

C). Both Tdg sample groups showed higher Jaccard coefficient between
the technical replicates and with another Tdg group when tested with
Fisher’s exact test. Overlap for the wild–types groups was lower than in
the corresponding Tdg libraries, but higher than in Tet control proving
that identified CG sites were not selected randomly.

6.4.4 Epigenomic Maps

Although the distribution of the called 5caCG sites varied in gene reg-
ulatory elements and genomic features for different conditions and cell
types, most 5caCG sites were enriched in poised and active enhancers
(marked by H3K4me1 and H3K27ac/H3K4me1, respectively) and bind-
ing regions of various pluripotency–related transcription–factors, such as
Sox2, Nanog, Oct4, and SINE repeats (Figure 6.26).

Finally we compared identified CG sites with open chromatin regions
from various mouse tissues and organs generated with the ATAC–seq
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Figure 6.24 | 5caCG Modified DNA Signal in mESC Samples

(A) The average coverage of identified CG sites per each chromosome. Tdg samples
show higher average coverage compared to the wild–type samples, while Tet control
sample shows the lowest CG–coverage. On average each Tdg sample had 1.8 times
higher CG–coverage than a corresponding wild–type sample. (B) The amount of
identified CG sites per chromosome. On average each Tdg sample identified 2.5 times
more CG sites than a corresponding wild–type sample. Coverage and identified CG
site statistics is computed using all identified CG sites in the genome (i.e., before
applying stringent filtering steps documented in section Section 6.4.2.2).

method (Figure 6.27). We observed great variability between sample
groups and used mouse organs. Both wild–types samples showed lower
Fisher’s exact test estimates in all tested organs with serum–2i sample
showing significant depletion. Serum–2i Tdg sample was between wild–
type and serum samples — it showed significant enrichment or depletion
depending on the organ. Identified CG sites were enriched in gastroin-
testinal organs (e.g., stomach and intestine), lungs, but lightly depleted
in neural system organs.

6.4.5 Discussion

6.4.5.1 New Insights Provided by This Study

This chapter described the application of the caCLEAR method to pro-
file 5caCG modification at a single CG resolution genome–wide. We
show that the computed 5caCG signal is reproducible and correlates well
between technical replicates. Additionally, we presented genome–wide
5caCG modification enrichment maps across various genomic elements
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Figure 6.26 | caCLEAR Signal Across Genomic Elements

Fisher’s exact test estimates for the enrichment or depletion of 5caCG sites across
various genomic elements in wild–type and Tdg samples. Poised enhancers, regions
with H3K4me1 histone marks; active enhancers, regions with H3K4me1 and H3K27ac
marks; active promoters, 2 kb regions upstream of genes that overlap the H3K9ac
histone mark. All shown enrichment or depletion values have Fisher’s exact test
p–values less than 0.05.

used as genome–wide profiling technique to improve our understanding
of epigenomic patterns.

Statement VI — caCLEAR method provides information about DNA
modification signal across different genomic elements.
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Figure 6.27 | caCLEAR Signal Enrichment Within Open Chromatin
Loci

Average Fisher’s exact test estimates of the caCLEAR identified 5caCG site enrich-
ment or depletion within open chromatin loci identified in different mouse tissues
using the ATAC–seq method. Both serum–2i samples show lower overlap with open
chromatin loci (wild–type sample shows significant depletion, while 2i Tdg sample
results in odds ratios around zero). Both serum samples show significant enrichment
in all reported mouse tissues.

6.5 Application of hmTOP–seq and TOP–seq Meth-

ods for Prenatal Testing

6.5.1 Introduction

Trisomy of chromosome 21 (T21) is the most common human autosomal
aneuploidy that results in a collection of phenotypical features (physi-
cal and intellectual disabilities) known as Down syndrome (Antonarakis
et al., 2020). Invasive diagnostic procedures such as amniocentesis and
chorionic villus sampling followed by genetic analysis (e.g., karyotyping)
are currently used to confirm the diagnosis of T21 (Alfirevic et al., 2003).
Although the safety of invasive procedures has improved, the risk of mis-
carriage (0.3% to 0.9% for amniocentesis and chorionic villus sampling)
still remains (Salomon et al., 2019). Hence, to reduce the number of
invasive diagnostic procedures, non–invasive and highly reliable prenatal
screening tests are required.

Since the discovery of fetal genomic material in the form of circulating
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cell–free fetal DNA in the blood plasma of pregnant female, many efforts
have been made to employ cffDNA for non–invasive prenatal testing of
fetal genomic mutations (Lo et al., 1997; Norton and Wapner, 2015).
Such screening has a detection rate for T21 of more than 99%, with
a false positive rate as low as 0.1% (Gil et al., 2015). Thus, NIPT
based diagnostic technologies represent a substantial improvement over
traditional screening. However, the detection of cffDNA in maternal
blood circulation is a considerable challenge as only 10% of the DNA in
the plasma of pregnant female is fetally derived (Lo et al., 2010).

Here, we applied TOP–seq and hmTOP–seq technologies to analyse DNA
modifications in maternal cfDNA for the identification of fetal–derived
genomic regions. Genome–wide 5hmCG and uCG modification maps of
cfDNA or chorionic villus DNA samples were created and we also calcu-
lated differential modification signal enrichment in various genomic ele-
ments for the employed sample groups. Most importantly, fetal trisomy
of chromosome 21 was detected with excellent specificity/sensitivity us-
ing regional modification differences. In addition, the fetal–fraction from
cfDNA was calculated using uCG and 5hmCG signal.

6.5.2 Materials and Methods

6.5.2.1 Samples Analysed

In this study, TOP–seq and/or hmTOP–seq technologies were applied to
construct epigenomic maps of the various sample groups Table 6.6. Four
non–pregnant controls (NPC) were analysed using TOP–seq, another
four NPCs were analysed using hmTOP–seq technologies and another
three NPCs were analysed using both TOP–seq and hmTOP–seq tech-
nologies. Seven chorionic villi (CV) samples were analysed using TOP–
seq (three of them were also analysed using the hmTOP–seq method).
Finally, thirteen cfDNA samples from pregnant female were analysed us-
ing TOP–seq and eleven cfDNA samples hmTOP–seq technologies (six
samples were analysed using both technologies). A fraction of pregnant
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female was carrying T21 positive fetuses (five TOPseq and four hm-
TOPseq). Four additional cfDNA samples from pregnant female were
also obtained, each of them containing on average 2.5 million raw reads
(two T21 fetuses and two non–T21 fetuses). These samples with fewer
reads were necessary to provide sensitive analysis of the fetal fraction
and detection of fetal abnormalities. All sequencing data was processed
as described in Chapter 4.

Sample outlier identification was performed separately for uCG and
5hmCG samples. CG–coverage matrices were transformed using Hellinger
transformation, then represented in two–dimensional space using nMDS
with Bray–Curtis similarity index (Bray and Curtis, 1957; Legendre and
Gallagher, 2001). Samples that were further than two standard devia-
tions away from the mean of their own sample group (cfDNA of NPCs,
cfDNA of pregnant female, CVs) in either the first or second nMDS di-
mensions were deemed outliers and removed from further analysis. There
were three outlying samples in uCG and one in the 5hmCG dataset (two
uCG cfDNA samples, one uCG CV samples and one 5hmCG samples)
that were removed from further analysis.

6.5.2.2 DMR Calculation in Cell–Free DNA

Chromosome 21 was partitioned into 100 bp non–overlapping regions
and the log transformed CG–coverage and CG–fraction was calculated
for each region. The CG–coverage was normalised by the total read count
in a reference chromosome and the CG–fraction was normalised by the
overall identified fraction in a reference chromosome. Chromosomes 20
and 16 were used as references for uCG and 5hmCG data, respectively.
Next, for each region, two logistic regression models were fitted. The full
model included CG–coverage, CG–fraction, and, for T21–specific DMRs,
fetal sex and fetal fraction as independent variables. CG–coverage and
CG–fraction were excluded from the null model. ANOVA test was used
to compare full and null models to obtain a p–value. In cases where
the models did not converge, fetal sex was removed. FDR was used to
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Table 6.6 | Human Samples Analysed in the NIPT Study

“Sample identifier” defines biological replicate and “Sample status” defines biological
state of the individual from which cffDNA sample was obtained (e.g., pregnant fe-
male, non–pregnant control female). “Fetal karyotype” and “Fetal sex” describe fetal
genotype. “Source of DNA” specifies tissue (e.g., circulating cell–free DNA or chori-
onic villus). “Analysed modifications” column defines if unmodified DNA, 5hmCG
modified DNA or both were analysed in a given sample.

Sample Sample Fetal Fetal Source Analysed
identifier status karyotype sex of DNA modifications
002 Pregnant 46, XY Male cfDNA uCG
004T21 Pregnant 47, XY, +21 Male cfDNA uCG & 5hmCG
006 Pregnant 46, XY Male cfDNA uCG
007 Pregnant 46, XX Female cfDNA 5hmCG
009 Pregnant 46, XX Female cfDNA uCG
011T21 Pregnant 47, XX, +21 Female cfDNA 5hmCG
016T21 Pregnant 47, XX, +21 Female cfDNA uCG & 5hmCG
022 Pregnant 46, XY Male cfDNA uCG
023 Pregnant 46, XY Male cfDNA 5hmCG
025T21 Pregnant 47, XY, +21 Male cfDNA uCG
031 Pregnant 46, XX Female cfDNA uCG
041 Pregnant 46, XX Female cfDNA uCG
049T21 Pregnant 47, XX, +21 Female cfDNA uCG
050 Pregnant 46, XX Female cfDNA 5hmCG
050T21 Pregnant 47, XY, +21 Male cfDNA 5hmCG
068T21 Pregnant 47, XX, +21 Female cfDNA uCG
083 Pregnant 46, XX Female cfDNA uCG
130 Pregnant 46, XY Male cfDNA 5hmCG
136 Pregnant 46, XY Male cfDNA 5hmCG
137 Pregnant 46, XY Male cfDNA uCG & 5hmCG
144 Pregnant 46, XX Female cfDNA 5hmCG

001 NPC NA NA cfDNA 5hmCG
004 NPC NA NA cfDNA 5hmCG
005 NPC NA NA cfDNA 5hmCG
007ctrl NPC NA NA cfDNA 5hmCG
011 NPC NA NA cfDNA uCG
017 NPC NA NA cfDNA uCG
035 NPC NA NA cfDNA uCG
E NPC NA NA cfDNA uCG & 5hmCG
E_R2 NPC NA NA cfDNA uCG
J NPC NA NA cfDNA uCG & 5hmCG
M NPC NA NA cfDNA uCG & 5hmCG

10 Pregnant 46, XX Female CV uCG & 5hmCG
19 Pregnant 46, XX Female CV uCG
20 Pregnant 46, XY Male CV uCG
22 Pregnant 46, XX Female CV uCG & 5hmCG
23 Pregnant 46, XY Male CV uCG
24 Pregnant 46, XX Female CV uCG
6 Pregnant 46, XY Male CV uCG & 5hmCG
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adjust p–values for multiple testing and q–value < 0.05 was used as a
significance threshold if not specified otherwise.

For each placenta–specific DMR, leave–one–out cross–validation proce-
dure was performed as described above to determine its ability to diag-
nose T21. For each cross–validation cycle, a Bayesian generalised linear
model with normalised CG–coverage and CG–fraction as independent
variables was constructed (Gelman et al., 2008). DMRs with area under
the curve (AUC) equal to one were selected as discriminatory of fetal
karyotype.

6.5.2.3 Fetal Fraction Calculation in Cell–Free DNA

The fetal fraction was predicted using the SeqFF method, an optimal
method for the used technologies as it is applicable to both fetal sexes
and does not require parental genotype (Kim et al., 2015). SeqFF fetal
fraction prediction is based on two estimates – elastic net (ENET) and
weighted rank selection criterion (WRSC).

To calculate ENET and WRSC estimates, the genome was divided into
50 kb non–overlapping bins (although different bin sizes could be evalu-
ated, but 50 kb was chosen to mirror the data partitioning of the original
SeqFF publication) (Kim et al., 2015). Within each bin, the GC–content
and total coverage (uCG and/or 5hmCG) for each sample was calcu-
lated. Next, weighted coverage values were normalised for GC–content
using polynomial regression (R stats::loess function) (Chambers et al.,
1990). Normalised values were used in ENET and WRSC estimators and
the final estimated fetal fraction was an average between the two esti-
mators.

ENET is a regularised regression that is a combination of least absolute
shrinkage and selection operator and ridge regression (Friedman et al.,
2010), which can be simply written as

∑n
i=0 βiXi + δ where β is deter-

mined by ENET for ith 50 kb genomic region among n autosomal bins,
X is the normalised coverage for bin i and δ is a correction parameter
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defined by ENET. In WRSC, bin values for chromosome Y were pre-
dicted using reduced–rank regression (Izenman, 1975). Then, for both
sexes, chromosome representations were evaluated as the ratios of to-
tal read counts between sex and autosomal chromosomes. SeqFF model
parameters were calculated using the fetal–fraction dataset from 25,312

pregnant female and further validated on two independent sets of preg-
nant female (233 and 272 number of samples) (Kim et al., 2015).

6.5.2.4 Enrichment Analyses

Enrichment of genomic elements with the strongest signal was performed
as follows. First, the genome was divided into 1 kb wide non–overlapping
regions and the total coverage was computed per sample within each re-
gion. The total coverage values were then averaged per group of samples
(cfDNA of NPCs, cfDNA of pregnant female, CVs) and regions falling
among the top 10% most covered regions were designated as those hav-
ing the highest signal. Then, a contingency table was computed for each
genomic CG falling into one of the highest signal regions and overlapping
specific genomic elements. Fisher’s exact test was performed to estimate
the OR and p–value. Enrichment of DMRs with genomic regions was
computed by forming a contingency table which contained information
regarding whether each DMR is significant and intersects a specific ge-
nomic element. As above, Fisher’s exact test was used to estimate the
ORs and p–values.

From the set of ARIES mQTL birth and pregnancy probes only high–
quality probes were selected (Gaunt et al., 2016; Naeem et al., 2014). In
total, there were 4,243 Illumina Infinium HM450 array probes in chro-
mosome 21 and 2,642 after selecting only high–quality probes (238 birth
mQTL and 291 pregnancy mQTLs). Enrichment of mQTL probes with
DMRs was calculated by creating a contingency table which evaluated
whether each Illumina Infinium HM450 array probe is an mQTL and
intersects a DMR.
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6.5.3 Quality Control of Processed Sequencing Data

After processing sequencing reads and calculating CG–coverage, we firstly
compared similarity statistics between the biological replicates (Figure 6.28).
On average uCG biological replicates were more similar than 5hmCG
replicates in all measured statistics. Interestingly, correlation between
the biological replicates was highest for the cfDNA from the pregnant
female uCG samples, while in 5hmCG samples this group had lowest
correlation compared to two other experimental groups.
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Figure 6.28 | Similarity Statistics of NIPT Samples

Similarity index measured in Pearson’s correlation, Spearman’s correlation or Jac-
card’s coefficient between biological replicates in given sample groups at a single CG
site resolution.

To test whether uCG and 5hmCG modification differences could dis-
tinguish between the sample groups, we first looked at the total se-
quencing coverage of the uCG and 5hmCG sites. The mean total uCG–
coverage was different across the three groups of samples (ANOVA p–
value 7× 10−7); it was the lowest among NPCs and the highest among
CVs (Figure 6.29). Importantly, the mean total coverage of the preg-
nant female cfDNA was in between the NPCs and CVs. Furthermore,
the fraction of identified uCG sites covered by at least one read showed
a very similar difference among all groups (ANOVA p–value 7.4× 10−7).
For the 5hmCG samples, the total coverage was not significant between
groups (ANOVA p–value 0.05) but the fraction of identified CG sites
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FDR–significant DMRs from the hmTOP–seq data, therefore, we used
nominal p–value < 5× 10−2 threshold and identified 4,930 pregnancy–
specific 5hmCG DMRs.

Next, by comparing the same NPC samples with CV samples, it was
revealed that the DNA modification signal is CV–specific (i.e., fetus–
specific). This comparison revealed 16,555 CV–specific uCG DMRs
(FDR q–value < 5× 10−2) and 15,986 CV–specific 5hmCG DMRs (FDR
p–value < 5× 10−2).

Table 6.7 | Amount of NIPT DMRs

Amount of DMRs identified in specified group for both analysed DNA modification
groups.

DNA modification Pregnancy Chorionic villi Placenta T21

uCG 2,761 16,555 2,164 3,490
5hmCG 4,930 15,986 1,589 2,002

Finally, by intersecting pregnancy–specific regions with CV–specific re-
gions, we extracted fetus–specific DNA modification signal that could be
found in cfDNA of pregnant female, we termed those regions placenta–
specific DMRs. This intersection between the pregnancy–specific and
CV–specific DMRs for both uCG and 5hmCG DMR sets was larger than
could be expected by chance alone (n = 2,164, OR = 43; n = 1,589, OR
= 5.5, for uCG and 5hmCG, respectively; p–values less than 1× 10−15).
For the placenta–specific uCG DMRs, the difference between the NPCs
and cfDNA samples of pregnant female was concordant with the differ-
ence between NPCs and CV samples (Pearson’s r = 0.82 and Pearson’s
r = 0.89, for CG–coverage and CG–fraction, respectively, Figure 6.32).
Similar results were observed for 5hmCG DMRs (Pearson’s r = 0.8 and
r = 0.8, for CG–coverage and CG–fraction, respectively).

Identified pregnancy–specific and CV–specific DMR sets intersected more
than expected by chance, however, this result might have been influenced
by genetic variation. It is possible that identified DMRs were derived
from mQTL regions and observed DNA modification signal is related to
DNA sequence variability. In this case, the used NPC samples could be
characterised by one genetic background and pregnant female samples
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Figure 6.33 | Enrichment of NIPT DMRs in Genomic Elements

Enrichment of genomic elements for the placenta–specific and T21–specific DMRs
using Fisher’s exact test. All reported p–values are less than 0.05 except for ones
marked with a red cross.

Finally, we asked whether the placenta–specific DMRs are informative
of fetal karyotype (i.e., T21). Using leave–one–out cross–validation, we
constructed and evaluated a logistic regression model for each placenta–
specific DMR with the CG–coverage and CG–fractions as independent
variables and fetal karyotype as the response variable. In total, 376 uCG
and 496 5hmCG DMRs were discovered in chromosome 21 that classified
samples according to fetal karyotype with 100% accuracy (AUC = 1)
Figure 6.34.

After identifying placenta–specific DMRs and the subset that can classify
samples according to the fetal karyotype with 100% accuracy, we then
took a different approach, directly evaluating modification differences
between the cfDNA samples of healthy and T21–positive pregnancies
and computed the T21–specific DMRs. A logistic regression model was
used with the CG–coverage and CG–fraction as independent variables
and karyotype as the response variable. In addition, we adjusted for
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Figure 6.34 | Distribution of AUC Values

Computed AUC values for the fetal karyotype prediction using placenta–specific
DMRs.

possible confounding effects of the fetal fraction and fetal sex which could
not be accounted for in the previous analyses (i.e., in comparison with
NPC samples). We identified 3,490 uCG and 2,002 5hmCG DMRs (FDR
q–value < 5× 10−2), of which only 82 intersected between the two sets
(OR = 2.3, p–value = 1.1× 10−10).

Only 216 and 124 T21–specific DMRs intersected with placenta–specific
DMRs for uCG and 5hmCG respectively (OR = 6.1 and OR = 8.2; p–
value < 2.2× 10−16), demonstrating that different DMR identification
strategies lead to different DMR sets in chromosome 21 which can be
complementary for detecting fetal karyotype. It was noted that T21–
specific DMRs exhibit higher CG–coverage and CG–fraction differences
than regions that did not exhibit differential modification (Figure 6.35).

Interestingly, both uCG and 5hmCG DMR sets better intersected the
pregnancy–specific DMR sets (OR = 6.6 and OR = 9, for uCG and
5hmCG, respectively) than the CV–specific DMR sets (OR = 2.4 and
OR = 2.9 for uCG and 5hmCG, respectively; for all comparisons p–
value < 2.2× 10−16). This result suggests two possibilities, that fetal
tissues other than the placenta–derived trophoblasts might contribute
to the cfDNA mixture of maternal blood or it could be an artifact of
used tissue type – the pregnancy–specific DMRs are also measured in
cfDNA, like the T21–specific DMRs, where the CV–specific DMRs are
identified by comparing two different tissues. Additionally, we tested the
overlap of T21–specific DMRs with known mQTL loci and no significant
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(Palomaki et al., 2011). Laboratory tests to determine the fetal frac-
tion directly on isolated DNA have been developed but have the risk of
adding an error prone step in the diagnostic workflow. When splitting
the isolated DNA in two different lab flows (one for determination of fe-
tal fraction and the other for the library preparation), an error or sample
swap in either flow might result in a mismatch between the fetal fraction
and the NIPT result. Furthermore, this procedure reduces the amount
of analysed DNA which is already precious and complicated to obtain.
Therefore, the fetal fraction should preferably be determined from the
same next–generation sequencing data used for the determination of the
chromosomal aberrations (van Beek et al., 2017).

Having established that the uTOP–seq and hmTOP–seq signals are higher
among pregnant female, we further sought to determine the correlation
between the signal strength and fetal fraction. SeqFF was applied to
the uTOP–seq and hmTOP–seq data, observing a high correlation be-
tween the predicted and reference fetal fractions (Pearson’s r = 0.86,
p–value = 3.2× 10−4 and r = 0.9; p–value = 3.9× 10−4), for uCG and
5hmCG, respectively (Figure 6.37). Importantly, a simple linear re-
gression revealed that an increase in the reference fetal fraction by 0.01
corresponded to an increase in the fetal fraction predicted from uCG pro-
files by 0.079. For 5hmCG data, the predicted foetal fraction decreased
by 0.226 for every 0.01 increase of the reference fraction. Interestingly, an
increasing fetal fraction would acquire increasing read counts in uTOP–
seq but decreasing read counts in hmTOP–seq. Such inverse relationship
in hmTOP–seq most likely indicates that the regions used by SeqFF are
highly enriched in uCG sites but depleted in 5hmCG sites in cffDNA.

These results indicated that both uTOP–seq and hmTOP–seq enable
enrichment of fetal circulating DNA from maternal cfDNA. Importantly,
hmTOP–seq may be more sensitive for the evaluation of the fetal frac-
tion, most likely due to the well–known role of tissue specificity of 5hmC.
Consequently, fewer reads would be necessary to provide sensitive anal-
ysis of the fetal fraction and detection of fetal abnormalities. To further
test this hypothesis, four additional cfDNA samples were analysed by
hmTOP–seq obtaining on average 2.5 million raw reads for each sample.

152





6.5. Application of hmTOP–seq and TOP–seq Methods for Prenatal Testing

based on 5hmCG analysis could potentially maximise the diagnostic sen-
sitivity in relation to cost and be an optimal choice for sequencing–based
epigenetic approaches of NIPT. Furthermore, fetal fraction can be mea-
sured directly from the read count of hmTOP–seq and uTOP–seq using
a computational method that estimates the fetal fraction independent of
fetal sex.

A large panel of placenta–specific uCG– and 5hmCG–biomarkers were
identified and utilised for detection of fetal karyotype. To ascertain global
methylation changes in T21 fetuses, the computation of DMRs specific
for the T21–affected fetuses was also included. Interestingly, these DMRs
better overlapped the healthy pregnancy–specific DMR sets than those of
CV–specific DMRs, suggesting that DNA fragments of other tissue– ori-
gin than placenta might contribute to cffDNA. This points to a need for
future comprehensive investigation of the tissue composition of maternal
cfDNA. Analysis of the pregnancy–specific and T21–specific DMRs in-
dicated the highly perturbed epigenome of T21–affected fetuses. Thus,
disease–specific epigenetic characteristics should certainly be taken into
account for the development of reliable NIPT of fetal aneuploidies, in-
cluding T21.

6.5.7.2 Difficulties in Applying TOP–seq Based Methods

Differentially modified regions were identified in 100 bp non–overlapping
bins. Such a naive approach sets a size limit of the expected modification
region, which might miss larger scale epigenetic differences. In future ap-
plications, other effective supervised methods, such as the parsimonious
temporal aggregation, could be used to capture more sensitive changes
of DNA modifications (Gordevičius et al., 2009).

The observation that T21 DMRs overlapped more with the pregnancy–
specific than the CV–specific DMRs is very compelling but there is an-
other possible reason than non–trophoblast tissues contributing to fetal
cfDNA. It could be an artefact of tissue type — the pregnancy specific
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DMRs are also measured in cfDNA, like the T21 DMRs, while the CV–
specific DMRs originate from a different tissue. A wider set of analysed
tissues is needed to fully accept or reject these observations.

6.5.7.3 Unanswered Questions and Future Research Directions

Further validation of our findings in a large clinical cohort is necessary as
this study is limited by sample size. Additionally, the study can be ex-
panded to other common fetal aneuploidies such as Patau and Edwards
syndromes. Another interesting application of TOP–seq and hmTOP–
seq methods would be to interrogate imprinted regions in cfDNA analy-
sis.

6.5.7.4 Concluding Remarks

This study using our previously developed TOP–seq and hmTOP–seq
approaches obtained whole–genome uCG and 5hmCG maps of 10 CV
tissue and 38 cfDNA samples in total. Our results indicated that such
epigenomic analysis enriches fetal DNA fragments from maternal cfDNA,
with both methods yielding 100% accuracy in detecting Down syndrome
in fetuses. We identified 2,164 and 1,589 placenta–specific differentially
modified and 5hmC modified regions, respectively, in chromosome 21.
As well as 3,490 and 2,002 Down syndrome–specific differentially modi-
fied and 5hmC modified regions that can be used as biomarkers for the
identification of Down syndrome or other fetal epigenetic diseases.

Statement VII — TOP–seq and hmTOP–seq methods can be used
to generate single nucleotide epigenomic maps to decipher epigenetic
differences across genetic elements between different sample groups.
Statement VIII — TOP–seq and hmTOP–seq methods could be used
to identify fetal abnormalities in maternal cfDNA.
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General Conclusions

The contributions of this research to science are summarised as follows:

• Developed computational methods to efficiently and accurately
process TOP–seq based high–throughput epigenomic data. Cre-
ated strategies that enable investigation of DNA modification sig-
nal at a single cytosine resolution in a strand specific manner.

• Developed statistical learning techniques to enhance the quality of
the TOP–seq epigenomic signal. For a model IMR90 genome the
applied statistical learning approaches increased Pearson’s corre-
lation estimate between technical replicates up to r = 0.89, while
absolute Pearson’s correlation estimate at a single CG site with a
reference WGBS signal increased up to r = 0.71.

• TOP–seq based methods can provide information about different
DNA modifications across various genomic elements and features.

• TOP–seq and hmTOP–seq methods could be used to identify dif-
ferentially modified regions across samples pertaining to distinct
sample groups. Both methods are able to employ CG site cover-
age and identification information to classify samples originating
from different tissues or karyotypic groups. Identified 100 bp sized
regions could be later used for prenatal diagnostics or to evaluate
tissue composition within given sample.
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Santrauka

8.1 Įvadas

8.1.1 Tyrimo Pagrindimas

Epigenetiniai kontrolės mechanizmai, tokie kaip DNR modifikacijos, atlieka
svarbų vaidmenį praktiškai visuose gyvuose organizmuose reguliuojant
įvairius ląstelinius, vystymosi ir elgsenos procesus. Nepaisant DNR modifikacijų
svarbos biologijoje, daugybė sunkumų, susijusių su epigenetinių procesų
identifikavimu ir apibūdinimu, atbaido tyrėjus nuo šių tyrimų. Egzis-
tuoja dvi pagrindinės kliūtys plačiam epigenetinių procesų tyrimui. Pirma,
epigenomo kiekybinio įvertinimo metodai, tokie kaip viso genomo bisul-
fitinė sekoskaita (angl., WGBS ), yra labai brangūs ir sukuria didelį kiekį
duomenų. Antra, šie metodai negali optimaliai atskirti skirtingų tipų
DNR modifikacijų. Be to, nors WGBS ir yra plačiausiai naudojamas
metodas bei priimamas kaip aukso standartas, jis kenčia nuo eksperimentinių
artefaktų kaip didelė DNR degradacija.

TOP–seq (angl., Tethered Oligonucleotide–Primed Sequencing) yra pir-
masis metodas galintis praturtinti nemodifikuotus citozinus vienos bazės
skiriamaja geba išlaikant grandinės specifiškumą. hmTOP–seq yra vieno
nukleotido skiriamosios gebos 5hmC profiliavimo metodas. Galiausiai,
caC–Clearance (angl., caCLEAR) yra vieno nukleotido skiriamosios ge-
bos metodas, leidžiantis tiksliai per visą genomą atvaizduoti 5caC modi-
fikaciją. Šie nauji metodai gali padėti nustatyti genomo masto vieno nuk-
leotido epigenetinius žymenis su mažiau išteklių nei viso genomo bisul-
fitinė sekoskaita. Tačiau norint išnaudoti visas šių metodų galimybes,
reikia sukurti tinkamus statistinius ir kompiuterinius skaičiavimo meto-
dus. Šis tyrimas pateikia siūlymus, kaip galima išspręsti uždavinius,
kylančius dėl gana specifinių TOP–seq metodo duomenų. Be to, šiame
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darbe taip pat pristatoma keletas TOP–seq metodo pritaikymų — difer-
enciškai modifikuotų regionų (angl., DMR) identifikavimas, epigenominių
profilių sudarymas, signalo normalizavimas pagal genominį kontekstą.

Iš esmės čia pateiktas darbas susideda iš trijų pagrindinių dalių: supro-
jektuoti, patobulinti, pritaikyti. Projektavimo dalyje pristatome duomenų
apdorojimo metodiką, kuri neapdorotus TOP—seq epigenominius duome-
nis paverčia CG padengimo signalu. Patobulinimo dalyje mes pasiūlome
ir integruojame tris CG padengimo signalo transformacijas, kurios gali
žymiai pagerinti praturtinimu pagrįstą DNR modifikacijų signalą. Gali-
ausiai, pritaikymo dalyje pateikiame kelias metodų aplikacijas, kai sug-
eneruotas TOP–seq signalas gali būti naudojamas biologinei informacijai
gauti ir interpretuoti.

8.1.2 Tikslas ir Uždaviniai

Pagrindinis šiame darbe aprašyto tyrimo tikslas buvo išplėtoti statis-
tinius ir kompiuterinius įrankius, pritaikytus analizuoti TOP–seq metodu
pagrįstus didelio našumo epigenominius duomenis, ir pritaikyti šias priemones
eksperimentinėse aplinkose biologinėms žinioms įgyti. Šiam tikslui pasiekti
buvo iškelti šie uždaviniai:

• Sukurti kompiuterinius metodus, kaip efektyviai ir tiksliai apdoroti
TOP–seq sekoskaitos fragmentus.

• Sukurti statistinio mokymosi metodus, kad būtų pagerinta TOP–
seq signalo kokybė esant techniniam ir biologiniam triukšmui.

• Taikyti sukurtus metodus ir technikas, kad būtų galima palyginti
skirtingas genominių elementų DNR modifikacijas.

• Identifikuoti diferentiškai modifikuotus regionus, susijusius su skirtin-
gomis eksperimentinėmis grupėmis, naudojant TOP–seq metodo
didelio našumo epigenominius duomenis.
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8.1.3 Ginamieji Teiginiai

• Sukurti kompiuteriniai metodai gali būti naudojami efektyviai ir
tiksliai apdoroti TOP–seq metodo didelio našumo epigenominius
duomenis.

• Sukurti statistinio mokymosi metodai gali būti naudojami siekiant
pagerinti TOP–seq epigenominio signalo kokybę esant techniniam
ir biologiniam triukšmui.

• TOP–seq, hmTOP–seq ir caCLEAR metodai suteikia informaciją
apie DNR modifikacijas skirtinguose genomo elementuose.

• TOP–seq metodas gali būti naudojamas identifikuoti diferentiškai
modifikuotus regionus tarp mėginių, kurie kilę iš skirtingų audinių
ar ląstelių tipų.

• Norint nustatyti vaisiaus anomalijas motinos mėginių DNR, ky-
lančioje ne iš ląstelių, gali būti naudojami TOP–seq ir hmTOP–seq
metodai.

8.1.4 Mokslinis Naujumas ir Praktinė Vertė

Pagrindinis naujas aspektas šiame darbe yra statistinių ir kompiuterinių
skaičiavimo metodų kūrimas ir taikymas DNR modifikacijų analizei TOP–
seq, hmTOP–seq ir caCLEAR gautose didelio našumo epigenominiu-
ose duomenų rinkiniuose. Šiame darbe pateikiama išsami sekoskaitos
fragmentų apdorojimo metodika, sukurta specialiai TOP–seq sekoskaitos
duomenims. Be to, mes pateikiame sekoskaitos bibliotekos kokybės parametrus,
tokius kaip fragmentų ilgis, CG tankis, atstumas iki CG pozicijos genome.

Šiame moksliniame darbe taip pat aprašomas naujas sekoskaitos duomenų
transformacijos metodas — u–density. u–density pagerina genomo padengimo
signalo tikslumą, pasitelkdamas DNR modifikacijos informaciją iš kaimyninių
CG vietų ir normalizuodamas signalą pagal CG tankį. Be to, šiame darbe
taip pat buvo sukurti ir pritaikyti du statistiniu apsimokymu paremti
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DNR modifikacijų signalo transformacijos metodai. Šie metodai nau-
doja TOP–seq duomenis ir genomo konteksto informaciją, kad įvertintų
DNR modifikacijos lygius. Nedidelė WGBS rinkinio dalis buvo panau-
dota eksponentiniam ar dirbtinio neuroninio tinklo modeliui apmokyti,
kuris tada buvo naudojamas transformuoti TOP–seq signalą į vadinamąjį
CG metilinimo lygio signalą. Šie patobulinimai transformavo realiatyvų
padengimo signalą į absoliučių verčių skalę, o tai labai padidino kore-
liaciją su referentiniu duomenų rinkiniu ir leido lengviau interpretuoti
signalą.

Šiame darbe pateikiamas pirmasis išsamus vaisiaus nemodifikuotų ir hmC
modifikuotų CG vietų tyrimas motinos kraujo mėginiuose, skirtas nein-
vaziniam prenataliniam tyrimui (angl., NIPT ). Pirmą kartą mes ištyrėme
nemodifikuotą chorioninių gaurelių mėginių DNR frakciją ir palyginome
ją su ląstelių neturinčia vaisiaus DNR (angl., cffDNA). Be to, metodika
nustatyti DMR buvo pristatyta kaip perspektyvi strategija vaisiaus kari-
otipams aptikti. Šis viso genomo mastu atliktas TOP–seq DNR modifikacijų
profiliavimas, vykdytas sveikuose ir 21 chromosomos trisomijos teigiamu-
ose vaisiuose, leido nustatyti naujus biologinius žymenis, turinčius diag-
nostinę vertę. Šiame tyrime gauti diferentiškai modifikuoti regionai gali
padėti parinkti tinkamus diagnostinius žymenis tam tikrame klinikini-
ame kontekste. Tikimasi, kad šis metodas netgi gali pranokti šiuo metu
naudojamus NIPT testus.

8.2 TOP–seq Duomenų Apdorojimas

8.2.1 Įvadas

Šiame skyriuje pateikiama metodika, sukurta apdoroti TOP–seq sekoskaitos
duomenis. Ši metodika yra modifikuota plačiai naudojamų bioinfor-
matikos metodikų versija ir gali būti taikoma ne tik nemodifikuotų CG
dinukleotidų duomenų analizei, bet ir kitiems variantams (t.y., hmTOP—
seq — 5hmC modifikacijai, caCLEAR — 5caC modifikacijai). Šiame
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skyriuje dažniausiai vartojamas terminas TOP–seq, tačiau svarbu paminėti,
kad duomenų analizės procedūros yra taikomos ir kitiems metodo vari-
antams.

TOP–seq sekoskaitos duomenų apdorojimo eigą sudaro keturi pagrin-
diniai žingsniai:

• Sekoskaitos fragmentų apdorojimas

• Fragmentų prilyginimas prie referentinio genomo

• PGR duplikatų pašalinimas

• Fragmentų priskyrimas CG dinukleotidams

Skirtingam DNR šaltiniui (pvz., lambda bakteriofagui, eukariotinei ląstelei)
arba skirtingoms DNR modifikacijoms (pvz., nemodifikuotoms CG vi-
etoms, 5hmCG vietoms) gali reikėti kitokios TOP–seq duomenų apdoro-
jimo metodikos. Svarbu paminėti, kad TOP–seq sekoskaitos metodas
gali sugeneruoti dešimtis milijonų fragmentų, kurių analizei reikalingi
intensyvūs skaičiavimo procesai ir infrastruktūra. Šis skyrius suskirsty-
tas į penkias pagrindines dalis, keturiuose skyriuose pateikiamas atski-
ras darbo eigos etapas, o paskutiniame skyriuje aptariami pranašumai
ir trūkumai, rekomendacijos ir idėjos, kurias būtų galima įgyvendinti
ateityje siekiant pagerinti TOP–seq metodo duomenų analizę.

8.2.2 Sekoskaitos Fragmentų Apdorojimas

Neapdoroti sekoskaitos fragmentai gaunami iš naujos kartos sekoskaitos
aparato yra FASTQ failo formato, kuriame yra (kiekvienam fragmentui)
unikalus identifikatorius, nukleotidų seka ir kiekvieno nukleotido Phred
kokybės balas. Šių neapdorotų fragmentų procesavimas vyksta keturiais
etapais, kurie pavaizduoti Figure 4.1 schemoje. Pirmasis žingsnis nau-
doja komandą fastq_quality_trimmer (įdiegtą FASTX–Toolkit), kad
pašalintų per trumpus sekoskaitos fragmentus. Šis žingsnis yra greičio
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optimizavimas tolesniems etapams, nes per trumpuose fragmentuose pa-
prastai nėra 5' ir (arba) 3' sekos adapterių, todėl jų negalima klasifikuoti
kaip tinkamų analizei. Kaip filtravimo ribą naudojome 80 nukleotidų,
tačiau šis ilgio parametras įvairiuose eksperimentuose gali skirtis.

Tada cutadapt programa buvo naudojama pašalinti ar apkarpyti adapterių
sekas iš 5' ir 3' sekoskaitos fragmentų galų. Galiausiai komanda fastq_-

quality_trimmer naudojama siekiant pagerinti fragmentų kokybę. Pa-
prastai 3' fragmento galas turi mažesnį Phred kokybės balą, kuris gali
sukelti klaidingą prilyginimą prie referentinio genomo dėl nukleotidų
neatitikimo tarp konkretaus fragmento ir referentinės sekos. FASTX–Toolkit
buvo naudojamas apkarpyti fragmento galus, kurių Phred kokybės balas
buvo mažesnis nei 20. Be to, pašalinus adapterio sekas ir žemos kokybės
nukleotidus, FASTX–Toolkit pašalino fragmentus, kurie buvo per trumpi
prilyginimui (naudota 15 nukleotidų kaip slenksčio parametras). Šis
žingsnis užtikrina greitesnį prilyginimą ir aukštesnį prilyginimo įvertį.
Prilyginimo kokybės įvertis prieš ir po kirpimo pagal tam tikrą ribą yra
pavaizduotas Supp. Figure 1. Po kiekvieno apdorojimo etapo kokybės
ataskaitai sukurti buvo naudojama FastQC programa (su numatytaisi-
ais parametrais). Ši, atrodytų, nereikalinga procedūra užtikrina, kad
adapterių sekos būtų pašalintos teisingai, Phred balas būtų pakankamai
aukštas, o TOP–seq bibliotekos fragmentai prasidėtų CG dinukleotidu.

8.2.3 Fragmentų Prilyginimas prie Referentinio Genomo

Suprocesuotus TOP–seq sekoskaitos fragmentus galima prilyginti prie
referentinio genomo sekos, naudojant standartinius algoritmus ir įrankius
(pvz., bwa mem ar bwa aln). Standartinei TOP–seq analizei buvo naudo-
jama bwa mem komanda su numatytaisiais parametrais (išskyrus idxbase
parametrą — referentinio genomo seka, kuri priklausė nuo eksperimento).
samtools įrankis buvo naudojamas konvertuojant bwa programos sug-
eneruota palyginio SAM failo formatą į BAM failo formatą. BAM failas
yra atitinkamai surūšiuotas ir atrinktas fragmentams, kurių prilygin-
imo kokybė yra lygi arba didesnė nei 30 (samtools sort ir samtools
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view komandos). Figure 4.4 paveiksle pavaizduotas vieno mėginio pri-
lyginimo kokybės pasiskirstymas. Daugumoje eksperimentų prilyginimo
kokybės pasiskirstymas yra bimodalinis (pirmojo moda ties žemiausia
prilyginimo kokybe, o antroji — aukščiausia prilyginimo kokybe), todėl
buvo nuspręsta šį pasiskirstymą padalyti į dvi dalis (atskaitos taškas —
30) ir naudoti visus fragmentus, kurie patenka į dešinę pasiskirstymo
pusę.

8.2.4 PGR Duplikatų Pašalinimas

PGR duplikatai atsiranda, kai suskaidyti DNR fragmentai padauginami
PGR metodu. Tokiu atveju tas pats DNR fragmentas bus amplifikuotas
ir sekvenuojamas kelis kartus. Šie identiški fragmentai užims vietą sekve-
navimo bibliotekoje. Be to, kai sekoskaitos padengimo gylis yra svarbus
veiksnys (pvz., TOP–seq metodas), PGR duplikatai gali trukdyti nus-
tatyti tikrąjį DNR molekulių kiekį ir klaidingai amplifikuoti padengimo
lygį. Pagal daugumą sekoskaitos metodikų rekomenduojama pažymėti ir
pašalinti PGR kopijas naudojant unikalius molekulinius identifikatorius
arba skaičiavimo įrankius, tokius kaip Picard ar samtools.

Standartiniai įrankiai randa PGR duplikatų kopijas, nustatydami fragmentų
grupes, kurios priskiriamos toms pačioms genomo pradžios ir pabaigos
koordinatėms, darant prielaidą, kad tikimybė, jog fragmentai susilygins
su ta pačia padėtimi, yra labai maža (iš tikrųjų, bent jau žmogaus
genomo atveju, ji yra arti nulio). Tačiau tokia identifikavimo strate-
gija negali būti taikoma metodams, pagrįstiems TOP–seq, nes TOP–seq
metodai yra orientuoti į specifines genomo pozicijas (t.y., CG dinuk-
leotidus). Todėl sekvenavimo fragmentai daugumoje atvejų prasideda
tose pačiose genomo koordinatėse, taigi įprastiniai skaičiavimo įrankiai
šiuo atveju neveiktų. Mes sukūrėme PGR duplikatų identifikavimo ir
pašalinimo algoritmą, panašų į kanoninius, tačiau jis nėra toks reiklus.
Mūsų PGR duplikatų identifikavimo algoritme visi fragmentai, prasidedan-
tys tiksliai ta pačia genomo koordinate, toje pačioje grandinėje ir turintys
tą patį pradinį ilgį, buvo klasifikuojami kaip PGR kopijos ir kiekvienoje
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tokioje grupėje buvo paliktas tik vienintelis sekoskaitos fragmentas. Ši
strategija yra panaši į kanoninį metodą, nes vertinama fragmento pradinė
padėtis (5' galas), tačiau, įvertinant pradinį fragmento ilgį, šiame algo-
ritme atsižvelgiama į 5' ir 3' adapterių ilgius. DNR polimerazė yra linkusi
per anksti sustabdyti 3' adapterio sintezę ir kartais praleisti nukleotidus
5' adapteryje, ir toks pokytis bus būdingas konkrečiai PGR kopijų gru-
pei. Figure 4.5 paveiksle parodyta 5' ir 3' adapterių ilgių pasiskirtymai,
kurie sukuria erdvę klasifikuoti naujas PGR duplikatų kopijų grupes.
Apibendrinant galima pasakyti, kad užuot pašalinęs visus fragmentus,
turinčius identiškas prilyginimo koordinates (išskyrus tą, kuris palieka-
mas kaip grupę reprezentuojantis fragmentas), šis algoritmas palieka
m × n fragmentus, kur m ir n yra atitinkamai kiekiai skirtingų 5' ir
3' adapterių ilgių.

8.2.5 Fragmentų Priskyrimas CG Dinukleotidams

Kiekvienam suprocesuotam ir atrinktam sekoskaitos fragmentui apskaiči-
avome atstumą nuo jo pradinės padėties iki artimiausio CG dinukleotido
(t.y., atstumą, išmatuotą nukleotidais nuo fragmento 5' galo). Priklau-
somai nuo modifikacijos tipo, buvo pasirinktos skirtingos atstumo ribos,
kad priskirtume fragmentus CG vietoms. TOP–seq metodui buvo nau-
dojamas absoliutus trijų nukleotidų atstumas. Su šia ribą vidutiniškai
90 proc. fragmentų buvo priskirti CG vietoms (Supp. Table 1).
Tuo tarpu hmTOP–seq ir caCLEAR metodams buvo naudojamas ab-
soliutus keturių nukleotidų atstumas (vidutiniškai atsirenkant 85 proc.
fragmentų).

Priskyrus sekoskaitos fragmentus CG vietoms, buvo apskaičiuota CG
padengimas (apibrėžiant padengimą kaip bendrą fragmentų skaičių bet
kurioje grandinėje, pradedant nuo nurodyto atstumo ribos). Tokia procedūra
paprastai suskirsto CG vietas į dvi priešingas grupes (CG vietos, kurių
padengimas yra didesnis nei 0, – identifikuotos CG vietos, ir CG vietos,
kurių padengimas yra lygus 0 – neidentifikuotos CG vietos). Priklauso-
mai nuo eksperimento, buvo naudojamos visos arba tik dalis identifikuotų
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CG vietų.

8.2.6 Diskusija

8.2.6.1 Šios Metodikos Taikymai

Šiame skyriuje apibendrinta TOP–seq sekoskaitos duomenų apdorojimo
metodika. Ši metodika suteikia galimybę naudoti TOP–seq ar juo pagrįstus
kitus sekoskaitos metodus ir neapdorotus sekoskaitos fragmentus paversti
į DNR modifikacijų signalą vieno CG skiriamojoje geboje.

Sekoskaitos fragmentų procesavimo eiga pateikta išsamiai – apibendrinta
sekoskaitos fragmentų apdorojimas prieš sulyginimą su referentine seka,
sulyginimas su referentine seka, PGR duplikatų kopijų pašalinimas ir
prieš priskirimas CG taikiniams. Svarbu paminėti, kad PGR kopijų
šalinimo algoritmas buvo specialiai sukurtas TOP–seq metodui, nes stan-
dartiniai duplikatų šalinimo būdai šiam metodui negali būti taikomi
ir iškraipytų tikrąjį padengimo signalą. Galiausiai, šioje metodikoje
yra pateikti keli greičio optimizavimo veiksmai, pavyzdžiui, pašalinant
gana trumpus sekoskaitos fragmentus procesavimo pradžioje, siekiant
sumažinti žemos kokybės fragmentų apdorojimo laiką.

8.2.6.2 TOP–seq Duomenų Apdorojimo Sunkumai

Daugiausia sunkumų procesuojant TOP–seq duomenis kyla dėl daugybės
skaičiavimo įrankių, naudojamų šioje metodikoje. Kadangi ši metodika
susideda iš kelių žingsnių, teoriškai ji galėtų būti paralelizuota. Tačiau ne
visi naudojami įrankiai pritaikyti paraleliam skaičiavimui. Pavyzdžiui,
įrankiai, naudojami adapterių kirpimui, negali būti paralelizuoti ir gali
tik nuosekliai apdoroti sekoskaitos fragmentus.

Be to, viena savita problema kyla dėl fragmentų priskyrimo CG taikini-
ams. Gali būti, kad konkretus sekoskaitos fragmentas prasideda nuo
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genomominės pozicijos, kurios absoliutus atstumas iki CG taikinio yra
didesnis nei nulis. Paprastai tokių fragmentų priskyrimas jų pradinei CG
vietai yra nesudėtingas, tačiau gali būti, kad su tokiu pat atstumu yra dar
vienas CG taikinys ir tokiu atveju unikalus priskyrimas yra neįmanomas.

8.2.6.3 Baigiamosios Pastabos

Čia mes pateikiame išsamią naujos kartos sekoskaitos duomenų apdoro-
jimo metodiką, kuri buvo sukurta apdoroti TOP–seq metodo epigeno-
minius duomenis. Šis efektyvus ir lankstus metodas sujungia skirtingas
idėjas iš jau žinomų metodikų į vieną išsamią procesavimo schemą. Tai
apima veiksmus ir įrankius, naudojamus apdoroti TOP–seq signalą nuo
neapdorotų sekoskaitos duomenų iki CG padengimo profilių.

8.3 Statistiniai Įrankiai, Skirti Pagerinti TOP–

seq Signalo Kokybę

8.3.1 Įvadas

Didelio našumo genominiai metodai, gali būti įtakoti įvairiais šališko
matavimo poveikiais, kurie gali būti išreikšti kaip intra–mėginio arba
inter–mėginių variaciją. Tokiais atvejais TOP–seq signalas taip pat gali
turėti nepageidaujamų CG padengimų variacijų tarp tos paties ar kelių
skirtingų sekoskaitos gardelių. Tokius pokyčius gali lemti skirtingas
sekoskaitos gylis, vidutinio modifikacijos lygio skirtumai ar kiti neži-
nomi biologiniai ar technologiniai veiksniai. Taigi, siekiant sumažinti tokį
variacijos efektą ir pagerinti signalo kokybę, buvo implementuotos trys
TOP–seq signalo transformacijos. Pirmoji ir pagrindinė transformacija
yra u–density, pagrįsta svertiniu padengimo lygiu, normalizuotu pagal
CG lygį; m–estimate ir nn–estimate yra TOP–seq padengimo signalo
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projekcijos, apskaičiuotos naudojant eksponentinio modelį arba dirb-
tinius neuroninius tinklus. Šį skyrių sudaro trys pagrindiniai poskyr-
iai (po vieną kiekvienai transformacijai): u–density, m–estimate, nn–
estimate, o kiekvienas poskyris susideda iš trijų dalių: įverčio skaičiav-
imo pagrindimas, įverčio apskaičiavimo algoritmas ir įverčio palyginimas
su referentiniu metodu. Galiausiai skyrius baigiamas diskusija apie šių
transformacijų atliktus patobulinimus, kurie prisidėjo prie TOP–seq sig-
nalo pritaikomumo, apie sunkumus skaičiuojant ir pritaikant transfor-
macijas bei apie neatsakytus klausimus būsimiems tyrimams.

8.3.2 u–density

8.3.2.1 Motyvacija Apskaičiuojant u–density Signalą

Kadangi TOP–seq metodui gali turėti įtakos apribojimai, su kuriais
susiduria ir kiti praturtinimu pagrįsti metodai (pvz., signalo kokybės
priklausomybė nuo sekoskaitos gylio, šališkumas konkretaus sekos kon-
teksto atžvilgiu), TOP–seq signalui buvo pritaikytos statistinės korekci-
jos. Pirma, sekoskaitos gylio įtaka buvo sumažinta konvertuojant TOP–
seq padengimo signalą į svertinio tankio įverčius. Toks konvertavimas
išlygino signalo stiprumą tarp skirtingų sekoskaitos gylio eksperimentų.
Šis svertinio tankio metodas leidžia mums panaudoti informaciją iš šalia
esančių CG vietų ir tokiu būdu maksimaliai padidinti mažo padengimo
regionų panaudojamumą. Norėdami pašalinti galimą sekos konteksto
(t.y., CG) šališkumą, mes papildomai normalizavome apskaičiuotus sver-
tinio tankio įverčius pagal nesvertinį CG tankį. Gautas signalas buvo
pavadintas u–density, nes atspindėjo nemetilintos DNR tankį.

8.3.2.2 u–density Apskaičiavimo Algoritmo Santrauka

TOP–seq padengimo svertinio tankio įverčiai buvo apskaičiuoti naudo-
jant Epanechnikov kernelį, per 221 taškų, tolygiai paskirstytų kiekvienoje
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chromosomoje (skaičiavimo darbo eiga pavaizduota Figure 5.2 paveik-
sle). Fragmentų skaičius buvo normalizuotas taip, kad kiekvienoje chro-
mosomoje jis būtų lygus 1. Panašus metodas buvo naudojamas įvertinant
ir nesvertinį CG tankį konkrečioje chromosomoje. Galiausiai, TOP–
seq nemetilinimo tankis buvo gautas dalijant svertinį TOP–seq tankį
iš nesvertinio CG–tankio. Normalizavus svertinį tankį pagal CG tankį,
Gauss kernelis buvo panaudotas interpeliuoti galutinį signalą ties CG
pozicijomis. Kernelio parametrai buvo nustatyti įvertinant TOP–seq
u–density koreliacijas plačiame kernelio langų diapazone su atitinkamu
IMR90 WGBS signalu žmogaus 1 chromosomoje (Figure 5.3). Įvertinus
koreliacijas, esant vienai CG skiriamajai gebai, pasirinkti kernelio parame-
trai buvo: 180 bp svertiniam tankiui ir 80 bp CG–tankiui (vėliau tie
patys parametrai buvo naudojami visiems mėginiams ir visoms chromo-
somoms).

Apskaičiavus svertinį tankį, buvo pastebėtas tolygesnis signalo pasiskirsty-
mas mėginiuose. Padengimo statistika (pvz., vidutinis padengimas)
kiekvienam mėginiui gerai koreliuoja su sekoskaitos gyliu. Toks efektas
gali lengvai paveikti rezultatų interpretavimą, nes didesnių bibliotekų
dydžių mėginiai turėtų didesnį nemodifikacijos signalą. Tačiau jeigu
kitame eksperimente būtų naudojama mažiau ar daugiau sekoskaitos
fragmentų, šie du rezultatai nebūtų palyginami. Stebima padengimo
statistika gerai koreliuoja (Pearson r = 0.85) su fragmentų mėginių
skaičiumi, tačiau ši koreliacija sumažėjo, kai vietoj to buvo naudojamos
svertinio tankio vertės (Pearson r = 0.46) (Figure 5.4).

Apskaičiavus u–density, pastebėtas koreliacijos tarp techninių pasikartojimų
padidėjimas (Pearson r = 0.5 ir r = 0.8 prieš ir po transformacijos).
Galiausiai pastebėtas labai pagerėjęs signalo pasiskirstymas tarp skirtingų
genominių elementų. Kadangi TOP–seq metodas yra nukreiptas į CG
pozicijas, CG turinčiuose regionuose gali būti tikimasi stipresnio signalo
vien tik todėl, kad ten yra daugiau taikinių, todėl toliau mes įvertinome
ryšį tarp dviejų matavimų skirtinguose genomo elementuose (Figure 5.5).
Didesnio svertinio tankio signalas buvo pastebėtas elementuose, turinči-
uose didesnį CG tankį, tačiau šis nukrypimas buvo ištaisytas normal-
izavus TOP–seq signalą pagal CG kiekį kiekviename regione. Norint
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toliau patvirtinti CG tankio normalizavimo efektą, buvo tirtas specifinis
genomo lokusas, turintis netolygų CG tankio pasiskirtymą (Figure 5.6).
TOP–seq signalas palei KAZN geno lokusą rodo didelį signalo poslinkį
link CG turinčių regionų (t.y., CGI elementų), tačiau po CG tankio
normalizavimo signalo smailės nebėra centruotos į CGI elementus, o u–
density signalas palaipsniui mažėja link geno pabaigos.

8.3.2.3 u–density ir kitų metodų atitikimas

Vieno nukleotido skiriamosios gebos koreliacijos tarp TOP–seq ir WGBS
signalo patvirtino signalo transformacijos naudingumą. Pearson kore-
liacija tarp CG padengimo ir WGBS buvo | r |= 0.23, | r |= 0.36,
| r |= 0.44 Smegenų, IMR90 mažo bibliotekos gylio ir IMR90 didelio
bibliotekos gylio mėginiams, atitinkamai. Naudojant u–density, ši ko-
reliacija padidėjo iki | r |= 0.28, | r |= 0.59, | r |= 0.64, atitinkamai.
Palyginimui, vienas CG skiriamosios gebos IMR90 WGBS signalas buvo
lyginamas su MRE–seq ir MBD–seq DNR modifikacijos signalais, o ap-
skaičiuotos Pearson koreliacijos buvo | r |= 0.18, atitinkamai.

8.3.3 m–estimate

8.3.3.1 Motyvacija Apskaičiuojant m-estimate Signalą

Apskaičiavę u–density vertes, nusprendėme toliau patobulinti TOP–seq
signalą. Kadangi TOP–seq yra praturtinimu pagrįstas signalas, jo vertės
pasiskirsto išilgai sunkiauodegiame Poisson skirstinyje (t.y., padengimo
arba u–density vertės yra nuo 0 iki plius begalybės), daugumai vietų
negaunant jokios arba labai mažas teigiamas vertes, tuo tarpu WGBS
metodas gali išmatuoti tą patį modifikacijos signalą absoliučioje skalėje
(nuo 0 proc. iki 100 proc.). Todėl viena iš korekcijų buvo signalo konver-
sija iš realiatyvios į absoliučią skalę. Kitas patobulinimas buvo susijęs
su skirtingais vidutiniais modifikacijos lygiais skirtinguose epigenomu-
ose. Figure 5.7 paveiksle pavaizduoti du susimuliuoti epigenomai su
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skirtingais vidutiniais modifikacijų lygiais, kurie priklauso nuo padėties
išilgai susimuliuotos chromosomos. Atlikę atsitiktinio padengimo pa-
siskirstymą, mes pastebėjome, kad epigenomas su didesniu vidutiniu
hipometilinimo lygiu gauna mažesnį padengimą nei epigenomas su mažes-
niu hipometilinimo lygiu. Šie rezultatai rodo, kad epigenomai su skirtin-
gais modifikacijos lygiais nėra sulyginami, nes pastebėti padengimo pa-
siskirstymai yra netikslūs.

8.3.3.2 m–estimate Apskaičiavimo Algoritmo Santrauka

Metilinimo įverčiai, m–estimates, buvo gauti vystant eksponentinio ir-
imo (angl., exponential decay) modelį. 20 chromosoma (2.5 proc. visų
žmogaus genomo CG vietų) buvo naudojama eksponentiniam modeliui
apmokyti. Taip pat buvo naudojamos papildomos genominėms kovari-
antės (t.y., genomo elementų informaciją) padidinti modelio tikslumą.
Kovariančių vertės buvo apskaičiuotos kiekvienam CG taikiniui, naudo-
jant 50 bp regionus aplink kiekvieną CG.

Pasirinktos kovariantės buvo šios: i) GC tankis – guanino ir citozino
bazių procentas regione; ii) CG dinukleotidų dalis tarp CN porų tam
tikrame regione; iii) vidutinė sekos prilyginimo vertė regione; iv) tam
tikro regiono dalis, persidengianti su SINE arba LTR pasikartojimais; v)
tam tikro regiono dalis, persidengianti baltymus koduojančių genų pro-
motorius; vi) tam tikro regiono dalis, persidengianti baltymus koduojančių
genų 5'UTR; vii) tam tikro regiono dalis, persidengianti intergeninius re-
gionus.

8.3.3.3 m–estimate ir Kitų Metodų Atitikimas

Apskaičiavus m–estimate reikšmes, koreliacija tarp TOP–seq techninių
pasikartojimų pakito nežymiai. Pearson koreliacija padidėjo tik iki r =

0.89 didelio gylio IMR90 mėginiams (nuo u–density r = 0.87). Tačiau
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apskaičiavus m–estimate, labai pagerėjo TOP–seq signal koreliacija su
WGBS signalu. Apskaičiuotos Pearson r vertės padidėjo iki 0.69.

8.3.4 nn–estimate

8.3.4.1 Motyvacija Apskaičiuojant nn–estimate Signalą

Apskaičiavę m–estimate signalą, mes išsprendėme pagrindinius klausimus,
su kuriais susiduria praturtinimo metodai, tačiau vis tiek matėme gal-
imybę patobulinti TOP–seq metodą, pvz., koreliacijas tarp TOP–seq ir
WGBS signalų. Kadangi WGBS yra laikomas aukso standarto metodu,
mes bandėme priartinti TOP–seq signalą kuo arčiau jo. Mes siekėme
apskaičiuoti nn–estimate — metilinimo įverčius, apskaičiuotus naudo-
jant dirbtinius neuroninius tinklus. Neuroniniu tinklu pagrįstas metodas
teoriškai galėtu būti geresnis nei eksponentinio irimo modelis, nes jis
sugebėtų panaudoti nežinomas asociacijas duomenyse. Tokio metodo
trūkumas yra tas, kad neuroninis tinklas ir jo gautas rezultatas yra juo-
dosios dėžės fenomenas ir jo sukurtos duomenų asociacijos paprastai lieka
nežinomos.

8.3.4.2 nn–estimate Apskaičiavimo Algoritmo Santrauka

Nustatyti IMR90 WGBS vertes buvo panaudotas daugiasluoksnis neu-
roninis tinklas su 2 paslėptais sluoksniais (atitinkamai 44 ir 22 mazgai),
naudojant TOP–seq signalą ir įvairias genomo characteristikas iš 20 chro-
mosomos (Supp. Figure 4). Svarbiausios perceptrono ypatybės buvo
u–density ir TOP–seq padengimas (santykinė svarba atitinkamai 6.4

proc. ir 4.4 proc.). Visos kitos naudojamos ypatybės buvo suskirstytos
į tris grupes – genomo elementus, sekos charakteristikas ir bazių sudėtį
aplink konkrečią CG vietą (Figure 5.8). Genominiai elementai, turin-
tys didžiausią santykinę vertę, buvo CGI ir SINE pasikartojimai. Svar-
biausios sekos charakteristikų grupės ypatybės buvo GC dinukleotidų
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kiekis tam tikrame regione, CG dinukleotidų kiekis ir genomo prilygi-
nomo įvertis balas. Dauguma bazių sudėties grupės ypatybių parodė tik
vidutines santykinės svarbos vertes.

8.3.4.3 nn–estimate ir Kitų Metodų Atitikimas

nn–estimate verčių apskaičiavimas turėjo nedidelę įtaką koreliacijai tarp
TOP–seq techninių replikų. Pearson koreliacija didelio gylio IMR90 rep-
likose padidėjo iki r = 0.89. Tačiau nn–estimate skaičiavimas pagerino
koreliaciją su WGBS signalu — r = 0.71. Didesnio masto genomo region-
uose WGBS ir nn–estimate panašumas buvo dar didesnis. Figure 5.9

paveiksle pavaizduota koreliacija tarp referentinio IMR90 WGBS signalo
ir TOP–seq DNR modifikacijos signalo baltymus koduojančiuose genų
promotoriuose. Koreliacija tarp TOP–seq signalo palaipsniui naudojant
signalo transformaciją. Panašumas išlieka didelis net naudojant kitus
IMR90 WGBS duomenų rinkinius. Galiausiai mes suskirstėme CGI ele-
mentus į DNR metilinimo grupes pagal referentinį IMR90 WGBS signalą.
Įvertinę nn–estimate signalą tam tikrose CGI grupėse, mes pastebėjome
aukštą WGBS ir TOP–seq metodų sutaptį. Toliau apskaičiavome nn–
estimate vertes iš susimuliuotų bibliotekų, turinčių dešimt kartų mažes-
nius ar didesnius bibliotekų dydžius. Įdomu tai, jog sudarytas nn–
estimate modelis gerai veikia mažesnio dydžio bibliotekų atžvilgiu, tačiau
didesnio dydžio bibliotekose apskaičiuotos nn–estimate vertės nebegali
gerai atskirti nurodytų CGI grupių (Figure 5.10).

8.3.5 Diskusija

8.3.5.1 Šios Metodikos Taikymai

Šiame skyriuje mes pristatėme tris efektyvius signalo transformavimo
metodus, naudojamus TOP–seq signalo kokybei gerinti. Žemas TOP–
seq sekoskaitos padengimas gali sukelti DNR modifikavimo profiliavimo
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iššūkių. Dėl nepadengtų CG vietų sekoskaitos duomenys gali būti ne-
gausūs, o CG vietose bus rodomas perdėtas nulinių verčių skaičius, o
tai sukurs klaidingą signalą. Visos trys sukurtos transformacijos — u–
density, m–estimate ir nn–estimate padėtų išspręsti šią problemą įtraukiant
genominę ir epigenominę informaciją iš kaimyninių lokusų. Šie metodai
praplečia TOP–seq signalo naudojimą: i) sumažinimas sekoskaitos bib-
liotekos dydžio variacijos įtaka; ii) kompensuojamas mažesnis sekoskaitos
gylis; iii) normalizuojamas signalo intensyvumas pagal genomo foną.
Kiekviename konkrečios transformacijos poskyryje pateikiami jos skaiči-
avimo argumentai, signalo transformavimo algoritmas ir palyginimas
su referentiniu signalu. Visų pateiktų transformacijų palyginimas yra
geresnis referentinių duomenų atžvilgiu, palyginti su pirminiu TOP–seq
signalu. Tai labai perspektyvu, nes naudojant didesnius ir įvairesnius
referentinių duomenų rinkinius mūsų modelių našumas ir pritaikomu-
mas gali dar labiau padidėti.

8.3.5.2 Statistinių priemonių kūrimo sunkumai, siekiant pager-

inti TOP–seq signalo kokybę

Didžiausias sunkumas apskaičiuojant u–density signalą yra išlaikyti pu-
siausvyrą tarp vieno CG skiriamosios gebos ir naudoti padengimo infor-
maciją iš kaimyninių CG vietų. Praktiškai u–density skaičiavimą galima
suskirstyti į du perėjimus tarp skiriamųjų gebų: i) projekcija iš vieno
CG į kaimyninių CG pozicijų vektorių, siekiant įtraukti jų padengimą į
vertės skaičiavimą, ir ii) projekcija iš įverčio vektoriaus atgal į vieno CG
skiriamąją gebą. Todėl vienas iš svarbiausių momentų yra atitinkamų
langų dydžių pasirinkimas. Viena vertus, šios vertės gali būti per didelės
ir sumažės matavimų tikslumas, tuo tarpu naudojant per mažas vertes,
rezultatai nebus optimalūs, o minėti perėjimai tarp skiriamųjų gebų tik
praras pirminio signalo kokybę.

Pagrindinis m–estimate ir nn–estimate trūkumas yra priklausomybė nuo
duomenų rinkinio, naudojamo vykdant modelio apmokymą. Kai tokio
duomenų rinkinio nėra arba jo kokybė nėra pakankamai patenkinama,

173
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šios signalo transformacijos nebus įmanomos. Tačiau šiame genominių
tyrimų amžiuje yra pakankamai daug epigenominių duomenų, o dauge-
lis žmogaus audinių ar net ląstelių tipų tiriami naudojant WGBS tech-
nologijas. Jeigu nėra tikslaus audinių tipo, gali būti įmanoma surinkti
ir panaudoti papildomą referentinį audinių rinkinį iš panašių audinių,
tačiau tokį ekstrapoliavimą reikėtų kruopščiai išbandyti prieš jį taikant.

Galiausiai, didžiausia problema, su kuria gali susidurti tyrėjai, yra sprendi-
mas, kurią transformaciją naudoti. Jeigu sekoskaitos gylis yra pakanka-
mai didelis, gali būti patenkinamas paprastas CG pozicijos padengimas.
Atsižvelgiant į mažą sekoskaitos gylį, galima norėti naudoti transforma-
cijas, tačiau sprendimą, ar naudoti u–density, ar apmokymu pagrįstas
transformacijas, reikia priimti kiekvienu atveju atskirai, atsižvelgiant į
turimus išteklius, biudžetą, skaičiavimo infrastruktūrą, mėginių prieina-
mumą ir kt.

8.3.5.3 Baigiamosios Pastabos

Šiame skyriuje buvo pasiūlyta panaudoti TOP–seq duomenis ir genomo
konteksto informaciją, siekiant įvertinti DNR modifikacijos lygius. Buvo
suintegruotos trys signalo transformacijos — u–density, m–estimate ir
nn–estimate. u–density grindžiamas svertiniu kernelio CG padengimo
įvertinimu, normalizuotu pagal nesvertinį CG tankį; m–estimate ir nn–
estimate yra apmokymu pagrįsti metodai, sukurti naudojant eksponen-
tinio irimo modelį arba daugiasluoksnį neuroninį tinklą, naudojant ypatybes
kaip TOP–seq signalą, genomo seką ir genomo konteksto informaciją.
Mūsų rezultatai rodo, kad norint atlikti ekonomiškai efektyvius popu-
liacinius DNR modifikavimo tyrimus, būtina derinti pažangius skaičiav-
imo metodus su naujomis sekoskaitos technologijomis.
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8.4 TOP–seq Pagrįstų Metodų Taikymas

8.4.1 Įvadas

Šį skyrių sudaro keturi pagrindiniai poskyriai –– didelio našumo epigenomo
profiliavimo metodų taikymas naudojant TOP–seq. Pirmame poskyryje
pateikiami nemodifikuotų CG profiliavimo žmogaus audiniuose ir ląstelių
linijose rezultatai, o antrame ir trečiame poskyriuose trumpai apibendri-
nama hmTOP–seq ir caCLEAR metodų kokybės kontrolė pelių embri-
oninėse kamieninėse ląstelėse. Galiausiai paskutiniame poskyriuje pateikia-
mas išsami TOP–seq ir hmTOP–seq metodų analizė nėščių moterų krau-
jyje cirkuliuojančioje DNR. Šiuose taikomuosiuose poskyriuose aptariama,
kaip anksčiau sukurti skaičiavimo ir statistiniai metodai gali būti pri-
taikomi konkrečiais epigenominių tyrimų atvejais.

8.4.2 TOP–seq Metodo Taikymas Žmogaus Audiniuose

8.4.2.1 Įvadas

Norint suprasti DNR modifikacijos dinamiką, reikalingi jautrūs didelės
skiriamosios gebos metodai, leidžiantys išanalizuoti epigenetinius virsmus
visame genome. Vienas iš tokių metodų yra TOP–seq — šis metodas
identifikuoja genomines uCG (t.y., nemodifikuoti CG) pozicijas.

Čia pateikiame nemodifikuotų citozinų palyginimus įvairiuose žmogaus
audiniuose ir ląstelių linijose, pirmiausia įrodydami, kad TOP–seq sig-
nalas yra atkartojamas ir gerai sutampa su kitomis DNR modifikavimo
profiliavimo metodikomis. Toliau pateikiami DNR modifikavimo paly-
ginimai įvairiuose genomo elementuose — DNR modifikacijos signalas
per genus ar epigenetinius elementus, tokius kaip su lamina susijusios
sritys ar chromatino segmentai. Galiausiai, mes parodome, kad TOP–
seq signalas yra pakankamai jautrus, kad būtų galima nustatyti epigene-
tinius skirtumus tarp ląstelių tipų, todėl jį galima pritaikyti viso genomo
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masto DNR modifikacijų profiliavimui. CGI elementai naudojami kaip
platforma aptikti diferencines modifikacijas tarp neuroblastomos ląstelių
tipų ir smegenų audinio.

8.4.2.2 TOP–seq Sekoskaitos Duomenų Kokybės Kontrolė

Vidutiniškai kiekviename mėginyje buvo 42 milijonai neapdorotų sekoskaitos
fragmentų, išskyrus didelio gylio IMR90 mėginius, kuriuose vidutiniškai
buvo 238 milijonai neapdorotų fragmentų. Apdorojus ir prilyginus frag-
mentus prie referentinio genomo, fragmentų skaičius žymiai sumažėjo
(Figure 6.2). Pagrinde šio didelio gylio IMR90 mėginių fragmentų
kiekio sumažėjimo dalį nulėmė trumpų fragmentų pašalinimas arba PGR
duplikatų pašalinimas. Pašalinus pasikartojančius fragmentus ir priskyrus
likusius fragmentus CG vietoms, vidutiniškai 16 milijonų fragmentų liko
mažo gylio bibliotekose ir 91 milijonas fragmentų didelio gylio bibliotekose.

Visose analizuojamose mėginiuose buvo naudojamos visi nemodifikuoti
CG (t.y., padengimas didesnis nei 0), vidutiniškai 21 proc. genomo CG
mažo gylio, o 35 proc. –– didelio gylio mėginiuose (Table 6.2). Vidu-
tinis nustatytų CG vietų padengimas kiekvieno mažo gylio mėginyje
buvo 2.8 ir kiekvieno didelio gylio mėginyje 9.6, tačiau po išsamesnio
patikrinimo buvo nustatyta, kad chromosomų iš neuroblastomos mėginių
padengimas buvo nevienodas — pastebėtas daug didesnis vidutinis padengimą
2 chromosomoje (Figure 6.3). Atidžiau išnagrinėjus, buvo nustatyta,
kad šį didesnį padengimą sukėlė fragmentai, kilę iš konkretaus 1.6 Mb
regiono 2 chromosomoje (chr2:15026730 — 16640120) (Figure 6.4). Ši-
ame regione yra proto-ongoneninis MYCN genas, kuris amplifikuojasi
būtent neuroblastomos ląstelių linijose.

Pasirinkę visas identifikuotas CG pozicijas, išmatavome koreliaciją tarp
techninių pasikartojimų (Pearson vidutinis r = 0.69) (Figure 6.5).
Tokią vidutinę koreliaciją galėjo sukelti nedidelis sekoskaitos gylis, kuris
buvo naudojamas ir iš tiesų, išmatavus Jaccard koeficientą tarp nustatytų
CG vietų, buvo pastebėtas nedidelis techninių pasikartojimų sutapimas
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(vidutinis Jaccard koeficientas 0.4) (Figure 6.5 A). Jaccard koeficien-
tas rodo, kad tam tikri CG rinkiniai tarp techninių pasikartojimų yra
skirtingi, tačiau šį rezultatą galima būtų susieti su anksčiau minėtu
mažu sekoskaitos gyliu. Norėdami įrodyti šią prielaidą, mes susimuli-
avome labai mažo sekoskaitos gylio duomenų rinkinius ir monotoniškai
padidinome jų bibliotekos dydį, pademonstruodami aiškią linijinę prik-
lausomybę tarp bibliotekos dydžio ir Jaccardo koeficiento. Norėdami
dar labiau patvirtinti TOP–seq metodo atkartojamumą, apskaičiavome
koreliaciją tarp techninių replikų, naudojant įvairaus dydžio genomo re-
gionus (Figure 6.5 B). Koreliacijos tarp neuroblastomos mėginių buvo
Pearson r = 0.9 1 kb regionuose, o kitoms mėginių grupėms reikėjo daug
didesnių regionų dydžių, kad koreliacija būtų pakankamai aukšta.

Toliau mes atlikome TOP–seq signalo transformacijas, kad gautume didelės
skiriamosios gebos viso genomo DNR modifikacijos lygį. Taikant ker-
nelio tankio metodą, apskaičiuoti svertinio tankio įverčiai iš TOP–seq
padengimo signalo ir normalizuoti pagal nesvertinio CG tankio įvertį,
siekiant gauti TOP–seq nemetilomo tankio signalą. Šis koregavimas
sustiprino mažo gylio pasikartojimų Pearson koreliaciją iki r = 0.8,
o didelio gylio IMR90 pasikartojimų koreliacija padidėjo iki r = 0.9

(Figure 6.8).

Vieno CG absoliuti žemo gylio ir didelio gylio TOP–seq u–density ko-
reliacija su IMR90 WGBS duomenimis buvo | r |= 0.59 ir | r |= 0.64,
atitinkamai (Figure 6.9). Tolesniame koregavimo etape mes siekėme
atsižvelgti į galimus sekai būdingus variantus, kurie gali turėti įtakos
TOP–seq signalui. Mes panaudojome nedidelę WGBS duomenų rinkinio
dalį (20 chromosomą), kad pritaikytumėme eksponentinio irimo modelį,
kuriame būtų panaudotos papildomos genominės kovariantės. Šis mod-
elis vėliau buvo naudojamas konvertuojant TOP–seq u–density į vadina-
muosius CG metilinimo įverčius (m–estimate metilinimo vertes absoli-
učioje skalėje nuo 0 iki 100). Nors antrasis patobulinimo žingsnis turėjo
nedidelę įtaką koreliacijai tarp TOP–seq techninių replikų, jis pagerino
vieno CG gebos koreliaciją su IMR90 WGBS r = 0.69 didelio gylio rink-
iniu (Figure 6.9).
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Toliau mes palyginome šių metodų sutaptį įvairiuose genomo elementu-
ose. Viso genomo profiliai tarp pagrindinių genominių ypatybių parodė
gerą TOP–seq signalo ir WGBS sutaptį CGI, enhanceriuose, 3'UTRs,
egzonuose, intronuose, baltymus koduojančių genų prieš srovę ir pas-
roviui regionuose (Figure 6.10). Įdomu tai, kad TSS chromatino seg-
mentuose TOP–seq signalo koreliacija buvo maža su WGBS signalu, o
MBD parodė vidutinę koreliaciją šiuose elementuose.

Galiausiai mes įvertinome, kaip apatiniai ir viršutiniai 10 proc. nemetilintų
CGI, genų ir 10 kb dydžio regionų identifikuojami naudojant TOP–seq
metodą, sutampa su apatiniu ir viršutiniu 10 proc. nemetilintų regionų,
gautų iš WGBS. IMR90 mėginiuose mes pastebėjome labai stiprų ryšį
tarp TOP–seq u–density ir WGBS visuose 10 proc. naudojamų elementų,
taip pat apatinių 10 proc. genų (tiksliojo Fisher testo koeficientas ∼
37) (Figure 6.11). Tačiau smegenų mėginiuose tik apatiniai 10 proc.
genų parodė tokį didelį ir, įdomu, labai panašų praturtinimą kaip IMR90
mėginiai. Smegenų mėginiai taip pat parodė santykinai mažą 10 proc.
geriausių CGI praturtinimą, tuo tarpu CGI buvo labiausiai praturtinta
10 proc. elementų IMR90 mėginiuose.

8.4.2.3 Epigenominiai Žemėlapiai

Pasirinkus identifikuotas CG pozicijas, buvo ištirtas jų praturtinimas ir
pasiskirstymas įvairiuose genomo elementuose (Figure 6.12). Daugu-
moje tirtų genominių elementų pasirinktų CG pozicijų praturtinimas
ar trūkumas tarp skirtingų mėginių grupių buvo panašus. Didžiau-
sias praturtinimas pastebėtas elementuose, susijusiuose su genų pradžia
(5'UTR, CGI, įvairių genų biotipų promotoriai). Įdomu tai, kad tik
smegenų mėginiuose esančios CG vietos parodė praturtinimą kituose
su baltymais—koduojančiame genais susijusiuose elementuose (t. y.,
egzonus, 3'UTR ir intronus). Didžiausias nustatytų CG vietų trūkumas
pastebėtas pseudogenuose ir SINE pasikartojimuose, kai visos mėginių
grupės turėjo panašias tendencijas. TOP–seq signalą buvo galima ap-
tikti 96 proc. iš visų autosominių CGI. Kaip ir tikėtasi, promotoriaus
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CGI buvo labiausiai praturtinti uCG, patvirtinant jų labai nemodifikuotą
būseną (Figure 6.13). Nustatytų uCG vietų skirtumai buvo didesni
tarp intrageninių ir tarpgeninių CGI, tai patvirtina jų modifikacijų įvairovę
ir vidutiniškai aukštesnį metilinimo lygį. Įdomu tai, kad santykinai
didelė tarpgeninių CGI dalis parodė arba absoliučią modifikaciją, arba
tik labai lengvą modifikaciją, formuojančią bimodalinius pasiskirstymus
smegenų ir IMR90 mėginių grupėse, bet ne iš neuroblastomos gautuose
mėginiuose.

Mes taip pat palyginome TOP–seq u–density profilius su WGBS įvairiuose
su genais susijusiuose elementuose (Figure 6.14). Kaip ir tikėtasi,
atitinkamų audinių TOP–seq ir WGBS profiliai parodė atvirkštines ten-
dencijas visuose analizuojamuose regionuose. Mes taip pat sudarėme
TOP–seq u–density profilius įvairiuose chromatino segmentuose ir aplink
juos. Tarp aktyvių promotorių būsenų aktyvūs TSS, dvivalenčiai TSS
promotoriai parodė aukštesnius TOP–seq u–density signalus, rodančius
jų žemesnį metilinimo lygį (Figure 6.15). Norėdami įvertinti tolimesnį
TOP–seq pritaikojamumą mes ištyrėme LAD elementus. Jau anksčiau
buvo pastebėta, kad LAD elementai atitinka iš dalies modifikuotus DNR
regionus ir yra tiesiogiai susiję su genų represijomis ir paprastai būna
nuo 80 kb iki 30 Mb dydžio. Analizė parodė stiprų LAD regionų regionų
hipometilinimą, palyginti su tarp LAD esančiais regionais IMR90 ląs-
telėse, o smegenų mėginiuose nebuvo nustatyta jokių TOP–seq u–density
pokyčių (Figure 6.16). Pastebėtas DNR modifikacijų tendencijas at-
spindėjo ir WGBS duomenys, dar labiau patvirtinantys, kad suaugusiųjų
smegenų žievės ląstelėse nėra LAD.

8.4.2.4 Skirtingai Modifikuoti Regionai Neuroblastomos Mėginiuose

Atsižvelgiant į tai, kad neuroblastoma yra neuroendokrininis navikas, at-
sirandantis dėl nervinių keterinių ląstelių, analizę sutelkėme į promotorinių
ir intragenininių CGI—DMR, nustatytus tarp N, S ir smegenų mėginių,
ir priskyrėme juos jų genams šeimininkams (Table 6.3). Mes atlikome
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genų funkcinę anotacijų analizę su identifikuotais CGI-–DMR, pirmiau-
sia sutelkdami dėmesį į promotoriaus CGI. Genų praturtinimo analizė
S/B–hypoM ir N/B–hypoM rinkiniams parodė reikšmingą tarpląstelinių
organelių ir citoskeleto komponentų praturtinimą. HyperM promotorinės
CGI tiek N, tiek S ląstelėms buvo žymiai praturtintos grupėse, kuriose
buvo baltymų, glikoproteinų, signalinių peptidų ir biologinių procesų,
apimančių neuronų diferenciaciją, vystymąsi ir aksonogenezę. Tai atitinka
šio vystymosi naviko pobūdį, kuris yra susijęs su sutrikusiu neuronų
fenotipo brendimu. Įdomu tai, kad analizuojant N/B–hyperM CGI, nus-
tatyta genų, dalyvaujančių nervų keteros vystymesi ir migracijoje, hiper-
metilinimas, kurių nėra S/B–hyperM CGI-–DMR.

8.4.2.5 Diskusija

Pirmoje šio skyriaus dalyje buvo pateikti pavyzdžių, analizuotų nau-
dojant TOP–seq metodą, kokybės kontrolės rezultatai. Nors nustatytų
CG pozicijų padengimo koreliacija ir Jaccard koeficientas buvo vidutinių
verčių diapazone, Fisher testo įverčiai įrodė, kad CG vietos nustaty-
mas nėra atsitiktinis procesas. Be to, Jaccard koeficiento vertės, gautos
naudojant susimuliuotą duomenų rinkinį, įrodė, kad didesnių bibliotekų
dydžių pavyzdžiai sukurs didesnį panašumą. Palyginus TOP–seq signalą
su referentiniais WGBS duomenų rinkiniais, paaiškėjo, kad jis koreliuoja
daug geriau nei kiti palyginti metodai. Svarbu tai, kad panašumas į
WGBS signalą priklauso nuo genomo elemento tipo, o tai rodo galimą
DNR sekos konteksto įtaką praturtinimo metodams.

Kitos signalo transformacijos buvo taip pat naudingos, nes koreliacijos
su WGBS signalu buvo žymiai didesnės. Didesnės koreliacijos pastebėtos
net kitame WGBS duomenų rinkinyje, kuris nebuvo naudojamas modelių
parametrams optimizuoti. Gautos signalo transformacijos parodė gana
didelę sutaptį su WGBS signalu tiriant genų ar kitų genomo elementų
DNR modifikacijos profilius. Galiausiai mes panaudojome TOP–seq sig-
nalą ir nustatėme platų CGI DMR spektrą, susijusį su specifiniais iš neu-
roblastomos kilusių ląstelių tipais. Tačiau svarbu paminėti, kad TOP–seq
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metodas, kaip ir daugelis kitų fragmentų skaičiavimu pagrįstų epigenomų
profiliavimo metodų, yra jautrus kopijų skaičiaus kitimams. Kai pastebi-
mas labai didelis padengimo lygis (pvz., MYCN lokusas), gali būti, kad
tokį signalo praturtinimą lemia tik didelis tikslinių DNR kopijų kiekis.
Todėl de novo atrasti DMR turėtų būti patikrinti, ar jie nepatenka į
genetinių aberacijų karštuosius taškus.

Apidendrinant šiame skyriuje mes apibūdinome TOP–seq metodo taikymą
žmogaus audiniuose ir ląstelių tipuose. Gauti rezultatai rodo, kad TOP–
seq metodas suteikia informaciją apie DNR modifikacijas vieno CG skiri-
amosioje geboje ir viso genomo masto. Epigenominiai palyginimai, sudaryti
naudojant šį TOP–seq metodą, suteikia įžvalgų apie DNR modifikacijos
kintamumą mėginiuose, susijusiuose su skirtingomis eksperimentinėmis
grupėmis arba skirtingų tipų genominiais elementais.

8.4.3 hmTOP–seq Metodo Taikymas mESC

8.4.3.1 Įvadas

5hmC yra gausiausia oksidacinės DNR modifikacijos forma. Ji dalyvauja
daugelyje biologinių procesų, įskaitant embriogenezę, neurologinius pro-
cesus ir vėžį. Profiliuojant šią palyginti negausią genomo modifikaciją
reikia naudoti jautrius, didelės skiriamosios gebos metodus. Šiame skyri-
uje aprašoma naujos kartos sekoskaitos technologijos, vadinamos hmTOP–
seq, analizė, kuri gali būti naudojama norint nustatyti 5hmC vienos
bazės skiriamosios gebos tikslumu. Norėdami patvirtinti savo metodą,
mes panaudojome pelės ESC genominę DNR ir palyginome sugeneruotą
hmTOP–seq signalą su duomenimis, gautais naudojant kitą DNR mod-
ifikavimo profiliavimo metodą, ir nustatėme gerą koreliaciją tarp 5hmC
susietų regionų. Mes taip pat palyginome 5hmCG pasiskirstymą genini-
uose ir epigenominiuose elementuose, tokiose kaip histonų modifikacijos.
Remdamiesi šia analize darome išvadą, kad hmTOP–seq gali būti nau-
dojama kaip viso genomo 5hmCG profiliavimo technika.
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8.4.3.2 hmTOP–seq Sekoskaitos Duomenų Kokybės Kontrolė

Vidutiniškai kiekviename tiksliniame mėginyje buvo 59 milijonai neapdorotų
sekoskaitos fragmentų, kurių žymiai sumažėjo pašalinus trumpus sekoskaitos
fragmentus (Figure 6.17). Visų mėginių prilyginimo įvertis buvo pa-
lyginti didelis, o pašalinus fragmentus dėl prastos prilyginimo kokybės,
fragmentų skaičius sumažėjo tik nežymiai.

Vidutinis nustatytų CG vietų padengimas labai skyrėsi skirtingose DNR
kiekio bibliotekose, taip pat tarp tikslinių mėginių ir jų atitinkamų kontrolių
(Figure 6.18 A, Supp. Table 2). Vidutinis CG padengimas mėginiuose
svyravo nuo 4.5 iki 12.8, tuo tarpu atitinkamuose kontroliniuose mėginiuose
CG padengimas buvo vidutiniškai du kartus mažesnis. Atlikus tolimesnį
tyrimą, nustatytas tikslinių mėginių ir kontrolinių mėginių skirtumas
identifikuotoje CG–frakcijoje. Nors identifikuota CG–frakcija svyravo
nuo 5.6 proc. iki 34 proc., šis įvertis kontrolėse vidutiniškai buvo tik
0.01 proc.

Didesnio DNR kiekio hmTOP–seq bibliotekų techniniai pasikartojimai
gerai koreliavo esant vienai CG skiriamajai gebai (Pearson r = 0.46

ir r = 0.8 50 ng ir 500 ng bibliotekose, atitinkamai Figure 6.19 A).
Nors 5 ng DNR kiekio bibliotekos parodė žymiai mažesnę koreliaciją
tarp techninių pasikartojimų (Pearson r = 0.11), tačiau buvo pastebėtas
pagerėjimas kai buvo naudojami didesni genomo regionai. Pearson ko-
reliacija didesnio kiekio bibliotekose vidutiniškai padidėjo iki r = 0.92,
naudojant 5 kb skiriamąją gebą, o 5 ng mėginyje šis matavimas padidėjo
tik iki r = 0.55 (Figure 6.19 B). Mes taip pat nustatėme, kad nustatytų
CG vietų sutaptis didėja, atsižvelgiant į panaudotą DNR kiekį. Jaccardo
koeficientas tarp 500 ng techninių pasikartojimų buvo 0.08, tuo tarpu 50
ng mėginiuose jis buvo 0.056, o 5 ng mėginiuose – tik 0.02 (Figure 6.19

A).

Nors nustatytų CG vietų sutaptis buvo labai maža, ji buvo reikšminga ir
neatsitiktinė. Mes papildomai patikrinome nustatytų CG vietų sutaptį
naudodami tikslų Fisher testą ir nustatėme, kad 500 ng mėginiai gerai
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sutapo ne tik tarp techninių pasikartojimų, bet ir su kitais mėginiais
(Figure 6.19 C). Be to, buvo atliktas didesnių DNR kiekio duomenų
rinkinių sumažinimas (Figure 6.20). Ši analizė parodė, kad su mažesnio
dydžio bibliotekomis vis tiek galima pasiekti pakankamai aukštas kore-
liacijas. Sumažinę bibliotekos dydį 50 proc., pastebėjome, kad koreliacija
tarp techninių pasikartojimų sumažėjo tik 10 proc. Tolesnis bibliotekų
mažinimas tik nežymiai sumažino koreliaciją.

Toliau mes palyginome mūsų 5hmCG duomenų rinkinius su TAB–seq
duomenimis, parodydami, kad hmTOP–seq identifikavo 50 proc. ir 25
proc. TAB–seq nustatytų 5hmCG vietų atitinkamai 500 ng ir 50 ng
DNR rinkiniuose (tiksliojo Fisher testo įverčiai atitinkamai 4 ir 3.8).
Tiesioginis hmTOP–seq ir TAB–seq signalo palyginimas parodė gerą
abiejų metodų sutaptį (Pearson r = 0.94, Figure 6.21).

8.4.3.3 Epigenominiai Žemėlapiai

5hmCG pasiskirstymo įvairiuose genominiuose elementuose analizė parodė
gerą sutaptį su viešais duomenimis. Labai hidroksimetilintos CG vietos
(20 proc. stipriausio hmTOP–seq signalo) buvo praturtintos paruoštais
(angl., poised) enhanceriais (pažymėtais H3K4me1), aktyviais enhance-
riais (pažymėtais H3K27ac), egzonais, 3'UTR (Figure 6.22).

8.4.3.4 Diskusija

Šiame skyriuje mes pateikėme hmTOP–seq metodo taikymą 5hmCG
modifikacijai profilizuoti viena CG skiriamąja geba genomo mastu. Mes
parodome, kad apskaičiuotas 5hmCG signalas yra atkuriamas ir gerai
koreliuoja didesnio DNR kiekio bibliotekose. Be to, DNR modifikaci-
jos signalo sutaptis tarp hmTOP–seq ir kitų metodų yra gana aukšta.
Galiausiai, mes pristatėme genomo masto 5hmCG modifikacijos pratur-
tinimo prilyginimus įvairiuose genomo elementuose. Apskaičiuoti pratur-
tinimai gerai sutampa su anksčiau praneštais rezultatais, įrodydami, kad
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hmTOP–seq metodas gali būti naudojamas kaip alternatyvus metodas,
taikant šiuo metu epigenomo mastu naudojamus profiliavimo metodus.

8.4.4 caCLEAR Metodo Taikymas mESC

8.4.4.1 Įvadas

Šiame skyriuje pateikiama caCLEAR metodo duomenų analizė. ca-
CLEAR –– naujas 5caC modifikacijai specifinis sekoskaitos metodas. Čia
pateikiame caCLEAR metodo kokybės kontrolės rezultatus pelių embri-
oninėse kamieninėse ląstelėse iš skirtingų pliurpotencijos būsenų. Be to,
pateikiami 5caC modifikacijos praturtinimai įvairiuose genomo elemen-
tuose ir įrodoma, kad caCLEAR gali būti naudojamas kaip viso genomo
masto DNR modifikavimo profiliavimo technika.

8.4.4.2 caCLEAR Sekoskaitos Duomenų Kokybės Kontrolė

Vidutiniškai kiekviename mėginyje buvo 34 milijonai neapdirbtų sekoskaitos
fragmentų, kurių kiekis labai varijavo skirtingose mėginių grupėse
(Figure 6.23). Tdg mėginių grupėse ir 2i laukinio tipo mėginių grupėje
vidutiniškai buvo 53 milijonai fragmentų, o likusiose mėginių grupėse
vidutiniškai buvo tik 15 milijonų fragmentų.

Didžiausias vidutinis identifikuotų CG vietų padengimas buvo pastebėtas
Tdg mėginiuose, kur jis buvo labai panašus tarp 2i ir ne 2i grupių.
Laukinių mėginių padengimas buvo mažesnis ir labai skirtingas tarp
dviejų ankstesnių grupių (Figure 6.24 B, Supp. Table 3). Įdomu
tai, kad lyginant 2i ir ne 2i grupes pastebėjome didelį nustatytų CG
vietų kiekio skirtumą (Figure 6.24 B). Tiek Tdg, tiek laukinio tipo
mėginiuose su 2i nustatyta daugiau identifikuotų CG vietų nei mėginiuose
be 2i (beveik du kartus daugiau Tdg ir tris kartus daugiau laukinių tipų
mėginiuose).
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Abiejų Tdg grupių techniniai pakartojimai parodė koreliaciją (Pearson
r = 0.87, Figure 6.25 A). Tuo tarpu abi laukinio tipo grupės parodė
skirtingą koreliaciją tarp techninių pakartojimų. Pearson r = 0.42 2i
grupei ir Pearson r = 0.29 ne 2i grupei. Koreliacija tarp techninių
pakartojimų padidėjo apskaičiuojant ir didesnėse skiriamosiose gebose
(Figure 6.25 B). Pearson r pasiekė beveik maksimalią koreliaciją, kai
buvo vertinama 5 kb regionuose abiejose Tdg grupėse. Galiausiai buvo
apskaičiuota identifikuotų CG vietų sutaptis (Figure 6.25 A, C). Abi
Tdg mėginių grupės parodė aukštesnį Jaccard koeficientą tarp techninių
pasikartojimų ir su kita Tdg grupe, kai buvo panaudotas tikslusis Fisher
testas. Laukinių tipų grupių sutaptis buvo mažesnė nei atitinkamose Tdg
bibliotekose, bet didesnė nei Tet kontrolėje, įrodant, kad identifikuotos
CG pozicijos buvo ne atsitiktinės.

8.4.4.3 Epigenominiai Žemėlapiai

Nors dauguma 5caCG pozicijų varijavo tarp genų, reguliatorinių ir kitų
elementų, bet daugumą identifikuotų pozicijų buvo praturtinta — paruoš-
tuose ir aktyviuose enhanceriuose. Taip pat patikima CG dalis buvo
rasta su pliuripotencija susijųsių veiksnių jungimosi vietose ir SINE pasikar-
tojimuose (Figure 6.26). Galiausiai mes palyginome identifikuotas CG
pozicijas su atviro chromatino regionais iš įvarių pelės audinių ir organų
(Figure 6.27). To pasekoje buvo pastebėta didžiulė variacija tarp mėginių
grupių ir analizuotų organų. Identifikuotos CG pozicijos buvo praturtin-
tos virškinimo trakto organuose (pvz., skrandyje, žarnyne), plaučiuose,
bet rodė trūkumą nervinės sistemos organuose.

8.4.4.4 Diskusija

Šiame skyriuje aprašytas caCLEAR metodo taikymas 5caCG modifikaci-
jos profiliavimui, esant vienai CG skiriamajai gebai viso genomo mastu.
Mes parodomėme, kad apskaičiuotas 5caCG signalas yra atkuriamas ir
gerai koreliuoja tarp techninių pasikartojimų. Be to, pristatėme genomo
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masto 5caCG modifikacijos praturtinimą įvairiuose genomo elementuose
kartu su 5caCG modifikavimo praturtinimu atviruose chromatino region-
uose, kurie būdingi specifiniams pelės audiniams.

Teiginys VI — caCLEAR metodas suteikia informacijos apie DNR
modifikacijos signalą įvairiuose genomo elementuose.

8.4.5 TOP–seq ir hmTOP–seq Metodų Taikymas Prena-
taliniame Testavime

8.4.5.1 Įvadas

21 chromosomos trisomija yra dažniausia žmogaus autosominė aneu-
ploidija, dėl kurios susidaro fenotipinių ypatybių (fizinių ir intelektinių
sutrikimų) rinkinys, žinomas kaip Dauno sindromas. Šiuo metu T21 di-
agnozei patvirtinti naudojamos invazinės diagnostikos procedūros, tokios
kaip amniocentezė ir choriono gaurelių mėginių ėmimas, o po to atliekama
genetinė analizė (pvz., kariotipo nustatymas). Nors invazinių procedūrų
saugumas pagerėjo, vis dar išlieka persileidimo rizika (0.3 proc., 0.9
proc. atliekant amniocentezę ir imant choriono gaurelius). Taigi, norint
sumažinti invazinių diagnostikos procedūrų skaičių, reikalingi neinvaziniai
ir labai patikimi prenataliniai atrankos tyrimai.

Kai nėščiųjų moterųjų kraujo plazmoje buvo rasta vaisiaus genominė
medžiaga — cirkuliuojanti ne ląstelinė vaisiaus DNR (cffDNA), buvo
dedama daug pastangų panaudojant cffDNA neinvaziniam prenataliniam
vaisiaus genomų mutacijų tyrimui. Tokios atrankos metu T21 aptikimo
dažnis yra didesnis nei 99 proc., o klaidingai teigiamas rodiklis siekia vos
0.1 proc. Taigi NIPT pagrįstos diagnostikos technologijos yra reikšmin-
gas patobulinimas, palyginti su tradicine patikra. Tačiau cffDNA nus-
tatymas motinos kraujyje yra nemenkas iššūkis, nes tik iki 10 proc.
nėščios moters plazmoje esančios DNR yra gaunama iš vaisiaus.

Šiame tyrime mes pritaikėme TOP–seq ir hmTOP–seq technologijas,
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norėdami analizuoti motinos cfDNA DNR modifikacijas, kad nustaty-
tume iš vaisiaus gautus genomo regionus. Buvo sukurti viso genomo
masto 5hmCG ir uCG modifikacijų profiliai, taip pat apskaičiavome
diferencinių modifikacijų signalo praturtinimą įvairiuose genomo elemen-
tuose tarp įvairių eksperimentinių grupių. Svarbiausia, kad 21 chromoso-
mos vaisiaus trisomija buvo nustatyta labai specifiškai / jautriai, naudo-
jant regioninius modifikacijų skirtumus. Be to, vaisiaus frakcija iš cfDNA
buvo apskaičiuota naudojant uCG ir 5hmCG signalą.

8.4.5.2 Sekoskaitos Duomenų Kokybės Kontrolė

Apdoroję sekoskaitos fragmentus ir apskaičiavę CG padengimą, pirmiau-
sia palyginome biologinių pasikartojimų panašumo statistikas (Figure 6.28).
Vidutiniškai uCG biologiniai pasikartojimai buvo daugiau panašesni nei
5hmCG pasikartojimai visose išmatuotose statistikose. Įdomu tai, kad
koreliacija tarp biologinių pasikartojimų buvo didžiausia cfDNA iš nėščių
moterų uCG mėginių, tuo tarpu 5hmCG mėginiuose ši grupė turėjo maži-
ausią koreliaciją, palyginti su dviem kitomis eksperimentinėmis grupėmis.

Norėdami patikrinti, ar uCG ir 5hmCG modifikacijos skirtumus gal-
ima atskirti tarp mėginių grupių, pirmiausia apžvelgėme bendrą uCG ir
5hmCG vietų sekoskaitos padengimą. Vidutinis bendras uCG padengi-
mas tarp tirtų trijų grupių buvo skirtingas (ANOVA p–vertė 7× 10−7);
jis buvo mažiausias tarp NPC ir didžiausias tarp CV mėginių (Figure 6.29).
Toliau mes palyginimo DNR modifikacijų signalo pasiskirstymą tarp
genomo elementų. Hipometilinti regionai geriausiai persidengė su CGI,
5'UTR ir genų promotoriais. 5hmCG modifikuotos pozicijos labiausiai
persidengė su 3'UTR, egzonų ir intronų regionais.

8.4.5.3 Diferenciškai Modifikuotų Regionų Analizė

Šiame tyrime mes siekėme nustatyti vaisiui būdingus genomo lokusus,
kurie galėtų būti naudojami kaip vaisiaus fenotipo uCG ir (arba) 5hmCG
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biomarkeriai. Kadangi mūsų tyrime buvo skirtingų fenotipinių grupių
DNR mėginiai (t. y. moterys, nėščios su ne T21 vaisiu, moterys, nėščios
su T21 vaisiu, nenėščios moterys, choriono gaurelių mėginys), o tai leido
identifikuoti norimus biologinius žymenis taikant grupių palyginimus,
kurie pavaizduoti Figure 6.31 paveiksle.

Pirmiausia palyginę NPC mėginius su ne T21 nėštumo mėginiais mes
identifikavome DMR, kurie buvo nėštumui specifiniai. Ši analizė atskleidė
2,761 uCG DMR (FDR q–vertė < 5× 10−2) (Table 6.7), tačiau toks
statistinis slenkstis neleido identifikuoti 5hmCG DMR ir reikėjo nau-
doti žemesnį patikimumą (p–vertė < 5× 10−2), kas mums leido identi-
fikuoti 4,930 nėštumui specifinius 5hmCG DMRs. Toliau palyginę NPC
mėginius su CV mėginiais mes sugebėjome identifikuoti CV–specifinį
(t.y., vaisiui–specifinį) signalą. Ši analizė atskleidė 16,555 CV–specifinius
uCG DMR (FDR q–vertė < 5× 10−2) ir 15,986 CV–spefinius 5hmCG
DMR (FDR p–vertė < 5× 10−2).

Galiausiai, sukryžmindami nėštumui būdingus regionus su CV specifini-
ais regionais, išskyrėme vaisiui būdingą DNR modifikacijos signalą, kurį
galima rasti nėščios moters cfDNA, tuos regionus pavadinome specifini-
ais placentos DMR. Šis susikirtimas tarp nėštumo ir CV specifinių DMR
tiek uCG, tiek 5hmCG DMR rinkiniuose buvo didesnis, nei buvo galima
tikėtis vien atsitiktinai (n = 2,164, OR = 43; n = 1,589, OR = 5.5,
uCG ir 5hmCG, atitinkamai; p–vertės mažiau nei 1× 10−15). Placen-
tai būdingų uCG DMR skirtumas tarp NPC ir cfDNA mėginių sutapo
su skirtumu tarp NPC ir CV mėginių (Pearson r = 0.82 ir Pearson
r = 0.89, CG–padengimui ir CG–frakcijai, atitinkamai, Figure 6.32).
Panašūs rezultatai buvo pastebėti ir 5hmCG DMR (Pearson r = 0.8 ir
r = 0.8, atitinkamai CG–padengimui ir CG–frakcijai).

Nustatyti nėštumo ir CV specifiniai DMR rinkiniai persidengia labiau,
nei tikėtasi atsitiktinai, tačiau šiam rezultatui įtakos galėjo turėti genetinė
variacija. Gali būti, kad nustatyti DMR buvo gauti iš mQTL regionų, o
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pastebėtas DNR modifikacijos signalas yra susijęs su DNR sekos kinta-
mumu. Šiuo atveju naudotiems NPC mėginiams būdingas vienas geneti-
nis fonas, o nėščių moterų mėginiams -– kitas genetinis fonas, o susikir-
timą tarp nėštumui ir CV būdingų rinkinių lemia signalas, kuriam daro
įtaką DNR sekos kintamumas (t.y., mQTL). Norėdami patikrinti šią
prielaidą, apskaičiavome nustatytą DMR persidenigmą su žinomais mQTL
rinkiniais (virkštelės kraujyje nustatyti mQTL ir mQTL identifikuotas
nėščių moterų kraujyje). Stebimi mQTL ir DMR grupių susikirtimai
nebuvo reikšmingi (visos apskaičiuotos p-–vertės iš tiksliojo Fisher testo
buvo daugiau nei 0.05).

Nustatę placentai būdingus uCG ir 5hmCG DMR, mes išbandėme persi-
dengimą su skirtingais genominiais elementais Figure 6.33. uCG DMR
buvo praturtinti elementais, susijusiais su genų 5' galu (5'UTR, baltymus
koduojančių ir lincRNA genų promotoriai ir stipriausias praturtinimas
promotoriaus CGI), taip pat placentos enhanceriais. Priešingai, 5hmCG
DMR buvo praturtinti kitomis baltymus koduojančiomis genų dalimis,
egzonais, intronais ir 3'UTRs.

Galiausiai mes paklausėme, ar placentai būdingi DMR yra informatyvūs
apie vaisiaus kariotipą (t.y., T21). Naudodami kryžminę validaciją, mes
sukonstravome ir įvertinome logistinės regresijos modelį kiekvienam pla-
centai būdingam DMR, naudodami CG–padengimą ir CG–frakciją kaip
nepriklausomus kintamuosius, o vaisiaus kariotipą -– kaip priklausomąjį
kintamąjį. Iš viso 21 chromosomoje buvo atrasti 376 uCG ir 496 5hmCG
DMR, kurie 100 proc. tikslumu klasifikavo mėginius pagal vaisiaus kari-
otipą (AUC = 1) Figure 6.34.

Po to, kai nustatėme placentai būdingus DMR ir pogrupį, kuris 100
proc. tikslumu gali klasifikuoti mėginius pagal vaisiaus kariotipą, mes
pasirinkome kitokį metodą. Tiesiogiai įvertinome sveikų ir T21 teigiamų
nėštumų cfDNA mėginių modifikacijos skirtumus ir apskaičiavome T21
specifinius DMR. Buvo naudojamas logistinis regresijos modelis, kai CG–
padengimas ir CG–frakcija buvo nepriklausomi kintamieji, o kariotipas
-– priklausomas kintamasis. Taip mes nustatėme 3,490 uCG ir 2,002

5hmCG DMR, iš kurių tik 82 persidengė tarp dviejų rinkinių (OR = 2.3,
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p–vertė = 1.1× 10−10). Tik 216 ir 124 T21 specifiniai DMR persiden-
gia su placentai būdingais uCG ir 5hmCG DMR (OR = 6.1 ir OR
= 8.2; p–vertė < 2.2× 10−16), o tai rodo, kad skirtingos DMR iden-
tifikavimo strategijos lemia skirtingus DMR rinkinius 21 chromosomoje.
Pabrėžtina, kad T21 specifiniai DMR rodo didesnius CG–padengimo
ir CG–frakcijos skirtumus nei regionai, kuriuose nebuvo diferencijuotų
modifikacijų (Figure 6.35).

Įdomu tai, kad tiek uCG, tiek 5hmCG DMR rinkiniai geriau persidengia
su nėštumui būdingais DMR rinkiniais (OR = 6.6 ir OR = 9, uCG ir
5hmCG, atitinkamai) nei su CV specifiniai DMR rinkiniais (OR = 2.4

ir OR = 2.9, uCG ir 5hmCG, atitinkamai; p–vertės < 2.2× 10−16). Šis
rezultatas pateikia du galimu scenarius: kad vaisiaus audiniai be pla-
centos trofoblastų gali prisidėti prie motinos kraujo cfDNA mišinio arba
kad tai gali būti naudojamo audinio tipo artefaktas — nėštumui būdingi
DMR taip pat yra matuojami cfDNA, kaip ir T21 specifiniai DMR, kai
CV specifiniai DMR nustatomi lyginant du skirtingus audinius.

Genominių elementų praturtinimas su T21 specifiniais DMR buvo panašus
į nėštumui būdingų DMR (Figure 6.33). T21 specifiniai uCG DMR
buvo žymiai praturtinti 5'UTR, promotorinėmis CGI ir baltymus koduojančių
genų promotoriais (atitinkamai OR = 2.4, OR = 2.4 ir OR = 2.5). O
T21 specifinių 5hmCG DMR promotoriai buvo žymiai praturtinti kito-
mis baltymus koduojančiomis genų dalimis: egzonais, intronais ir 3'UTR.
Tačiau, priešingai nei placentai būdingiems DMR, T21 specifiniai uCG
DMR buvo mažiau praturtinti lincRNR promotoriais, placentos enhance-
riais ir geniniais CGI.

T21 specifinių DMR pasiskirstymas palei 21 chromosomą uCG ir 5hmCG
duomenų rinkiniams buvo skirtingas (p–vertė = 1.6× 10−12; Kolmogorov–
Smirnov testas). Dauguma nustatytų 5hmCG DMR buvo linkę kauptis
chromosomos ilgojo peties gale, o uCG DMR buvo tolygiau pasiskirstę
per 21 chromosomos ilgąjį petį, atitinkamai 46 proc. ir 64 proc. specifinių
uCG ir 5hmCG T21 DMR, persidengiantys baltymus koduojančius genus.
Įdomu tai, kad DMR, kertantys T21 specifinius uCG ir 5hmCG DMR
rinkinius (iš viso 82 DMR), parodė labai didelį baltymus koduojančių
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egzonų praturtinimą (OR = 4.4, p–vertė = 8× 10−4). Šie egzonai atitiko
septynis genus, iš kurių trys anksčiau buvo susiję su Dauno sindromu:
GART, DNMT3L ir AIRE.

8.4.5.4 Vaisiaus Frakcijos Analizė

Nustatę, kad nėščių moterų tarpe uTOP–seq ir hmTOP–seq signalai yra
didesni, mes toliau siekėme nustatyti koreliaciją tarp signalo stiprumo
ir vaisiaus frakcijos. SeqFF metodas buvo pritaikytas uTOP–seq ir
hmTOP–seq duomenims, stebint didelę sąsają tarp numatomų ir referentinių
vaisiaus frakcijų (Pearson r = 0.86, p–vertė = 3.2× 10−4 ir r = 0.9; p–
vertė = 3.9× 10−4, atitinkamai uCG ir 5hmCG, Figure 6.37). Svarbu
tai, kad paprasta linijinė regresija atskleidė, kad referentinės vaisiaus
frakcijos padidėjimas 0.01 atitinka vaisiaus frakcijos padidėjimą 0.079.
5hmCG duomenimis, prognozuojama vaisiaus frakcija sumažėjo 0.226
kiekvienam 0.01 referentinės frakcijos padidėjimui. Įdomu tai, kad didėjanti
vaisiaus frakcija įgytų didėjantį fragmentų skaičių uTOP–seq, bet mažėjantį
fragmentų skaičių hmTOP–seq. Toks atvirkštinis ryšys hmTOP–seq
greičiausiai rodo, kad SeqFF naudojami regionai yra labai praturtinti
uCG vietose, bet jų trūksta 5hmCG vietose.

8.4.5.5 Diskusija

Kiek mums yra žinoma, šis tyrimas yra pirmasis analizuojantis uCG
sekoskaitą motinos cfDNA, siekiant nustatyti vaisiaus kariotipą. Mes
taip pat parodėme, kad 5hmC profiliavimas motinos cfDNA gali tiksliai
informuoti apie vaisiaus kariotipą. hmTOP–seq metodas leido choriono
gaurelių mėginiuose ir cfDNA sukurti viso genomo masto 5hmCG pro-
filius. Svarbiausia, kad nustatant T21 vaisius hmTOP–seq buvo labiau-
siai diskriminuojantis, nepriklausomai nuo cirkuliuojančios vaisiaus DNR
frakcijos. Todėl prenataliniai tyrimai, pagrįsti 5hmCG analize, gali mak-
simaliai padidinti diagnostinį jautrumą, palyginti su sąnaudomis, ir būti
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optimalus pasirinkimas sekoskaitos pagrindu atliekamiems NIPT epi-
genetiniams metodams. Be to, vaisiaus frakciją galima išmatuoti tiesio-
giai per hmTOP–seq ir uTOP–seq fragmentų skaičių. Pabrėžtina, kad
nustatyta didelė placentai būdingų uCG ir 5hmCG biologinių žymenų
grupė, kuri buvo naudojama vaisiaus kariotipui identifikuoti. Įdomu tai,
kad šie DMR turėjo geresnę sutaptį su sveikais nėštumui būdingais DMR
rinkiniais nei su CV susijusiais DMR, taigi daroma prielaida.

Svarbu paminėti, kad diferentiškai modifikuoti regionai buvo identifikuoti
100 bp genomo regionuose. Toks paprastas metodas savaime nusistato
regiono ribą, kuri galimai neleis nustatyti didesnių epigenetinių skirtumų.
Ateityje būtų galima naudoti kitus veiksmingus metodus, tokius kaip
lygiagretus laikinas agregavimas, kad būtų galima užfiksuoti jautresnius
DNR modifikacijų pokyčius.

Pabrėžtina, kad čia aprašytus rezultatus būtina patvirtinti didelėje klinikinėje
studijoje, nes šį tyrimą riboja mėginių dydis. Be to, studiją galima
išplėsti į kitas įprastas vaisiaus aneuploidijas, tokias kaip Patau ir Ed-
wards sindromai. Kitas įdomus TOP–seq ir hmTOP–seq metodų pri-
taikymas būtų gauti imprintuotų regionų analizė iš nėščiųjų kraujo išskir-
toje DNR.

8.5 Bendrosios Išvados

Šio tyrimo įnašas į mokslą yra:

• Sukurti kompiuteriniai metodai efektyviai ir tiksliai apdoroti TOP–
seq metodu sugeneruotus didelio našumo epigenominius duome-
nis. Išvystytos strategijos įgalina DNR modifikacijų analizę vieno
citozino skiriamojoje geboje išlaikant grandininės specifiškumą.

• Išvystytos statistinio mokymosi metodikos pagerino TOP–seq metodo
epigenominio signalo kokybę. Modeliniam IMR90 genomui pri-
taikytos statistinio mokymosi technikos padidino Pearson koreliacijų
įvertį tarp techninių pakartojimų iki r = 0.89, o absoliuti Pearson

192



8.5. Bendrosios Išvados

koreliacija vieno CG skiriamojoje geboje su referentiniu WGBS
signalu padidėjo iki r = 0.71.

• TOP–seq metodu paremtos technologijos gali suteikti informacijos
apie DNR modifikacijų signalą įvairiuose genominiuose elementu-
ose ir struktūrose.

• TOP–seq ir hmTOP–seq metodai gali būti naudojami identifikuoti
diferentiškai modifikuotus regionus tarp įvairių mėginių grupių.
Abu metodai gali panaudoti CG padengimo ir identifikavimo infor-
maciją suklasifikuoti mėginius iš skirtingų audinių ar kariotipinių
grupių. Identifikuoti 100 bp regionai gali būti panaudoti prena-
talinei diagnostikai arba įvertinti audinių kompoziciją tam tikrame
mėginyje.
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Supp. Figure 3 | Strand Specific Read Distance to CG sites

Relative distribution between the read start and nearest CG site in cfDNA sample
(sample identifier 137). Reads have non–symmetrical distance to CG sites with both
TOP–seq and hmTOP–seq reads starting at exactly CG sites or with a strand specific
shift.
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Supplemental Tables

Supp. Table 1 | Change in Amount of Reads

Amount of reads processed in each TOP–seq method or its variations. Given number
of reads (in millions) is presented as the total amount of reads from all the samples
in a given study at a particular processing step.

Short
Study DNA Original reads 5'adapter
name modification reads removed removed

TOP–seq uCG 1,029 777 774
hmTOP–seq 5hCG 353 280 278
caCLEAR 5caCG 382 301 300
NIPT uCG 1,060 818 815
NIPT 5hmCG 671 540 538

Low
Study DNA 3'adapter quality
name modification trimmed trimmed Mapped

TOP–seq uCG 774 748 695
hmTOP–seq 5hCG 278 278 273
caCLEAR 5caCG 300 300 247
NIPT uCG 815 815 778
NIPT 5hmCG 538 538 526

High
Study DNA mapping Duplicates Assigned
name modification quality removed to CG

TOP–seq uCG 542 412 394
hmTOP–seq 5hCG 241 153 140
caCLEAR 5caCG 205 160 103
NIPT uCG 645 545 477
NIPT 5hmCG 472 264 223
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Supplemental Tables

Supp. Table 2 | Coverage Statistics of 5hmCG Sites

The number of identified CG sites (coverage greater than 0) is represented in abso-
lute and relative numbers. The coverage of identified CG sites is represented with
arithmetic mean (i.e., average).

Sample Replicate Amount Average
identifier identifier of 5hmCG,% coverage

hmC ctrl 5 K1 0.002 8
hmC ctrl 5 K2 0.002 9.8
hmC 5 R1 5.7 12.1
hmC 5 R2 5.6 12.8
hmC ctrl 50 K1 0.005 3
hmC ctrl 50 K2 0.005 3
hmC 50 R1 18 6
hmC 50 R2 19 5.3
hmC ctrl 500 K1 0.03 1.5
hmC ctrl 500 K2 0.03 1.5
hmC 500 R1 32 4.7
hmC 500 R2 34 4.4

Supp. Table 3 | Coverage Statistics of 5caCG Sites

The number of identified CG sites (coverage greater than 0) is represented in absolute
and relative numbers. The coverage of the identified CG sites is represented by the
arithmetic mean (i.e., average).

Sample Replicate Amount Average
identifier identifier of 5caCG,% coverage

Serum WT R1 3.3 2.4
Serum WT R2 3.2 2.5
Serum 2i WT R1 11 3.8
Serum 2i WT R2 10.8 4
Serum Tdg R1 12.2 5.6
Serum Tdg R2 12.4 5.9
Serum 2i Tdg R1 22.2 5.2
Serum 2i Tdg R2 22.1 5.3
Tet TKO R1 1 2
Tet TKO R2 0.9 2
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