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Abstract: Inland waters are dynamic systems that are under pressure from anthropogenic activities, 
thus constant observation of these waters is essential. Remote sensing provides a great opportunity 
to have frequent observations of inland waters. The aim of this study was to create a data-driven 
model that uses a machine learning algorithm and Sentinel-2 data to classify lake observations into 
four biophysical classes: Clear, Moderate, Chla-dominated, and Turbid. We used biophysical vari-
ables such as water transparency, chlorophyll concentration, and suspended matter to define these 
classes. We tested six machine learning algorithms that use spectral features of lakes as input and 
chose random forest classifiers, which yielded the most accurate results. We applied our two-step 
model on 19292 lake spectra for the years 2015–2020, from 226 lakes. The prevalent class in 67% of 
lakes was Clear, while 19% of lakes were likely affected by strong algal blooms (Chla-dominated 
class). The models created in this study can be applied to lakes in other regions where similar lake 
classes are found. Biophysical lake classification using Sentinel-2 MSI data can help to observe long-
term and short-term changes in lakes, thus it can be a useful tool for water management experts and 
for the public. 
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1. Introduction 
Inland waters serve many purposes including recreational, drinking, part of the car-

bon cycle [1], an important habitat for living organisms [2], and providing ecosystem ser-
vices. In the face of the warming climate [3] inland water bodies need constant observa-
tion. In situ measurements cover a small part of water bodies in the world and even fewer 
have long-term datasets. Larger water bodies are often included in state monitoring pro-
grams and are observed several times a year; however, the long-term state of the smaller 
ones is not known. Remote sensing data can help to observe many more water bodies, 
and some satellites provide an opportunity to construct time-series of a few decades [4]. 
Nonetheless, the satellite data validation is preferably carried out using in situ spectral 
data that are even more limited spatially and temporally than routinely carried out water 
parameter measurements. 

Remote sensing data have largely improved the observation of spatial features of 
water bodies, including the distribution of phytoplankton (through the proxy—common 
algal pigment—chlorophyll α (chla) concentration [5]), suspended matter [6], and col-
oured dissolved matter [7]. The optical complexity of inland waters caused by the combi-
nation of the aforementioned compounds may impede the retrieval of chla when simple 
algorithms like band ratio algorithms are used [8]. Thus, grouping water bodies with sim-
ilar prevalent substances and creating parameter retrieval algorithms for groups of lakes 
yield better results [9]. In addition, grouping, clustering or classifying lakes is a common 
way to characterise separable lake water types. In the European Union the ecological 
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status of water bodies is defined by five classes: Poor, Bad, Moderate, Good, and High. 
The status is assessed using several measurements a year carried out by regional Environ-
mental Protection Agencies; however, most of the water bodies are not measured every 
year. The use of satellite spectral data could help to fill in these data gaps. 

The success of using remote sensing data for observation of inland water bodies de-
pends on the inherent features of the data and water bodies, and the methodology used. 
The uncertainties arise from low signals of water, the influence of atmosphere, and the 
algorithms chosen for water parameters retrieval. In some cases using certain band differ-
ence algorithms for chla retrieval may give better results than using band ratio algorithms 
[10]. The retrieved water parameters can be used to derive information about the state of 
a lake, such as the trophic state of a lake [5].  

Spectral resolution of a satellite sensor may also determine its ability to retrieve cer-
tain water parameters. The Operational Land Imager onboard the Landsat 8 satellite was 
shown to capture the reflectance peaks related to phytoplankton poorly in comparison to 
the Sentinel-2 Multispectral Imager (MSI) [8]. The band configuration of Sentinel-2 MSI is 
good for estimation of chlorophyll α and hyperspectral missions are just slightly better 
[11]. Currently having two satellites in orbit provides an opportunity to observe the same 
object every 2–3 days. In addition, the Sentinel-2 mission will be extended with coming 
satellites in the future [12]. With this in mind, it is highly desirable to have robust algo-
rithms that use Sentinel-2 data that could highly improve the monitoring of water bodies. 

Different techniques can be used for grouping water bodies. Unsupervised clustering 
techniques were used to group inland and coastal waters to optical water types using in 
situ hyperspectral datasets and 13 distinct types were identified for inland waters [13]. 
However, with the present non-hyperspectral satellites it may be difficult to separate so 
many classes. A simpler method that includes five classes: Clear, Moderate, Turbid, Very 
Turbid, Brown, was developed in Estonia using the k-means clustering technique [14]. 
The optical properties such as diffuse attenuation coefficient and diffuse reflectance, and 
commonly measured parameters such as transparency, chla concentration, total sus-
pended matter (SM) and yellow substances, were used to determine the five classes. The 
latter framework has been used for studying Estonian lakes, coastal Baltic Sea, Wadden 
Sea [15] and Latvian lakes [9]. Another optical water type representation, consisting of 
eight types was developed for Brazilian waters [16]. The characterization of optical water 
types highly depends on the diversity of a dataset, number of features, and the number of 
samples that could be distinguished as a separate type. 

Water body classification can be used itself as a source of data [9] or can be further 
used for algorithm development for retrieval of water parameters. Simple band ratio al-
gorithms are being replaced by more complex algorithms that can combine the infor-
mation of several features (for example, derivatives from spectral data) and provide better 
results. Supervised learning algorithms can be used for classification and for parameter 
retrieval—regression techniques are used. For retrieval of chla concentration, algorithms 
based on support vector machine for regression [6], artificial neural networks [17,18], Cub-
ist [19], and random forest [20] have been developed. The selection of an algorithm de-
pends on the nature of the data and the application. As there is no universal algorithm 
and the simplest algorithm is preferred over a complex one, often several algorithms are 
tested to choose the best performing algorithm for a particular application [21,22] or a 
framework based on automatic model selection can be used [23]. 

In most cases in situ optical data are used in model development; however, as men-
tioned earlier, this type of data are not always available, but nonetheless data-driven al-
gorithms that use only water parameter data and satellite data may also provide good 
results [19]. In the study based on Czech lakes, 11 different spectral indices were derived 
from Sentinel-2 data and fed into machine learning algorithms. The Normalized Differ-
ence Vegetation Index, red/blue band ratio, and red-edge band, B5, were the most im-
portant features for derivation of chla concentration data, and Normalized Water 
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Difference Index 3, the red-edge band, B5, and Normalized Difference Water Index 11 
were the most important features for total suspended solids determination in Czech lakes 
[19]. 

The aim of this study is to create a data-driven model that uses machine learning 
methods and satellite data as input to assign a biophysical class to a lake. The classes are 
defined by often routinely measured—according to monitoring programmes—water 
quality parameters, such as, chla concentration, water transparency, and SM. For model 
development we used data of 226 lakes in Lithuania. The classification of lake observa-
tions was implemented in two steps—at first using binary classification for separation of 
Clear class from lakes with optically active substances and then multi-class classification 
for differentiating lakes with significant amounts of optically active substances into three 
classes differentiated by turbidity and the dominant optically active substance. The cre-
ated model could be used in areas where in situ spectral data are not available, which 
hinders the use of satellite data in these locations. 

2. Materials and Methods 
2.1. Study Objects 

There are 357 lakes and ponds included in the national monitoring programme in 
Lithuania. They are covered by 11 Sentinel-2 tiles (Figure 1). Most of the lakes are larger 
than 0.5 km2. 

 
Figure 1. The location of lakes in the monitoring system (black) and those that were used for model 
construction (red). Blue lines indicate the borders of Sentinel-2 tiles. 

2.2. In Situ Dataset and Grouping Measurements 
An in situ dataset was obtained from the Lithuanian Environmental Protection 

Agency under the Ministry of Environment. The data are collected under the state moni-
toring programme of lakes and ponds. We used chlorophyll-a concentration (chla), water 
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transparency (Secchi disk depth), and suspended matter (SM) concentration data from the 
years 2015–2020. 

We used in situ data to assign each measurement a biophysical class—a target label 
for further use in creation of classification algorithm. Water transparency characterises the 
ecological status in general and is directly related to optically active substances such as 
chlorophyll concentration, SM concentration and the amount of coloured dissolved or-
ganic matter. We used lake types defined based on their depth [24], and lake ecological 
status class definition based on water transparency. Ecological status of a shallow lake 
(type 1, average depth < 3 m or average depth > 3 m and maximum depth < 11 m) is con-
sidered good or high when water transparency is higher than 1.3 m while for medium 
deep (type 2, average depth > 3 m and maximum depth 11–30 m) and deep lakes (type 3, 
maximum depth > 30 m) the status is considered good or high when transparency is > 2 
m. Lower than 1.3 m water transparency for a shallow lake and lower than 2 m transpar-
ency for medium deep and deep lakes is considered of moderate, poor, or bad ecological 
status [25]. In addition, as chla is a good proxy for the trophic state of a lake, we selected 
two chla thresholds to group chla measurements into three groups. We used a threshold 
for chla concentration based on the definition of the Carlson’s trophic state index [26], 
where oligotrophic and mesotrophic lakes (low bioproductivity waters) have concentra-
tions lower than 7.2 mg/m3, eutrophy (fairly high bioproductivity waters) is defined with 
concentrations 7.2–20 mg/m3, and hypereutrophy (high bioproductivity waters) with con-
centrations higher that 20 mg/m3 (Table 1). We used measurements of another optically 
active substance—SM and divided measurements into two groups—lower than 10 mg/m3 
and higher than 10 mg/m3. By combining classes based on different parameters we formed 
12 classes (Table 1). A class 1_clear is characterised by low concentrations of parameters 
as well as good transparency, this is also the class containing the most measurements (46% 
of total). The next large class 2_chla_clear is characterised by higher chla concentration; 
but good transparency and low SM amount. Thus, in this class the main optically active 
substance found was chlorophyll. It contained 21% of all measurements. Another larger 
class was 3_chla_turbid; however, it contained only 9% of data, this class was also domi-
nated by chlorophyll and turbidity that caused it to have moderate, bad or poor ecological 
class based on water transparency. Other classes had 0 to 7% of cases. There were very 
few cases where SM was dominant (1_SM_turbid, 2_chla_SM_turbid classes), thus it was 
not included in the training-test set for machine learning algorithms. 

At first, we wanted to see if machine learning models can separate the lakes where 
transparency is good, and optically active substances are found in low concentrations. We 
defined this class as Clear (based on 1_clear class, Table 1). Separating the Clear class from 
the others provides an opportunity to distinguish measurements that are not of a partic-
ular concern as there are very low amounts of dominating optically active substances in 
them, therefore, not posing any problems. Therefore, we used Clear and OAS-class (for 
lakes with significant amounts of optically active substances), as target labels for a binary 
classification task. We omitted classes that had 0–2 cases as they are not common and 
would likely be misclassified by machine learning algorithms that generally require a 
large number of samples. The binary classification task is slightly imbalanced with 46% of 
cases in the Clear class and 54% in the OAS-class. 

Table 1. The definition of classes for a binary (2) classification problem—differentiation of a Clear 
class from those with higher amounts of optically active substances (OAS-class). Classes with—no-
tation were not included in the training-test set due to small number of observations in them. 

Class 
Transparency, 

m 

Chlorophyll α 
Concentration 

Class 

Suspended Mat-
ter Concentra-

tion Class 

Number of 
Cases (Match-

Ups) 

Label for Bi-
nary Classi-

fication 

Label for Multi-
Class Classifi-

cation 
1_clear Clear * Low chla  

(<7.2 mg/m3) 
SM < 10 

260 Clear - 
1_turbid Turbid 15 OAS-class Turbid 
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1_SM_clear Clear 
SM ≥ 10 

0 - - 
1_SM_turbid Turbid 1 - - 
2_chla_clear Clear 

Medium chla  
(7.2–20 mg/m3) 

SM < 10 
119 OAS-class Moderate 

2_chla_turbid Turbid 38 OAS-class Turbid 
2_chla_SM_clear Clear 

SM ≥ 10 
3 - - 

2_chla_SM_turbid Turbid 10 OAS-class 

Chla-dominated 
3_chla_clear Clear 

High chla  
(>20 mg/m3) 

SM < 10 
31 OAS-class 

3_chla_turbid Turbid 49 OAS-class 
3_chla_SM_clear Clear 

SM ≥ 10 
2 OAS-class 

3_chla_SM_turbid Turbid 38 OAS-class 
* Clear is defined with water transparency higher than 1.3 m for shallow lakes and higher than 2 m 
for medium deep and deep lakes. While turbid is the opposite—lower than 1.3 m or 2 m [25]. 

The next step was to distinguish different water bodies in the OAS-class to water 
bodies (Table 1) that are characterised by: 
• Good or high transparency class, despite the presence of some optically active sub-

stances. Chla is the dominating substance in this class. The label for the class is Mod-
erate. 

• Most water bodies have high turbidity due to high chla concentration, in some cases 
due to both high chla and SM concentration. The class label is Chla-dominated. 

• Higher turbidity due to reasons other than phytoplankton and SM concentration. 
These lakes are likely to have higher coloured dissolved organic matter (CDOM) con-
tent. 
In multi-class classification step, classes were more imbalanced—the 39% of cases 

were of the Moderate class, 43% in the Chla-dominated class, and 18% of cases were in 
the Turbid class. 

2.3. Sentinel-2 Dataset 
We used optical Sentinel-2 MSI data. A total of six Sentinel-2 tiles that cover a large 

area of Lithuania were used in this study: T34UEG, T34UFG, T35ULB, T35UMB, T34UFF, 
T35ULA (Figure 1). We downloaded tiles that had lower than 30 % cloud cover from the 
Copernicus Open Access Hub of the European Space Agency. 

We used the Sen2Cor atmospheric correction algorithm with 20 m resolution. The 
data were then filtered, removing no data pixels, then using scene classification—only 
water pixels (flag—6) were kept. In addition, we applied further filtering based on the 
shortwave infrared band B11 (1610 nm). We retained spectra with lower reflectance than 
0.0215 in band B11. This filtering threshold is commonly used for the separation of water 
from non-water pixels as it is assumed that at these wavelengths water-leaving radiance 
is zero [27]. 

We extracted a 3 × 3 pixel area centred at the national monitoring site location in the 
lake. To remove any suspicious pixels likely affected by clouds, we performed filtering 
based on the 783 nm band (B7). Pixels where the standard deviation of the 3 × 3 pixel was 
lower than 0.002 were retained. 

For further analysis we used observations that were within a plus or minus three day 
time period: situ date plus or minus three days of satellite acquisition. For example, if we 
have an in situ measurement on the 15th of June, a closest cloudless satellite observation 
was used from the 12th to 18th of June. This time window was chosen due to the small 
number of concomitant measurements of in situ and satellite, and as for training we 
needed to have the largest dataset possible. We assumed that there would not be large 
changes within objects and that satellite spectra would still be representative. The final 
dataset that we used for training had 563 measurements—in situ data with accompanying 
satellite spectra. This included 226 different lakes and ponds. 
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2.4. Machine Learning Algorithms 
We used six supervised machine learning algorithms that can be used for binary and 

multi-class classification problems: 
Logistic regression (LR) is a parametric linear model, used to model a probability of 

a discrete number of outcomes. In the beginning we calculate the weighted sum of inputs 
(features) and then feed it to the sigmoid function and the probability is returned. Then it 
is converted to a binary output, 0 or 1. 

Support vector machine (SVM) aims to find a hyperplane that best divides the data. 
The decision function depends on a subset of data (support vectors) that are closer to the 
hyperplane separating two classes. The data can be transformed using a linear, radial ba-
sis, polynomial, sigmoid or other function. SVM is often more accurate for small datasets 
and when there are many features [28]. 

Random forest classifier (RF) is an ensemble model that uses many decision trees to 
decide to which class a sample belongs. Individual decision trees divide data by a series 
of decision rules based on feature data and selected thresholds of them. For a sample the 
class is assigned that most decision trees voted for. Random forest uses bootstrap aggre-
gation allowing decision trees to sample data and in this way creating different trees. In 
addition, in random forest, trees are allowed to subset not all features but only a random 
subset of them that decreases the correlation between the trees [29]. 

AdaBoost classifier (Ada) is an adaptive boosting technique from the ensemble mod-
els family. The name “adaptive” is explained as the weights being re-assigned to each 
sample, with higher weights to incorrectly classified samples [30]. Any machine learning 
algorithm can be used inside AdaBoost; however, we used the default version that used 
decision trees. 

XGBoost Classifier (XGB). XGBoost stands for eXtreme Gradient Boosting. It is a de-
cision-tree based ensemble model that uses a gradient boosting technique [31]. XGB algo-
rithm progressively adds more and more branches (if conditions) to the decision tree to 
build a stronger model. Generally, it is a fast and well performing algorithm. 

Artificial Neural Networks (ANN) is a complex algorithm that is harder to interpret 
than other machine learning algorithms as it often includes at least several hidden layers 
[32]. In addition, it requires optimisation of many hyper-parameters. However, ANNs in 
many cases provide the most accurate results, thus ANNs are widely implemented in 
many fields including remote sensing data analysis [33–35]. 

2.5. Workflow 
All the data preparation was implemented in the Rstudio environment [36], while 

machine learning algorithms were trained in the python environment using scikit-learn 
module [37] for LR, SVM, Ada, and RF, XGBoost module [31] for XGBoost classifier, and 
keras for ANN [38]. We used class weights to compensate for class imbalance (Table 2). 

Table 2. Class weights used when constructing the models. 

Binary Multi–Class 
Class Label Weight Class–Label Weight 

OAS-class—0 0.93 Moderate—0 1.27 
Clear—1 1.08 Chla-dominated—1 1.16 

  Turbid—2  2.86 

Training-testing workflow: 
1. Calculate features. For model training we used features derived from lake spectrum: 

reflectance amplitude—the maximum reflectance at the 490–865 nm wavelengths mi-
nus the minimum reflectance at the 490–865 nm wavelengths, band ratios R705/R665, 
R560/R490, R560/R665, and R560/R705, band differences BD1 and BD2, an empirical 
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equation that uses BD2, apparent visible wavelength (AVW), hue angle, colour based 
on Forel-Ule colour scale (FU), and a month that could help to separate blooming con-
ditions as they more frequently occur in summer time (Table 3). 

Table 3. Features used in machine learning algorithms to predict a biophysical class of a lake. 

Feature Name Used in 
the Text 

Feature Expression or Used 
Wavelengths, Parameters 

Sentinel-2 MSI 
Bands Used Reference 

Reflectance amplitude 𝑀𝑎𝑥(𝑅ସଽି଼ହ) − 𝑀𝑖𝑛(𝑅ସଽି଼ହ) B2–B8A - 
R705/R665 𝑅ହ/𝑅ହ B5/B4 [39] 
R560/R490 𝑅ହ/𝑅ସଽ B3/B2 [40] 
R560/R665 𝑅ହ/𝑅ହ B3/B4 [41] 
R560/R705 𝑅ହ/𝑅ହ B3/B5 [42] 

BD1 𝑅ହ − ൬𝑅ହ + 𝑅ସ2 ൰ 
R705-

(R665+R740)/2 [41] 

BD2 𝑅ହ − 1.05 × 𝑅ହ 𝐵5 − 1.05 × 𝐵4 [10] 
Eq_BD2 2054 ∗ 𝐵𝐷2 + 17 𝐵5 − 1.05 × 𝐵4 [10] 

Apparent visible wave-
length, AVW 

𝑅ସଽ,  𝑅ହ, 𝑅ହ B2, B3, and B4 [43] 

Hue angle 𝑅ସଽ,  𝑅ହ, 𝑅ହ, 𝑅ହ B2, B3, B4, and B5 [44] 
FU (Forel-Ule scale) Hue angle - [44] 

Month Months 04:10 - - 

2. Split data into train set (80%) and test set (20%) based on lakes (all observations of one 
lake go to either train or test set so that the model would not learn a particular com-
bination of parameters characteristic to a specific lake). Test set is held out until the 
model evaluation step. There were 440 data points (observations) in the training set 
and 123 data points in the test set (563 in total) for the binary problem. For the three-
class problem we had 245 data points in the train set and 58 data points in the test set 
(303 in total). 

3. Transform features to a Gaussian distribution using the PowerTransform() function 
from scikit-learn. 

4. Scale feature data based on the training dataset (mean and standard deviation) using 
the function StandardScaler() from scikit-learn. Data scaling is recommended when 
using any machine learning algorithm. 

5. Train models using the same split of data without setting any hyper-parameters. 
6. Evaluate models using stratified three-fold cross-validation and on test set using eval-

uation metrics (accuracy, precision, recall, F1, area under curve (AUC) score, and 
log_loss) found in the scikit learn module. The Stratifiedkfold technique performs the 
training set data split to folds based on groups of target labels. In the three-fold case, 
the training dataset is split three times into three equal size parts [A, B, C]. The first 
time parts A and B are used as a training dataset, while part C is used as a validation 
set based on which model performance metrics are calculated. The second time and 
third time other parts are used as validation sets. 

7. Select the best performing algorithm and optimise its hyper-parameters using train-
ing dataset and stratified three-fold cross-validation. Hyper-parameter search was 
performed using the optuna module for python. Optuna is a fast automated hyper-
parameter search optimization technique [45]. 

8. Apply the created model on 226 lakes that were at least once found in the matchup 
dataset, and analyse the results. 
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2.6. Model Performance Metrics 
To evaluate model performance and compare them with each other we used several 

metrics: 
Confusion matrix—a classification table where a number of correct and incorrect pre-

dictions are calculated across a class (Table 4).  

Table 4. Confusion matrix for binary classification 

  Predicted label 
  0 1 

True label 0 True negatives (TN) False positives (FP) 
1 False negatives (FN) True positives (TP) 

In this study, true positives are correctly classified Clear class observations, false pos-
itives—correctly classified OAS-class observations, while false positives mean the incor-
rectly classified cases from Clear class, and false negatives—falsely classified observations 
from the OAS-class observations. 
Accuracy Equation (1)—a fraction of correct predictions of all classes. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1)

Precision Equation (2)—the ratio between the number of true positives and the number of 
positively predicted samples. The precision defines the ability of a classifier not to label 
negative samples as positive. For example, in our case, it shows what part of all the pre-
dictions labelled as Clear class were correctly predicted. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (2)

Recall Equation. (3)—the ratio of true negatives and negatively predicted samples. In our 
case recall shows the ability of a classifier to classify OAS-class examples. The best score 
is 1, and the worst is 0. 𝑟𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑁𝑇𝑁 + 𝐹𝑁 (3)

F1 score Equation (4)—is a weighted average of precision and recall. The relative contri-
bution of precision and recall is equal. In the multi-class case, this is the average of F1 
score for each class with weighting depending on the average parameter. 𝐹1 = 2 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙 (4)

AUC—area under the Receiver Operating Characteristic Curve (ROC AUC) calcu-
lated from prediction scores. ROC curve plots two parameters—true positive rate (TP/(TP 
+ FN)) and false positive rate (FP/(FP + TN)). The AUC measure is an integral underneath 
the entire ROC curve. A value of 0.0 describes a model without any predictive skill, 0.5—
a model that predicts as well as a random guess (in binary classification), and a value of 
1.0 shows that model predictions are 100% correct. An AUC of 0.7 shows that there is a 
70% chance that model will distinguish between two classes. 

Log_loss or cross-entropy loss is the loss function defined as the negative log-likeli-
hood of a model that returns probabilities of predictions for its training data. A lower 
log_loss means better predictions. 

3. Results 
3.1. Classification Using In Situ Measurements 

We grouped measurements in lakes to four classes based on concentrations of chla 
and SM, transparency, and depth. The chla and SM are the optically active substances in 
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water, while transparency characterises the overall ecological status of a water body. 
Depth information also contributes to the definition of ecological state of a water body 
and may help to separate naturally old and eutrophic lakes. The Clear class had a mean 
chla concentration of 3.8 mg/m3 and mean transparency of 4.5 m (Table 5), while the Mod-
erate class had a higher chla concentration (mean 11.7 mg/m3) and lower than the Clear 
class transparency (mean 2.5 m). The other two classes had mostly moderate, bad, or poor 
ecological status. The Chla-dominated class was characterised by algal blooms while wa-
ter bodies in the Turbid class had low transparency despite not very high chla concentra-
tions as in the Chla-dominated class. These classes were used as target labels in machine 
learning algorithms. 

Table 5. Water parameters’ (chlorophyll concentration, transparency, suspended matter (SM)) val-
ues of separate classes. 

Class N Chlorophyll α 
Range, mg m−3 

Mean Chloro-
phyll α, mg m−3 

Transparency 
Range, m 

Mean Transpar-
ency, m 

SM 
Range 

Mean SM 

Clear 260 0.2–7.1 3.8 1.4–11.0 4.5 0.9–7.5 2.5 
OAS–class: 303       
Moderate 119 7.3–19.8 11.7 1.3–6.8 2.7 0.9–8.0 3.7 

Chla–dominated 131 11.3–148.1 42.4 0.3-5.0 1.1 1.0-56.0 9.3 
Turbid 53 0.8–19.4 11.6 0.5–1.9 1.3 1.7–9.6 4.9 

3.2. Significant Features for Building Models 
Absence of multicollinearity is an important assumption for regression models to 

provide meaningful and interpretable results. Other types of algorithms also tend to work 
better when there is a low correlation between the features. We calculated the correlation 
between the features and between the features and labels (Table 6). The features that we 
inspected can be grouped into two groups: those that are directly derived from reflectance 
—either the band difference or band ratio, and another group—more complicated features 
derived from several bands (AVW, hue angle, and FU). Since AVW, hue angle and FU are 
highly correlated among each other (r = −0.94, 0.9, and 0.94) we decided to use one of them 
—AVW, as it showed the highest correlation with the target label. In addition, features’ 
distribution showed better separability of classes using AVW as the dominant colour de-
scribing wavelength moves towards the longer wavelengths, from the Clear to the Chla-
dominated class (Figure 2). From the other group of features, we selected BD1 and 
R560/R705 as they are less correlated to each other than other features (r = −0.23) and have 
relatively high correlation with the target label (r = −0.38 and r = 0.3, respectively). We 
selected three features, also based on preliminary results obtained with logistic regression 
as the multicollinearity impairs the performance of this algorithm. It is possible to obtain 
an explanation with these features. An increase in R560/R705 feature value by one unit 
increases the odds of a lake to be classified as Clear by 1.7, while increasing BD1 and AVW 
values by one unit would decrease the odds of a lake to be assigned to the class Clear 
(Table 7). 
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Table 6. Correlation coefficients between the features and the features and target labels. The blue 
colours indicate negative correlation while orange/red colours indicate positive correlations. The 
correlations higher than 0.08 and lower than -0.08 were statistically significant (p value = 0.05). 

  Reflectance 
amplitude 

R705/
R665 

R560/
R490 

R560/
R665 

R560/
R705 BD1 BD2 Eq_BD2 AVW Hue 

angle FU Month Label 
2class 

Label 
3class 

Reflectance 
amplitude 1.00 0.30 0.35 0.26 0.04 0.70 0.49 0.49 0.08 -0.10 0.15 0.12 -0.19 0.25 

R705/R665 0.30 1.00 0.29 -0.39 -0.58 0.73 0.82 0.82 0.44 -0.38 0.43 0.05 -0.40 0.44 
R560/R490 0.35 0.29 1.00 0.04 0.00 0.44 0.34 0.34 0.77 -0.69 0.75 0.15 -0.31 0.32 
R560/R665 0.26 -0.39 0.04 1.00 0.83 -0.10 -0.12 -0.12 -0.53 0.37 -0.40 0.23 0.35 -0.35 
R560/R705 0.04 -0.58 0.00 0.83 1.00 -0.23 -0.27 -0.27 -0.41 0.28 -0.31 0.15 0.30 -0.31 

BD1 0.70 0.73 0.44 -0.10 -0.23 1.00 0.92 0.92 0.39 -0.35 0.42 0.07 -0.38 0.42 
BD2 0.49 0.82 0.34 -0.12 -0.27 0.92 1.00 1.00 0.32 -0.28 0.34 0.08 -0.28 0.31 

Eq_BD2 0.49 0.82 0.34 -0.12 -0.27 0.92 1.00 1.00 0.32 -0.28 0.34 0.08 -0.28 0.31 
AVW 0.08 0.44 0.77 -0.53 -0.41 0.39 0.32 0.32 1.00 -0.90 0.94 -0.03 -0.48 0.50 

Hue angle -0.10 -0.38 -0.69 0.37 0.28 -0.35 -0.28 -0.28 -0.90 1.00 -0.94 -0.02 0.44 -0.43 
FU 0.15 0.43 0.75 -0.40 -0.31 0.42 0.34 0.34 0.94 -0.94 1.00 0.02 -0.49 0.49 

Month 0.12 0.05 0.15 0.23 0.15 0.07 0.08 0.08 -0.03 -0.02 0.02 1.00 0.00 -0.02 
Label 2class -0.19 -0.40 -0.31 0.35 0.30 -0.38 -0.28 -0.28 -0.48 0.44 -0.49 0.00 1.00 -0.86 
Label 3class 0.25 0.44 0.32 -0.35 -0.31 0.42 0.31 0.31 0.50 -0.43 0.49 -0.02 -0.86 1.00 

Table 7. The coefficients and odds of the features included in the logistic regression model to predict 
Clear class. 

Feature Coefficient  Odds 
R560/R705 0.56 1.7 

BD1 −2.04 0.1 
AVW −0.46 0.6 

 
Figure 2. The distribution of 12 features by biophysical class (Clear, Moderate, Chla-dominated, 
Turbid). The features found in the first and the second row are dimensionless, except Eq_BD2—that 
is the concentration of chlorophyll α in mg/m3. The unit of Apparent Visible Wavelength (AVW) 
nm, the unit of hue angle—degrees, FU—the class as from Forel-Ule colour scale, and the last one is 
the number of months of an observation. 
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3.3. Model Validation and Testing Results 
3.3.1. Binary Problem 

In the first step, we aimed to separate lakes that have low quantities of optically active 
substances (chla and SM) and therefore are characterized by high water transparency 
(Clear class). 

The models showed 79–81% accuracy on the validation set (Table 8). We used three-
fold cross-validation to reduce the impact of individual model runs and to have better 
generalization opportunities. Cross-validation results showed that there is some variance 
in model performance; however, the standard deviation of accuracy between different 
folds was up to 0.03 for SVM and ANN models and 0.02 for AUC score for AdaBoost. 

Table 8. Model performance metrics without hyper-parameter tuning during the validation phase 
(using three-fold cross-validation). The mean ± standard deviation values are provided. 

Classifier Validation 
Accuracy 

Validation 
Precision 

Validation 
Recall 

Validation F1 
Score 

Validation 
AUC 

Validation 
Log_Loss 

LR 0.81 ± 0.02 0.76 ± 0.03 0.88 ± 0.04 0.82 ± 0.01 0.90 ± 0.00 6.0 
SVM 0.81 ± 0.03 0.78 ± 0.05 0.86 ± 0.03 0.82 ± 0.02 0.89 ± 0.01 5.9 
RF 0.81 ± 0.00 0.80 ± 0.02 0.81 ± 0.03 0.80 ± 0.01 0.89 ± 0.01 9.99 × 10–16 

Ada 0.79 ± 0.01 0.77 ± 0.02 0.83 ± 0.01 0.79 ± 0.01 0.87 ± 0.02 4.8 
XGB 0.79 ± 0.01 0.78 ± 0.01 0.81 ± 0.04 0.79 ± 0.02 0.89 ± 0.01 3.0 
ANN  0.79 ± 0.03 0.77 ± 0.02 0.80 ± 0.12 0.78 ± 0.05 0.89 ± 0.01 3.0 

Model performance was generally quite similar among the models; however, based 
on the AUC score, the best performance on unseen data was observed for RF (Table 9). In 
addition, the RF provided the lowest log_loss value, showing good performance of the 
model. In our model, the label 1 was assigned to the Clear class, therefore, not only the 
true positives are important, but also that a lake with some optically active substances 
would not get the Clear lake class. Thus, a low number of false negatives is preferred. We 
decided to use the RF model as it provided the lowest number of incorrectly classified 
lakes (n = 19 from the total of 123), as well as a relatively low number of false negatives (n 
= 7). Moreover, RF is not sensitive to feature multicollinearity, thus, it is a better choice 
than LR, that showed similar performance on this dataset; however, predictions with it 
could be affected by multicollinearity. We tried to optimise the hyper-parameters for the 
RF model; however, that did not improve model accuracy, thus, we decided to use the 
first version of it. The most important feature in the RF classifier was BD1 (relative 
importance = 0.4), while R560/R705 and AVW shared the same importance (0.30) for trees 
construction in the RF. 

The test set that we used had 123 data points, from which 19 data points were 
misclassified by the RF classifier. Most of the misclassified points were from the OAS-class 
(12) and were given a class label of Clear (false positives) (Table 9). The values distribution 
of the most important feature, BD1, of the true positives (correctly classified Clear class 
observations) show that values centre close to zero (median = 0.0003) (Figure 3), while 
most of the true negatives have higher values (median = 0.004). The values of BD1 of FN 
(median = 0.0008) are similar to the TP values and the values of FP (median = 0.002) are 
closer to the TN values. A similar situation is observed with the other features also (Figure 
3). The median chla concentration was 10.3 mg m−3 of these incorrectly classified data 
points showing that most of the data points with high chla concentrations were assigned 
a correct class. 
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Table 9. Model performance metrics on unseen (test) data. 

Classifier 
Test 

Accuracy 
Test 

Precision Test Recall 
Test F1 
Score Test AUC 

Test 
Log_Loss 

True 
Negatives 

False 
Positives 

False 
Negatives 

True 
Positives 

LR 0.83 0.73 0.87 0.80 0.84 5.9 61 15 6 41 
SVM 0.83 0.72 0.89 0.80 0.84 5.9 60 16 5 42 
RF 0.85 0.77 0.85 0.81 0.85 5.1 64 12 7 40 

Ada 0.81 0.79 0.70 0.74 0.79 6.5 67 9 14 33 
XGB 0.82 0.75 0.81 0.78 0.82 6.2 63 13 9 38 
ANN  0.83 0.76 0.81 0.78 0.83 6.0 64 12 9 38 

 
Figure 3. The scatterplots of features (A) R560/R705 and BD1, (B) R560/R705 and AVW, and (C) BD1 
and AVW for false negatives (FN), false positives (FP), true negatives (TN), and true positives (TP). 

3.3.2. Multi-Class Problem 
Further, we explored the OAS-class that was composed of measurements from lakes 

that have substantial amounts of optically active substances—chla and SM. We classified 
lakes into three groups: Moderate (having some chla; however, good and high 
transparency), Chla-dominated (turbid due to chla and/or SM and characterized by low 
transparency), and Turbid (turbid due to other reasons, likely due to higher amounts of 
coloured dissolved organic substances). Such biophysical classification allows the ability 
to distinguish light and strong algal blooms, and turbid waters. 

Since the best performance in the two-class problem was observed for RF, we decided 
to use RF for the three-class problem too. RF is not sensitive to feature multicollinearity 
and since our dataset is small, we tried using RF with all the 12 features. However, this 
did not provide us with the results expected, thus, we used features that had some 
differences in their distribution by class (Figure 2), especially noticing the differences 
between features’ distribution of Moderate and Chla-dominated classes, as the Turbid 
class was not that abundant in our dataset. We used three features—reflectance 
amplitude, R705/R665 ratio, and AVW. The relative importance was the highest of 
R705/R665 feature—0.38, while relative importance for each other feature was 0.31. The 
accuracy on unseen data among the classes varied from 27% to 81% (Table 10). Hyper-
parameter optimization did not change the overall accuracy; however, it improved the 
classification of the Turbid class, nonetheless the number of false positive for other classes 
increased as well. We decided to use the version of RF model without hyper-parameter 
optimization to keep the higher accuracy of the larger classes—Moderate and Chla-
dominated. 

Table 10. Confusion matrix of random forest classification on test (unseen) dataset of 58 
observations. 

 Predicted Label   

Tr ue
 

Class Moderate Chla-dominated Turbid Total Class accuracy 
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Moderate 22 5 0 27 81% 
Chla-dominated 5 14 1 20 70% 

Turbid 6 2 3 11 27% 

The features’ values of incorrectly classified observations in some cases overlap with 
the values of other classes (Figure 4). The values of features of incorrectly classified 
observations from the Chla-dominated class are similar to the values of correctly classified 
observations from the Moderate class. This is observed as the class boundary is strict while 
similar feature values might be related to different classes. 

 
Figure 4. The scatterplots of features (A) reflectance amplitude and R705/R665, (B) reflectance 
amplitude and Apparent Visible Wavelength (AVW)), and (C) R705/R665 and AVW of correctly 
classified (Moderate True, Chla-dominated True, and Turbid True) and incorrectly classified 
(Moderate False, Chla-dominated False, and Turbid False) by Random Forest (RF) classifier 
observations. The reflectance amplitude and R705/R665 are dimensionless and AVW is expressed 
in nanometres. 

3.4. Biophysical Lake Classification Using Random Forest Model 
We applied a two class model on 19,292 lake spectra from 226 lakes from a six-year 

period 2015–2020. There were from 17 to 112 observations for a lake (mean = 85, standard 
deviation, sd = 15). The 59.7% of lake spectra were classified as Clear, thus the three-class 
model was applied to the rest of the spectra (7764) and 22.7% were classified as Moderate, 
17.0% got the Chla-dominated class, and 0.6% the Turbid class. 

The Clear class was the most prevalent as it was attributed as the most frequent class 
throughout 2015–2020-year period to 151 lakes, from which in 110 lakes this class was the 
most frequent class in all the years in this time period (Figure 5). There were changes of 
class in these lakes throughout the April-October season and other classes were also 
observed in some of these lakes. The Moderate class was observed in almost all of these 
lakes (108); however, the average percentage of observations attributed to this class was 
18% (sd = 11%). Some occurrences of the Chla-dominated class were observed in 88 of 
these lakes; however, only 9% (sd = 5%) of observations were characterised by this class. 
The Turbid class was observed on average in 6% (sd = 2%) of observations in 22 of these 
lakes. The highest average percentage (97%, sd=8%) of observations of the Clear class were 
in the year of 2015, while the lowest (78%, sd = 14%) were in the year of 2018. The Chla-
dominated class was observed at least once in 49 lakes in the year of 2020 and thus this 
class constituted 11% (sd = 5%) of observations on average. In 11 lakes there were two 
consecutive observations in time of the Chla-dominant class, mostly in the months of 
April and September, thus these lakes require further analysis. 

In 41 lakes we observed class instability throughout years; however, the Clear class 
was the most frequent and mostly class change was observed between the Clear and 
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Moderate classes. Nonetheless, there were 11 lakes in which in one of the years the Chla-
dominated was the prevalent class; however, in some cases it was in the year of 2015, and 
that year there were a lower number of observations, and they started in summertime due 
to the launch of the satellite at the end of June. In total, in 26 lakes from this group of lakes, 
the Chla-dominated was observed in different seasons in different years. 

In the Moderate class the change of class occurred more often and there were just 
seven lakes where Moderate was the prevalent class (the mean percentage of this class 
from total number of observations was 68%, sd = 13%) throughout six years. In these lakes 
Clear was the second most occurring class (mean = 23%, sd = 12%). In six lakes out of seven 
lakes Chla-dominated occurred on average 20% of observations (sd = 10%), and Turbid in 
four lakes—mean = 7%, sd = 3%. In others where Moderate was the prevalent class but 
with class change throughout years, there was a larger change towards the Chla-
dominated class. 

The Chla-dominated class is likely related to algal blooms. This class was prevalent 
in 42 lakes and in 20 of those lakes the prevalent class obtained from satellite data and RF 
models was the same for the six-year period. In these lakes every year this class was 
attributed from 40 to 100% of observations showing the different length of algal blooms 
in these lakes. In several lakes there was very little of change of class (Lake Ūdrijos, Lake 
Didžiulis (Dusmena), and Petraičių pond)—in all years in the spring to autumn season 
these lakes were characterised by algal blooms (89–100% of observations assigned to the 
Chla-dominated class). More class changes were observed in other Chla-dominated lakes. 
In others, yearly class change was observed and in 45% of these lakes other classes than 
Chla-dominated were observed in the year of 2020. There were from 6 to 19 observations 
in these lakes in the year 2020 (Figure 6). In some lakes in spring and autumn there was 
the Chla-dominated class, while in summertime we observed the Clear and Moderate 
classes (Lake Niedulis), that in some cases did not reflect in situ measurements (Lake 
Pluvija). The RF models likely misclassified lake classes in summertime in these lakes. 

There were no lakes where the Turbid class was identified as the most frequent in at 
least one year, based on satellite data. There were also 11 lakes where we could not 
discriminate the prevalent class as there were equal number of years with two or three 
classes. In some cases, yearly class selection was influenced by a small number of 
observations in different seasons, thus it might have happened that the prevalent class 
was determined from spring and autumn observations while lacking summer 
observations when algal blooms are expected in some lakes. In addition, there were cases 
when the model misclassified the class when in situ data were available. 
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Figure 5. The prevalent class of lakes throughout the 2015–2020 period. 

 
Figure 6. Class changes based on in situ (circles) and model (squares) data in lakes with the 
prevalent Chla-dominated class in the year of 2020 when Clear or Moderate classes were observed 
in these lakes. The grey observation of class in lake Pluvija is beyond the definition of four (Clear, 
Moderate, Chla-dominated, and Turbid) classes used in this study. 

4. Discussion 
We created a model based on a random forest machine learning algorithm that, using 

spectral features, can classify lake observations into four classes—Clear, Moderate, Chla-
dominated, and Turbid classes. Firstly, the model separates observations with Clear class 
from others (those having some optically active constituents) and then the second model 
classifies the other observations (OAS-class) into three classes: Moderate, Chla-
dominated, and Turbid. Having two steps of classification helps to separate the 
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observations that are characterised by clear conditions with low amounts of optically 
active constituents. Those are nonproblematic cases. 

The classes were defined by routinely observed water quality parameters, such as, 
chla concentration, water transparency, and suspended matter concentration that 
determines the ecological state of a water body. The Moderate and Turbid classes were 
similar based on chla, and similar to the Clear class based on SM (Table 5). However, the 
Turbid class was more similar to the Chla-dominated class based on transparency values. 
Some similarities may have caused misclassification of observations as the formation of 
classes was based on strict threshold values of water quality parameters. Spectral 
similarity of the Turbid class to the Clear and Moderate classes as seen from computed 
spectral features (Figures 2–4) contributed to the low classification accuracy on unseen 
data that was 27% for the Turbid class while for the Clear class the accuracy was much 
higher—85%. In addition, there was a lower number of observations in the Turbid class 
(53 in total), while there were 260 observations of the Clear class. We chose more distinct 
features (Figure 2) and used class weights (Table 2) to improve classification accuracy; 
however, it is likely that increasing the number of observations could improve the 
classification accuracy further. 

The classification accuracy of cases of the Chla-dominated class defining low 
transparency algal blooms was lower than the classification accuracy (72%) for cases in 
the Clear class. However, after performing a visual inspection of RGB images it turned 
out that 43% of misclassified cases were related to thin clouds or cloud shadows’ influence 
on satellite data. Sen2Cor image classification that we used for filtering non-water pixels 
failed to mask out the thin clouds and cloud shadows in these cases; though the problem 
is known, fixing it over water bodies with low signal remains challenging and the use of 
several scene classification algorithms can be an option to increase scene classification 
accuracy [46]. In those cases (for example, Lake Pluvija in 2020, (Figure 6) spectral signal 
was reduced and chla signal was not registered by satellite. In this study we used Sentinel-
2 MSI tiles with up to 30% of cloudiness, though using images with higher cloudiness 
could expand the training-test set; however, another or additional data quality check is 
necessary to ensure data quality. In other cases, mostly (43% of cases) there was two-three 
days’ time difference between the in situ measurement and the satellite observation, thus, 
conditions in a lake could have changed and the observation was assigned to the 
Moderate class. Nevertheless, a model can be used for identification of the prevalent class 
in a lake (Figure 5) and class change throughout the season identifying light (Moderate 
class) and strong algal blooms (Chla-dominated). It can help for determination of algal 
bloom onset and dynamics when class change is observed, thus, it can serve as an 
additional tool to in situ measurements. 

There are a lot of machine learning algorithms that can be used to solve the same 
problem; however, it is advisable to use the simplest method possible yielding the best 
results. In our study we built models based on a random forest algorithm that is often 
used for its interpretability and ability to extract important features. The random forest 
provided the best results in our study as well as in other studies in chlorophyll retrieval 
[47,48] and more complex algorithms such as ANN provide just slightly better results [49]. 

Our classification model can be applied to other regions where similar classes are 
observed without retraining. Our model was created based on observations from 226 lakes 
and is focused mostly on waters dominated by phytoplankton. We also included turbid 
due to other reasons waters into the Turbid class; however a better description of this 
class, for example, with absorption coefficients at 440 nm, that is a good descriptor of 
coloured dissolved organic matter content [50], is needed to improve model results. In 
other regions, the class definition described in Table 1 could be extended with this 
parameter and different class aggregations could be used. Our model could be extended 
with more classes, such as, a class dominated by SM (for example, 1_SM_turbid class as 
in Table 1). In that case a model should be retrained, and inclusion of new spectral features 
should be reviewed. 
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Biophysical classification of lakes can be a tool for experts at regional environmental 
protection agencies. It can help to observe sudden changes in a lake remotely and make 
decisions on carrying out the measurements in situ. The classification can serve as a tool 
to observe onset and dynamics of algal blooms. In this way it can inform on the state of a 
lake in between the in situ measurements. Additionally, biophysical classes can be used 
to develop water parameter retrieval algorithms from satellite data. 

5. Conclusions 
The machine learning algorithms were tested to create a model for biophysical 

classification of lake observations using Sentinel-2 MSI data as input. The most accurate 
model for separating Clear and OAS-class observations was obtained using random forest 
classifier with BD1, R560/R705, and AVW features as input. This step allowed us to 
separate observations that are characterised by low amounts of optically active substances 
(chla and SM) from those with significant amounts of these substances (OAS-class). The 
random forest classifier with reflectance amplitude, R705/R665, and AVW as input was 
then used to determine the Moderate, Chla-dominated, Turbid lake observations. The 
classification accuracy when models were applied on unseen data, varied from 27% for 
the Turbid class, to 85% for the Clear class, while accuracy of classification of classes 
related to algal blooms were 81% (Moderate) and 71% (Chla-dominated). The 
classification accuracy for classes could be increased by enlarging the training-test dataset 
and ensuring better removal of observations that were affected by cloud shadows and 
thin clouds. 

The models were applied to 19292 lake spectra of 226 lakes in Lithuania that are larger 
than 0.5 km2 and are monitored according to a state monitoring programme. The 
prevalent class over the 2015–2020-year period was Clear (151 lakes); however, 42 lakes 
were affected by likely strong algal blooms. In addition, we were able to use biophysical 
classes to observe changes in lakes through the years 2015–2020, and throughout the warm 
(April-October) season. Our biophysical lake classification models can be applied to other 
regions where phytoplankton is the dominant substance found in water. Additionally, 
models can be expanded by including new classes (for example, SM-dominated). 
Biophysical classification of lake observations can be helpful to experts in the regional 
environmental protection agencies and also introduced to the public as a simple 
characterisation of a water body. 
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