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Abstract: The paper continues the study of efficient algorithms for the computation of zeta functions over
the complex plane. We aim to apply the modifications of algorithms to the investigation of underlying
fractal structures associated with the Riemann zeta function. We discuss the computational complexity
and numerical aspects of the implemented algorithms based on series with binomial-like coefficients.
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1. Introduction

In this paper, we continue the study of efficient algorithms for computation of the
Riemann zeta function over the complex plane, introduced by Borwein [1] and extended by
Belovas et al., (see [2,3] and references therein). Šleževičienė [4], Vepštas [5], and Coffey [6]
applied this methodology for the computation of Dirichlet L-functions, Hurwitz zeta
function, and polylogarithm. Belovas et al. obtained limit theorems, which allowed the
introduction of asymptotic approximations for the coefficients of the series of the algorithms.
A preliminary presentation of computational aspects of the approach has been presented in [3].
Theoretical aspects of the approach (as well as more subtle proofs of the limit theorems)
have been discussed in [7].

Fractal geography of the Riemann zeta function (and other zeta functions) was ad-
dressed by King [8]. Woon [9] and Tingen [10] computed Julia and Mandelbrot sets of the
Riemann zeta function and Hurwitz zeta function, respectively, and studied the properties
of these fractals. Recently Blankers et al. [11] investigated the analogs of Julia and Man-
delbrot sets for dynamical systems over the hyperbolic numbers. In the present study, we
enhance algorithms for the calculation of the Riemann zeta function, proposed in [2,3].
We specify the convergence rate to the limiting distribution for the coefficients of the se-
ries, identify the error term, and discuss computational complexity. The algorithms are
compared against the recently proposed Zetafast algorithm [12] and are applied for the
investigation of underlying fractal structures associated with the Riemann zeta function.

The paper is organized as follows. The first part is the introduction. In Section 2, we
describe algorithms and present theoretical results. Section 3 is devoted to the visual investiga-
tion of the underlying fractal background of the Riemann zeta function. Pseudocodes of the
algorithms for the computation and the visualization are given in Section 4. Sections 5 and 6
are devoted to presenting the results and conclusions, respectively.

Throughout this paper, U×V stands for the Cartesian product of sets U and V. We denote
by Φ(x) the cumulative distribution function of the standard normal distribution, and by Γ(s)
we denote the gamma function. Next, bxc and dxe stand for the floor function and the ceiling
functions, respectively. All limits in the paper, unless specified, are taken as n→ ∞.
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2. MB- and BLC-Algorithms for the Computation of the Riemann Zeta Function

Let s = σ + it be a complex variable. The Riemann zeta-function is defined on the
half-plane σ > 1 by the ordinary Dirichlet series or the Euler product formula,

ζ(s) =
∞

∑
n=1

1
ns = ∏

p prime

(
1− 1

ps

)−1
,

and by analytic continuation for other complex values. The Riemann zeta function is a
meromorphic function (holomorphic on the whole complex plane except for a simple pole
at s = 1 with residue 1). The Riemann zeta function satisfies the functional equation

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s),

implying that ζ(s) has simple zeros at s = −2n, n ∈ N, known as the trivial zeros.
Other zeroes are called nontrivial. The famous Riemann hypothesis states that all the nontrivial
zeros lie on the critical line s = 1/2 + it. The hypothesis is closely related to the distribution of
prime numbers, implying the best possible error term in the prime number theorem,

π(x) =
∫ x

2

dt
log t

+ O(
√

x log x).

Here π(x) is the prime-counting function, i.e., the number of primes less than or equal
to x , x ∈ R. A summary of the literature covering the problems related to the Riemann
zeta function and its applications is presented in [13,14] and the references therein.

2.1. MB-Algorithm

In [3] Belovas et al., proposed a modification of Borwein’s efficient algorithm
(MB-algorithm) for the computation of the Riemann zeta function [1]. The algorithm
applies to complex numbers with σ > 1/2 and arbitrary t. The Riemann zeta function is
represented by the alternating series

ζ(s) =
1

1− 21−s

n−1

∑
k=0

(−1)kψ
(j)
n,k

(k + 1)s + γ
(j)
n (s). (1)

Here (case j = 1 in ψ
(j)
n,k corresponds MB-series), by Theorem 1 from [3], we have

ψ
(1)
n,k = 1− Hk

Hn
and lmax = arg max

06k6n

(n + k− 1)!4k

(n− k)!(2k)!
, n ∈ N, 0 6 k 6 n, (2)

while

Hl = Hl−1 + exp(Tl − Tlmax + (l − lmax) log 4), H0 = exp(T0 − Tlmax − lmax log 4),

Tl = Tl−1 + log
(n− l + 1)(n + l − 1)

(2l − 1)(2l)
, T0 = − log n, 1 6 l 6 n.

(3)

The algorithm is nearly optimal in the sense that there is no sequence of n-term
exponential polynomials that converge to the Riemann zeta function much faster than of
the algorithm (see Theorem 3.1 in [1]).

2.2. BLC-Algorithm

This algorithm, introduced in [2], also uses series (1) (case j = 2 in ψ
(j)
n,k corresponds

BLC-series), but with different binomial-like coefficients,

ψ
(2)
n,k = I1/2(k + 1, n− k + 1). (4)



Fractal Fract. 2022, 6, 300 3 of 21

Here Ix(a, b) stands for the regularized incomplete beta function,

Ix(a, b) =
∫ x

0
ta−1(1− t)b−1dt

/ ∫ 1

0
ta−1(1− t)b−1dt.

The error terms γ
(j)
n (s) of these methods are discussed in the following subsection.

2.3. Error Terms and Computational Complexity

First we formulate an auxiliary lemma, aiming to investigate the behaviour of the
series in the neighbourhoods of critical points τk,

τk = 1 + 2iπk/ log 2, k ∈ N0. (5)

Note that in (1) the denominator 1− 21−s = 0 if and only if =s = 2πk/log 2, k ∈ Z
and <s = 1.

Lemma 1. Let τk be defined by (5) and ωk be the circle

ωk = {s : |s− τk| = ρ > 0}.

Then, for f (s) = 1/(1− 21−s) and ρ 6 3/ log 2,

max
s∈ωk
| f (s)| 6 1

1− 2−ρ . (6)

Proof of Lemma 1. Parametrizing the complex function f (s) for the circle ωk, we obtain

g(ϕ) := f (τk + ρeiϕ) = 1/(1− 2−2iπk/ log 2−ρ(cos ϕ+i sin ϕ)︸ ︷︷ ︸
:=u(ϕ)

). (7)

Next,

|u(ϕ)| = |1− 2−ρ cos ϕ(cos(ρ log 2 sin ϕ)− i sin(ρ log 2 sin ϕ))|
= (1− 21−ρ cos ϕ cos(ρ log 2 sin ϕ) + 2−2ρ cos ϕ︸ ︷︷ ︸

:=v(ϕ)

)1/2. (8)

The function v(ϕ) is periodic with period 2π and symmetric with respect to ϕ = π
(indeed, v(π − χ) = v(π + χ)). Hence the statement of the lemma reduces to solving

min
06ϕ6π

v(ϕ).

Differentiating v(ϕ), we get for 0 < ϕ < π

v′(ϕ) = 21−ρ cos ϕρ log 2

· (2−ρ cos ϕ sin ϕ− sin ϕ cos(ρ log 2 sin ϕ) + cos ϕ sin(ρ log 2 sin ϕ))︸ ︷︷ ︸
:=w(ϕ)>0

> 0.

Indeed, with r = ρ log 2 and
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10. (r, ϕ) ∈ (0, 3)× (0, π/2), we have

w(ϕ) = e−r cos ϕ sin ϕ− sin ϕ cos(r sin ϕ) + cos ϕ sin(r sin ϕ)

>
(

1− r cos ϕ +
1
2
(r cos ϕ)2 − 1

6
(r cos ϕ)3

)
sin ϕ

−
(

1− 1
2
(r sin ϕ)2 +

1
24

(r sin ϕ)4
)

sin ϕ︸ ︷︷ ︸
>0

+

(
r sin ϕ− 1

6
(r sin ϕ)3

)
cos ϕ︸ ︷︷ ︸
>0

=
1

24
r2 sin ϕ

(
12− 4r cos ϕ− r2 sin4 ϕ

)
> 0.

20. For (r, ϕ) ∈ (0, 3)× (π/2, π), we have

w(ϕ) = e−r cos ϕ sin ϕ− sin ϕ cos(r sin ϕ) + cos ϕ sin(r sin ϕ)

>
(

1− r cos ϕ +
1
2
(r cos ϕ)2

)
sin ϕ

−
(

1− 1
2
(r sin ϕ)2 +

1
24

(r sin ϕ)4
)

sin ϕ︸ ︷︷ ︸
>0

+r sin ϕ cos ϕ︸ ︷︷ ︸
<0

=
1

24
r2 sin ϕ

(
12− r2 sin4 ϕ

)
> 0.

We have shown that w(ϕ) > 0 for (r, ϕ) ∈ ((0, 3)× (0, π/2)) ∪ ((0, 3)× (π/2, π)).
Note that w(π/2) > 0 for r ∈ (0, 3). Thus the function v(ϕ) is monotonically increasing and

vmin = min
06ϕ6π

v(ϕ) = v(0) = (1− 2−ρ)2,

with (7) and (8) yielding us the statement of the lemma.

The error term and the computational complexity are closely linked to the problem
of the selection of the minimal number of terms in the series (1). Let us formulate the
following theorem.

Theorem 1. Let σ > 1/2, t > 0, ε > 0 and |s− τk| > ε, then

(i) the error term of the series (1) is

|γ(j)
n (s)| 6 Θ(j)

n
(cosh πt)1/2

|1− 21−s| , (9)

(ii) the series (1) to compute the Riemann zeta-function with d decimal digits of accuracy,
require a number of terms

n(j) =
⌈

D(j)
1 t + D(j)

2 d + D(j)
ε

⌉
, (10)

with coefficients of expressions (9) and (10) presented in Table 1.

Table 1. Coefficients of expressions (9) and (10).

j Θ
(j)
n D(j)

1 D(j)
2 D(j)

ε

1 2
(3+
√

8)n
π/2

log(3+
√

8)
log 10

log(3+
√

8)
log 2−log(1−2−ε)

log(3+
√

8)

2 1
2n+1

π/2
log 2

log 10
log 2

− log 2−log(1−2−ε)
log 2
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Proof of Theorem 1. Let us start with MB-series. The error term of the series (1) is
(cf. Algorithm 2 in [1])

|γ(1)
n (s)| 6 2

(3 +
√

8)n

1
|1− 21−s|

1
|Γ(s)|

∫ 1

0

(− log x)σ−1

1 + x
dx︸ ︷︷ ︸

:=I(σ)

. (11)

Considering the function I(σ), we have

I(σ) 6
∫ 1

0
(− log x)σ−1dx = Γ(σ). (12)

By a product representation of the gamma function (cf. 8.326.1 in [15]),∣∣∣∣Γ(σ)Γ(s)

∣∣∣∣2 =
∞

∏
n=0

(
1 +

t2

(σ + n)2

)
,

The product is decreasing by σ, hence (cf. 8.332.2 in [15]),

Γ(σ)
|Γ(s)| 6

Γ( 1
2 )

|Γ( 1
2 + it)|

=

√
π√
π

cosh πt

=
√

cosh πt. (13)

Hence,

|γ(1)
n (s)| 6 2

(3 +
√

8)n

√
cosh πt
|1− 21−s| .

(14)

In view of (14), to compute the Riemann zeta-function with d decimal digits of accuracy,
the approach requires a number n of terms not less than

Nd(σ, t) =
log 2 + d log 10 + 1

2 log cosh πt− log |1− 21−s|
log(3 +

√
8)

=
πt + log(1 + e−2πt) + log 2 + 2d log 10− 2 log |1− 21−s|

2 log(3 +
√

8)

6
πt + 2d log 10− 2 log |1− 21−s|+ 2 log 2

2 log(3 +
√

8)
.

(15)

10. Let |σ− 1| > ε. We have

Nd(σ, t) 6
πt + 2d log 10− 2 log |1− 21−σ|+ 2 log 2

2 log(3 +
√

8)

6
π/2

log(3 +
√

8)
t +

log 10
log(3 +

√
8)

d +
log 2− log(1− 2−ε)

log(3 +
√

8)
.

(16)

20. Let |s− τk| > ε and |σ− 1| 6 ε. By applying the maximum modulus principle and
Lemma 1, we receive

Nd(σ, t) 6
πt + 2d log 10− 2 log |1− 2−ε|+ 2 log 2

2 log(3 +
√

8)

=
π/2

log(3 +
√

8)︸ ︷︷ ︸
:=D(1)

1

t +
log 10

log(3 +
√

8)︸ ︷︷ ︸
:=D(1)

2

d +
log 2− log(1− 2−ε)

log(3 +
√

8)︸ ︷︷ ︸
D(1)

ε

, (17)
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thus concluding the proof. The deduction for BLC-series is analogical.

Corollary 1. Under the conditions of Theorem 1, for ε = 10−m, m ∈ N, the series (1) to compute
the Riemann zeta-function with d decimal digits of accuracy, requires the number of terms

n(j) =
⌈

D(j)
1 t + D(j)

2 (d + m)
⌉
+2− j. (18)

Proof of Corollary 1. The result (18) follows immediately, if we notice that for ε→ 0 we have

log(1− 2−ε) = log ε + log log 2 + o(1).

2.4. NA-Modifications of MB- and BLC-Algorithms

Limit theorems for coefficients of MB- and BLC-series enable us to derive a normal
approximation for coefficients ψ

(j)
n,k (cf. (24) in [3]). We can formulate the following theorem.

Theorem 2. Coefficients ψ
(j)
n,k of the series (1) satisfy

ψ
(j)
n,k = 1−Φ

(
k− µ

(j)
n

σ
(j)
n

)
+ O

(
1√
n

)
. (19)

Coefficients µ
(j)
n and σ

(j)
n are presented in Table 2.

Table 2. Coefficients of the expression (19).

j µ
(j)
n σ

(j)
n

1 n√
2

√
n

4√32

2 n
2

√
n

2

Proof of Theorem 2. Let us start with MB-series coefficients. Suppose An is an integral
random variable with the probability mass function

P(An = k) =
un,k

∑n
j=0 un,j

, k = 0, . . . , n. (20)

Here (cf. (1) in [3])

un,k = n
(n + k− 1)!4k

(n− k)!(2k)!
, n ∈ N, 0 6 k 6 n. (21)

Thus,

ψ
(1)
n,k = 1−

∑k
j=0 un,j

∑n
j=0 un,j

. (22)

Let Fn(x) be the cumulative distribution function of the random variable An (20), then
(cf. Theorem 3 in [7])

Fn(σ
(1)
n x + µ

(1)
n ) = Φ(x) + O

(
1√
n

)
, x ∈ R. (23)
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Note that the cumulative distribution function

Fn

(
σ
(1)
n x + µ

(1)
n

)
= ∑

j6σ
(1)
n x+µ

(1)
n

unj

∑n
j=0 unj

.

Denoting k = bσnx + µnc and taking into account (22) and (23), we obtain

1− ψ
(1)
n,k = Φ

(
k− µ

(1)
n

σ
(1)
n

)
+ O

(
1√
n

)
.

The first part of the theorem follows. Similar result for BLC-coefficients ψ
(2)
n,k has been

proven in [2].

Theorem 2 allows us to choose the number of terms n(j) for the series (1),

n(j) = dµ(j)
n + zdσ

(j)
n e, (24)

for n large enough. Here zd = Φ−1(1− 10−d). Note that

n(1) ∼ π

2
√

2 log(3 +
√

8)︸ ︷︷ ︸
=0.630...

t, n(2) ∼ π

4 log 2︸ ︷︷ ︸
=1.133...

t,

for fixed σ and d. The refined version of NA-modification based methodology is summa-
rized in Section 4.

2.5. Empirical Insights for NA-Modifications

While performing practical computations using NA-algorithms, we have noticed that
the values produced were significantly more accurate than otherwise implied by d in the
analytic estimate (10). In order to increase the performance and to have a clear course for future
theoretical refinements, we propose empirical formulae for the minimum number of terms in
the series (1) to compute the Riemann zeta-function with d decimal digits of accuracy.

Kuzma has proposed the following empirically-based estimate for the number of
terms for the BLC-series (d = 6),

n(0) = d0.67658827t + 113.26486067e. (25)

In the present section, we offer an improvement to this estimate.
Figure 1 displays the minimum n required to calculate the Riemann zeta function

with d = 6 digits of accuracy using NA- and BLC-algorithms at σ = 1/2, t ∈ [1000, 1050]
(the blue curve). The curves have clearly visible periodic peaks (marked by red vertical lines).
The peaks have a period of λ = 2π/ log 2, which correspond τk special points of Theorem 1.
Since we are interested in the upper bound of this empirical curve, for the following
calculations we use the points t = λk, k ∈ N.
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1000 1010 1020 1030 1040 1050
t

550

555

560

565

570

575

n

(a) NA-algorithm

1000 1010 1020 1030 1040 1050
t

780

790

800

810

820

n

(b) BLC-algorithm
Figure 1. Periodic peaks of the minimum number of terms (the blue curves) in series (1) for d = 6 digits
of accuracy at (σ, t) ∈ 1/2× [1000, 1050]. The curves have clearly visible periodic peaks, marked by
red vertical lines.

Figure 2 shows regression models

n(j) =
⌈

a(j)t + b(j)
√

t + c(j)
⌉

(26)

derived for d ∈ [1, 10] using the points (σ, t) ∈ 1/2 × (0, 10,000). Each graph represents a
fitted curve for a different d value.

0 2000 4000 6000 8000 10,000
t

0

1000

2000

3000

4000

5000

n

(a) NA-algorithm

0 2000 4000 6000 8000 10,000
t

0

1000

2000

3000

4000

5000

6000

7000

n

(b) BLC-algorithm
Figure 2. Regression models (26) for the minimum number of terms in series (1), derived for the
accuracies d ∈ [1, 10].

Figure 3 illustrates fluctuations of the coefficients of the regression models (26) by d.
Here we can clearly see that a(1) has no correlation with d while b(1) and c(1) does.

Fitting b(j) with b(j) = x
√

d + y and c(j) with c(1) = xd + y we obtain the following
coefficients for (26) (see Table 3):

Table 3. Coefficients of the regression model (26).

j a(j) b(j) c(j)

1 0.451 1.407
√

d− 0.245 0.371d + 0.195
2 0.637 2.026

√
d− 0.272 1.602d− 0.026
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5 10
d

0.45014

0.45016

0.45018

0.45020

0.45022

0.45024

a

5 10
d

1.5

2.0

2.5

3.0

3.5

4.0

b

5 10
d

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

c

Figure 3. Coefficients of the regression models a(1), b(1) and c(1) plotted against the decimal digits
of accuracy.

3. Visualizations of Fractal Structures Associated with the Riemann Zeta Function
3.1. Methods of the Visualization

In this study we employ two methods to reveal the Riemann zeta function
underlying nature. The first heuristic method (FH-method) calculates RGB colors of the
graph of the Riemann zeta function, using a composition of special functions. Suppose we
have a function f : (R+,C)→ N0:

f (x, z) =

{
bx log |z|c, if z 6= 0,
0, if z = 0.

(27)

Now we can define functions f1, f2, f3:

f1(x, z) = f (η1, ζ(s)), f2(x, z) = f (η2,<(ζ(s))), f3(x, z) = f (η3,=(ζ(s))). (28)

Next, we calculate (R, G, B) colors of each pixel of the graph of the Riemann zeta
function using polynomial functions of fk (see Table 4):

R = g(l)1 ( f1, f2, f3) mod 256,

G = g(l)2 ( f1, f2, f3) mod 256,

B = g(l)3 ( f1, f2, f3) mod 256.

Table 4. List of g(l)k functions.

l g(l)
1 g(l)

2 g(l)
3

1 f1 f2 f3
2 255− f1 f2 f3 f2 f3 255− f2
3 f1 f2 f 2

3
4 f1 f3 f2 f3
5 f1 f3 f2 f3 f3

The second approach (second fractal heuristic (SFH) method) is based on the applica-
tion of the Mandelbrot set to the visualization of the Riemann zeta function. Suppose we
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aim to visualize ζ(σ + it) for (σ, t) ∈ (σ1, σ2) × (t1, t2). First, we introduce the log-
transformation for each point (x, y) of the graph,{

x = L(<(ζ(σ + it))),
y = L(=(ζ(σ + it))),

(29)

thus obtaining the set Q = (xmin, ymin)× (xmax, ymax). Here

L(x) =

{
log |x|, if x 6= 0,
0, if x = 0.

(30)

Next, we linearly transform Q into the subset S of the complex plane,

(x, y) ∈ Q→ (x∗, y∗) ∈ S.

We take S = (−2, 0.47)× (−1.12i, 1.12i), where the Mandelbrot set is defined. Then we
use an algorithm to generate the Mandelbrot set, setting the start position at z0 = 0 and
z∗ = (x∗, y∗):

zk+1 ← z2
k + z∗. (31)

Suppose that k ∈ N, k 6 vmax indicates the number of iterations (31), required to
ascertain that z∗ does not belong to the Mandelbrot set, with

|zk+1| 6 2 and k < vmax.

For k = vmax, it is unclear if z∗ does not belong to the Mandelbrot set. Now let k0 = b50kc.
We calculate RGB color for the z∗ point by the following rule:

RGB =


(0, 0, 0), if k = vmax,
(255, 255, k0 mod 256), if 510 < k0 < vmax,
(100, k0 mod 256, 255), if 255 < k0 6 510,
(0, 0, k0 mod 256), if k0 6 255.

3.2. Visual Investigations

The first visualization (see Figure 4) reveals the underlying structures in the “center”
S1 ⊂ C of the Riemann zeta function, received by two different methods (the color visual-
ization and the fractal visualization). Here S1 = (−20, 8)× (−14, 14). Figure 4a is obtained
using FH-method with color parameters η1 = 100 and η2 = η3 = 8. The color transform
g(1)k is linear (see Table 4). Figure 4b is obtained using SFH-method. Note small bright
fractal feature on the right-hand side, calling for in-depth investigation.

Figure 5 presents zoom-in frames of S2 region for the Riemann zeta function.
Here S2 = (−5, 6)× (β, α + β), with four shifted in β intervals (see Table 5 for the ranges).
The frames were received using FH-method with color parameters η1 = 100 and η2 = η3 = 8.
The color transform g(1)k is linear (see Table 4). Note nontrivial zeros of the Riemann zeta
function (blue disks, marked with arrows in Figure 5a,b).
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(a) Method 1: Color visualization (b) Method 2: Fractal visualization

Figure 4. The structures of the “center” of the Riemann zeta function, (σ, t) ∈ (−20, 8)× (−14, 14),
received by SH and SFH methods. Note small fractal feature on the right-hand side of (b).

(a) (b) (c) (d)

Figure 5. FH-based zoomed-in frames of the Riemann zeta function (see Table 5 for the ranges). Note
nontrivial zeros of the Riemann zeta function (blue disks, marked with arrows in Figure 5a,b).
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Table 5. Ranges of the sets of Figure 5: (σ, t) ∈ S2, α = 50.

Figure β S2

Figure 5a 0 (−5, 6)× (0, 50)
Figure 5b 500 (−5, 6)× (500, 550)
Figure 5c 1000 (−5, 6)× (1000, 1050)
Figure 5d 5000 (−5, 6)× (5000, 5050)

Figure 6 (obtained by SFH-method) extends the investigation of the fractal feature,
associated with the Riemann zeta function, observed in Figure 4b. The frame Figure 6a
represents zoomed-in image of the feature in the range (0.2, 2.2)× (−1.6, 1.6). The frame
Figure 6b is the next magnification step, belonging to the range (0.95, 1.05)× (−0.08, 0.08).
Fractal structures received in Figure 6b are examined further in Figure 7.

(a) (b)
Figure 6. Fractal features of the Riemann zeta function in the pole area (see Table 6 for the ranges).
(a) gives zoomed-in image of the feature observed in Figure 4b. (b) represents the next magnification
step (red rectangle).

Table 6. Ranges of the sets of Figure 6, (σ, t) ∈ S3.

Figure S3

Figure 6a (0.20, 2.20)× (−1.60, 1.60)
Figure 6b (0.95, 1.05)× (−0.08, 0.08)

Figure 7a displays zoomed-in frame of the fractal border presented in Figure 6b.
The next five frames (each of them corresponds to a colored rectangle in Figure 7a) uncover
some aesthetically pleasing features of fractal structures associated with the Riemann
zeta function. Note snowflake-shaped fractals in Figure 7c, as well as pinwheel-shaped ones
in Figure 7d,e, resembling discs of spiral galaxies. Clockwise spinning Figure 7e reminds us
of the grand design spiral galaxy NGC 4254 in Coma Berenices. Counter-clockwise rotating
Figure 7d resembles the Pinwheel Galaxy NGC 5457 in Ursa Major. Invariant features of
fractal geometry generated from images provide a good set of descriptive values for the
recognition of regions and objects, e.g., fractal signatures of galaxies are examined with the
aim of classifying them (cf. [16]). Figure 7 is received by SFH-method. The ranges of the
sets are given in Table 7.
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(a) main area (b) area enclosed by the red square

(c) area enclosed by the blue square (d) area enclosed by the green square

(e) area enclosed by the violet square (f) area enclosed by the brown square
Figure 7. Fractal structures associated with the near-pole region of the Riemann zeta function. Frames
(b–f) are zoomed-in rectangles of (a). Ranges of the sets are given in Table 7.
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Table 7. Ranges of the frames of Figure 6.

Figure σ1 σ2 t1 t2

Figure 7a 1.30000 1.04000 −0.034000 −0.024000
Figure 7b 1.03730 1.03925 −0.029875 −0.027925
Figure 7c 1.03730 1.03925 −0.029875 −0.027925
Figure 7d 1.03385 1.03550 −0.033200 −0.031550
Figure 7e 1.03410 1.03485 −0.026000 −0.025250
Figure 7f 1.03035 1.03150 −0.032850 −0.031700

Figure 8 illustrates other facets of the geography of the Riemann zeta function. Graphs for
the range (−30, 10)× (−14, 16) are obtained using four different non-linear color transforma-
tions g(l)k , where g(l)1 6= f1 or g(l)2 6= f3 or g(l)3 6= f3. Color parameters are given in Table 8.

(a) color parameters η = (10, 1, 2) (b) color parameters η = (90, 17, 50)

(c) color parameters η = (9, 7, 5) (d) color parameters η = (1, 2, 1)
Figure 8. Four non-linear color maps of the Riemann zeta function for (σ, t) ∈ (−30, 10)× (−14, 16).
Detailed color parameters are given in Table 8.

Table 8. Color parameters of Figure 8.

Figure η1 η2 η3 g(l)
k

Figure 8a 10 1 2 g(2)k
Figure 8b 90 17 50 g(3)k
Figure 8c 9 7 5 g(4)k
Figure 8d 1 2 1 g(5)k
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4. Computation and Visualization Algorithms

This section gives pseudocodes of the algorithms described in Sections 2 and 3.

4.1. Computation Algorithms

The first algorithm outlines MB- and BLC-approaches (cf. Theorem 1 and Corollary 1)
with the corresponding empirical modifications (26) for the calculation of multiple values
of the Riemann zeta functions while t is fixed.

The second algorithm outlines NA-modifications of MB- and BLC-methods. These
approaches are more suitable for the calculation of specific values of the Riemann zeta
function.

Results of numerical experiments with Algorithms 1 and 2 are presented in Section 5.

Algorithm 1 This algorithm will return multiple values of the Riemann zeta function for
fixed t and array {σr}. Note that Lk = log k stand for precalculated logarithms.

1: procedure ZETA.M(σ : array [1..N] of real numbers; d, m, j : natural numbers; t : real
number) . (see Table 9)

2: n←


⌈
((π/2)t + (d + m)L10)/log(3 +

√
8)
⌉
+1, j = 1,⌈

((π/2)t + (d + m)L10)/L2

⌉
, j = 2,⌈

a(j−4)t + b(j−4)
√

t + c(j−4)
⌉

, j = 5 or j = 6

3: if j is odd then . MB1- and EMB5-block
4: T0 ← −Ln, lmax ← bn/

√
2c

5: for l ∈ {1..n} do
6: Tl ← Tl−1 + Ln−l+1 + Ln+l−1 − L2l−1 − L2l
7: end for
8: H0 ← exp(T0 − Tlmax − lmaxL4)
9: for l ∈ {1..n} do

10: Hl ← Hl−1 + exp(Tl − Tlmax + (l − lmax)L4)
11: end for
12: for k ∈ {0..n} do
13: ψ

(j)
n,k ← (1− Hk/Hn)(cos(tLk+1)− i sin(tLk+1))

14: end for
15: else . BLC2- and EBLC6 block
16: for k ∈ {0..n} do
17: ψ

(j)
n,k ← (cos(tLk+1)− i sin(tLk+1))betainc(k + 1, n− k + 1, 0.5)

18: end for
19: end if
20: λ← 2(cos(tL2)− i sin(tL2))
21: for r ∈ {1..N} do . Calculation of MB- or BLC-series for the corresponding σr
22: S← 0, p← −1
23: for k ∈ {0..n} do
24: p← −p
25: S← S + pψ

(j)
n,k exp(−σrLk+1)

26: end for
27: Sr ← S/(1− λ exp(−σrL2))
28: end for
29: return S . Returns the array S[1..N] of the Riemann zeta function values
30: end procedure
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Algorithm 2 This algorithm will return values of the Riemann zeta function obtained by
NA-modifications of MB- or BLC-method. Note that Lk = log k and t > 103.

1: function ZETA.NA(σ, t : real numbers; d, m, j : natural numbers)
2: n← (π/2)t + (d + m)L10, z← Φ−1(1− 10−d)
3: if j = 1 then . NAMB-block
4: n← (n + L2 − log L2)/ log(3 +

√
8), µn ← n/

√
2, σn ←

√
n/ 4
√

32
5: else . NABLC-block
6: n← (n− L2 − log L2)/L2, µn ← n/2, σn ←

√
n/2

7: end if
8: k0 ← dµn + zσne, k1 ← µn − zσn
9: function ψ(n,k : nonnegative integers)

10: if k < k1 then
11: ψ← 1
12: else
13: ψ← 1−Φ((k− µn)/σn)
14: end if
15: end function
16: S← 0, p← −1
17: for k ∈ {0..k0} do
18: p← −p
19: S← S + pψ(n, k) exp(−σLk+1)(cos(tLk+1)− i sin(tLk+1))
20: end for
21: return S/(1− 2 exp(−σL2)(cos(tL2)− i sin(tL2)))
22: end function

4.2. Visualization Algorithms

The third algorithm (Algorithm 3), corresponding the first heuristic method (FH-method),
calculates RGB colors of the graph of the Riemann zeta function, using a composition of special
functions.

Algorithm 3 This algorithm will return a colored image of Riemann zeta function
for (σ, t) ∈ (σmin, σmax) × (tmin, tmax). Other parameters: η1, η2, η3—color parameters,
g1, g2, g3—polynomial functions of f1, f2, f3 (see Table 4), w—width in pixels of output
image img.

1: procedure FH(σmin, σmax, tmin, tmax, a, b, c : real numbers; w : natural number)
2: h← bw · (tmax − tmin)/(σmax − σmin)c
3: img← [ ]
4: for j ∈ {0..h− 1} do
5: row← [ ]
6: t← tmin + j · (tmax − tmin)/(h− 1)
7: for k ∈ {0..w− 1} do
8: σ← σmin + k · (σmax − σmin)/(w− 1)
9: z← ζ(σ + it)

10: f1 ← bη1 log |z|c
11: f2 ← bη2 log |<(z)|c
12: f3 ← bη3 log |=(z)|c
13: g1 ← g1( f1, f2, f3)
14: g2 ← g2( f1, f2, f3)
15: g3 ← g3( f1, f2, f3)
16: RGB← [g1 mod 256, g2 mod 256, g3 mod 256]
17: row← row + RGB
18: end for
19: img← img + row
20: end for
21: end procedure
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The fourth algorithm (Algorithm 4), corresponding the second fractal heuristic method
(SFH-method), employs the Mandelbrot set to visualize the Riemann zeta function.

Algorithm 4 This algorithm will return fractalized image of Riemann zeta function for
(σ, t) ∈ (σmin, σmax) × (tmin, tmax). Here m stands for max iterations to get more pre-
cise fractal image, w - width in pixels of output image img. The output image utilizes
yellow-black-blue color palette.

1: procedure SFH(σmin, σmax, tmin, tmax : real numbers; w, m : natural numbers)
2: h← bw · (tmax − tmin)/(σmax − σmin)c
3: img← [ ]
4: w1 ← 2.47/(σmax − σmin)
5: w2 ← (0.47σmin + 2σmax)/(σmin − σmax)
6: w3 ← 2.24/(tmax − tmin)
7: w4 ← 1.12(tmin + tmax)/(tmin − tmax)
8: for j ∈ {0..h− 1} do
9: row← [ ]

10: t← tmin + j · (tmax − tmin)/(h− 1)
11: for k ∈ {0..w− 1} do
12: σ← σmin + k · (σmax − σmin)/(w− 1)
13: z← ζ(σ + it)
14: z∗ ← w1sign(<(z)) log |<(z)|+ w2 + (w3sign(=(z)) log |=(z)|+ w4)i
15: z← 0
16: n← 0
17: while |z| 6 2 and n < m do
18: z← z2 + z∗

19: n← n + 1
20: end while
21: RGB← [0, 0, 0]
22: if |z| > 2 then
23: l ← b50nc
24: if l > 510 then
25: RGB← [255, 255, l mod 256]
26: else if l > 255 then
27: RGB← [100, l mod 256, 255]
28: else
29: RGB← [0, 0, l mod 256]
30: end if
31: end if
32: row← row + RGB
33: end for
34: img← img + row
35: end for
36: end procedure

5. Numerical Experiments

We have performed numerical experiments with seven methods and modifications
listed in Table 9.
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Table 9. List of algorithms under examination.

j Abbreviation Algorithm

1 MB modification of Borwein’s efficient algorithm
2 BLC series with binomial-like coefficients algorithm
3 NAMB normal approximation-based modification of MB-algorithm
4 NABLC normal approximation-based modification of BLC-algorithm
5 EMB empirical modification of MB-algorithm
6 EBLC empirical modification of BLC-algorithm
7 ZF Zetafast algorithm

5.1. First Numerical Experiment

The first numerical experiment deals with normal approximation-based modifications
(cf. Algorithm 2). Using NAMB (j = 3), NABLC (j = 4) and Zetafast (j = 7) methods we
generate sequences of values of the Riemann zeta function {ζ(j)

l,p}, 1 6 l 6 N, N = 105,

taking as arguments uniformly distributed sl,p ∈ S(1)
p . Here

S(1)
p = (0.5, 1.5)︸ ︷︷ ︸

σ

× (skp + ρ1, sk(p+1)
− ρ1)︸ ︷︷ ︸

t

, (32)

where skp stand for critical points (5) with kp = 2p+6, 1 6 p 6 3, and ρ1 = 10−1. Thus we
obtain 9 sequences overall (3 algorithms × 3 sets of arguments). Using Zetafast algorithm
as a benchmark we calculate the accuracy δ

(j)
p and the relative performance θ

(j)
p ,

δ
(j)
p = max

16l6N

∣∣∣ζ(j)
l,p − ζ

(7)
l,p

∣∣∣, θ
(j)
p = τ

(j)
p /τ

(7)
p , 3 6 j 6 4, (33)

where τ
(j)
p is the processing time of jth sequence {ζ(j)

l,p}, 1 6 l 6 N, for fixed p. The results
of the first numerical experiment are presented in Table 10.

Table 10. Results of the first numerical experiment: accuracy δ
(j)
p and relative performance θ

(j)
p , for

d = 6, m = 1. The last line of the table shows the performance of ZF-algorithm (sec).

Method j S(1)
1 S(1)

2 S(1)
3

NAMB 3 1.80× 10−11

0.088
1.60× 10−11

0.12
2.90× 10−11

0.18

NABLC 4 1.82× 10−11

0.22
1.74× 10−11

0.32
3.35× 10−11

0.45

ZF 7 86.72 121.04 172.95

5.2. Second Numerical Experiment

The second numerical experiment aims to verify the accuracy of the algorithms on
fixed horizontal lines, close to critical points. Using MB (j = 1) and BLC (j = 2) methods,
their empirical modifications (j = 5 and j = 6) and Zetafast method (j = 7), we generate
(cf. Algorithm 1) sequences of values of the Riemann zeta function {ζ(j)

l,p}, 1 6 l 6 N,

N = 105, taking as arguments uniformly distributed sl,p ∈ S(2)
p . Here

S(2)
p = (0.5, 1.5)︸ ︷︷ ︸

σ

×tp, tp = skp + ρ1, kp = 2p+6, 1 6 p 6 3. (34)
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Thus we obtain 15 sequences overall (5 algorithms × 3 sets of arguments). Using the
Zetafast algorithm as a benchmark we calculate the accuracy δ

(j)
p and the relative performance

θ
(j)
p (cf. (33)). The results of the second numerical experiment are presented in Table 11.

The numerical experiments have been performed on Intel® CoreTM i7-8750H 2.2 GHz
(boosted to 4.0 GHz) processor with 16 GB DDR4 RAM. The code has been compiled
with g++ 11.2.0 compiler using O3 optimization. C++ Boost library has been used for the
implementation of the incomplete beta function for BLC-algorithm.

Table 11. Results of the second numerical experiment: accuracy δ
(j)
p and relative performance θ

(j)
p on

fixed lines tp, for d = 6, m = 1. The last line shows the performance of ZF-algorithm (sec).

Method j S(2)
1 S(2)

2 S(2)
3

MB 1 1.68× 10−11

0.04
1.46× 10−11

0.055
2.65× 10−11

0.078

BLC 2 1.77× 10−11

0.1
1.55× 10−11

0.15
2.64× 10−11

0.2

EMB 5 6.43× 10−7

0.024
5.62× 10−7

0.032
5.51× 10−7

0.044

EBLC 6 7.07× 10−7

0.034
7.78× 10−7

0.048
7.84× 10−7

0.065

ZF 7 86.64 121.29 173.14

6. Discussion and Concluding Remarks
6.1. Discussion of the Results

We have refined the error terms and the expressions for the minimal number of terms
in MB- and BLC-series of efficient algorithms for the computation of the Riemann zeta func-
tion, taking into account the behavior of the series in the neighborhoods of critical points.
Theorem 1 shows that MB-based algorithms converge faster than BLC-based algorithms.
Indeed, the MB-coefficient of the error term Θ(1)

n = O(0.172n) while Θ(2)
n = O(0.5n) (cf. (9)).

However, BLC-approach has its advantages that might be useful in analytical research
(cf. (4)). Note that this deficiency of the MB-algorithm is solved by the introduction of
NA-modification (19).

The results of the numerical experiments (see Tables 10 and 11) show that MB and
BLC methods, along with their normal and empirical modifications, allow fast and accurate
calculations of the Riemann zeta function for large values of argument t. The results
demonstrate that the introduced modifications accelerate computations of the Riemann
zeta function, compared to Zetafast method. These versions of algorithms are well-suited
for distributed computations and grid computing.

6.2. Findings of Visual Investigations of Fractal Structures, Associated with the Riemann Zeta Function

The illustrations obtained using FH-method clearly show the arrangement of trivial
and non-trivial zeros of the Riemann zeta function in the complex plane (see Figure 5a,b).
In addition to these points, we can also see dark 2D curves that satisfy the conditions
<(ζ(σ + it)) = 0 and =(ζ(σ + it)) = 0 (see Figure 4a). The SFH-method distributes
deformed copies of the Mandelbrot set in the complex plane, thus relating the values of
the Riemann zeta function to the fractal structure. This allows for a visual assessment
of essential changes in the Riemann zeta function values. Next, SFH-approach reveals
notable symmetric fractals characterizing the neighborhood of the pole of the Riemann zeta
function (see Figures 6 and 7).
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6.3. Future Research Directions

Numerical experiments with empirical formulas indicate that the theoretical selection of the
number of terms of the series n can be reduced. Next, the accuracy of the normal approximation-
based modifications of MB and BLC algorithms might be refined by employing the theory
of large deviations. The figures presented in this work reveal areas of the complex plane
where the modulus of the Riemann zeta function exhibits very volatile values. This allows us to
investigate the complex plane regions of <ζ(s) = =ζ(s), thus enabling us to locate non-trivial
zeros’ positions visually. In future works, these visual instruments could be refined.
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